xref: /openbmc/linux/net/sunrpc/xprtrdma/rpc_rdma.c (revision 83a530e1)
1 /*
2  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
3  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the BSD-type
9  * license below:
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  *      Redistributions of source code must retain the above copyright
16  *      notice, this list of conditions and the following disclaimer.
17  *
18  *      Redistributions in binary form must reproduce the above
19  *      copyright notice, this list of conditions and the following
20  *      disclaimer in the documentation and/or other materials provided
21  *      with the distribution.
22  *
23  *      Neither the name of the Network Appliance, Inc. nor the names of
24  *      its contributors may be used to endorse or promote products
25  *      derived from this software without specific prior written
26  *      permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39  */
40 
41 /*
42  * rpc_rdma.c
43  *
44  * This file contains the guts of the RPC RDMA protocol, and
45  * does marshaling/unmarshaling, etc. It is also where interfacing
46  * to the Linux RPC framework lives.
47  */
48 
49 #include "xprt_rdma.h"
50 
51 #include <linux/highmem.h>
52 
53 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
54 # define RPCDBG_FACILITY	RPCDBG_TRANS
55 #endif
56 
57 static const char transfertypes[][12] = {
58 	"inline",	/* no chunks */
59 	"read list",	/* some argument via rdma read */
60 	"*read list",	/* entire request via rdma read */
61 	"write list",	/* some result via rdma write */
62 	"reply chunk"	/* entire reply via rdma write */
63 };
64 
65 /* Returns size of largest RPC-over-RDMA header in a Call message
66  *
67  * The largest Call header contains a full-size Read list and a
68  * minimal Reply chunk.
69  */
70 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
71 {
72 	unsigned int size;
73 
74 	/* Fixed header fields and list discriminators */
75 	size = RPCRDMA_HDRLEN_MIN;
76 
77 	/* Maximum Read list size */
78 	maxsegs += 2;	/* segment for head and tail buffers */
79 	size = maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
80 
81 	/* Minimal Read chunk size */
82 	size += sizeof(__be32);	/* segment count */
83 	size += rpcrdma_segment_maxsz * sizeof(__be32);
84 	size += sizeof(__be32);	/* list discriminator */
85 
86 	dprintk("RPC:       %s: max call header size = %u\n",
87 		__func__, size);
88 	return size;
89 }
90 
91 /* Returns size of largest RPC-over-RDMA header in a Reply message
92  *
93  * There is only one Write list or one Reply chunk per Reply
94  * message.  The larger list is the Write list.
95  */
96 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
97 {
98 	unsigned int size;
99 
100 	/* Fixed header fields and list discriminators */
101 	size = RPCRDMA_HDRLEN_MIN;
102 
103 	/* Maximum Write list size */
104 	maxsegs += 2;	/* segment for head and tail buffers */
105 	size = sizeof(__be32);		/* segment count */
106 	size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
107 	size += sizeof(__be32);	/* list discriminator */
108 
109 	dprintk("RPC:       %s: max reply header size = %u\n",
110 		__func__, size);
111 	return size;
112 }
113 
114 void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt)
115 {
116 	struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
117 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
118 	unsigned int maxsegs = ia->ri_max_segs;
119 
120 	ia->ri_max_inline_write = cdata->inline_wsize -
121 				  rpcrdma_max_call_header_size(maxsegs);
122 	ia->ri_max_inline_read = cdata->inline_rsize -
123 				 rpcrdma_max_reply_header_size(maxsegs);
124 }
125 
126 /* The client can send a request inline as long as the RPCRDMA header
127  * plus the RPC call fit under the transport's inline limit. If the
128  * combined call message size exceeds that limit, the client must use
129  * a Read chunk for this operation.
130  *
131  * A Read chunk is also required if sending the RPC call inline would
132  * exceed this device's max_sge limit.
133  */
134 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
135 				struct rpc_rqst *rqst)
136 {
137 	struct xdr_buf *xdr = &rqst->rq_snd_buf;
138 	unsigned int count, remaining, offset;
139 
140 	if (xdr->len > r_xprt->rx_ia.ri_max_inline_write)
141 		return false;
142 
143 	if (xdr->page_len) {
144 		remaining = xdr->page_len;
145 		offset = offset_in_page(xdr->page_base);
146 		count = RPCRDMA_MIN_SEND_SGES;
147 		while (remaining) {
148 			remaining -= min_t(unsigned int,
149 					   PAGE_SIZE - offset, remaining);
150 			offset = 0;
151 			if (++count > r_xprt->rx_ia.ri_max_send_sges)
152 				return false;
153 		}
154 	}
155 
156 	return true;
157 }
158 
159 /* The client can't know how large the actual reply will be. Thus it
160  * plans for the largest possible reply for that particular ULP
161  * operation. If the maximum combined reply message size exceeds that
162  * limit, the client must provide a write list or a reply chunk for
163  * this request.
164  */
165 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
166 				   struct rpc_rqst *rqst)
167 {
168 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
169 
170 	return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read;
171 }
172 
173 /* Split @vec on page boundaries into SGEs. FMR registers pages, not
174  * a byte range. Other modes coalesce these SGEs into a single MR
175  * when they can.
176  *
177  * Returns pointer to next available SGE, and bumps the total number
178  * of SGEs consumed.
179  */
180 static struct rpcrdma_mr_seg *
181 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
182 		     unsigned int *n)
183 {
184 	u32 remaining, page_offset;
185 	char *base;
186 
187 	base = vec->iov_base;
188 	page_offset = offset_in_page(base);
189 	remaining = vec->iov_len;
190 	while (remaining) {
191 		seg->mr_page = NULL;
192 		seg->mr_offset = base;
193 		seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
194 		remaining -= seg->mr_len;
195 		base += seg->mr_len;
196 		++seg;
197 		++(*n);
198 		page_offset = 0;
199 	}
200 	return seg;
201 }
202 
203 /* Convert @xdrbuf into SGEs no larger than a page each. As they
204  * are registered, these SGEs are then coalesced into RDMA segments
205  * when the selected memreg mode supports it.
206  *
207  * Returns positive number of SGEs consumed, or a negative errno.
