xref: /openbmc/linux/net/sunrpc/xprtrdma/rpc_rdma.c (revision 7bcae826)
1 /*
2  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * rpc_rdma.c
42  *
43  * This file contains the guts of the RPC RDMA protocol, and
44  * does marshaling/unmarshaling, etc. It is also where interfacing
45  * to the Linux RPC framework lives.
46  */
47 
48 #include "xprt_rdma.h"
49 
50 #include <linux/highmem.h>
51 
52 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
53 # define RPCDBG_FACILITY	RPCDBG_TRANS
54 #endif
55 
56 static const char transfertypes[][12] = {
57 	"inline",	/* no chunks */
58 	"read list",	/* some argument via rdma read */
59 	"*read list",	/* entire request via rdma read */
60 	"write list",	/* some result via rdma write */
61 	"reply chunk"	/* entire reply via rdma write */
62 };
63 
64 /* Returns size of largest RPC-over-RDMA header in a Call message
65  *
66  * The largest Call header contains a full-size Read list and a
67  * minimal Reply chunk.
68  */
69 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
70 {
71 	unsigned int size;
72 
73 	/* Fixed header fields and list discriminators */
74 	size = RPCRDMA_HDRLEN_MIN;
75 
76 	/* Maximum Read list size */
77 	maxsegs += 2;	/* segment for head and tail buffers */
78 	size = maxsegs * sizeof(struct rpcrdma_read_chunk);
79 
80 	/* Minimal Read chunk size */
81 	size += sizeof(__be32);	/* segment count */
82 	size += sizeof(struct rpcrdma_segment);
83 	size += sizeof(__be32);	/* list discriminator */
84 
85 	dprintk("RPC:       %s: max call header size = %u\n",
86 		__func__, size);
87 	return size;
88 }
89 
90 /* Returns size of largest RPC-over-RDMA header in a Reply message
91  *
92  * There is only one Write list or one Reply chunk per Reply
93  * message.  The larger list is the Write list.
94  */
95 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
96 {
97 	unsigned int size;
98 
99 	/* Fixed header fields and list discriminators */
100 	size = RPCRDMA_HDRLEN_MIN;
101 
102 	/* Maximum Write list size */
103 	maxsegs += 2;	/* segment for head and tail buffers */
104 	size = sizeof(__be32);		/* segment count */
105 	size += maxsegs * sizeof(struct rpcrdma_segment);
106 	size += sizeof(__be32);	/* list discriminator */
107 
108 	dprintk("RPC:       %s: max reply header size = %u\n",
109 		__func__, size);
110 	return size;
111 }
112 
113 void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt)
114 {
115 	struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
116 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
117 	unsigned int maxsegs = ia->ri_max_segs;
118 
119 	ia->ri_max_inline_write = cdata->inline_wsize -
120 				  rpcrdma_max_call_header_size(maxsegs);
121 	ia->ri_max_inline_read = cdata->inline_rsize -
122 				 rpcrdma_max_reply_header_size(maxsegs);
123 }
124 
125 /* The client can send a request inline as long as the RPCRDMA header
126  * plus the RPC call fit under the transport's inline limit. If the
127  * combined call message size exceeds that limit, the client must use
128  * the read chunk list for this operation.
129  */
130 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
131 				struct rpc_rqst *rqst)
132 {
133 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
134 
135 	return rqst->rq_snd_buf.len <= ia->ri_max_inline_write;
136 }
137 
138 /* The client can't know how large the actual reply will be. Thus it
139  * plans for the largest possible reply for that particular ULP
140  * operation. If the maximum combined reply message size exceeds that
141  * limit, the client must provide a write list or a reply chunk for
142  * this request.
143  */
144 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
145 				   struct rpc_rqst *rqst)
146 {
147 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
148 
149 	return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read;
150 }
151 
152 /* Split "vec" on page boundaries into segments. FMR registers pages,
153  * not a byte range. Other modes coalesce these segments into a single
154  * MR when they can.
155  */
156 static int
157 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg, int n)
158 {
159 	size_t page_offset;
160 	u32 remaining;
161 	char *base;
162 
163 	base = vec->iov_base;
164 	page_offset = offset_in_page(base);
165 	remaining = vec->iov_len;
166 	while (remaining && n < RPCRDMA_MAX_SEGS) {
167 		seg[n].mr_page = NULL;
168 		seg[n].mr_offset = base;
169 		seg[n].mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
170 		remaining -= seg[n].mr_len;
171 		base += seg[n].mr_len;
172 		++n;
173 		page_offset = 0;
174 	}
175 	return n;
176 }
177 
178 /*
179  * Chunk assembly from upper layer xdr_buf.
180  *
181  * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
182  * elements. Segments are then coalesced when registered, if possible
183  * within the selected memreg mode.
184  *
185  * Returns positive number of segments converted, or a negative errno.
