xref: /openbmc/linux/net/sunrpc/xprtrdma/rpc_rdma.c (revision 7b73a9c8)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the BSD-type
10  * license below:
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  *
16  *      Redistributions of source code must retain the above copyright
17  *      notice, this list of conditions and the following disclaimer.
18  *
19  *      Redistributions in binary form must reproduce the above
20  *      copyright notice, this list of conditions and the following
21  *      disclaimer in the documentation and/or other materials provided
22  *      with the distribution.
23  *
24  *      Neither the name of the Network Appliance, Inc. nor the names of
25  *      its contributors may be used to endorse or promote products
26  *      derived from this software without specific prior written
27  *      permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41 
42 /*
43  * rpc_rdma.c
44  *
45  * This file contains the guts of the RPC RDMA protocol, and
46  * does marshaling/unmarshaling, etc. It is also where interfacing
47  * to the Linux RPC framework lives.
48  */
49 
50 #include <linux/highmem.h>
51 
52 #include <linux/sunrpc/svc_rdma.h>
53 
54 #include "xprt_rdma.h"
55 #include <trace/events/rpcrdma.h>
56 
57 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
58 # define RPCDBG_FACILITY	RPCDBG_TRANS
59 #endif
60 
61 /* Returns size of largest RPC-over-RDMA header in a Call message
62  *
63  * The largest Call header contains a full-size Read list and a
64  * minimal Reply chunk.
65  */
66 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
67 {
68 	unsigned int size;
69 
70 	/* Fixed header fields and list discriminators */
71 	size = RPCRDMA_HDRLEN_MIN;
72 
73 	/* Maximum Read list size */
74 	size = maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
75 
76 	/* Minimal Read chunk size */
77 	size += sizeof(__be32);	/* segment count */
78 	size += rpcrdma_segment_maxsz * sizeof(__be32);
79 	size += sizeof(__be32);	/* list discriminator */
80 
81 	return size;
82 }
83 
84 /* Returns size of largest RPC-over-RDMA header in a Reply message
85  *
86  * There is only one Write list or one Reply chunk per Reply
87  * message.  The larger list is the Write list.
88  */
89 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
90 {
91 	unsigned int size;
92 
93 	/* Fixed header fields and list discriminators */
94 	size = RPCRDMA_HDRLEN_MIN;
95 
96 	/* Maximum Write list size */
97 	size = sizeof(__be32);		/* segment count */
98 	size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
99 	size += sizeof(__be32);	/* list discriminator */
100 
101 	return size;
102 }
103 
104 /**
105  * rpcrdma_set_max_header_sizes - Initialize inline payload sizes
106  * @r_xprt: transport instance to initialize
107  *
108  * The max_inline fields contain the maximum size of an RPC message
109  * so the marshaling code doesn't have to repeat this calculation
110  * for every RPC.
111  */
112 void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt)
113 {
114 	unsigned int maxsegs = r_xprt->rx_ia.ri_max_segs;
115 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
116 
117 	ep->rep_max_inline_send =
118 		ep->rep_inline_send - rpcrdma_max_call_header_size(maxsegs);
119 	ep->rep_max_inline_recv =
120 		ep->rep_inline_recv - rpcrdma_max_reply_header_size(maxsegs);
121 }
122 
123 /* The client can send a request inline as long as the RPCRDMA header
124  * plus the RPC call fit under the transport's inline limit. If the
125  * combined call message size exceeds that limit, the client must use
126  * a Read chunk for this operation.
127  *
128  * A Read chunk is also required if sending the RPC call inline would
129  * exceed this device's max_sge limit.
130  */
131 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
132 				struct rpc_rqst *rqst)
133 {
134 	struct xdr_buf *xdr = &rqst->rq_snd_buf;
135 	unsigned int count, remaining, offset;
136 
137 	if (xdr->len > r_xprt->rx_ep.rep_max_inline_send)
138 		return false;
139 
140 	if (xdr->page_len) {
141 		remaining = xdr->page_len;
142 		offset = offset_in_page(xdr->page_base);
143 		count = RPCRDMA_MIN_SEND_SGES;
144 		while (remaining) {
145 			remaining -= min_t(unsigned int,
146 					   PAGE_SIZE - offset, remaining);
147 			offset = 0;
148 			if (++count > r_xprt->rx_ia.ri_max_send_sges)
149 				return false;
150 		}
151 	}
152 
153 	return true;
154 }
155 
156 /* The client can't know how large the actual reply will be. Thus it
157  * plans for the largest possible reply for that particular ULP
158  * operation. If the maximum combined reply message size exceeds that
159  * limit, the client must provide a write list or a reply chunk for
160  * this request.
161  */
162 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
163 				   struct rpc_rqst *rqst)
164 {
165 	return rqst->rq_rcv_buf.buflen <= r_xprt->rx_ep.rep_max_inline_recv;
166 }
167 
168 /* The client is required to provide a Reply chunk if the maximum
169  * size of the non-payload part of the RPC Reply is larger than
170  * the inline threshold.
171  */
172 static bool
173 rpcrdma_nonpayload_inline(const struct rpcrdma_xprt *r_xprt,
174 			  const struct rpc_rqst *rqst)
175 {
176 	const struct xdr_buf *buf = &rqst->rq_rcv_buf;
177 
178 	return (buf->head[0].iov_len + buf->tail[0].iov_len) <
179 		r_xprt->rx_ep.rep_max_inline_recv;
180 }
181 
182 /* Split @vec on page boundaries into SGEs. FMR registers pages, not
183  * a byte range. Other modes coalesce these SGEs into a single MR
184  * when they can.