208  */
209 
210 static int
211 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
212 		     unsigned int pos, enum rpcrdma_chunktype type,
213 		     struct rpcrdma_mr_seg *seg)
214 {
215 	unsigned long page_base;
216 	unsigned int len, n;
217 	struct page **ppages;
218 
219 	n = 0;
220 	if (pos == 0)
221 		seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
222 
223 	len = xdrbuf->page_len;
224 	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
225 	page_base = offset_in_page(xdrbuf->page_base);
226 	while (len) {
227 		if (unlikely(!*ppages)) {
228 			/* XXX: Certain upper layer operations do
229 			 *	not provide receive buffer pages.
230 			 */
231 			*ppages = alloc_page(GFP_ATOMIC);
232 			if (!*ppages)
233 				return -EAGAIN;
234 		}
235 		seg->mr_page = *ppages;
236 		seg->mr_offset = (char *)page_base;
237 		seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
238 		len -= seg->mr_len;
239 		++ppages;
240 		++seg;
241 		++n;
242 		page_base = 0;
243 	}
244 
245 	/* When encoding a Read chunk, the tail iovec contains an
246 	 * XDR pad and may be omitted.
247 	 */
248 	if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup)
249 		goto out;
250 
251 	/* When encoding a Write chunk, some servers need to see an
252 	 * extra segment for non-XDR-aligned Write chunks. The upper
253 	 * layer provides space in the tail iovec that may be used
254 	 * for this purpose.
255 	 */
256 	if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup)
257 		goto out;
258 
259 	if (xdrbuf->tail[0].iov_len)
260 		seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
261 
262 out:
263 	if (unlikely(n > RPCRDMA_MAX_SEGS))
264 		return -EIO;
265 	return n;
266 }
267 
268 static inline int
269 encode_item_present(struct xdr_stream *xdr)
270 {
271 	__be32 *p;
272 
273 	p = xdr_reserve_space(xdr, sizeof(*p));
274 	if (unlikely(!p))
275 		return -EMSGSIZE;
276 
277 	*p = xdr_one;
278 	return 0;
279 }
280 
281 static inline int
282 encode_item_not_present(struct xdr_stream *xdr)
283 {
284 	__be32 *p;
285 
286 	p = xdr_reserve_space(xdr, sizeof(*p));
287 	if (unlikely(!p))
288 		return -EMSGSIZE;
289 
290 	*p = xdr_zero;
291 	return 0;
292 }
293 
294 static void
295 xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mr *mr)
296 {
297 	*iptr++ = cpu_to_be32(mr->mr_handle);
298 	*iptr++ = cpu_to_be32(mr->mr_length);
299 	xdr_encode_hyper(iptr, mr->mr_offset);
300 }
301 
302 static int
303 encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr)
304 {
305 	__be32 *p;
306 
307 	p = xdr_reserve_space(xdr, 4 * sizeof(*p));
308 	if (unlikely(!p))
309 		return -EMSGSIZE;
310 
311 	xdr_encode_rdma_segment(p, mr);
312 	return 0;
313 }
314 
315 static int
316 encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr,
317 		    u32 position)
318 {
319 	__be32 *p;
320 
321 	p = xdr_reserve_space(xdr, 6 * sizeof(*p));
322 	if (unlikely(!p))
323 		return -EMSGSIZE;
324 
325 	*p++ = xdr_one;			/* Item present */
326 	*p++ = cpu_to_be32(position);
327 	xdr_encode_rdma_segment(p, mr);
328 	return 0;
329 }
330 
331 /* Register and XDR encode the Read list. Supports encoding a list of read
332  * segments that belong to a single read chunk.
333  *
334  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
335  *
336  *  Read chunklist (a linked list):
337  *   N elements, position P (same P for all chunks of same arg!):
338  *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
339  *
340  * Returns zero on success, or a negative errno if a failure occurred.
341  * @xdr is advanced to the next position in the stream.
342  *
343  * Only a single @pos value is currently supported.
344  */
345 static noinline int
346 rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
347 			 struct rpc_rqst *rqst, enum rpcrdma_chunktype rtype)
348 {
349 	struct xdr_stream *xdr = &req->rl_stream;
350 	struct rpcrdma_mr_seg *seg;
351 	struct rpcrdma_mr *mr;
352 	unsigned int pos;
353 	int nsegs;
354 
355 	pos = rqst->rq_snd_buf.head[0].iov_len;
356 	if (rtype == rpcrdma_areadch)
357 		pos = 0;
358 	seg = req->rl_segments;
359 	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
360 				     rtype, seg);
361 	if (nsegs < 0)
362 		return nsegs;
363 
364 	do {
365 		seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
366 						   false, &mr);
367 		if (IS_ERR(seg))
368 			goto out_maperr;
369 		rpcrdma_mr_push(mr, &req->rl_registered);
370 
371 		if (encode_read_segment(xdr, mr, pos) < 0)
372 			return -EMSGSIZE;
373 
374 		trace_xprtrdma_read_chunk(rqst->rq_task, pos, mr, nsegs);
375 		r_xprt->rx_stats.read_chunk_count++;
376 		nsegs -= mr->mr_nents;
377 	} while (nsegs);
378 
379 	return 0;
380 
381 out_maperr:
382 	if (PTR_ERR(seg) == -EAGAIN)
383 		xprt_wait_for_buffer_space(rqst->rq_task, NULL);
384 	return PTR_ERR(seg);
385 }
386 
387 /* Register and XDR encode the Write list. Supports encoding a list
388  * containing one array of plain segments that belong to a single
389  * write chunk.
390  *
391  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
392  *
393  *  Write chunklist (a list of (one) counted array):
394  *   N elements:
395  *    1 - N - HLOO - HLOO - ... - HLOO - 0
396  *
397  * Returns zero on success, or a negative errno if a failure occurred.
398  * @xdr is advanced to the next position in the stream.
399  *
400  * Only a single Write chunk is currently supported.