186  */
187 
188 static int
189 rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
190 	enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg,
191 	bool reminv_expected)
192 {
193 	int len, n, p, page_base;
194 	struct page **ppages;
195 
196 	n = 0;
197 	if (pos == 0) {
198 		n = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, n);
199 		if (n == RPCRDMA_MAX_SEGS)
200 			goto out_overflow;
201 	}
202 
203 	len = xdrbuf->page_len;
204 	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
205 	page_base = xdrbuf->page_base & ~PAGE_MASK;
206 	p = 0;
207 	while (len && n < RPCRDMA_MAX_SEGS) {
208 		if (!ppages[p]) {
209 			/* alloc the pagelist for receiving buffer */
210 			ppages[p] = alloc_page(GFP_ATOMIC);
211 			if (!ppages[p])
212 				return -EAGAIN;
213 		}
214 		seg[n].mr_page = ppages[p];
215 		seg[n].mr_offset = (void *)(unsigned long) page_base;
216 		seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
217 		if (seg[n].mr_len > PAGE_SIZE)
218 			goto out_overflow;
219 		len -= seg[n].mr_len;
220 		++n;
221 		++p;
222 		page_base = 0;	/* page offset only applies to first page */
223 	}
224 
225 	/* Message overflows the seg array */
226 	if (len && n == RPCRDMA_MAX_SEGS)
227 		goto out_overflow;
228 
229 	/* When encoding the read list, the tail is always sent inline */
230 	if (type == rpcrdma_readch)
231 		return n;
232 
233 	/* When encoding the Write list, some servers need to see an extra
234 	 * segment for odd-length Write chunks. The upper layer provides
235 	 * space in the tail iovec for this purpose.
236 	 */
237 	if (type == rpcrdma_writech && reminv_expected)
238 		return n;
239 
240 	if (xdrbuf->tail[0].iov_len) {
241 		/* the rpcrdma protocol allows us to omit any trailing
242 		 * xdr pad bytes, saving the server an RDMA operation. */
243 		if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
244 			return n;
245 		n = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, n);
246 		if (n == RPCRDMA_MAX_SEGS)
247 			goto out_overflow;
248 	}
249 
250 	return n;
251 
252 out_overflow:
253 	pr_err("rpcrdma: segment array overflow\n");
254 	return -EIO;
255 }
256 
257 static inline __be32 *
258 xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mw *mw)
259 {
260 	*iptr++ = cpu_to_be32(mw->mw_handle);
261 	*iptr++ = cpu_to_be32(mw->mw_length);
262 	return xdr_encode_hyper(iptr, mw->mw_offset);
263 }
264 
265 /* XDR-encode the Read list. Supports encoding a list of read
266  * segments that belong to a single read chunk.
267  *
268  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
269  *
270  *  Read chunklist (a linked list):
271  *   N elements, position P (same P for all chunks of same arg!):
272  *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
273  *
274  * Returns a pointer to the XDR word in the RDMA header following
275  * the end of the Read list, or an error pointer.
276  */
277 static __be32 *
278 rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
279 			 struct rpcrdma_req *req, struct rpc_rqst *rqst,
280 			 __be32 *iptr, enum rpcrdma_chunktype rtype)
281 {
282 	struct rpcrdma_mr_seg *seg;
283 	struct rpcrdma_mw *mw;
284 	unsigned int pos;
285 	int n, nsegs;
286 
287 	if (rtype == rpcrdma_noch) {
288 		*iptr++ = xdr_zero;	/* item not present */
289 		return iptr;
290 	}
291 
292 	pos = rqst->rq_snd_buf.head[0].iov_len;
293 	if (rtype == rpcrdma_areadch)
294 		pos = 0;
295 	seg = req->rl_segments;
296 	nsegs = rpcrdma_convert_iovs(&rqst->rq_snd_buf, pos, rtype, seg, false);
297 	if (nsegs < 0)
298 		return ERR_PTR(nsegs);
299 
300 	do {
301 		n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
302 						 false, &mw);
303 		if (n < 0)
304 			return ERR_PTR(n);
305 		list_add(&mw->mw_list, &req->rl_registered);
306 
307 		*iptr++ = xdr_one;	/* item present */
308 
309 		/* All read segments in this chunk
310 		 * have the same "position".
311 		 */
312 		*iptr++ = cpu_to_be32(pos);
313 		iptr = xdr_encode_rdma_segment(iptr, mw);
314 
315 		dprintk("RPC: %5u %s: pos %u %u@0x%016llx:0x%08x (%s)\n",
316 			rqst->rq_task->tk_pid, __func__, pos,
317 			mw->mw_length, (unsigned long long)mw->mw_offset,
318 			mw->mw_handle, n < nsegs ? "more" : "last");
319 
320 		r_xprt->rx_stats.read_chunk_count++;
321 		seg += n;
322 		nsegs -= n;
323 	} while (nsegs);
324 
325 	/* Finish Read list */
326 	*iptr++ = xdr_zero;	/* Next item not present */
327 	return iptr;
328 }
329 
330 /* XDR-encode the Write list. Supports encoding a list containing
331  * one array of plain segments that belong to a single write chunk.
332  *
333  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
334  *
335  *  Write chunklist (a list of (one) counted array):
336  *   N elements:
337  *    1 - N - HLOO - HLOO - ... - HLOO - 0
338  *
339  * Returns a pointer to the XDR word in the RDMA header following
340  * the end of the Write list, or an error pointer.
