xref: /openbmc/linux/net/sunrpc/xprtrdma/rpc_rdma.c (revision 82ced6fd)
1 /*
2  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * rpc_rdma.c
42  *
43  * This file contains the guts of the RPC RDMA protocol, and
44  * does marshaling/unmarshaling, etc. It is also where interfacing
45  * to the Linux RPC framework lives.
46  */
47 
48 #include "xprt_rdma.h"
49 
50 #include <linux/highmem.h>
51 
52 #ifdef RPC_DEBUG
53 # define RPCDBG_FACILITY	RPCDBG_TRANS
54 #endif
55 
56 enum rpcrdma_chunktype {
57 	rpcrdma_noch = 0,
58 	rpcrdma_readch,
59 	rpcrdma_areadch,
60 	rpcrdma_writech,
61 	rpcrdma_replych
62 };
63 
64 #ifdef RPC_DEBUG
65 static const char transfertypes[][12] = {
66 	"pure inline",	/* no chunks */
67 	" read chunk",	/* some argument via rdma read */
68 	"*read chunk",	/* entire request via rdma read */
69 	"write chunk",	/* some result via rdma write */
70 	"reply chunk"	/* entire reply via rdma write */
71 };
72 #endif
73 
74 /*
75  * Chunk assembly from upper layer xdr_buf.
76  *
77  * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
78  * elements. Segments are then coalesced when registered, if possible
79  * within the selected memreg mode.
80  *
81  * Note, this routine is never called if the connection's memory
82  * registration strategy is 0 (bounce buffers).
83  */
84 
85 static int
86 rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
87 	enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
88 {
89 	int len, n = 0, p;
90 
91 	if (pos == 0 && xdrbuf->head[0].iov_len) {
92 		seg[n].mr_page = NULL;
93 		seg[n].mr_offset = xdrbuf->head[0].iov_base;
94 		seg[n].mr_len = xdrbuf->head[0].iov_len;
95 		++n;
96 	}
97 
98 	if (xdrbuf->page_len && (xdrbuf->pages[0] != NULL)) {
99 		if (n == nsegs)
100 			return 0;
101 		seg[n].mr_page = xdrbuf->pages[0];
102 		seg[n].mr_offset = (void *)(unsigned long) xdrbuf->page_base;
103 		seg[n].mr_len = min_t(u32,
104 			PAGE_SIZE - xdrbuf->page_base, xdrbuf->page_len);
105 		len = xdrbuf->page_len - seg[n].mr_len;
106 		++n;
107 		p = 1;
108 		while (len > 0) {
109 			if (n == nsegs)
110 				return 0;
111 			seg[n].mr_page = xdrbuf->pages[p];
112 			seg[n].mr_offset = NULL;
113 			seg[n].mr_len = min_t(u32, PAGE_SIZE, len);
114 			len -= seg[n].mr_len;
115 			++n;
116 			++p;
117 		}
118 	}
119 
120 	if (xdrbuf->tail[0].iov_len) {
121 		/* the rpcrdma protocol allows us to omit any trailing
122 		 * xdr pad bytes, saving the server an RDMA operation. */
123 		if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
124 			return n;
125 		if (n == nsegs)
126 			return 0;
127 		seg[n].mr_page = NULL;
128 		seg[n].mr_offset = xdrbuf->tail[0].iov_base;
129 		seg[n].mr_len = xdrbuf->tail[0].iov_len;
130 		++n;
131 	}
132 
133 	return n;
134 }
135 
136 /*
137  * Create read/write chunk lists, and reply chunks, for RDMA
138  *
139  *   Assume check against THRESHOLD has been done, and chunks are required.
140  *   Assume only encoding one list entry for read|write chunks. The NFSv3
141  *     protocol is simple enough to allow this as it only has a single "bulk
142  *     result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
143  *     RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
144  *
145  * When used for a single reply chunk (which is a special write
146  * chunk used for the entire reply, rather than just the data), it
147  * is used primarily for READDIR and READLINK which would otherwise
148  * be severely size-limited by a small rdma inline read max. The server
149  * response will come back as an RDMA Write, followed by a message
150  * of type RDMA_NOMSG carrying the xid and length. As a result, reply
151  * chunks do not provide data alignment, however they do not require
152  * "fixup" (moving the response to the upper layer buffer) either.