401  */
402 static noinline int
403 rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
404 			  struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype)
405 {
406 	struct xdr_stream *xdr = &req->rl_stream;
407 	struct rpcrdma_mr_seg *seg;
408 	struct rpcrdma_mr *mr;
409 	int nsegs, nchunks;
410 	__be32 *segcount;
411 
412 	seg = req->rl_segments;
413 	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
414 				     rqst->rq_rcv_buf.head[0].iov_len,
415 				     wtype, seg);
416 	if (nsegs < 0)
417 		return nsegs;
418 
419 	if (encode_item_present(xdr) < 0)
420 		return -EMSGSIZE;
421 	segcount = xdr_reserve_space(xdr, sizeof(*segcount));
422 	if (unlikely(!segcount))
423 		return -EMSGSIZE;
424 	/* Actual value encoded below */
425 
426 	nchunks = 0;
427 	do {
428 		seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
429 						   true, &mr);
430 		if (IS_ERR(seg))
431 			goto out_maperr;
432 		rpcrdma_mr_push(mr, &req->rl_registered);
433 
434 		if (encode_rdma_segment(xdr, mr) < 0)
435 			return -EMSGSIZE;
436 
437 		trace_xprtrdma_write_chunk(rqst->rq_task, mr, nsegs);
438 		r_xprt->rx_stats.write_chunk_count++;
439 		r_xprt->rx_stats.total_rdma_request += mr->mr_length;
440 		nchunks++;
441 		nsegs -= mr->mr_nents;
442 	} while (nsegs);
443 
444 	/* Update count of segments in this Write chunk */
445 	*segcount = cpu_to_be32(nchunks);
446 
447 	return 0;
448 
449 out_maperr:
450 	if (PTR_ERR(seg) == -EAGAIN)
451 		xprt_wait_for_buffer_space(rqst->rq_task, NULL);
452 	return PTR_ERR(seg);
453 }
454 
455 /* Register and XDR encode the Reply chunk. Supports encoding an array
456  * of plain segments that belong to a single write (reply) chunk.
457  *
458  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
459  *
460  *  Reply chunk (a counted array):
461  *   N elements:
462  *    1 - N - HLOO - HLOO - ... - HLOO
463  *
464  * Returns zero on success, or a negative errno if a failure occurred.
465  * @xdr is advanced to the next position in the stream.
466  */
467 static noinline int
468 rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
469 			   struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype)
470 {
471 	struct xdr_stream *xdr = &req->rl_stream;
472 	struct rpcrdma_mr_seg *seg;
473 	struct rpcrdma_mr *mr;
474 	int nsegs, nchunks;
475 	__be32 *segcount;
476 
477 	seg = req->rl_segments;
478 	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
479 	if (nsegs < 0)
480 		return nsegs;
481 
482 	if (encode_item_present(xdr) < 0)
483 		return -EMSGSIZE;
484 	segcount = xdr_reserve_space(xdr, sizeof(*segcount));
485 	if (unlikely(!segcount))
486 		return -EMSGSIZE;
487 	/* Actual value encoded below */
488 
489 	nchunks = 0;
490 	do {
491 		seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
492 						   true, &mr);
493 		if (IS_ERR(seg))
494 			goto out_maperr;
495 		rpcrdma_mr_push(mr, &req->rl_registered);
496 
497 		if (encode_rdma_segment(xdr, mr) < 0)
498 			return -EMSGSIZE;
499 
500 		trace_xprtrdma_reply_chunk(rqst->rq_task, mr, nsegs);
501 		r_xprt->rx_stats.reply_chunk_count++;
502 		r_xprt->rx_stats.total_rdma_request += mr->mr_length;
503 		nchunks++;
504 		nsegs -= mr->mr_nents;
505 	} while (nsegs);
506 
507 	/* Update count of segments in the Reply chunk */
508 	*segcount = cpu_to_be32(nchunks);
509 
510 	return 0;
511 
512 out_maperr:
513 	if (PTR_ERR(seg) == -EAGAIN)
514 		xprt_wait_for_buffer_space(rqst->rq_task, NULL);
515 	return PTR_ERR(seg);
516 }
517 
518 /**
519  * rpcrdma_unmap_sendctx - DMA-unmap Send buffers
520  * @sc: sendctx containing SGEs to unmap
521  *
522  */
523 void
524 rpcrdma_unmap_sendctx(struct rpcrdma_sendctx *sc)
525 {
526 	struct rpcrdma_ia *ia = &sc->sc_xprt->rx_ia;
527 	struct ib_sge *sge;
528 	unsigned int count;
529 
530 	/* The first two SGEs contain the transport header and
531 	 * the inline buffer. These are always left mapped so
532 	 * they can be cheaply re-used.
533 	 */
534 	sge = &sc->sc_sges[2];
535 	for (count = sc->sc_unmap_count; count; ++sge, --count)
536 		ib_dma_unmap_page(ia->ri_device,
537 				  sge->addr, sge->length, DMA_TO_DEVICE);
538 
539 	if (test_and_clear_bit(RPCRDMA_REQ_F_TX_RESOURCES, &sc->sc_req->rl_flags)) {
540 		smp_mb__after_atomic();
541 		wake_up_bit(&sc->sc_req->rl_flags, RPCRDMA_REQ_F_TX_RESOURCES);
542 	}
543 }
544 
545 /* Prepare an SGE for the RPC-over-RDMA transport header.
546  */
547 static bool
548 rpcrdma_prepare_hdr_sge(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
549 			u32 len)
550 {
551 	struct rpcrdma_sendctx *sc = req->rl_sendctx;
552 	struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
553 	struct ib_sge *sge = sc->sc_sges;
554 
555 	if (!rpcrdma_dma_map_regbuf(ia, rb))
556 		goto out_regbuf;
557 	sge->addr = rdmab_addr(rb);
558 	sge->length = len;
559 	sge->lkey = rdmab_lkey(rb);
560 
561 	ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr,
562 				      sge->length, DMA_TO_DEVICE);
563 	sc->sc_wr.num_sge++;
564 	return true;
565 
566 out_regbuf:
567 	pr_err("rpcrdma: failed to DMA map a Send buffer\n");
568 	return false;
569 }
570 
571 /* Prepare the Send SGEs. The head and tail iovec, and each entry
572  * in the page list, gets its own SGE.