341  */
342 static __be32 *
343 rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
344 			  struct rpc_rqst *rqst, __be32 *iptr,
345 			  enum rpcrdma_chunktype wtype)
346 {
347 	struct rpcrdma_mr_seg *seg;
348 	struct rpcrdma_mw *mw;
349 	int n, nsegs, nchunks;
350 	__be32 *segcount;
351 
352 	if (wtype != rpcrdma_writech) {
353 		*iptr++ = xdr_zero;	/* no Write list present */
354 		return iptr;
355 	}
356 
357 	seg = req->rl_segments;
358 	nsegs = rpcrdma_convert_iovs(&rqst->rq_rcv_buf,
359 				     rqst->rq_rcv_buf.head[0].iov_len,
360 				     wtype, seg,
361 				     r_xprt->rx_ia.ri_reminv_expected);
362 	if (nsegs < 0)
363 		return ERR_PTR(nsegs);
364 
365 	*iptr++ = xdr_one;	/* Write list present */
366 	segcount = iptr++;	/* save location of segment count */
367 
368 	nchunks = 0;
369 	do {
370 		n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
371 						 true, &mw);
372 		if (n < 0)
373 			return ERR_PTR(n);
374 		list_add(&mw->mw_list, &req->rl_registered);
375 
376 		iptr = xdr_encode_rdma_segment(iptr, mw);
377 
378 		dprintk("RPC: %5u %s: %u@0x016%llx:0x%08x (%s)\n",
379 			rqst->rq_task->tk_pid, __func__,
380 			mw->mw_length, (unsigned long long)mw->mw_offset,
381 			mw->mw_handle, n < nsegs ? "more" : "last");
382 
383 		r_xprt->rx_stats.write_chunk_count++;
384 		r_xprt->rx_stats.total_rdma_request += seg->mr_len;
385 		nchunks++;
386 		seg   += n;
387 		nsegs -= n;
388 	} while (nsegs);
389 
390 	/* Update count of segments in this Write chunk */
391 	*segcount = cpu_to_be32(nchunks);
392 
393 	/* Finish Write list */
394 	*iptr++ = xdr_zero;	/* Next item not present */
395 	return iptr;
396 }
397 
398 /* XDR-encode the Reply chunk. Supports encoding an array of plain
399  * segments that belong to a single write (reply) chunk.
400  *
401  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
402  *
403  *  Reply chunk (a counted array):
404  *   N elements:
405  *    1 - N - HLOO - HLOO - ... - HLOO
406  *
407  * Returns a pointer to the XDR word in the RDMA header following
408  * the end of the Reply chunk, or an error pointer.
409  */
410 static __be32 *
411 rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
412 			   struct rpcrdma_req *req, struct rpc_rqst *rqst,
413 			   __be32 *iptr, enum rpcrdma_chunktype wtype)
414 {
415 	struct rpcrdma_mr_seg *seg;
416 	struct rpcrdma_mw *mw;
417 	int n, nsegs, nchunks;
418 	__be32 *segcount;
419 
420 	if (wtype != rpcrdma_replych) {
421 		*iptr++ = xdr_zero;	/* no Reply chunk present */
422 		return iptr;
423 	}
424 
425 	seg = req->rl_segments;
426 	nsegs = rpcrdma_convert_iovs(&rqst->rq_rcv_buf, 0, wtype, seg,
427 				     r_xprt->rx_ia.ri_reminv_expected);
428 	if (nsegs < 0)
429 		return ERR_PTR(nsegs);
430 
431 	*iptr++ = xdr_one;	/* Reply chunk present */
432 	segcount = iptr++;	/* save location of segment count */
433 
434 	nchunks = 0;
435 	do {
436 		n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
437 						 true, &mw);
438 		if (n < 0)
439 			return ERR_PTR(n);
440 		list_add(&mw->mw_list, &req->rl_registered);
441 
442 		iptr = xdr_encode_rdma_segment(iptr, mw);
443 
444 		dprintk("RPC: %5u %s: %u@0x%016llx:0x%08x (%s)\n",
445 			rqst->rq_task->tk_pid, __func__,
446 			mw->mw_length, (unsigned long long)mw->mw_offset,
447 			mw->mw_handle, n < nsegs ? "more" : "last");
448 
449 		r_xprt->rx_stats.reply_chunk_count++;
450 		r_xprt->rx_stats.total_rdma_request += seg->mr_len;
451 		nchunks++;
452 		seg   += n;
453 		nsegs -= n;
454 	} while (nsegs);
455 
456 	/* Update count of segments in the Reply chunk */
457 	*segcount = cpu_to_be32(nchunks);
458 
459 	return iptr;
460 }
461 
462 /* Prepare the RPC-over-RDMA header SGE.
463  */
464 static bool
465 rpcrdma_prepare_hdr_sge(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
466 			u32 len)
467 {
468 	struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
469 	struct ib_sge *sge = &req->rl_send_sge[0];
470 
471 	if (unlikely(!rpcrdma_regbuf_is_mapped(rb))) {
472 		if (!__rpcrdma_dma_map_regbuf(ia, rb))
473 			return false;
474 		sge->addr = rdmab_addr(rb);
475 		sge->lkey = rdmab_lkey(rb);
476 	}
477 	sge->length = len;
478 
479 	ib_dma_sync_single_for_device(ia->ri_device, sge->addr,
480 				      sge->length, DMA_TO_DEVICE);
481 	req->rl_send_wr.num_sge++;
482 	return true;
483 }
484 
485 /* Prepare the Send SGEs. The head and tail iovec, and each entry
486  * in the page list, gets its own SGE.