185  *
186  * Returns pointer to next available SGE, and bumps the total number
187  * of SGEs consumed.
188  */
189 static struct rpcrdma_mr_seg *
190 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
191 		     unsigned int *n)
192 {
193 	u32 remaining, page_offset;
194 	char *base;
195 
196 	base = vec->iov_base;
197 	page_offset = offset_in_page(base);
198 	remaining = vec->iov_len;
199 	while (remaining) {
200 		seg->mr_page = NULL;
201 		seg->mr_offset = base;
202 		seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
203 		remaining -= seg->mr_len;
204 		base += seg->mr_len;
205 		++seg;
206 		++(*n);
207 		page_offset = 0;
208 	}
209 	return seg;
210 }
211 
212 /* Convert @xdrbuf into SGEs no larger than a page each. As they
213  * are registered, these SGEs are then coalesced into RDMA segments
214  * when the selected memreg mode supports it.
215  *
216  * Returns positive number of SGEs consumed, or a negative errno.
217  */
218 
219 static int
220 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
221 		     unsigned int pos, enum rpcrdma_chunktype type,
222 		     struct rpcrdma_mr_seg *seg)
223 {
224 	unsigned long page_base;
225 	unsigned int len, n;
226 	struct page **ppages;
227 
228 	n = 0;
229 	if (pos == 0)
230 		seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
231 
232 	len = xdrbuf->page_len;
233 	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
234 	page_base = offset_in_page(xdrbuf->page_base);
235 	while (len) {
236 		/* ACL likes to be lazy in allocating pages - ACLs
237 		 * are small by default but can get huge.
238 		 */
239 		if (unlikely(xdrbuf->flags & XDRBUF_SPARSE_PAGES)) {
240 			if (!*ppages)
241 				*ppages = alloc_page(GFP_NOWAIT | __GFP_NOWARN);
242 			if (!*ppages)
243 				return -ENOBUFS;
244 		}
245 		seg->mr_page = *ppages;
246 		seg->mr_offset = (char *)page_base;
247 		seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
248 		len -= seg->mr_len;
249 		++ppages;
250 		++seg;
251 		++n;
252 		page_base = 0;
253 	}
254 
255 	/* When encoding a Read chunk, the tail iovec contains an
256 	 * XDR pad and may be omitted.
257 	 */
258 	if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup)
259 		goto out;
260 
261 	/* When encoding a Write chunk, some servers need to see an
262 	 * extra segment for non-XDR-aligned Write chunks. The upper
263 	 * layer provides space in the tail iovec that may be used
264 	 * for this purpose.
265 	 */
266 	if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup)
267 		goto out;
268 
269 	if (xdrbuf->tail[0].iov_len)
270 		seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
271 
272 out:
273 	if (unlikely(n > RPCRDMA_MAX_SEGS))
274 		return -EIO;
275 	return n;
276 }
277 
278 static inline int
279 encode_item_present(struct xdr_stream *xdr)
280 {
281 	__be32 *p;
282 
283 	p = xdr_reserve_space(xdr, sizeof(*p));
284 	if (unlikely(!p))
285 		return -EMSGSIZE;
286 
287 	*p = xdr_one;
288 	return 0;
289 }
290 
291 static inline int
292 encode_item_not_present(struct xdr_stream *xdr)
293 {
294 	__be32 *p;
295 
296 	p = xdr_reserve_space(xdr, sizeof(*p));
297 	if (unlikely(!p))
298 		return -EMSGSIZE;
299 
300 	*p = xdr_zero;
301 	return 0;
302 }
303 
304 static void
305 xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mr *mr)
306 {
307 	*iptr++ = cpu_to_be32(mr->mr_handle);
308 	*iptr++ = cpu_to_be32(mr->mr_length);
309 	xdr_encode_hyper(iptr, mr->mr_offset);
310 }
311 
312 static int
313 encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr)
314 {
315 	__be32 *p;
316 
317 	p = xdr_reserve_space(xdr, 4 * sizeof(*p));
318 	if (unlikely(!p))
319 		return -EMSGSIZE;
320 
321 	xdr_encode_rdma_segment(p, mr);
322 	return 0;
323 }
324 
325 static int
326 encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr,
327 		    u32 position)
328 {
329 	__be32 *p;
330 
331 	p = xdr_reserve_space(xdr, 6 * sizeof(*p));
332 	if (unlikely(!p))
333 		return -EMSGSIZE;
334 
335 	*p++ = xdr_one;			/* Item present */
336 	*p++ = cpu_to_be32(position);
337 	xdr_encode_rdma_segment(p, mr);
338 	return 0;
339 }
340 
341 static struct rpcrdma_mr_seg *rpcrdma_mr_prepare(struct rpcrdma_xprt *r_xprt,
342 						 struct rpcrdma_req *req,
343 						 struct rpcrdma_mr_seg *seg,
344 						 int nsegs, bool writing,
345 						 struct rpcrdma_mr **mr)
346 {
347 	*mr = rpcrdma_mr_pop(&req->rl_free_mrs);
348 	if (!*mr) {
349 		*mr = rpcrdma_mr_get(r_xprt);
350 		if (!*mr)
351 			goto out_getmr_err;
352 		trace_xprtrdma_mr_get(req);
353 		(*mr)->mr_req = req;
354 	}
355 
356 	rpcrdma_mr_push(*mr, &req->rl_registered);
357 	return frwr_map(r_xprt, seg, nsegs, writing, req->rl_slot.rq_xid, *mr);
358 
359 out_getmr_err:
360 	trace_xprtrdma_nomrs(req);
361 	xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
362 	rpcrdma_mrs_refresh(r_xprt);
363 	return ERR_PTR(-EAGAIN);
364 }
365 
366 /* Register and XDR encode the Read list. Supports encoding a list of read
367  * segments that belong to a single read chunk.