573  */
574 static bool
575 rpcrdma_prepare_msg_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
576 			 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
577 {
578 	struct rpcrdma_sendctx *sc = req->rl_sendctx;
579 	unsigned int sge_no, page_base, len, remaining;
580 	struct rpcrdma_regbuf *rb = req->rl_sendbuf;
581 	struct ib_device *device = ia->ri_device;
582 	struct ib_sge *sge = sc->sc_sges;
583 	u32 lkey = ia->ri_pd->local_dma_lkey;
584 	struct page *page, **ppages;
585 
586 	/* The head iovec is straightforward, as it is already
587 	 * DMA-mapped. Sync the content that has changed.
588 	 */
589 	if (!rpcrdma_dma_map_regbuf(ia, rb))
590 		goto out_regbuf;
591 	sge_no = 1;
592 	sge[sge_no].addr = rdmab_addr(rb);
593 	sge[sge_no].length = xdr->head[0].iov_len;
594 	sge[sge_no].lkey = rdmab_lkey(rb);
595 	ib_dma_sync_single_for_device(rdmab_device(rb), sge[sge_no].addr,
596 				      sge[sge_no].length, DMA_TO_DEVICE);
597 
598 	/* If there is a Read chunk, the page list is being handled
599 	 * via explicit RDMA, and thus is skipped here. However, the
600 	 * tail iovec may include an XDR pad for the page list, as
601 	 * well as additional content, and may not reside in the
602 	 * same page as the head iovec.
603 	 */
604 	if (rtype == rpcrdma_readch) {
605 		len = xdr->tail[0].iov_len;
606 
607 		/* Do not include the tail if it is only an XDR pad */
608 		if (len < 4)
609 			goto out;
610 
611 		page = virt_to_page(xdr->tail[0].iov_base);
612 		page_base = offset_in_page(xdr->tail[0].iov_base);
613 
614 		/* If the content in the page list is an odd length,
615 		 * xdr_write_pages() has added a pad at the beginning
616 		 * of the tail iovec. Force the tail's non-pad content
617 		 * to land at the next XDR position in the Send message.
618 		 */
619 		page_base += len & 3;
620 		len -= len & 3;
621 		goto map_tail;
622 	}
623 
624 	/* If there is a page list present, temporarily DMA map
625 	 * and prepare an SGE for each page to be sent.
626 	 */
627 	if (xdr->page_len) {
628 		ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
629 		page_base = offset_in_page(xdr->page_base);
630 		remaining = xdr->page_len;
631 		while (remaining) {
632 			sge_no++;
633 			if (sge_no > RPCRDMA_MAX_SEND_SGES - 2)
634 				goto out_mapping_overflow;
635 
636 			len = min_t(u32, PAGE_SIZE - page_base, remaining);
637 			sge[sge_no].addr = ib_dma_map_page(device, *ppages,
638 							   page_base, len,
639 							   DMA_TO_DEVICE);
640 			if (ib_dma_mapping_error(device, sge[sge_no].addr))
641 				goto out_mapping_err;
642 			sge[sge_no].length = len;
643 			sge[sge_no].lkey = lkey;
644 
645 			sc->sc_unmap_count++;
646 			ppages++;
647 			remaining -= len;
648 			page_base = 0;
649 		}
650 	}
651 
652 	/* The tail iovec is not always constructed in the same
653 	 * page where the head iovec resides (see, for example,
654 	 * gss_wrap_req_priv). To neatly accommodate that case,
655 	 * DMA map it separately.
656 	 */
657 	if (xdr->tail[0].iov_len) {
658 		page = virt_to_page(xdr->tail[0].iov_base);
659 		page_base = offset_in_page(xdr->tail[0].iov_base);
660 		len = xdr->tail[0].iov_len;
661 
662 map_tail:
663 		sge_no++;
664 		sge[sge_no].addr = ib_dma_map_page(device, page,
665 						   page_base, len,
666 						   DMA_TO_DEVICE);
667 		if (ib_dma_mapping_error(device, sge[sge_no].addr))
668 			goto out_mapping_err;
669 		sge[sge_no].length = len;
670 		sge[sge_no].lkey = lkey;
671 		sc->sc_unmap_count++;
672 	}
673 
674 out:
675 	sc->sc_wr.num_sge += sge_no;
676 	if (sc->sc_unmap_count)
677 		__set_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags);
678 	return true;
679 
680 out_regbuf:
681 	pr_err("rpcrdma: failed to DMA map a Send buffer\n");
682 	return false;
683 
684 out_mapping_overflow:
685 	rpcrdma_unmap_sendctx(sc);
686 	pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no);
687 	return false;
688 
689 out_mapping_err:
690 	rpcrdma_unmap_sendctx(sc);
691 	pr_err("rpcrdma: Send mapping error\n");
692 	return false;
693 }
694 
695 /**
696  * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR
697  * @r_xprt: controlling transport
698  * @req: context of RPC Call being marshalled
699  * @hdrlen: size of transport header, in bytes
700  * @xdr: xdr_buf containing RPC Call
701  * @rtype: chunk type being encoded
702  *
703  * Returns 0 on success; otherwise a negative errno is returned.
704  */
705 int
706 rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
707 			  struct rpcrdma_req *req, u32 hdrlen,
708 			  struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
709 {
710 	req->rl_sendctx = rpcrdma_sendctx_get_locked(&r_xprt->rx_buf);
711 	if (!req->rl_sendctx)
712 		return -ENOBUFS;
713 	req->rl_sendctx->sc_wr.num_sge = 0;
714 	req->rl_sendctx->sc_unmap_count = 0;
715 	req->rl_sendctx->sc_req = req;
716 	__clear_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags);
717 
718 	if (!rpcrdma_prepare_hdr_sge(&r_xprt->rx_ia, req, hdrlen))
719 		return -EIO;
720 
721 	if (rtype != rpcrdma_areadch)
722 		if (!rpcrdma_prepare_msg_sges(&r_xprt->rx_ia, req, xdr, rtype))
723 			return -EIO;
724 
725 	return 0;
726 }
727 
728 /**
729  * rpcrdma_marshal_req - Marshal and send one RPC request
730  * @r_xprt: controlling transport
731  * @rqst: RPC request to be marshaled
732  *
733  * For the RPC in "rqst", this function:
734  *  - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
735  *  - Registers Read, Write, and Reply chunks
736  *  - Constructs the transport header
737  *  - Posts a Send WR to send the transport header and request
738  *
739  * Returns:
740  *	%0 if the RPC was sent successfully,
741  *	%-ENOTCONN if the connection was lost,
742  *	%-EAGAIN if the caller should call again with the same arguments,
743  *	%-ENOBUFS if the caller should call again after a delay,
744  *	%-EMSGSIZE if the transport header is too small,
745  *	%-EIO if a permanent problem occurred while marshaling.