487  */
488 static bool
489 rpcrdma_prepare_msg_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
490 			 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
491 {
492 	unsigned int sge_no, page_base, len, remaining;
493 	struct rpcrdma_regbuf *rb = req->rl_sendbuf;
494 	struct ib_device *device = ia->ri_device;
495 	struct ib_sge *sge = req->rl_send_sge;
496 	u32 lkey = ia->ri_pd->local_dma_lkey;
497 	struct page *page, **ppages;
498 
499 	/* The head iovec is straightforward, as it is already
500 	 * DMA-mapped. Sync the content that has changed.
501 	 */
502 	if (!rpcrdma_dma_map_regbuf(ia, rb))
503 		return false;
504 	sge_no = 1;
505 	sge[sge_no].addr = rdmab_addr(rb);
506 	sge[sge_no].length = xdr->head[0].iov_len;
507 	sge[sge_no].lkey = rdmab_lkey(rb);
508 	ib_dma_sync_single_for_device(device, sge[sge_no].addr,
509 				      sge[sge_no].length, DMA_TO_DEVICE);
510 
511 	/* If there is a Read chunk, the page list is being handled
512 	 * via explicit RDMA, and thus is skipped here. However, the
513 	 * tail iovec may include an XDR pad for the page list, as
514 	 * well as additional content, and may not reside in the
515 	 * same page as the head iovec.
516 	 */
517 	if (rtype == rpcrdma_readch) {
518 		len = xdr->tail[0].iov_len;
519 
520 		/* Do not include the tail if it is only an XDR pad */
521 		if (len < 4)
522 			goto out;
523 
524 		page = virt_to_page(xdr->tail[0].iov_base);
525 		page_base = (unsigned long)xdr->tail[0].iov_base & ~PAGE_MASK;
526 
527 		/* If the content in the page list is an odd length,
528 		 * xdr_write_pages() has added a pad at the beginning
529 		 * of the tail iovec. Force the tail's non-pad content
530 		 * to land at the next XDR position in the Send message.
531 		 */
532 		page_base += len & 3;
533 		len -= len & 3;
534 		goto map_tail;
535 	}
536 
537 	/* If there is a page list present, temporarily DMA map
538 	 * and prepare an SGE for each page to be sent.
539 	 */
540 	if (xdr->page_len) {
541 		ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
542 		page_base = xdr->page_base & ~PAGE_MASK;
543 		remaining = xdr->page_len;
544 		while (remaining) {
545 			sge_no++;
546 			if (sge_no > RPCRDMA_MAX_SEND_SGES - 2)
547 				goto out_mapping_overflow;
548 
549 			len = min_t(u32, PAGE_SIZE - page_base, remaining);
550 			sge[sge_no].addr = ib_dma_map_page(device, *ppages,
551 							   page_base, len,
552 							   DMA_TO_DEVICE);
553 			if (ib_dma_mapping_error(device, sge[sge_no].addr))
554 				goto out_mapping_err;
555 			sge[sge_no].length = len;
556 			sge[sge_no].lkey = lkey;
557 
558 			req->rl_mapped_sges++;
559 			ppages++;
560 			remaining -= len;
561 			page_base = 0;
562 		}
563 	}
564 
565 	/* The tail iovec is not always constructed in the same
566 	 * page where the head iovec resides (see, for example,
567 	 * gss_wrap_req_priv). To neatly accommodate that case,
568 	 * DMA map it separately.
569 	 */
570 	if (xdr->tail[0].iov_len) {
571 		page = virt_to_page(xdr->tail[0].iov_base);
572 		page_base = (unsigned long)xdr->tail[0].iov_base & ~PAGE_MASK;
573 		len = xdr->tail[0].iov_len;
574 
575 map_tail:
576 		sge_no++;
577 		sge[sge_no].addr = ib_dma_map_page(device, page,
578 						   page_base, len,
579 						   DMA_TO_DEVICE);
580 		if (ib_dma_mapping_error(device, sge[sge_no].addr))
581 			goto out_mapping_err;
582 		sge[sge_no].length = len;
583 		sge[sge_no].lkey = lkey;
584 		req->rl_mapped_sges++;
585 	}
586 
587 out:
588 	req->rl_send_wr.num_sge = sge_no + 1;
589 	return true;
590 
591 out_mapping_overflow:
592 	pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no);
593 	return false;
594 
595 out_mapping_err:
596 	pr_err("rpcrdma: Send mapping error\n");
597 	return false;
598 }
599 
600 bool
601 rpcrdma_prepare_send_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
602 			  u32 hdrlen, struct xdr_buf *xdr,
603 			  enum rpcrdma_chunktype rtype)
604 {
605 	req->rl_send_wr.num_sge = 0;
606 	req->rl_mapped_sges = 0;
607 
608 	if (!rpcrdma_prepare_hdr_sge(ia, req, hdrlen))
609 		goto out_map;
610 
611 	if (rtype != rpcrdma_areadch)
612 		if (!rpcrdma_prepare_msg_sges(ia, req, xdr, rtype))
613 			goto out_map;
614 
615 	return true;
616 
617 out_map:
618 	pr_err("rpcrdma: failed to DMA map a Send buffer\n");
619 	return false;
620 }
621 
622 void
623 rpcrdma_unmap_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req)
624 {
625 	struct ib_device *device = ia->ri_device;
626 	struct ib_sge *sge;
627 	int count;
628 
629 	sge = &req->rl_send_sge[2];
630 	for (count = req->rl_mapped_sges; count--; sge++)
631 		ib_dma_unmap_page(device, sge->addr, sge->length,
632 				  DMA_TO_DEVICE);
633 	req->rl_mapped_sges = 0;
634 }
635 
636 /*
637  * Marshal a request: the primary job of this routine is to choose
638  * the transfer modes. See comments below.