368  *
369  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
370  *
371  *  Read chunklist (a linked list):
372  *   N elements, position P (same P for all chunks of same arg!):
373  *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
374  *
375  * Returns zero on success, or a negative errno if a failure occurred.
376  * @xdr is advanced to the next position in the stream.
377  *
378  * Only a single @pos value is currently supported.
379  */
380 static int rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
381 				    struct rpcrdma_req *req,
382 				    struct rpc_rqst *rqst,
383 				    enum rpcrdma_chunktype rtype)
384 {
385 	struct xdr_stream *xdr = &req->rl_stream;
386 	struct rpcrdma_mr_seg *seg;
387 	struct rpcrdma_mr *mr;
388 	unsigned int pos;
389 	int nsegs;
390 
391 	if (rtype == rpcrdma_noch_pullup || rtype == rpcrdma_noch_mapped)
392 		goto done;
393 
394 	pos = rqst->rq_snd_buf.head[0].iov_len;
395 	if (rtype == rpcrdma_areadch)
396 		pos = 0;
397 	seg = req->rl_segments;
398 	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
399 				     rtype, seg);
400 	if (nsegs < 0)
401 		return nsegs;
402 
403 	do {
404 		seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, false, &mr);
405 		if (IS_ERR(seg))
406 			return PTR_ERR(seg);
407 
408 		if (encode_read_segment(xdr, mr, pos) < 0)
409 			return -EMSGSIZE;
410 
411 		trace_xprtrdma_chunk_read(rqst->rq_task, pos, mr, nsegs);
412 		r_xprt->rx_stats.read_chunk_count++;
413 		nsegs -= mr->mr_nents;
414 	} while (nsegs);
415 
416 done:
417 	return encode_item_not_present(xdr);
418 }
419 
420 /* Register and XDR encode the Write list. Supports encoding a list
421  * containing one array of plain segments that belong to a single
422  * write chunk.
423  *
424  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
425  *
426  *  Write chunklist (a list of (one) counted array):
427  *   N elements:
428  *    1 - N - HLOO - HLOO - ... - HLOO - 0
429  *
430  * Returns zero on success, or a negative errno if a failure occurred.
431  * @xdr is advanced to the next position in the stream.
432  *
433  * Only a single Write chunk is currently supported.
434  */
435 static int rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt,
436 				     struct rpcrdma_req *req,
437 				     struct rpc_rqst *rqst,
438 				     enum rpcrdma_chunktype wtype)
439 {
440 	struct xdr_stream *xdr = &req->rl_stream;
441 	struct rpcrdma_mr_seg *seg;
442 	struct rpcrdma_mr *mr;
443 	int nsegs, nchunks;
444 	__be32 *segcount;
445 
446 	if (wtype != rpcrdma_writech)
447 		goto done;
448 
449 	seg = req->rl_segments;
450 	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
451 				     rqst->rq_rcv_buf.head[0].iov_len,
452 				     wtype, seg);
453 	if (nsegs < 0)
454 		return nsegs;
455 
456 	if (encode_item_present(xdr) < 0)
457 		return -EMSGSIZE;
458 	segcount = xdr_reserve_space(xdr, sizeof(*segcount));
459 	if (unlikely(!segcount))
460 		return -EMSGSIZE;
461 	/* Actual value encoded below */
462 
463 	nchunks = 0;
464 	do {
465 		seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
466 		if (IS_ERR(seg))
467 			return PTR_ERR(seg);
468 
469 		if (encode_rdma_segment(xdr, mr) < 0)
470 			return -EMSGSIZE;
471 
472 		trace_xprtrdma_chunk_write(rqst->rq_task, mr, nsegs);
473 		r_xprt->rx_stats.write_chunk_count++;
474 		r_xprt->rx_stats.total_rdma_request += mr->mr_length;
475 		nchunks++;
476 		nsegs -= mr->mr_nents;
477 	} while (nsegs);
478 
479 	/* Update count of segments in this Write chunk */
480 	*segcount = cpu_to_be32(nchunks);
481 
482 done:
483 	return encode_item_not_present(xdr);
484 }
485 
486 /* Register and XDR encode the Reply chunk. Supports encoding an array
487  * of plain segments that belong to a single write (reply) chunk.
488  *
489  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
490  *
491  *  Reply chunk (a counted array):
492  *   N elements:
493  *    1 - N - HLOO - HLOO - ... - HLOO
494  *
495  * Returns zero on success, or a negative errno if a failure occurred.
496  * @xdr is advanced to the next position in the stream.