153  *
154  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
155  *
156  *  Read chunklist (a linked list):
157  *   N elements, position P (same P for all chunks of same arg!):
158  *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
159  *
160  *  Write chunklist (a list of (one) counted array):
161  *   N elements:
162  *    1 - N - HLOO - HLOO - ... - HLOO - 0
163  *
164  *  Reply chunk (a counted array):
165  *   N elements:
166  *    1 - N - HLOO - HLOO - ... - HLOO
167  */
168 
169 static unsigned int
170 rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
171 		struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
172 {
173 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
174 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_task->tk_xprt);
175 	int nsegs, nchunks = 0;
176 	unsigned int pos;
177 	struct rpcrdma_mr_seg *seg = req->rl_segments;
178 	struct rpcrdma_read_chunk *cur_rchunk = NULL;
179 	struct rpcrdma_write_array *warray = NULL;
180 	struct rpcrdma_write_chunk *cur_wchunk = NULL;
181 	__be32 *iptr = headerp->rm_body.rm_chunks;
182 
183 	if (type == rpcrdma_readch || type == rpcrdma_areadch) {
184 		/* a read chunk - server will RDMA Read our memory */
185 		cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
186 	} else {
187 		/* a write or reply chunk - server will RDMA Write our memory */
188 		*iptr++ = xdr_zero;	/* encode a NULL read chunk list */
189 		if (type == rpcrdma_replych)
190 			*iptr++ = xdr_zero;	/* a NULL write chunk list */
191 		warray = (struct rpcrdma_write_array *) iptr;
192 		cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
193 	}
194 
195 	if (type == rpcrdma_replych || type == rpcrdma_areadch)
196 		pos = 0;
197 	else
198 		pos = target->head[0].iov_len;
199 
200 	nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
201 	if (nsegs == 0)
202 		return 0;
203 
204 	do {
205 		/* bind/register the memory, then build chunk from result. */
206 		int n = rpcrdma_register_external(seg, nsegs,
207 						cur_wchunk != NULL, r_xprt);
208 		if (n <= 0)
209 			goto out;
210 		if (cur_rchunk) {	/* read */
211 			cur_rchunk->rc_discrim = xdr_one;
212 			/* all read chunks have the same "position" */
213 			cur_rchunk->rc_position = htonl(pos);
214 			cur_rchunk->rc_target.rs_handle = htonl(seg->mr_rkey);
215 			cur_rchunk->rc_target.rs_length = htonl(seg->mr_len);
216 			xdr_encode_hyper(
217 					(__be32 *)&cur_rchunk->rc_target.rs_offset,
218 					seg->mr_base);
219 			dprintk("RPC:       %s: read chunk "
220 				"elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
221 				seg->mr_len, (unsigned long long)seg->mr_base,
222 				seg->mr_rkey, pos, n < nsegs ? "more" : "last");
223 			cur_rchunk++;
224 			r_xprt->rx_stats.read_chunk_count++;
225 		} else {		/* write/reply */
226 			cur_wchunk->wc_target.rs_handle = htonl(seg->mr_rkey);
227 			cur_wchunk->wc_target.rs_length = htonl(seg->mr_len);
228 			xdr_encode_hyper(
229 					(__be32 *)&cur_wchunk->wc_target.rs_offset,
230 					seg->mr_base);
231 			dprintk("RPC:       %s: %s chunk "
232 				"elem %d@0x%llx:0x%x (%s)\n", __func__,
233 				(type == rpcrdma_replych) ? "reply" : "write",
234 				seg->mr_len, (unsigned long long)seg->mr_base,
235 				seg->mr_rkey, n < nsegs ? "more" : "last");
236 			cur_wchunk++;
237 			if (type == rpcrdma_replych)
238 				r_xprt->rx_stats.reply_chunk_count++;
239 			else
240 				r_xprt->rx_stats.write_chunk_count++;
241 			r_xprt->rx_stats.total_rdma_request += seg->mr_len;
242 		}
243 		nchunks++;
244 		seg   += n;
245 		nsegs -= n;
246 	} while (nsegs);
247 
248 	/* success. all failures return above */
249 	req->rl_nchunks = nchunks;
250 
251 	BUG_ON(nchunks == 0);
252 
253 	/*
254 	 * finish off header. If write, marshal discrim and nchunks.