639  *
640  * Returns zero on success, otherwise a negative errno.
641  */
642 
643 int
644 rpcrdma_marshal_req(struct rpc_rqst *rqst)
645 {
646 	struct rpc_xprt *xprt = rqst->rq_xprt;
647 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
648 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
649 	enum rpcrdma_chunktype rtype, wtype;
650 	struct rpcrdma_msg *headerp;
651 	bool ddp_allowed;
652 	ssize_t hdrlen;
653 	size_t rpclen;
654 	__be32 *iptr;
655 
656 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
657 	if (test_bit(RPC_BC_PA_IN_USE, &rqst->rq_bc_pa_state))
658 		return rpcrdma_bc_marshal_reply(rqst);
659 #endif
660 
661 	headerp = rdmab_to_msg(req->rl_rdmabuf);
662 	/* don't byte-swap XID, it's already done in request */
663 	headerp->rm_xid = rqst->rq_xid;
664 	headerp->rm_vers = rpcrdma_version;
665 	headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
666 	headerp->rm_type = rdma_msg;
667 
668 	/* When the ULP employs a GSS flavor that guarantees integrity
669 	 * or privacy, direct data placement of individual data items
670 	 * is not allowed.
671 	 */
672 	ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
673 						RPCAUTH_AUTH_DATATOUCH);
674 
675 	/*
676 	 * Chunks needed for results?
677 	 *
678 	 * o If the expected result is under the inline threshold, all ops
679 	 *   return as inline.
680 	 * o Large read ops return data as write chunk(s), header as
681 	 *   inline.
682 	 * o Large non-read ops return as a single reply chunk.
683 	 */
684 	if (rpcrdma_results_inline(r_xprt, rqst))
685 		wtype = rpcrdma_noch;
686 	else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ)
687 		wtype = rpcrdma_writech;
688 	else
689 		wtype = rpcrdma_replych;
690 
691 	/*
692 	 * Chunks needed for arguments?
693 	 *
694 	 * o If the total request is under the inline threshold, all ops
695 	 *   are sent as inline.
696 	 * o Large write ops transmit data as read chunk(s), header as
697 	 *   inline.
698 	 * o Large non-write ops are sent with the entire message as a
699 	 *   single read chunk (protocol 0-position special case).
700 	 *
701 	 * This assumes that the upper layer does not present a request
702 	 * that both has a data payload, and whose non-data arguments
703 	 * by themselves are larger than the inline threshold.
704 	 */
705 	if (rpcrdma_args_inline(r_xprt, rqst)) {
706 		rtype = rpcrdma_noch;
707 		rpclen = rqst->rq_snd_buf.len;
708 	} else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
709 		rtype = rpcrdma_readch;
710 		rpclen = rqst->rq_snd_buf.head[0].iov_len +
711 			 rqst->rq_snd_buf.tail[0].iov_len;
712 	} else {
713 		r_xprt->rx_stats.nomsg_call_count++;
714 		headerp->rm_type = htonl(RDMA_NOMSG);
715 		rtype = rpcrdma_areadch;
716 		rpclen = 0;
717 	}
718 
719 	/* This implementation supports the following combinations
720 	 * of chunk lists in one RPC-over-RDMA Call message:
721 	 *
722 	 *   - Read list
723 	 *   - Write list
724 	 *   - Reply chunk
725 	 *   - Read list + Reply chunk
726 	 *
727 	 * It might not yet support the following combinations:
728 	 *
729 	 *   - Read list + Write list
730 	 *
731 	 * It does not support the following combinations:
732 	 *
733 	 *   - Write list + Reply chunk
734 	 *   - Read list + Write list + Reply chunk
735 	 *
736 	 * This implementation supports only a single chunk in each
737 	 * Read or Write list. Thus for example the client cannot
738 	 * send a Call message with a Position Zero Read chunk and a
739 	 * regular Read chunk at the same time.