497  */
498 static int rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
499 				      struct rpcrdma_req *req,
500 				      struct rpc_rqst *rqst,
501 				      enum rpcrdma_chunktype wtype)
502 {
503 	struct xdr_stream *xdr = &req->rl_stream;
504 	struct rpcrdma_mr_seg *seg;
505 	struct rpcrdma_mr *mr;
506 	int nsegs, nchunks;
507 	__be32 *segcount;
508 
509 	if (wtype != rpcrdma_replych)
510 		return encode_item_not_present(xdr);
511 
512 	seg = req->rl_segments;
513 	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
514 	if (nsegs < 0)
515 		return nsegs;
516 
517 	if (encode_item_present(xdr) < 0)
518 		return -EMSGSIZE;
519 	segcount = xdr_reserve_space(xdr, sizeof(*segcount));
520 	if (unlikely(!segcount))
521 		return -EMSGSIZE;
522 	/* Actual value encoded below */
523 
524 	nchunks = 0;
525 	do {
526 		seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
527 		if (IS_ERR(seg))
528 			return PTR_ERR(seg);
529 
530 		if (encode_rdma_segment(xdr, mr) < 0)
531 			return -EMSGSIZE;
532 
533 		trace_xprtrdma_chunk_reply(rqst->rq_task, mr, nsegs);
534 		r_xprt->rx_stats.reply_chunk_count++;
535 		r_xprt->rx_stats.total_rdma_request += mr->mr_length;
536 		nchunks++;
537 		nsegs -= mr->mr_nents;
538 	} while (nsegs);
539 
540 	/* Update count of segments in the Reply chunk */
541 	*segcount = cpu_to_be32(nchunks);
542 
543 	return 0;
544 }
545 
546 static void rpcrdma_sendctx_done(struct kref *kref)
547 {
548 	struct rpcrdma_req *req =
549 		container_of(kref, struct rpcrdma_req, rl_kref);
550 	struct rpcrdma_rep *rep = req->rl_reply;
551 
552 	rpcrdma_complete_rqst(rep);
553 	rep->rr_rxprt->rx_stats.reply_waits_for_send++;
554 }
555 
556 /**
557  * rpcrdma_sendctx_unmap - DMA-unmap Send buffer
558  * @sc: sendctx containing SGEs to unmap
559  *
560  */
561 void rpcrdma_sendctx_unmap(struct rpcrdma_sendctx *sc)
562 {
563 	struct rpcrdma_regbuf *rb = sc->sc_req->rl_sendbuf;
564 	struct ib_sge *sge;
565 
566 	if (!sc->sc_unmap_count)
567 		return;
568 
569 	/* The first two SGEs contain the transport header and
570 	 * the inline buffer. These are always left mapped so
571 	 * they can be cheaply re-used.
572 	 */
573 	for (sge = &sc->sc_sges[2]; sc->sc_unmap_count;
574 	     ++sge, --sc->sc_unmap_count)
575 		ib_dma_unmap_page(rdmab_device(rb), sge->addr, sge->length,
576 				  DMA_TO_DEVICE);
577 
578 	kref_put(&sc->sc_req->rl_kref, rpcrdma_sendctx_done);
579 }
580 
581 /* Prepare an SGE for the RPC-over-RDMA transport header.
582  */
583 static bool rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt *r_xprt,
584 				    struct rpcrdma_req *req, u32 len)
585 {
586 	struct rpcrdma_sendctx *sc = req->rl_sendctx;
587 	struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
588 	struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
589 
590 	if (!rpcrdma_regbuf_dma_map(r_xprt, rb))
591 		return false;
592 	sge->addr = rdmab_addr(rb);
593 	sge->length = len;
594 	sge->lkey = rdmab_lkey(rb);
595 
596 	ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
597 				      DMA_TO_DEVICE);
598 	return true;
599 }
600 
601 /* The head iovec is straightforward, as it is usually already
602  * DMA-mapped. Sync the content that has changed.
603  */
604 static bool rpcrdma_prepare_head_iov(struct rpcrdma_xprt *r_xprt,
605 				     struct rpcrdma_req *req, unsigned int len)
606 {
607 	struct rpcrdma_sendctx *sc = req->rl_sendctx;
608 	struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
609 	struct rpcrdma_regbuf *rb = req->rl_sendbuf;
610 
611 	if (!rpcrdma_regbuf_dma_map(r_xprt, rb))
612 		return false;
613 
614 	sge->addr = rdmab_addr(rb);
615 	sge->length = len;
616 	sge->lkey = rdmab_lkey(rb);
617 
618 	ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
619 				      DMA_TO_DEVICE);
620 	return true;
621 }
622 
623 /* If there is a page list present, DMA map and prepare an
624  * SGE for each page to be sent.
625  */
626 static bool rpcrdma_prepare_pagelist(struct rpcrdma_req *req,
627 				     struct xdr_buf *xdr)
628 {
629 	struct rpcrdma_sendctx *sc = req->rl_sendctx;
630 	struct rpcrdma_regbuf *rb = req->rl_sendbuf;
631 	unsigned int page_base, len, remaining;
632 	struct page **ppages;
633 	struct ib_sge *sge;
634 
635 	ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
636 	page_base = offset_in_page(xdr->page_base);
637 	remaining = xdr->page_len;
638 	while (remaining) {
639 		sge = &sc->sc_sges[req->rl_wr.num_sge++];
640 		len = min_t(unsigned int, PAGE_SIZE - page_base, remaining);
641 		sge->addr = ib_dma_map_page(rdmab_device(rb), *ppages,
642 					    page_base, len, DMA_TO_DEVICE);
643 		if (ib_dma_mapping_error(rdmab_device(rb), sge->addr))
644 			goto out_mapping_err;
645 
646 		sge->length = len;
647 		sge->lkey = rdmab_lkey(rb);
648 
649 		sc->sc_unmap_count++;
650 		ppages++;
651 		remaining -= len;
652 		page_base = 0;
653 	}
654 
655 	return true;
656 
657 out_mapping_err:
658 	trace_xprtrdma_dma_maperr(sge->addr);
659 	return false;
660 }
661 
662 /* The tail iovec may include an XDR pad for the page list,
663  * as well as additional content, and may not reside in the
664  * same page as the head iovec.