746  */
747 int
748 rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
749 {
750 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
751 	struct xdr_stream *xdr = &req->rl_stream;
752 	enum rpcrdma_chunktype rtype, wtype;
753 	bool ddp_allowed;
754 	__be32 *p;
755 	int ret;
756 
757 	rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
758 	xdr_init_encode(xdr, &req->rl_hdrbuf,
759 			req->rl_rdmabuf->rg_base);
760 
761 	/* Fixed header fields */
762 	ret = -EMSGSIZE;
763 	p = xdr_reserve_space(xdr, 4 * sizeof(*p));
764 	if (!p)
765 		goto out_err;
766 	*p++ = rqst->rq_xid;
767 	*p++ = rpcrdma_version;
768 	*p++ = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
769 
770 	/* When the ULP employs a GSS flavor that guarantees integrity
771 	 * or privacy, direct data placement of individual data items
772 	 * is not allowed.
773 	 */
774 	ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
775 						RPCAUTH_AUTH_DATATOUCH);
776 
777 	/*
778 	 * Chunks needed for results?
779 	 *
780 	 * o If the expected result is under the inline threshold, all ops
781 	 *   return as inline.
782 	 * o Large read ops return data as write chunk(s), header as
783 	 *   inline.
784 	 * o Large non-read ops return as a single reply chunk.
785 	 */
786 	if (rpcrdma_results_inline(r_xprt, rqst))
787 		wtype = rpcrdma_noch;
788 	else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ)
789 		wtype = rpcrdma_writech;
790 	else
791 		wtype = rpcrdma_replych;
792 
793 	/*
794 	 * Chunks needed for arguments?
795 	 *
796 	 * o If the total request is under the inline threshold, all ops
797 	 *   are sent as inline.
798 	 * o Large write ops transmit data as read chunk(s), header as
799 	 *   inline.
800 	 * o Large non-write ops are sent with the entire message as a
801 	 *   single read chunk (protocol 0-position special case).
802 	 *
803 	 * This assumes that the upper layer does not present a request
804 	 * that both has a data payload, and whose non-data arguments
805 	 * by themselves are larger than the inline threshold.
806 	 */
807 	if (rpcrdma_args_inline(r_xprt, rqst)) {
808 		*p++ = rdma_msg;
809 		rtype = rpcrdma_noch;
810 	} else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
811 		*p++ = rdma_msg;
812 		rtype = rpcrdma_readch;
813 	} else {
814 		r_xprt->rx_stats.nomsg_call_count++;
815 		*p++ = rdma_nomsg;
816 		rtype = rpcrdma_areadch;
817 	}
818 
819 	/* If this is a retransmit, discard previously registered
820 	 * chunks. Very likely the connection has been replaced,
821 	 * so these registrations are invalid and unusable.
822 	 */
823 	while (unlikely(!list_empty(&req->rl_registered))) {
824 		struct rpcrdma_mr *mr;
825 
826 		mr = rpcrdma_mr_pop(&req->rl_registered);
827 		rpcrdma_mr_defer_recovery(mr);
828 	}
829 
830 	/* This implementation supports the following combinations
831 	 * of chunk lists in one RPC-over-RDMA Call message:
832 	 *
833 	 *   - Read list
834 	 *   - Write list
835 	 *   - Reply chunk
836 	 *   - Read list + Reply chunk
837 	 *
838 	 * It might not yet support the following combinations:
839 	 *
840 	 *   - Read list + Write list
841 	 *
842 	 * It does not support the following combinations:
843 	 *
844 	 *   - Write list + Reply chunk
845 	 *   - Read list + Write list + Reply chunk
846 	 *
847 	 * This implementation supports only a single chunk in each
848 	 * Read or Write list. Thus for example the client cannot
849 	 * send a Call message with a Position Zero Read chunk and a
850 	 * regular Read chunk at the same time.
851 	 */
852 	if (rtype != rpcrdma_noch) {
853 		ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
854 		if (ret)
855 			goto out_err;
856 	}
857 	ret = encode_item_not_present(xdr);
858 	if (ret)
859 		goto out_err;
860 
861 	if (wtype == rpcrdma_writech) {
862 		ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
863 		if (ret)
864 			goto out_err;
865 	}
866 	ret = encode_item_not_present(xdr);
867 	if (ret)
868 		goto out_err;
869 
870 	if (wtype != rpcrdma_replych)
871 		ret = encode_item_not_present(xdr);
872 	else
873 		ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
874 	if (ret)
875 		goto out_err;
876 
877 	trace_xprtrdma_marshal(rqst, xdr_stream_pos(xdr), rtype, wtype);
878 
879 	ret = rpcrdma_prepare_send_sges(r_xprt, req, xdr_stream_pos(xdr),
880 					&rqst->rq_snd_buf, rtype);
881 	if (ret)
882 		goto out_err;
883 	return 0;
884 
885 out_err:
886 	r_xprt->rx_stats.failed_marshal_count++;
887 	return ret;
888 }
889 
890 /**
891  * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
892  * @rqst: controlling RPC request
893  * @srcp: points to RPC message payload in receive buffer
894  * @copy_len: remaining length of receive buffer content
895  * @pad: Write chunk pad bytes needed (zero for pure inline)
896  *
897  * The upper layer has set the maximum number of bytes it can
898  * receive in each component of rq_rcv_buf. These values are set in
899  * the head.iov_len, page_len, tail.iov_len, and buflen fields.
900  *
901  * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
902  * many cases this function simply updates iov_base pointers in
903  * rq_rcv_buf to point directly to the received reply data, to
904  * avoid copying reply data.