740 	 */
741 	iptr = headerp->rm_body.rm_chunks;
742 	iptr = rpcrdma_encode_read_list(r_xprt, req, rqst, iptr, rtype);
743 	if (IS_ERR(iptr))
744 		goto out_unmap;
745 	iptr = rpcrdma_encode_write_list(r_xprt, req, rqst, iptr, wtype);
746 	if (IS_ERR(iptr))
747 		goto out_unmap;
748 	iptr = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, iptr, wtype);
749 	if (IS_ERR(iptr))
750 		goto out_unmap;
751 	hdrlen = (unsigned char *)iptr - (unsigned char *)headerp;
752 
753 	dprintk("RPC: %5u %s: %s/%s: hdrlen %zd rpclen %zd\n",
754 		rqst->rq_task->tk_pid, __func__,
755 		transfertypes[rtype], transfertypes[wtype],
756 		hdrlen, rpclen);
757 
758 	if (!rpcrdma_prepare_send_sges(&r_xprt->rx_ia, req, hdrlen,
759 				       &rqst->rq_snd_buf, rtype)) {
760 		iptr = ERR_PTR(-EIO);
761 		goto out_unmap;
762 	}
763 	return 0;
764 
765 out_unmap:
766 	r_xprt->rx_ia.ri_ops->ro_unmap_safe(r_xprt, req, false);
767 	return PTR_ERR(iptr);
768 }
769 
770 /*
771  * Chase down a received write or reply chunklist to get length
772  * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
773  */
774 static int
775 rpcrdma_count_chunks(struct rpcrdma_rep *rep, int wrchunk, __be32 **iptrp)
776 {
777 	unsigned int i, total_len;
778 	struct rpcrdma_write_chunk *cur_wchunk;
779 	char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf);
780 
781 	i = be32_to_cpu(**iptrp);
782 	cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
783 	total_len = 0;
784 	while (i--) {
785 		struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
786 		ifdebug(FACILITY) {
787 			u64 off;
788 			xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
789 			dprintk("RPC:       %s: chunk %d@0x%016llx:0x%08x\n",
790 				__func__,
791 				be32_to_cpu(seg->rs_length),
792 				(unsigned long long)off,
793 				be32_to_cpu(seg->rs_handle));
794 		}
795 		total_len += be32_to_cpu(seg->rs_length);
796 		++cur_wchunk;
797 	}
798 	/* check and adjust for properly terminated write chunk */
799 	if (wrchunk) {
800 		__be32 *w = (__be32 *) cur_wchunk;
801 		if (*w++ != xdr_zero)
802 			return -1;
803 		cur_wchunk = (struct rpcrdma_write_chunk *) w;
804 	}
805 	if ((char *)cur_wchunk > base + rep->rr_len)
806 		return -1;
807 
808 	*iptrp = (__be32 *) cur_wchunk;
809 	return total_len;
810 }
811 
812 /**
813  * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
814  * @rqst: controlling RPC request
815  * @srcp: points to RPC message payload in receive buffer
816  * @copy_len: remaining length of receive buffer content
817  * @pad: Write chunk pad bytes needed (zero for pure inline)
818  *
819  * The upper layer has set the maximum number of bytes it can
820  * receive in each component of rq_rcv_buf. These values are set in
821  * the head.iov_len, page_len, tail.iov_len, and buflen fields.
822  *
823  * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
824  * many cases this function simply updates iov_base pointers in
825  * rq_rcv_buf to point directly to the received reply data, to
826  * avoid copying reply data.
827  *
828  * Returns the count of bytes which had to be memcopied.
829  */
830 static unsigned long
831 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
832 {
833 	unsigned long fixup_copy_count;
834 	int i, npages, curlen;
835 	char *destp;
836 	struct page **ppages;
837 	int page_base;
838 
839 	/* The head iovec is redirected to the RPC reply message
840 	 * in the receive buffer, to avoid a memcopy.
841 	 */
842 	rqst->rq_rcv_buf.head[0].iov_base = srcp;
843 	rqst->rq_private_buf.head[0].iov_base = srcp;
844 
845 	/* The contents of the receive buffer that follow
846 	 * head.iov_len bytes are copied into the page list.
847 	 */
848 	curlen = rqst->rq_rcv_buf.head[0].iov_len;
849 	if (curlen > copy_len)
850 		curlen = copy_len;
851 	dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
852 		__func__, srcp, copy_len, curlen);
853 	srcp += curlen;
854 	copy_len -= curlen;
855 
856 	page_base = rqst->rq_rcv_buf.page_base;
857 	ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
858 	page_base &= ~PAGE_MASK;
859 	fixup_copy_count = 0;
860 	if (copy_len && rqst->rq_rcv_buf.page_len) {
861 		int pagelist_len;
862 
863 		pagelist_len = rqst->rq_rcv_buf.page_len;
864 		if (pagelist_len > copy_len)
865 			pagelist_len = copy_len;
866 		npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
867 		for (i = 0; i < npages; i++) {
868 			curlen = PAGE_SIZE - page_base;
869 			if (curlen > pagelist_len)
870 				curlen = pagelist_len;
871 
872 			dprintk("RPC:       %s: page %d"
873 				" srcp 0x%p len %d curlen %d\n",
874 				__func__, i, srcp, copy_len, curlen);
875 			destp = kmap_atomic(ppages[i]);
876 			memcpy(destp + page_base, srcp, curlen);
877 			flush_dcache_page(ppages[i]);
878 			kunmap_atomic(destp);
879 			srcp += curlen;
880 			copy_len -= curlen;
881 			fixup_copy_count += curlen;
882 			pagelist_len -= curlen;
883 			if (!pagelist_len)
884 				break;
885 			page_base = 0;
886 		}
887 
888 		/* Implicit padding for the last segment in a Write
889 		 * chunk is inserted inline at the front of the tail
890 		 * iovec. The upper layer ignores the content of
891 		 * the pad. Simply ensure inline content in the tail
892 		 * that follows the Write chunk is properly aligned.
893 		 */
894 		if (pad)
895 			srcp -= pad;
896 	}
897 
898 	/* The tail iovec is redirected to the remaining data
899 	 * in the receive buffer, to avoid a memcopy.
900 	 */
901 	if (copy_len || pad) {
902 		rqst->rq_rcv_buf.tail[0].iov_base = srcp;
903 		rqst->rq_private_buf.tail[0].iov_base = srcp;
904 	}
905 
906 	return fixup_copy_count;
907 }
908 
909 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
910 /* By convention, backchannel calls arrive via rdma_msg type
911  * messages, and never populate the chunk lists. This makes
912  * the RPC/RDMA header small and fixed in size, so it is
913  * straightforward to check the RPC header's direction field.