255 	 */
256 	if (cur_rchunk) {
257 		iptr = (__be32 *) cur_rchunk;
258 		*iptr++ = xdr_zero;	/* finish the read chunk list */
259 		*iptr++ = xdr_zero;	/* encode a NULL write chunk list */
260 		*iptr++ = xdr_zero;	/* encode a NULL reply chunk */
261 	} else {
262 		warray->wc_discrim = xdr_one;
263 		warray->wc_nchunks = htonl(nchunks);
264 		iptr = (__be32 *) cur_wchunk;
265 		if (type == rpcrdma_writech) {
266 			*iptr++ = xdr_zero; /* finish the write chunk list */
267 			*iptr++ = xdr_zero; /* encode a NULL reply chunk */
268 		}
269 	}
270 
271 	/*
272 	 * Return header size.
273 	 */
274 	return (unsigned char *)iptr - (unsigned char *)headerp;
275 
276 out:
277 	for (pos = 0; nchunks--;)
278 		pos += rpcrdma_deregister_external(
279 				&req->rl_segments[pos], r_xprt, NULL);
280 	return 0;
281 }
282 
283 /*
284  * Copy write data inline.
285  * This function is used for "small" requests. Data which is passed
286  * to RPC via iovecs (or page list) is copied directly into the
287  * pre-registered memory buffer for this request. For small amounts
288  * of data, this is efficient. The cutoff value is tunable.
289  */
290 static int
291 rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad)
292 {
293 	int i, npages, curlen;
294 	int copy_len;
295 	unsigned char *srcp, *destp;
296 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
297 
298 	destp = rqst->rq_svec[0].iov_base;
299 	curlen = rqst->rq_svec[0].iov_len;
300 	destp += curlen;
301 	/*
302 	 * Do optional padding where it makes sense. Alignment of write
303 	 * payload can help the server, if our setting is accurate.
304 	 */
305 	pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/);
306 	if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH)
307 		pad = 0;	/* don't pad this request */
308 
309 	dprintk("RPC:       %s: pad %d destp 0x%p len %d hdrlen %d\n",
310 		__func__, pad, destp, rqst->rq_slen, curlen);
311 
312 	copy_len = rqst->rq_snd_buf.page_len;
313 
314 	if (rqst->rq_snd_buf.tail[0].iov_len) {
315 		curlen = rqst->rq_snd_buf.tail[0].iov_len;
316 		if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
317 			memmove(destp + copy_len,
318 				rqst->rq_snd_buf.tail[0].iov_base, curlen);
319 			r_xprt->rx_stats.pullup_copy_count += curlen;
320 		}
321 		dprintk("RPC:       %s: tail destp 0x%p len %d\n",
322 			__func__, destp + copy_len, curlen);
323 		rqst->rq_svec[0].iov_len += curlen;
324 	}
325 
326 	r_xprt->rx_stats.pullup_copy_count += copy_len;
327 	npages = PAGE_ALIGN(rqst->rq_snd_buf.page_base+copy_len) >> PAGE_SHIFT;
328 	for (i = 0; copy_len && i < npages; i++) {
329 		if (i == 0)
330 			curlen = PAGE_SIZE - rqst->rq_snd_buf.page_base;
331 		else
332 			curlen = PAGE_SIZE;
333 		if (curlen > copy_len)
334 			curlen = copy_len;
335 		dprintk("RPC:       %s: page %d destp 0x%p len %d curlen %d\n",
336 			__func__, i, destp, copy_len, curlen);
337 		srcp = kmap_atomic(rqst->rq_snd_buf.pages[i],
338 					KM_SKB_SUNRPC_DATA);
339 		if (i == 0)
340 			memcpy(destp, srcp+rqst->rq_snd_buf.page_base, curlen);
341 		else
342 			memcpy(destp, srcp, curlen);
343 		kunmap_atomic(srcp, KM_SKB_SUNRPC_DATA);
344 		rqst->rq_svec[0].iov_len += curlen;
345 		destp += curlen;
346 		copy_len -= curlen;
347 	}
348 	/* header now contains entire send message */
349 	return pad;
350 }
351 
352 /*
353  * Marshal a request: the primary job of this routine is to choose
354  * the transfer modes. See comments below.