665  */
666 static bool rpcrdma_prepare_tail_iov(struct rpcrdma_req *req,
667 				     struct xdr_buf *xdr,
668 				     unsigned int page_base, unsigned int len)
669 {
670 	struct rpcrdma_sendctx *sc = req->rl_sendctx;
671 	struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
672 	struct rpcrdma_regbuf *rb = req->rl_sendbuf;
673 	struct page *page = virt_to_page(xdr->tail[0].iov_base);
674 
675 	sge->addr = ib_dma_map_page(rdmab_device(rb), page, page_base, len,
676 				    DMA_TO_DEVICE);
677 	if (ib_dma_mapping_error(rdmab_device(rb), sge->addr))
678 		goto out_mapping_err;
679 
680 	sge->length = len;
681 	sge->lkey = rdmab_lkey(rb);
682 	++sc->sc_unmap_count;
683 	return true;
684 
685 out_mapping_err:
686 	trace_xprtrdma_dma_maperr(sge->addr);
687 	return false;
688 }
689 
690 /* Copy the tail to the end of the head buffer.
691  */
692 static void rpcrdma_pullup_tail_iov(struct rpcrdma_xprt *r_xprt,
693 				    struct rpcrdma_req *req,
694 				    struct xdr_buf *xdr)
695 {
696 	unsigned char *dst;
697 
698 	dst = (unsigned char *)xdr->head[0].iov_base;
699 	dst += xdr->head[0].iov_len + xdr->page_len;
700 	memmove(dst, xdr->tail[0].iov_base, xdr->tail[0].iov_len);
701 	r_xprt->rx_stats.pullup_copy_count += xdr->tail[0].iov_len;
702 }
703 
704 /* Copy pagelist content into the head buffer.
705  */
706 static void rpcrdma_pullup_pagelist(struct rpcrdma_xprt *r_xprt,
707 				    struct rpcrdma_req *req,
708 				    struct xdr_buf *xdr)
709 {
710 	unsigned int len, page_base, remaining;
711 	struct page **ppages;
712 	unsigned char *src, *dst;
713 
714 	dst = (unsigned char *)xdr->head[0].iov_base;
715 	dst += xdr->head[0].iov_len;
716 	ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
717 	page_base = offset_in_page(xdr->page_base);
718 	remaining = xdr->page_len;
719 	while (remaining) {
720 		src = page_address(*ppages);
721 		src += page_base;
722 		len = min_t(unsigned int, PAGE_SIZE - page_base, remaining);
723 		memcpy(dst, src, len);
724 		r_xprt->rx_stats.pullup_copy_count += len;
725 
726 		ppages++;
727 		dst += len;
728 		remaining -= len;
729 		page_base = 0;
730 	}
731 }
732 
733 /* Copy the contents of @xdr into @rl_sendbuf and DMA sync it.
734  * When the head, pagelist, and tail are small, a pull-up copy
735  * is considerably less costly than DMA mapping the components
736  * of @xdr.
737  *
738  * Assumptions:
739  *  - the caller has already verified that the total length
740  *    of the RPC Call body will fit into @rl_sendbuf.
741  */
742 static bool rpcrdma_prepare_noch_pullup(struct rpcrdma_xprt *r_xprt,
743 					struct rpcrdma_req *req,
744 					struct xdr_buf *xdr)
745 {
746 	if (unlikely(xdr->tail[0].iov_len))
747 		rpcrdma_pullup_tail_iov(r_xprt, req, xdr);
748 
749 	if (unlikely(xdr->page_len))
750 		rpcrdma_pullup_pagelist(r_xprt, req, xdr);
751 
752 	/* The whole RPC message resides in the head iovec now */
753 	return rpcrdma_prepare_head_iov(r_xprt, req, xdr->len);
754 }
755 
756 static bool rpcrdma_prepare_noch_mapped(struct rpcrdma_xprt *r_xprt,
757 					struct rpcrdma_req *req,
758 					struct xdr_buf *xdr)
759 {
760 	struct kvec *tail = &xdr->tail[0];
761 
762 	if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len))
763 		return false;
764 	if (xdr->page_len)
765 		if (!rpcrdma_prepare_pagelist(req, xdr))
766 			return false;
767 	if (tail->iov_len)
768 		if (!rpcrdma_prepare_tail_iov(req, xdr,
769 					      offset_in_page(tail->iov_base),
770 					      tail->iov_len))
771 			return false;
772 
773 	if (req->rl_sendctx->sc_unmap_count)
774 		kref_get(&req->rl_kref);
775 	return true;
776 }
777 
778 static bool rpcrdma_prepare_readch(struct rpcrdma_xprt *r_xprt,
779 				   struct rpcrdma_req *req,
780 				   struct xdr_buf *xdr)
781 {
782 	if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len))
783 		return false;
784 
785 	/* If there is a Read chunk, the page list is being handled
786 	 * via explicit RDMA, and thus is skipped here.
787 	 */
788 
789 	/* Do not include the tail if it is only an XDR pad */
790 	if (xdr->tail[0].iov_len > 3) {
791 		unsigned int page_base, len;
792 
793 		/* If the content in the page list is an odd length,
794 		 * xdr_write_pages() adds a pad at the beginning of
795 		 * the tail iovec. Force the tail's non-pad content to
796 		 * land at the next XDR position in the Send message.
797 		 */
798 		page_base = offset_in_page(xdr->tail[0].iov_base);
799 		len = xdr->tail[0].iov_len;
800 		page_base += len & 3;
801 		len -= len & 3;
802 		if (!rpcrdma_prepare_tail_iov(req, xdr, page_base, len))
803 			return false;
804 		kref_get(&req->rl_kref);
805 	}
806 
807 	return true;
808 }
809 
810 /**
811  * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR
812  * @r_xprt: controlling transport
813  * @req: context of RPC Call being marshalled
814  * @hdrlen: size of transport header, in bytes
815  * @xdr: xdr_buf containing RPC Call
816  * @rtype: chunk type being encoded
817  *
818  * Returns 0 on success; otherwise a negative errno is returned.