914  */
915 static bool
916 rpcrdma_is_bcall(struct rpcrdma_msg *headerp)
917 {
918 	__be32 *p = (__be32 *)headerp;
919 
920 	if (headerp->rm_type != rdma_msg)
921 		return false;
922 	if (headerp->rm_body.rm_chunks[0] != xdr_zero)
923 		return false;
924 	if (headerp->rm_body.rm_chunks[1] != xdr_zero)
925 		return false;
926 	if (headerp->rm_body.rm_chunks[2] != xdr_zero)
927 		return false;
928 
929 	/* sanity */
930 	if (p[7] != headerp->rm_xid)
931 		return false;
932 	/* call direction */
933 	if (p[8] != cpu_to_be32(RPC_CALL))
934 		return false;
935 
936 	return true;
937 }
938 #endif	/* CONFIG_SUNRPC_BACKCHANNEL */
939 
940 /* Process received RPC/RDMA messages.
941  *
942  * Errors must result in the RPC task either being awakened, or
943  * allowed to timeout, to discover the errors at that time.
944  */
945 void
946 rpcrdma_reply_handler(struct work_struct *work)
947 {
948 	struct rpcrdma_rep *rep =
949 			container_of(work, struct rpcrdma_rep, rr_work);
950 	struct rpcrdma_msg *headerp;
951 	struct rpcrdma_req *req;
952 	struct rpc_rqst *rqst;
953 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
954 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
955 	__be32 *iptr;
956 	int rdmalen, status, rmerr;
957 	unsigned long cwnd;
958 
959 	dprintk("RPC:       %s: incoming rep %p\n", __func__, rep);
960 
961 	if (rep->rr_len == RPCRDMA_BAD_LEN)
962 		goto out_badstatus;
963 	if (rep->rr_len < RPCRDMA_HDRLEN_ERR)
964 		goto out_shortreply;
965 
966 	headerp = rdmab_to_msg(rep->rr_rdmabuf);
967 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
968 	if (rpcrdma_is_bcall(headerp))
969 		goto out_bcall;
970 #endif
971 
972 	/* Match incoming rpcrdma_rep to an rpcrdma_req to
973 	 * get context for handling any incoming chunks.
974 	 */
975 	spin_lock_bh(&xprt->transport_lock);
976 	rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
977 	if (!rqst)
978 		goto out_nomatch;
979 
980 	req = rpcr_to_rdmar(rqst);
981 	if (req->rl_reply)
982 		goto out_duplicate;
983 
984 	/* Sanity checking has passed. We are now committed
985 	 * to complete this transaction.
986 	 */
987 	list_del_init(&rqst->rq_list);
988 	spin_unlock_bh(&xprt->transport_lock);
989 	dprintk("RPC:       %s: reply %p completes request %p (xid 0x%08x)\n",
990 		__func__, rep, req, be32_to_cpu(headerp->rm_xid));
991 
992 	/* from here on, the reply is no longer an orphan */
993 	req->rl_reply = rep;
994 	xprt->reestablish_timeout = 0;
995 
996 	if (headerp->rm_vers != rpcrdma_version)
997 		goto out_badversion;
998 
999 	/* check for expected message types */
1000 	/* The order of some of these tests is important. */
1001 	switch (headerp->rm_type) {
1002 	case rdma_msg:
1003 		/* never expect read chunks */
1004 		/* never expect reply chunks (two ways to check) */
1005 		/* never expect write chunks without having offered RDMA */
1006 		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
1007 		    (headerp->rm_body.rm_chunks[1] == xdr_zero &&
1008 		     headerp->rm_body.rm_chunks[2] != xdr_zero) ||
1009 		    (headerp->rm_body.rm_chunks[1] != xdr_zero &&
1010 		     list_empty(&req->rl_registered)))
1011 			goto badheader;
1012 		if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
1013 			/* count any expected write chunks in read reply */
1014 			/* start at write chunk array count */
1015 			iptr = &headerp->rm_body.rm_chunks[2];
1016 			rdmalen = rpcrdma_count_chunks(rep, 1, &iptr);
1017 			/* check for validity, and no reply chunk after */
1018 			if (rdmalen < 0 || *iptr++ != xdr_zero)
1019 				goto badheader;
1020 			rep->rr_len -=
1021 			    ((unsigned char *)iptr - (unsigned char *)headerp);
1022 			status = rep->rr_len + rdmalen;
1023 			r_xprt->rx_stats.total_rdma_reply += rdmalen;
1024 			/* special case - last chunk may omit padding */
1025 			if (rdmalen &= 3) {
1026 				rdmalen = 4 - rdmalen;
1027 				status += rdmalen;
1028 			}
1029 		} else {
1030 			/* else ordinary inline */
1031 			rdmalen = 0;
1032 			iptr = (__be32 *)((unsigned char *)headerp +
1033 							RPCRDMA_HDRLEN_MIN);
1034 			rep->rr_len -= RPCRDMA_HDRLEN_MIN;
1035 			status = rep->rr_len;
1036 		}
1037 
1038 		r_xprt->rx_stats.fixup_copy_count +=
1039 			rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len,