355  *
356  * Uses multiple RDMA IOVs for a request:
357  *  [0] -- RPC RDMA header, which uses memory from the *start* of the
358  *         preregistered buffer that already holds the RPC data in
359  *         its middle.
360  *  [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
361  *  [2] -- optional padding.
362  *  [3] -- if padded, header only in [1] and data here.
363  */
364 
365 int
366 rpcrdma_marshal_req(struct rpc_rqst *rqst)
367 {
368 	struct rpc_xprt *xprt = rqst->rq_task->tk_xprt;
369 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
370 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
371 	char *base;
372 	size_t hdrlen, rpclen, padlen;
373 	enum rpcrdma_chunktype rtype, wtype;
374 	struct rpcrdma_msg *headerp;
375 
376 	/*
377 	 * rpclen gets amount of data in first buffer, which is the
378 	 * pre-registered buffer.
379 	 */
380 	base = rqst->rq_svec[0].iov_base;
381 	rpclen = rqst->rq_svec[0].iov_len;
382 
383 	/* build RDMA header in private area at front */
384 	headerp = (struct rpcrdma_msg *) req->rl_base;
385 	/* don't htonl XID, it's already done in request */
386 	headerp->rm_xid = rqst->rq_xid;
387 	headerp->rm_vers = xdr_one;
388 	headerp->rm_credit = htonl(r_xprt->rx_buf.rb_max_requests);
389 	headerp->rm_type = htonl(RDMA_MSG);
390 
391 	/*
392 	 * Chunks needed for results?
393 	 *
394 	 * o If the expected result is under the inline threshold, all ops
395 	 *   return as inline (but see later).
396 	 * o Large non-read ops return as a single reply chunk.
397 	 * o Large read ops return data as write chunk(s), header as inline.
398 	 *
399 	 * Note: the NFS code sending down multiple result segments implies
400 	 * the op is one of read, readdir[plus], readlink or NFSv4 getacl.
401 	 */
402 
403 	/*
404 	 * This code can handle read chunks, write chunks OR reply
405 	 * chunks -- only one type. If the request is too big to fit
406 	 * inline, then we will choose read chunks. If the request is
407 	 * a READ, then use write chunks to separate the file data
408 	 * into pages; otherwise use reply chunks.
409 	 */
410 	if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst))
411 		wtype = rpcrdma_noch;
412 	else if (rqst->rq_rcv_buf.page_len == 0)
413 		wtype = rpcrdma_replych;
414 	else if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
415 		wtype = rpcrdma_writech;
416 	else
417 		wtype = rpcrdma_replych;
418 
419 	/*
420 	 * Chunks needed for arguments?
421 	 *
422 	 * o If the total request is under the inline threshold, all ops
423 	 *   are sent as inline.
424 	 * o Large non-write ops are sent with the entire message as a
425 	 *   single read chunk (protocol 0-position special case).
426 	 * o Large write ops transmit data as read chunk(s), header as
427 	 *   inline.
428 	 *
429 	 * Note: the NFS code sending down multiple argument segments
430 	 * implies the op is a write.
431 	 * TBD check NFSv4 setacl
432 	 */
433 	if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
434 		rtype = rpcrdma_noch;
435 	else if (rqst->rq_snd_buf.page_len == 0)
436 		rtype = rpcrdma_areadch;
437 	else
438 		rtype = rpcrdma_readch;
439 
440 	/* The following simplification is not true forever */
441 	if (rtype != rpcrdma_noch && wtype == rpcrdma_replych)
442 		wtype = rpcrdma_noch;
443 	BUG_ON(rtype != rpcrdma_noch && wtype != rpcrdma_noch);
444 
445 	if (r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_BOUNCEBUFFERS &&
446 	    (rtype != rpcrdma_noch || wtype != rpcrdma_noch)) {
447 		/* forced to "pure inline"? */
448 		dprintk("RPC:       %s: too much data (%d/%d) for inline\n",
449 			__func__, rqst->rq_rcv_buf.len, rqst->rq_snd_buf.len);
450 		return -1;
451 	}
452 
453 	hdrlen = 28; /*sizeof *headerp;*/
454 	padlen = 0;
455 
456 	/*
457 	 * Pull up any extra send data into the preregistered buffer.
458 	 * When padding is in use and applies to the transfer, insert
459 	 * it and change the message type.