819  */
820 inline int rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
821 				     struct rpcrdma_req *req, u32 hdrlen,
822 				     struct xdr_buf *xdr,
823 				     enum rpcrdma_chunktype rtype)
824 {
825 	int ret;
826 
827 	ret = -EAGAIN;
828 	req->rl_sendctx = rpcrdma_sendctx_get_locked(r_xprt);
829 	if (!req->rl_sendctx)
830 		goto out_nosc;
831 	req->rl_sendctx->sc_unmap_count = 0;
832 	req->rl_sendctx->sc_req = req;
833 	kref_init(&req->rl_kref);
834 	req->rl_wr.wr_cqe = &req->rl_sendctx->sc_cqe;
835 	req->rl_wr.sg_list = req->rl_sendctx->sc_sges;
836 	req->rl_wr.num_sge = 0;
837 	req->rl_wr.opcode = IB_WR_SEND;
838 
839 	ret = -EIO;
840 	if (!rpcrdma_prepare_hdr_sge(r_xprt, req, hdrlen))
841 		goto out_unmap;
842 
843 	switch (rtype) {
844 	case rpcrdma_noch_pullup:
845 		if (!rpcrdma_prepare_noch_pullup(r_xprt, req, xdr))
846 			goto out_unmap;
847 		break;
848 	case rpcrdma_noch_mapped:
849 		if (!rpcrdma_prepare_noch_mapped(r_xprt, req, xdr))
850 			goto out_unmap;
851 		break;
852 	case rpcrdma_readch:
853 		if (!rpcrdma_prepare_readch(r_xprt, req, xdr))
854 			goto out_unmap;
855 		break;
856 	case rpcrdma_areadch:
857 		break;
858 	default:
859 		goto out_unmap;
860 	}
861 
862 	return 0;
863 
864 out_unmap:
865 	rpcrdma_sendctx_unmap(req->rl_sendctx);
866 out_nosc:
867 	trace_xprtrdma_prepsend_failed(&req->rl_slot, ret);
868 	return ret;
869 }
870 
871 /**
872  * rpcrdma_marshal_req - Marshal and send one RPC request
873  * @r_xprt: controlling transport
874  * @rqst: RPC request to be marshaled
875  *
876  * For the RPC in "rqst", this function:
877  *  - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
878  *  - Registers Read, Write, and Reply chunks
879  *  - Constructs the transport header
880  *  - Posts a Send WR to send the transport header and request
881  *
882  * Returns:
883  *	%0 if the RPC was sent successfully,
884  *	%-ENOTCONN if the connection was lost,
885  *	%-EAGAIN if the caller should call again with the same arguments,
886  *	%-ENOBUFS if the caller should call again after a delay,
887  *	%-EMSGSIZE if the transport header is too small,
888  *	%-EIO if a permanent problem occurred while marshaling.
889  */
890 int
891 rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
892 {
893 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
894 	struct xdr_stream *xdr = &req->rl_stream;
895 	enum rpcrdma_chunktype rtype, wtype;
896 	struct xdr_buf *buf = &rqst->rq_snd_buf;
897 	bool ddp_allowed;
898 	__be32 *p;
899 	int ret;
900 
901 	rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
902 	xdr_init_encode(xdr, &req->rl_hdrbuf, rdmab_data(req->rl_rdmabuf),
903 			rqst);
904 
905 	/* Fixed header fields */
906 	ret = -EMSGSIZE;
907 	p = xdr_reserve_space(xdr, 4 * sizeof(*p));
908 	if (!p)
909 		goto out_err;
910 	*p++ = rqst->rq_xid;
911 	*p++ = rpcrdma_version;
912 	*p++ = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
913 
914 	/* When the ULP employs a GSS flavor that guarantees integrity
915 	 * or privacy, direct data placement of individual data items
916 	 * is not allowed.
917 	 */
918 	ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
919 						RPCAUTH_AUTH_DATATOUCH);
920 
921 	/*
922 	 * Chunks needed for results?
923 	 *
924 	 * o If the expected result is under the inline threshold, all ops
925 	 *   return as inline.
926 	 * o Large read ops return data as write chunk(s), header as
927 	 *   inline.
928 	 * o Large non-read ops return as a single reply chunk.
929 	 */
930 	if (rpcrdma_results_inline(r_xprt, rqst))
931 		wtype = rpcrdma_noch;
932 	else if ((ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) &&
933 		 rpcrdma_nonpayload_inline(r_xprt, rqst))
934 		wtype = rpcrdma_writech;
935 	else
936 		wtype = rpcrdma_replych;
937 
938 	/*
939 	 * Chunks needed for arguments?
940 	 *
941 	 * o If the total request is under the inline threshold, all ops
942 	 *   are sent as inline.
943 	 * o Large write ops transmit data as read chunk(s), header as
944 	 *   inline.
945 	 * o Large non-write ops are sent with the entire message as a
946 	 *   single read chunk (protocol 0-position special case).
947 	 *
948 	 * This assumes that the upper layer does not present a request
949 	 * that both has a data payload, and whose non-data arguments
950 	 * by themselves are larger than the inline threshold.
951 	 */
952 	if (rpcrdma_args_inline(r_xprt, rqst)) {
953 		*p++ = rdma_msg;
954 		rtype = buf->len < rdmab_length(req->rl_sendbuf) ?