1040 					     rdmalen);
1041 		break;
1042 
1043 	case rdma_nomsg:
1044 		/* never expect read or write chunks, always reply chunks */
1045 		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
1046 		    headerp->rm_body.rm_chunks[1] != xdr_zero ||
1047 		    headerp->rm_body.rm_chunks[2] != xdr_one ||
1048 		    list_empty(&req->rl_registered))
1049 			goto badheader;
1050 		iptr = (__be32 *)((unsigned char *)headerp +
1051 							RPCRDMA_HDRLEN_MIN);
1052 		rdmalen = rpcrdma_count_chunks(rep, 0, &iptr);
1053 		if (rdmalen < 0)
1054 			goto badheader;
1055 		r_xprt->rx_stats.total_rdma_reply += rdmalen;
1056 		/* Reply chunk buffer already is the reply vector - no fixup. */
1057 		status = rdmalen;
1058 		break;
1059 
1060 	case rdma_error:
1061 		goto out_rdmaerr;
1062 
1063 badheader:
1064 	default:
1065 		dprintk("RPC: %5u %s: invalid rpcrdma reply (type %u)\n",
1066 			rqst->rq_task->tk_pid, __func__,
1067 			be32_to_cpu(headerp->rm_type));
1068 		status = -EIO;
1069 		r_xprt->rx_stats.bad_reply_count++;
1070 		break;
1071 	}
1072 
1073 out:
1074 	/* Invalidate and flush the data payloads before waking the
1075 	 * waiting application. This guarantees the memory region is
1076 	 * properly fenced from the server before the application
1077 	 * accesses the data. It also ensures proper send flow
1078 	 * control: waking the next RPC waits until this RPC has
1079 	 * relinquished all its Send Queue entries.
1080 	 */
1081 	if (!list_empty(&req->rl_registered))
1082 		r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt, req);
1083 
1084 	spin_lock_bh(&xprt->transport_lock);
1085 	cwnd = xprt->cwnd;
1086 	xprt->cwnd = atomic_read(&r_xprt->rx_buf.rb_credits) << RPC_CWNDSHIFT;
1087 	if (xprt->cwnd > cwnd)
1088 		xprt_release_rqst_cong(rqst->rq_task);
1089 
1090 	xprt_complete_rqst(rqst->rq_task, status);
1091 	spin_unlock_bh(&xprt->transport_lock);
1092 	dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
1093 			__func__, xprt, rqst, status);
1094 	return;
1095 
1096 out_badstatus:
1097 	rpcrdma_recv_buffer_put(rep);
1098 	if (r_xprt->rx_ep.rep_connected == 1) {
1099 		r_xprt->rx_ep.rep_connected = -EIO;
1100 		rpcrdma_conn_func(&r_xprt->rx_ep);
1101 	}
1102 	return;
1103 
1104 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1105 out_bcall:
1106 	rpcrdma_bc_receive_call(r_xprt, rep);
1107 	return;
1108 #endif
1109 
1110 /* If the incoming reply terminated a pending RPC, the next
1111  * RPC call will post a replacement receive buffer as it is
1112  * being marshaled.
1113  */
1114 out_badversion:
1115 	dprintk("RPC:       %s: invalid version %d\n",
1116 		__func__, be32_to_cpu(headerp->rm_vers));
1117 	status = -EIO;
1118 	r_xprt->rx_stats.bad_reply_count++;
1119 	goto out;
1120 
1121 out_rdmaerr:
1122 	rmerr = be32_to_cpu(headerp->rm_body.rm_error.rm_err);
1123 	switch (rmerr) {
1124 	case ERR_VERS:
1125 		pr_err("%s: server reports header version error (%u-%u)\n",
1126 		       __func__,
1127 		       be32_to_cpu(headerp->rm_body.rm_error.rm_vers_low),
1128 		       be32_to_cpu(headerp->rm_body.rm_error.rm_vers_high));
1129 		break;
1130 	case ERR_CHUNK:
1131 		pr_err("%s: server reports header decoding error\n",
1132 		       __func__);
1133 		break;
1134 	default:
1135 		pr_err("%s: server reports unknown error %d\n",
1136 		       __func__, rmerr);
1137 	}
1138 	status = -EREMOTEIO;
1139 	r_xprt->rx_stats.bad_reply_count++;
1140 	goto out;
1141 
1142 /* If no pending RPC transaction was matched, post a replacement
1143  * receive buffer before returning.
1144  */
1145 out_shortreply:
1146 	dprintk("RPC:       %s: short/invalid reply\n", __func__);
1147 	goto repost;
1148 
1149 out_nomatch:
1150 	spin_unlock_bh(&xprt->transport_lock);
1151 	dprintk("RPC:       %s: no match for incoming xid 0x%08x len %d\n",
1152 		__func__, be32_to_cpu(headerp->rm_xid),
1153 		rep->rr_len);
1154 	goto repost;
1155 
1156 out_duplicate:
1157 	spin_unlock_bh(&xprt->transport_lock);
1158 	dprintk("RPC:       %s: "
1159 		"duplicate reply %p to RPC request %p: xid 0x%08x\n",
1160 		__func__, rep, req, be32_to_cpu(headerp->rm_xid));
1161 
1162 repost:
1163 	r_xprt->rx_stats.bad_reply_count++;
1164 	if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, rep))
1165 		rpcrdma_recv_buffer_put(rep);
1166 }
1167