460 	 */
461 	if (rtype == rpcrdma_noch) {
462 
463 		padlen = rpcrdma_inline_pullup(rqst,
464 						RPCRDMA_INLINE_PAD_VALUE(rqst));
465 
466 		if (padlen) {
467 			headerp->rm_type = htonl(RDMA_MSGP);
468 			headerp->rm_body.rm_padded.rm_align =
469 				htonl(RPCRDMA_INLINE_PAD_VALUE(rqst));
470 			headerp->rm_body.rm_padded.rm_thresh =
471 				htonl(RPCRDMA_INLINE_PAD_THRESH);
472 			headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero;
473 			headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero;
474 			headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero;
475 			hdrlen += 2 * sizeof(u32); /* extra words in padhdr */
476 			BUG_ON(wtype != rpcrdma_noch);
477 
478 		} else {
479 			headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
480 			headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
481 			headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
482 			/* new length after pullup */
483 			rpclen = rqst->rq_svec[0].iov_len;
484 			/*
485 			 * Currently we try to not actually use read inline.
486 			 * Reply chunks have the desirable property that
487 			 * they land, packed, directly in the target buffers
488 			 * without headers, so they require no fixup. The
489 			 * additional RDMA Write op sends the same amount
490 			 * of data, streams on-the-wire and adds no overhead
491 			 * on receive. Therefore, we request a reply chunk
492 			 * for non-writes wherever feasible and efficient.
493 			 */
494 			if (wtype == rpcrdma_noch &&
495 			    r_xprt->rx_ia.ri_memreg_strategy > RPCRDMA_REGISTER)
496 				wtype = rpcrdma_replych;
497 		}
498 	}
499 
500 	/*
501 	 * Marshal chunks. This routine will return the header length
502 	 * consumed by marshaling.
503 	 */
504 	if (rtype != rpcrdma_noch) {
505 		hdrlen = rpcrdma_create_chunks(rqst,
506 					&rqst->rq_snd_buf, headerp, rtype);
507 		wtype = rtype;	/* simplify dprintk */
508 
509 	} else if (wtype != rpcrdma_noch) {
510 		hdrlen = rpcrdma_create_chunks(rqst,
511 					&rqst->rq_rcv_buf, headerp, wtype);
512 	}
513 
514 	if (hdrlen == 0)
515 		return -1;
516 
517 	dprintk("RPC:       %s: %s: hdrlen %zd rpclen %zd padlen %zd"
518 		" headerp 0x%p base 0x%p lkey 0x%x\n",
519 		__func__, transfertypes[wtype], hdrlen, rpclen, padlen,
520 		headerp, base, req->rl_iov.lkey);
521 
522 	/*
523 	 * initialize send_iov's - normally only two: rdma chunk header and
524 	 * single preregistered RPC header buffer, but if padding is present,
525 	 * then use a preregistered (and zeroed) pad buffer between the RPC
526 	 * header and any write data. In all non-rdma cases, any following
527 	 * data has been copied into the RPC header buffer.