905  *
906  * Returns the count of bytes which had to be memcopied.
907  */
908 static unsigned long
909 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
910 {
911 	unsigned long fixup_copy_count;
912 	int i, npages, curlen;
913 	char *destp;
914 	struct page **ppages;
915 	int page_base;
916 
917 	/* The head iovec is redirected to the RPC reply message
918 	 * in the receive buffer, to avoid a memcopy.
919 	 */
920 	rqst->rq_rcv_buf.head[0].iov_base = srcp;
921 	rqst->rq_private_buf.head[0].iov_base = srcp;
922 
923 	/* The contents of the receive buffer that follow
924 	 * head.iov_len bytes are copied into the page list.
925 	 */
926 	curlen = rqst->rq_rcv_buf.head[0].iov_len;
927 	if (curlen > copy_len)
928 		curlen = copy_len;
929 	trace_xprtrdma_fixup(rqst, copy_len, curlen);
930 	srcp += curlen;
931 	copy_len -= curlen;
932 
933 	ppages = rqst->rq_rcv_buf.pages +
934 		(rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
935 	page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
936 	fixup_copy_count = 0;
937 	if (copy_len && rqst->rq_rcv_buf.page_len) {
938 		int pagelist_len;
939 
940 		pagelist_len = rqst->rq_rcv_buf.page_len;
941 		if (pagelist_len > copy_len)
942 			pagelist_len = copy_len;
943 		npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
944 		for (i = 0; i < npages; i++) {
945 			curlen = PAGE_SIZE - page_base;
946 			if (curlen > pagelist_len)
947 				curlen = pagelist_len;
948 
949 			trace_xprtrdma_fixup_pg(rqst, i, srcp,
950 						copy_len, curlen);
951 			destp = kmap_atomic(ppages[i]);
952 			memcpy(destp + page_base, srcp, curlen);
953 			flush_dcache_page(ppages[i]);
954 			kunmap_atomic(destp);
955 			srcp += curlen;
956 			copy_len -= curlen;
957 			fixup_copy_count += curlen;
958 			pagelist_len -= curlen;
959 			if (!pagelist_len)
960 				break;
961 			page_base = 0;
962 		}
963 
964 		/* Implicit padding for the last segment in a Write
965 		 * chunk is inserted inline at the front of the tail
966 		 * iovec. The upper layer ignores the content of
967 		 * the pad. Simply ensure inline content in the tail
968 		 * that follows the Write chunk is properly aligned.
969 		 */
970 		if (pad)
971 			srcp -= pad;
972 	}
973 
974 	/* The tail iovec is redirected to the remaining data
975 	 * in the receive buffer, to avoid a memcopy.
976 	 */
977 	if (copy_len || pad) {
978 		rqst->rq_rcv_buf.tail[0].iov_base = srcp;
979 		rqst->rq_private_buf.tail[0].iov_base = srcp;
980 	}
981 
982 	return fixup_copy_count;
983 }
984 
985 /* By convention, backchannel calls arrive via rdma_msg type
986  * messages, and never populate the chunk lists. This makes
987  * the RPC/RDMA header small and fixed in size, so it is
988  * straightforward to check the RPC header's direction field.
989  */
990 static bool
991 rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
992 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
993 {
994 	struct xdr_stream *xdr = &rep->rr_stream;
995 	__be32 *p;
996 
997 	if (rep->rr_proc != rdma_msg)
998 		return false;
999 
1000 	/* Peek at stream contents without advancing. */
1001 	p = xdr_inline_decode(xdr, 0);
1002 
1003 	/* Chunk lists */
1004 	if (*p++ != xdr_zero)
1005 		return false;
1006 	if (*p++ != xdr_zero)
1007 		return false;
1008 	if (*p++ != xdr_zero)
1009 		return false;
1010 
1011 	/* RPC header */
1012 	if (*p++ != rep->rr_xid)
1013 		return false;
1014 	if (*p != cpu_to_be32(RPC_CALL))
1015 		return false;
1016 
1017 	/* Now that we are sure this is a backchannel call,
1018 	 * advance to the RPC header.
1019 	 */
1020 	p = xdr_inline_decode(xdr, 3 * sizeof(*p));
1021 	if (unlikely(!p))
1022 		goto out_short;
1023 
1024 	rpcrdma_bc_receive_call(r_xprt, rep);
1025 	return true;
1026 
1027 out_short:
1028 	pr_warn("RPC/RDMA short backward direction call\n");
1029 	if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, rep))
1030 		xprt_disconnect_done(&r_xprt->rx_xprt);
1031 	return true;
1032 }
1033 #else	/* CONFIG_SUNRPC_BACKCHANNEL */
1034 {
1035 	return false;
1036 }
1037 #endif	/* CONFIG_SUNRPC_BACKCHANNEL */
1038 
1039 static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
1040 {
1041 	u32 handle;
1042 	u64 offset;
1043 	__be32 *p;
1044 
1045 	p = xdr_inline_decode(xdr, 4 * sizeof(*p));
1046 	if (unlikely(!p))
1047 		return -EIO;
1048 
1049 	handle = be32_to_cpup(p++);
1050 	*length = be32_to_cpup(p++);
1051 	xdr_decode_hyper(p, &offset);
1052 
1053 	trace_xprtrdma_decode_seg(handle, *length, offset);
1054 	return 0;
1055 }
1056 
1057 static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
1058 {
1059 	u32 segcount, seglength;
1060 	__be32 *p;
1061 
1062 	p = xdr_inline_decode(xdr, sizeof(*p));
1063 	if (unlikely(!p))
1064 		return -EIO;
1065 
1066 	*length = 0;
1067 	segcount = be32_to_cpup(p);
1068 	while (segcount--) {
1069 		if (decode_rdma_segment(xdr, &seglength))
1070 			return -EIO;
1071 		*length += seglength;
1072 	}
1073 
1074 	return 0;
1075 }
1076 
1077 /* In RPC-over-RDMA Version One replies, a Read list is never
1078  * expected. This decoder is a stub that returns an error if
1079  * a Read list is present.