955 			rpcrdma_noch_pullup : rpcrdma_noch_mapped;
956 	} else if (ddp_allowed && buf->flags & XDRBUF_WRITE) {
957 		*p++ = rdma_msg;
958 		rtype = rpcrdma_readch;
959 	} else {
960 		r_xprt->rx_stats.nomsg_call_count++;
961 		*p++ = rdma_nomsg;
962 		rtype = rpcrdma_areadch;
963 	}
964 
965 	/* This implementation supports the following combinations
966 	 * of chunk lists in one RPC-over-RDMA Call message:
967 	 *
968 	 *   - Read list
969 	 *   - Write list
970 	 *   - Reply chunk
971 	 *   - Read list + Reply chunk
972 	 *
973 	 * It might not yet support the following combinations:
974 	 *
975 	 *   - Read list + Write list
976 	 *
977 	 * It does not support the following combinations:
978 	 *
979 	 *   - Write list + Reply chunk
980 	 *   - Read list + Write list + Reply chunk
981 	 *
982 	 * This implementation supports only a single chunk in each
983 	 * Read or Write list. Thus for example the client cannot
984 	 * send a Call message with a Position Zero Read chunk and a
985 	 * regular Read chunk at the same time.
986 	 */
987 	ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
988 	if (ret)
989 		goto out_err;
990 	ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
991 	if (ret)
992 		goto out_err;
993 	ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
994 	if (ret)
995 		goto out_err;
996 
997 	ret = rpcrdma_prepare_send_sges(r_xprt, req, req->rl_hdrbuf.len,
998 					buf, rtype);
999 	if (ret)
1000 		goto out_err;
1001 
1002 	trace_xprtrdma_marshal(req, rtype, wtype);
1003 	return 0;
1004 
1005 out_err:
1006 	trace_xprtrdma_marshal_failed(rqst, ret);
1007 	r_xprt->rx_stats.failed_marshal_count++;
1008 	frwr_reset(req);
1009 	return ret;
1010 }
1011 
1012 static void __rpcrdma_update_cwnd_locked(struct rpc_xprt *xprt,
1013 					 struct rpcrdma_buffer *buf,
1014 					 u32 grant)
1015 {
1016 	buf->rb_credits = grant;
1017 	xprt->cwnd = grant << RPC_CWNDSHIFT;
1018 }
1019 
1020 static void rpcrdma_update_cwnd(struct rpcrdma_xprt *r_xprt, u32 grant)
1021 {
1022 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1023 
1024 	spin_lock(&xprt->transport_lock);
1025 	__rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, grant);
1026 	spin_unlock(&xprt->transport_lock);
1027 }
1028 
1029 /**
1030  * rpcrdma_reset_cwnd - Reset the xprt's congestion window
1031  * @r_xprt: controlling transport instance
1032  *
1033  * Prepare @r_xprt for the next connection by reinitializing
1034  * its credit grant to one (see RFC 8166, Section 3.3.3).
1035  */
1036 void rpcrdma_reset_cwnd(struct rpcrdma_xprt *r_xprt)
1037 {
1038 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1039 
1040 	spin_lock(&xprt->transport_lock);
1041 	xprt->cong = 0;
1042 	__rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, 1);
1043 	spin_unlock(&xprt->transport_lock);
1044 }
1045 
1046 /**
1047  * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
1048  * @rqst: controlling RPC request
1049  * @srcp: points to RPC message payload in receive buffer
1050  * @copy_len: remaining length of receive buffer content
1051  * @pad: Write chunk pad bytes needed (zero for pure inline)
1052  *
1053  * The upper layer has set the maximum number of bytes it can
1054  * receive in each component of rq_rcv_buf. These values are set in
1055  * the head.iov_len, page_len, tail.iov_len, and buflen fields.
1056  *
1057  * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
1058  * many cases this function simply updates iov_base pointers in
1059  * rq_rcv_buf to point directly to the received reply data, to
1060  * avoid copying reply data.
1061  *
1062  * Returns the count of bytes which had to be memcopied.
1063  */
1064 static unsigned long
1065 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
1066 {
1067 	unsigned long fixup_copy_count;
1068 	int i, npages, curlen;
1069 	char *destp;
1070 	struct page **ppages;
1071 	int page_base;
1072 
1073 	/* The head iovec is redirected to the RPC reply message
1074 	 * in the receive buffer, to avoid a memcopy.
1075 	 */
1076 	rqst->rq_rcv_buf.head[0].iov_base = srcp;
1077 	rqst->rq_private_buf.head[0].iov_base = srcp;
1078 
1079 	/* The contents of the receive buffer that follow
1080 	 * head.iov_len bytes are copied into the page list.
1081 	 */
1082 	curlen = rqst->rq_rcv_buf.head[0].iov_len;
1083 	if (curlen > copy_len)
1084 		curlen = copy_len;
1085 	srcp += curlen;
1086 	copy_len -= curlen;
1087 
1088 	ppages = rqst->rq_rcv_buf.pages +
1089 		(rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
1090 	page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
1091 	fixup_copy_count = 0;
1092 	if (copy_len && rqst->rq_rcv_buf.page_len) {
1093 		int pagelist_len;
1094 
1095 		pagelist_len = rqst->rq_rcv_buf.page_len;
1096 		if (pagelist_len > copy_len)
1097 			pagelist_len = copy_len;
1098 		npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
1099 		for (i = 0; i < npages; i++) {
1100 			curlen = PAGE_SIZE - page_base;
1101 			if (curlen > pagelist_len)
1102 				curlen = pagelist_len;
1103 
1104 			destp = kmap_atomic(ppages[i]);
1105 			memcpy(destp + page_base, srcp, curlen);
1106 			flush_dcache_page(ppages[i]);
1107 			kunmap_atomic(destp);
1108 			srcp += curlen;
1109 			copy_len -= curlen;
1110 			fixup_copy_count += curlen;
1111 			pagelist_len -= curlen;
1112 			if (!pagelist_len)
1113 				break;
1114 			page_base = 0;
1115 		}
1116 
1117 		/* Implicit padding for the last segment in a Write
1118 		 * chunk is inserted inline at the front of the tail
1119 		 * iovec. The upper layer ignores the content of
1120 		 * the pad. Simply ensure inline content in the tail
1121 		 * that follows the Write chunk is properly aligned.