528 	 */
529 	req->rl_send_iov[0].addr = req->rl_iov.addr;
530 	req->rl_send_iov[0].length = hdrlen;
531 	req->rl_send_iov[0].lkey = req->rl_iov.lkey;
532 
533 	req->rl_send_iov[1].addr = req->rl_iov.addr + (base - req->rl_base);
534 	req->rl_send_iov[1].length = rpclen;
535 	req->rl_send_iov[1].lkey = req->rl_iov.lkey;
536 
537 	req->rl_niovs = 2;
538 
539 	if (padlen) {
540 		struct rpcrdma_ep *ep = &r_xprt->rx_ep;
541 
542 		req->rl_send_iov[2].addr = ep->rep_pad.addr;
543 		req->rl_send_iov[2].length = padlen;
544 		req->rl_send_iov[2].lkey = ep->rep_pad.lkey;
545 
546 		req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen;
547 		req->rl_send_iov[3].length = rqst->rq_slen - rpclen;
548 		req->rl_send_iov[3].lkey = req->rl_iov.lkey;
549 
550 		req->rl_niovs = 4;
551 	}
552 
553 	return 0;
554 }
555 
556 /*
557  * Chase down a received write or reply chunklist to get length
558  * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
559  */
560 static int
561 rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
562 {
563 	unsigned int i, total_len;
564 	struct rpcrdma_write_chunk *cur_wchunk;
565 
566 	i = ntohl(**iptrp);	/* get array count */
567 	if (i > max)
568 		return -1;
569 	cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
570 	total_len = 0;
571 	while (i--) {
572 		struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
573 		ifdebug(FACILITY) {
574 			u64 off;
575 			xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
576 			dprintk("RPC:       %s: chunk %d@0x%llx:0x%x\n",
577 				__func__,
578 				ntohl(seg->rs_length),
579 				(unsigned long long)off,
580 				ntohl(seg->rs_handle));
581 		}
582 		total_len += ntohl(seg->rs_length);
583 		++cur_wchunk;
584 	}
585 	/* check and adjust for properly terminated write chunk */
586 	if (wrchunk) {
587 		__be32 *w = (__be32 *) cur_wchunk;
588 		if (*w++ != xdr_zero)
589 			return -1;
590 		cur_wchunk = (struct rpcrdma_write_chunk *) w;
591 	}
592 	if ((char *) cur_wchunk > rep->rr_base + rep->rr_len)
593 		return -1;
594 
595 	*iptrp = (__be32 *) cur_wchunk;
596 	return total_len;
597 }
598 
599 /*
600  * Scatter inline received data back into provided iov's.
601  */
602 static void
603 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
604 {
605 	int i, npages, curlen, olen;
606 	char *destp;
607 
608 	curlen = rqst->rq_rcv_buf.head[0].iov_len;
609 	if (curlen > copy_len) {	/* write chunk header fixup */
610 		curlen = copy_len;
611 		rqst->rq_rcv_buf.head[0].iov_len = curlen;
612 	}
613 
614 	dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
615 		__func__, srcp, copy_len, curlen);
616 
617 	/* Shift pointer for first receive segment only */
618 	rqst->rq_rcv_buf.head[0].iov_base = srcp;
619 	srcp += curlen;
620 	copy_len -= curlen;
621 
622 	olen = copy_len;
623 	i = 0;
624 	rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
625 	if (copy_len && rqst->rq_rcv_buf.page_len) {
626 		npages = PAGE_ALIGN(rqst->rq_rcv_buf.page_base +
627 			rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
628 		for (; i < npages; i++) {
629 			if (i == 0)
630 				curlen = PAGE_SIZE - rqst->rq_rcv_buf.page_base;
631 			else
632 				curlen = PAGE_SIZE;
633 			if (curlen > copy_len)
634 				curlen = copy_len;
635 			dprintk("RPC:       %s: page %d"
636 				" srcp 0x%p len %d curlen %d\n",
637 				__func__, i, srcp, copy_len, curlen);
638 			destp = kmap_atomic(rqst->rq_rcv_buf.pages[i],
639 						KM_SKB_SUNRPC_DATA);
640 			if (i == 0)
641 				memcpy(destp + rqst->rq_rcv_buf.page_base,
642 						srcp, curlen);
643 			else
644 				memcpy(destp, srcp, curlen);
645 			flush_dcache_page(rqst->rq_rcv_buf.pages[i]);
646 			kunmap_atomic(destp, KM_SKB_SUNRPC_DATA);
647 			srcp += curlen;
648 			copy_len -= curlen;
649 			if (copy_len == 0)
650 				break;
651 		}
652 		rqst->rq_rcv_buf.page_len = olen - copy_len;
653 	} else
654 		rqst->rq_rcv_buf.page_len = 0;
655 
656 	if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
657 		curlen = copy_len;
658 		if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
659 			curlen = rqst->rq_rcv_buf.tail[0].iov_len;
660 		if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
661 			memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
662 		dprintk("RPC:       %s: tail srcp 0x%p len %d curlen %d\n",
663 			__func__, srcp, copy_len, curlen);
664 		rqst->rq_rcv_buf.tail[0].iov_len = curlen;
665 		copy_len -= curlen; ++i;
666 	} else
667 		rqst->rq_rcv_buf.tail[0].iov_len = 0;
668 
669 	if (pad) {
670 		/* implicit padding on terminal chunk */
671 		unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
672 		while (pad--)
673 			p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
674 	}
675 
676 	if (copy_len)
677 		dprintk("RPC:       %s: %d bytes in"
678 			" %d extra segments (%d lost)\n",
679 			__func__, olen, i, copy_len);
680 
681 	/* TBD avoid a warning from call_decode() */
682 	rqst->rq_private_buf = rqst->rq_rcv_buf;
683 }
684 
685 /*
686  * This function is called when an async event is posted to
687  * the connection which changes the connection state. All it
688  * does at this point is mark the connection up/down, the rpc
689  * timers do the rest.