1080  */
1081 static int decode_read_list(struct xdr_stream *xdr)
1082 {
1083 	__be32 *p;
1084 
1085 	p = xdr_inline_decode(xdr, sizeof(*p));
1086 	if (unlikely(!p))
1087 		return -EIO;
1088 	if (unlikely(*p != xdr_zero))
1089 		return -EIO;
1090 	return 0;
1091 }
1092 
1093 /* Supports only one Write chunk in the Write list
1094  */
1095 static int decode_write_list(struct xdr_stream *xdr, u32 *length)
1096 {
1097 	u32 chunklen;
1098 	bool first;
1099 	__be32 *p;
1100 
1101 	*length = 0;
1102 	first = true;
1103 	do {
1104 		p = xdr_inline_decode(xdr, sizeof(*p));
1105 		if (unlikely(!p))
1106 			return -EIO;
1107 		if (*p == xdr_zero)
1108 			break;
1109 		if (!first)
1110 			return -EIO;
1111 
1112 		if (decode_write_chunk(xdr, &chunklen))
1113 			return -EIO;
1114 		*length += chunklen;
1115 		first = false;
1116 	} while (true);
1117 	return 0;
1118 }
1119 
1120 static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
1121 {
1122 	__be32 *p;
1123 
1124 	p = xdr_inline_decode(xdr, sizeof(*p));
1125 	if (unlikely(!p))
1126 		return -EIO;
1127 
1128 	*length = 0;
1129 	if (*p != xdr_zero)
1130 		if (decode_write_chunk(xdr, length))
1131 			return -EIO;
1132 	return 0;
1133 }
1134 
1135 static int
1136 rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1137 		   struct rpc_rqst *rqst)
1138 {
1139 	struct xdr_stream *xdr = &rep->rr_stream;
1140 	u32 writelist, replychunk, rpclen;
1141 	char *base;
1142 
1143 	/* Decode the chunk lists */
1144 	if (decode_read_list(xdr))
1145 		return -EIO;
1146 	if (decode_write_list(xdr, &writelist))
1147 		return -EIO;
1148 	if (decode_reply_chunk(xdr, &replychunk))
1149 		return -EIO;
1150 
1151 	/* RDMA_MSG sanity checks */
1152 	if (unlikely(replychunk))
1153 		return -EIO;
1154 
1155 	/* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
1156 	base = (char *)xdr_inline_decode(xdr, 0);
1157 	rpclen = xdr_stream_remaining(xdr);
1158 	r_xprt->rx_stats.fixup_copy_count +=
1159 		rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
1160 
1161 	r_xprt->rx_stats.total_rdma_reply += writelist;
1162 	return rpclen + xdr_align_size(writelist);
1163 }
1164 
1165 static noinline int
1166 rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1167 {
1168 	struct xdr_stream *xdr = &rep->rr_stream;
1169 	u32 writelist, replychunk;
1170 
1171 	/* Decode the chunk lists */
1172 	if (decode_read_list(xdr))
1173 		return -EIO;
1174 	if (decode_write_list(xdr, &writelist))
1175 		return -EIO;
1176 	if (decode_reply_chunk(xdr, &replychunk))
1177 		return -EIO;
1178 
1179 	/* RDMA_NOMSG sanity checks */
1180 	if (unlikely(writelist))
1181 		return -EIO;
1182 	if (unlikely(!replychunk))
1183 		return -EIO;
1184 
1185 	/* Reply chunk buffer already is the reply vector */
1186 	r_xprt->rx_stats.total_rdma_reply += replychunk;
1187 	return replychunk;
1188 }
1189 
1190 static noinline int
1191 rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1192 		     struct rpc_rqst *rqst)
1193 {
1194 	struct xdr_stream *xdr = &rep->rr_stream;
1195 	__be32 *p;
1196 
1197 	p = xdr_inline_decode(xdr, sizeof(*p));
1198 	if (unlikely(!p))
1199 		return -EIO;
1200 
1201 	switch (*p) {
1202 	case err_vers:
1203 		p = xdr_inline_decode(xdr, 2 * sizeof(*p));
1204 		if (!p)
1205 			break;
1206 		dprintk("RPC: %5u: %s: server reports version error (%u-%u)\n",
1207 			rqst->rq_task->tk_pid, __func__,
1208 			be32_to_cpup(p), be32_to_cpu(*(p + 1)));
1209 		break;
1210 	case err_chunk:
1211 		dprintk("RPC: %5u: %s: server reports header decoding error\n",
1212 			rqst->rq_task->tk_pid, __func__);
1213 		break;
1214 	default:
1215 		dprintk("RPC: %5u: %s: server reports unrecognized error %d\n",
1216 			rqst->rq_task->tk_pid, __func__, be32_to_cpup(p));
1217 	}
1218 
1219 	r_xprt->rx_stats.bad_reply_count++;
1220 	return -EREMOTEIO;
1221 }
1222 
1223 /* Perform XID lookup, reconstruction of the RPC reply, and
1224  * RPC completion while holding the transport lock to ensure
1225  * the rep, rqst, and rq_task pointers remain stable.
1226  */
1227 void rpcrdma_complete_rqst(struct rpcrdma_rep *rep)
1228 {
1229 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1230 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1231 	struct rpc_rqst *rqst = rep->rr_rqst;
1232 	unsigned long cwnd;
1233 	int status;
1234 
1235 	xprt->reestablish_timeout = 0;
1236 
1237 	switch (rep->rr_proc) {
1238 	case rdma_msg:
1239 		status = rpcrdma_decode_msg(r_xprt, rep, rqst);
1240 		break;
1241 	case rdma_nomsg:
1242 		status = rpcrdma_decode_nomsg(r_xprt, rep);
1243 		break;
1244 	case rdma_error:
1245 		status = rpcrdma_decode_error(r_xprt, rep, rqst);
1246 		break;
1247 	default:
1248 		status = -EIO;
1249 	}
1250 	if (status < 0)
1251 		goto out_badheader;
1252 
1253 out:
1254 	spin_lock(&xprt->recv_lock);
1255 	cwnd = xprt->cwnd;
1256 	xprt->cwnd = r_xprt->rx_buf.rb_credits << RPC_CWNDSHIFT;
1257 	if (xprt->cwnd > cwnd)
1258 		xprt_release_rqst_cong(rqst->rq_task);
1259 
1260 	xprt_complete_rqst(rqst->rq_task, status);
1261 	xprt_unpin_rqst(rqst);
1262 	spin_unlock(&xprt->recv_lock);
1263 	return;
1264 
1265 /* If the incoming reply terminated a pending RPC, the next
1266  * RPC call will post a replacement receive buffer as it is
1267  * being marshaled.