690  */
691 void
692 rpcrdma_conn_func(struct rpcrdma_ep *ep)
693 {
694 	struct rpc_xprt *xprt = ep->rep_xprt;
695 
696 	spin_lock_bh(&xprt->transport_lock);
697 	if (++xprt->connect_cookie == 0)	/* maintain a reserved value */
698 		++xprt->connect_cookie;
699 	if (ep->rep_connected > 0) {
700 		if (!xprt_test_and_set_connected(xprt))
701 			xprt_wake_pending_tasks(xprt, 0);
702 	} else {
703 		if (xprt_test_and_clear_connected(xprt))
704 			xprt_wake_pending_tasks(xprt, -ENOTCONN);
705 	}
706 	spin_unlock_bh(&xprt->transport_lock);
707 }
708 
709 /*
710  * This function is called when memory window unbind which we are waiting
711  * for completes. Just use rr_func (zeroed by upcall) to signal completion.
712  */
713 static void
714 rpcrdma_unbind_func(struct rpcrdma_rep *rep)
715 {
716 	wake_up(&rep->rr_unbind);
717 }
718 
719 /*
720  * Called as a tasklet to do req/reply match and complete a request
721  * Errors must result in the RPC task either being awakened, or
722  * allowed to timeout, to discover the errors at that time.
723  */
724 void
725 rpcrdma_reply_handler(struct rpcrdma_rep *rep)
726 {
727 	struct rpcrdma_msg *headerp;
728 	struct rpcrdma_req *req;
729 	struct rpc_rqst *rqst;
730 	struct rpc_xprt *xprt = rep->rr_xprt;
731 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
732 	__be32 *iptr;
733 	int i, rdmalen, status;
734 
735 	/* Check status. If bad, signal disconnect and return rep to pool */
736 	if (rep->rr_len == ~0U) {
737 		rpcrdma_recv_buffer_put(rep);
738 		if (r_xprt->rx_ep.rep_connected == 1) {
739 			r_xprt->rx_ep.rep_connected = -EIO;
740 			rpcrdma_conn_func(&r_xprt->rx_ep);
741 		}
742 		return;
743 	}
744 	if (rep->rr_len < 28) {
745 		dprintk("RPC:       %s: short/invalid reply\n", __func__);
746 		goto repost;
747 	}
748 	headerp = (struct rpcrdma_msg *) rep->rr_base;
749 	if (headerp->rm_vers != xdr_one) {
750 		dprintk("RPC:       %s: invalid version %d\n",
751 			__func__, ntohl(headerp->rm_vers));
752 		goto repost;
753 	}
754 
755 	/* Get XID and try for a match. */
756 	spin_lock(&xprt->transport_lock);
757 	rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
758 	if (rqst == NULL) {
759 		spin_unlock(&xprt->transport_lock);
760 		dprintk("RPC:       %s: reply 0x%p failed "
761 			"to match any request xid 0x%08x len %d\n",
762 			__func__, rep, headerp->rm_xid, rep->rr_len);
763 repost:
764 		r_xprt->rx_stats.bad_reply_count++;
765 		rep->rr_func = rpcrdma_reply_handler;
766 		if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
767 			rpcrdma_recv_buffer_put(rep);
768 
769 		return;
770 	}
771 
772 	/* get request object */
773 	req = rpcr_to_rdmar(rqst);
774 
775 	dprintk("RPC:       %s: reply 0x%p completes request 0x%p\n"
776 		"                   RPC request 0x%p xid 0x%08x\n",
777 			__func__, rep, req, rqst, headerp->rm_xid);
778 
779 	BUG_ON(!req || req->rl_reply);
780 
781 	/* from here on, the reply is no longer an orphan */
782 	req->rl_reply = rep;
783 
784 	/* check for expected message types */
785 	/* The order of some of these tests is important. */
786 	switch (headerp->rm_type) {
787 	case htonl(RDMA_MSG):
788 		/* never expect read chunks */
789 		/* never expect reply chunks (two ways to check) */
790 		/* never expect write chunks without having offered RDMA */
791 		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