1268  */
1269 out_badheader:
1270 	trace_xprtrdma_reply_hdr(rep);
1271 	r_xprt->rx_stats.bad_reply_count++;
1272 	status = -EIO;
1273 	goto out;
1274 }
1275 
1276 void rpcrdma_release_rqst(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
1277 {
1278 	/* Invalidate and unmap the data payloads before waking
1279 	 * the waiting application. This guarantees the memory
1280 	 * regions are properly fenced from the server before the
1281 	 * application accesses the data. It also ensures proper
1282 	 * send flow control: waking the next RPC waits until this
1283 	 * RPC has relinquished all its Send Queue entries.
1284 	 */
1285 	if (!list_empty(&req->rl_registered))
1286 		r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt,
1287 						    &req->rl_registered);
1288 
1289 	/* Ensure that any DMA mapped pages associated with
1290 	 * the Send of the RPC Call have been unmapped before
1291 	 * allowing the RPC to complete. This protects argument
1292 	 * memory not controlled by the RPC client from being
1293 	 * re-used before we're done with it.
1294 	 */
1295 	if (test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) {
1296 		r_xprt->rx_stats.reply_waits_for_send++;
1297 		out_of_line_wait_on_bit(&req->rl_flags,
1298 					RPCRDMA_REQ_F_TX_RESOURCES,
1299 					bit_wait,
1300 					TASK_UNINTERRUPTIBLE);
1301 	}
1302 }
1303 
1304 /* Reply handling runs in the poll worker thread. Anything that
1305  * might wait is deferred to a separate workqueue.
1306  */
1307 void rpcrdma_deferred_completion(struct work_struct *work)
1308 {
1309 	struct rpcrdma_rep *rep =
1310 			container_of(work, struct rpcrdma_rep, rr_work);
1311 	struct rpcrdma_req *req = rpcr_to_rdmar(rep->rr_rqst);
1312 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1313 
1314 	trace_xprtrdma_defer_cmp(rep);
1315 	if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE)
1316 		r_xprt->rx_ia.ri_ops->ro_reminv(rep, &req->rl_registered);
1317 	rpcrdma_release_rqst(r_xprt, req);
1318 	rpcrdma_complete_rqst(rep);
1319 }
1320 
1321 /* Process received RPC/RDMA messages.
1322  *
1323  * Errors must result in the RPC task either being awakened, or
1324  * allowed to timeout, to discover the errors at that time.
1325  */
1326 void rpcrdma_reply_handler(struct rpcrdma_rep *rep)
1327 {
1328 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1329 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1330 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1331 	struct rpcrdma_req *req;
1332 	struct rpc_rqst *rqst;
1333 	u32 credits;
1334 	__be32 *p;
1335 
1336 	if (rep->rr_hdrbuf.head[0].iov_len == 0)
1337 		goto out_badstatus;
1338 
1339 	xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf,
1340 			rep->rr_hdrbuf.head[0].iov_base);
1341 
1342 	/* Fixed transport header fields */
1343 	p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p));
1344 	if (unlikely(!p))
1345 		goto out_shortreply;
1346 	rep->rr_xid = *p++;
1347 	rep->rr_vers = *p++;
1348 	credits = be32_to_cpu(*p++);
1349 	rep->rr_proc = *p++;
1350 
1351 	if (rep->rr_vers != rpcrdma_version)
1352 		goto out_badversion;
1353 
1354 	if (rpcrdma_is_bcall(r_xprt, rep))
1355 		return;
1356 
1357 	/* Match incoming rpcrdma_rep to an rpcrdma_req to
1358 	 * get context for handling any incoming chunks.
1359 	 */
1360 	spin_lock(&xprt->recv_lock);
1361 	rqst = xprt_lookup_rqst(xprt, rep->rr_xid);
1362 	if (!rqst)
1363 		goto out_norqst;
1364 	xprt_pin_rqst(rqst);
1365 
1366 	if (credits == 0)
1367 		credits = 1;	/* don't deadlock */
1368 	else if (credits > buf->rb_max_requests)
1369 		credits = buf->rb_max_requests;
1370 	buf->rb_credits = credits;
1371 
1372 	spin_unlock(&xprt->recv_lock);
1373 
1374 	req = rpcr_to_rdmar(rqst);
1375 	req->rl_reply = rep;
1376 	rep->rr_rqst = rqst;
1377 	clear_bit(RPCRDMA_REQ_F_PENDING, &req->rl_flags);
1378 
1379 	trace_xprtrdma_reply(rqst->rq_task, rep, req, credits);
1380 
1381 	queue_work(rpcrdma_receive_wq, &rep->rr_work);
1382 	return;
1383 
1384 out_badstatus:
1385 	rpcrdma_recv_buffer_put(rep);
1386 	if (r_xprt->rx_ep.rep_connected == 1) {
1387 		r_xprt->rx_ep.rep_connected = -EIO;
1388 		rpcrdma_conn_func(&r_xprt->rx_ep);
1389 	}
1390 	return;
1391 
1392 out_badversion:
1393 	trace_xprtrdma_reply_vers(rep);
1394 	goto repost;
1395 
1396 /* The RPC transaction has already been terminated, or the header
1397  * is corrupt.
1398  */
1399 out_norqst:
1400 	spin_unlock(&xprt->recv_lock);
1401 	trace_xprtrdma_reply_rqst(rep);
1402 	goto repost;
1403 
1404 out_shortreply:
1405 	trace_xprtrdma_reply_short(rep);
1406 
1407 /* If no pending RPC transaction was matched, post a replacement
1408  * receive buffer before returning.
1409  */
1410 repost:
1411 	r_xprt->rx_stats.bad_reply_count++;
1412 	if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, rep))
1413 		rpcrdma_recv_buffer_put(rep);
1414 }
1415