792 		    (headerp->rm_body.rm_chunks[1] == xdr_zero &&
793 		     headerp->rm_body.rm_chunks[2] != xdr_zero) ||
794 		    (headerp->rm_body.rm_chunks[1] != xdr_zero &&
795 		     req->rl_nchunks == 0))
796 			goto badheader;
797 		if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
798 			/* count any expected write chunks in read reply */
799 			/* start at write chunk array count */
800 			iptr = &headerp->rm_body.rm_chunks[2];
801 			rdmalen = rpcrdma_count_chunks(rep,
802 						req->rl_nchunks, 1, &iptr);
803 			/* check for validity, and no reply chunk after */
804 			if (rdmalen < 0 || *iptr++ != xdr_zero)
805 				goto badheader;
806 			rep->rr_len -=
807 			    ((unsigned char *)iptr - (unsigned char *)headerp);
808 			status = rep->rr_len + rdmalen;
809 			r_xprt->rx_stats.total_rdma_reply += rdmalen;
810 			/* special case - last chunk may omit padding */
811 			if (rdmalen &= 3) {
812 				rdmalen = 4 - rdmalen;
813 				status += rdmalen;
814 			}
815 		} else {
816 			/* else ordinary inline */
817 			rdmalen = 0;
818 			iptr = (__be32 *)((unsigned char *)headerp + 28);
819 			rep->rr_len -= 28; /*sizeof *headerp;*/
820 			status = rep->rr_len;
821 		}
822 		/* Fix up the rpc results for upper layer */
823 		rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
824 		break;
825 
826 	case htonl(RDMA_NOMSG):
827 		/* never expect read or write chunks, always reply chunks */
828 		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
829 		    headerp->rm_body.rm_chunks[1] != xdr_zero ||
830 		    headerp->rm_body.rm_chunks[2] != xdr_one ||
831 		    req->rl_nchunks == 0)
832 			goto badheader;
833 		iptr = (__be32 *)((unsigned char *)headerp + 28);
834 		rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
835 		if (rdmalen < 0)
836 			goto badheader;
837 		r_xprt->rx_stats.total_rdma_reply += rdmalen;
838 		/* Reply chunk buffer already is the reply vector - no fixup. */
839 		status = rdmalen;
840 		break;
841 
842 badheader:
843 	default:
844 		dprintk("%s: invalid rpcrdma reply header (type %d):"
845 				" chunks[012] == %d %d %d"
846 				" expected chunks <= %d\n",
847 				__func__, ntohl(headerp->rm_type),
848 				headerp->rm_body.rm_chunks[0],
849 				headerp->rm_body.rm_chunks[1],
850 				headerp->rm_body.rm_chunks[2],
851 				req->rl_nchunks);
852 		status = -EIO;
853 		r_xprt->rx_stats.bad_reply_count++;
854 		break;
855 	}
856 
857 	/* If using mw bind, start the deregister process now. */
858 	/* (Note: if mr_free(), cannot perform it here, in tasklet context) */
859 	if (req->rl_nchunks) switch (r_xprt->rx_ia.ri_memreg_strategy) {
860 	case RPCRDMA_MEMWINDOWS:
861 		for (i = 0; req->rl_nchunks-- > 1;)
862 			i += rpcrdma_deregister_external(
863 				&req->rl_segments[i], r_xprt, NULL);
864 		/* Optionally wait (not here) for unbinds to complete */
865 		rep->rr_func = rpcrdma_unbind_func;
866 		(void) rpcrdma_deregister_external(&req->rl_segments[i],
867 						   r_xprt, rep);
868 		break;
869 	case RPCRDMA_MEMWINDOWS_ASYNC:
870 		for (i = 0; req->rl_nchunks--;)
871 			i += rpcrdma_deregister_external(&req->rl_segments[i],
872 							 r_xprt, NULL);
873 		break;
874 	default:
875 		break;
876 	}
877 
878 	dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
879 			__func__, xprt, rqst, status);
880 	xprt_complete_rqst(rqst->rq_task, status);
881 	spin_unlock(&xprt->transport_lock);
882 }
883