1122 		 */
1123 		if (pad)
1124 			srcp -= pad;
1125 	}
1126 
1127 	/* The tail iovec is redirected to the remaining data
1128 	 * in the receive buffer, to avoid a memcopy.
1129 	 */
1130 	if (copy_len || pad) {
1131 		rqst->rq_rcv_buf.tail[0].iov_base = srcp;
1132 		rqst->rq_private_buf.tail[0].iov_base = srcp;
1133 	}
1134 
1135 	if (fixup_copy_count)
1136 		trace_xprtrdma_fixup(rqst, fixup_copy_count);
1137 	return fixup_copy_count;
1138 }
1139 
1140 /* By convention, backchannel calls arrive via rdma_msg type
1141  * messages, and never populate the chunk lists. This makes
1142  * the RPC/RDMA header small and fixed in size, so it is
1143  * straightforward to check the RPC header's direction field.
1144  */
1145 static bool
1146 rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1147 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1148 {
1149 	struct xdr_stream *xdr = &rep->rr_stream;
1150 	__be32 *p;
1151 
1152 	if (rep->rr_proc != rdma_msg)
1153 		return false;
1154 
1155 	/* Peek at stream contents without advancing. */
1156 	p = xdr_inline_decode(xdr, 0);
1157 
1158 	/* Chunk lists */
1159 	if (*p++ != xdr_zero)
1160 		return false;
1161 	if (*p++ != xdr_zero)
1162 		return false;
1163 	if (*p++ != xdr_zero)
1164 		return false;
1165 
1166 	/* RPC header */
1167 	if (*p++ != rep->rr_xid)
1168 		return false;
1169 	if (*p != cpu_to_be32(RPC_CALL))
1170 		return false;
1171 
1172 	/* Now that we are sure this is a backchannel call,
1173 	 * advance to the RPC header.
1174 	 */
1175 	p = xdr_inline_decode(xdr, 3 * sizeof(*p));
1176 	if (unlikely(!p))
1177 		goto out_short;
1178 
1179 	rpcrdma_bc_receive_call(r_xprt, rep);
1180 	return true;
1181 
1182 out_short:
1183 	pr_warn("RPC/RDMA short backward direction call\n");
1184 	return true;
1185 }
1186 #else	/* CONFIG_SUNRPC_BACKCHANNEL */
1187 {
1188 	return false;
1189 }
1190 #endif	/* CONFIG_SUNRPC_BACKCHANNEL */
1191 
1192 static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
1193 {
1194 	u32 handle;
1195 	u64 offset;
1196 	__be32 *p;
1197 
1198 	p = xdr_inline_decode(xdr, 4 * sizeof(*p));
1199 	if (unlikely(!p))
1200 		return -EIO;
1201 
1202 	handle = be32_to_cpup(p++);
1203 	*length = be32_to_cpup(p++);
1204 	xdr_decode_hyper(p, &offset);
1205 
1206 	trace_xprtrdma_decode_seg(handle, *length, offset);
1207 	return 0;
1208 }
1209 
1210 static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
1211 {
1212 	u32 segcount, seglength;
1213 	__be32 *p;
1214 
1215 	p = xdr_inline_decode(xdr, sizeof(*p));
1216 	if (unlikely(!p))
1217 		return -EIO;
1218 
1219 	*length = 0;
1220 	segcount = be32_to_cpup(p);
1221 	while (segcount--) {
1222 		if (decode_rdma_segment(xdr, &seglength))
1223 			return -EIO;
1224 		*length += seglength;
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 /* In RPC-over-RDMA Version One replies, a Read list is never
1231  * expected. This decoder is a stub that returns an error if
1232  * a Read list is present.
1233  */
1234 static int decode_read_list(struct xdr_stream *xdr)
1235 {
1236 	__be32 *p;
1237 
1238 	p = xdr_inline_decode(xdr, sizeof(*p));
1239 	if (unlikely(!p))
1240 		return -EIO;
1241 	if (unlikely(*p != xdr_zero))
1242 		return -EIO;
1243 	return 0;
1244 }
1245 
1246 /* Supports only one Write chunk in the Write list
1247  */
1248 static int decode_write_list(struct xdr_stream *xdr, u32 *length)
1249 {
1250 	u32 chunklen;
1251 	bool first;
1252 	__be32 *p;
1253 
1254 	*length = 0;
1255 	first = true;
1256 	do {
1257 		p = xdr_inline_decode(xdr, sizeof(*p));
1258 		if (unlikely(!p))
1259 			return -EIO;
1260 		if (*p == xdr_zero)
1261 			break;
1262 		if (!first)
1263 			return -EIO;
1264 
1265 		if (decode_write_chunk(xdr, &chunklen))
1266 			return -EIO;
1267 		*length += chunklen;
1268 		first = false;
1269 	} while (true);
1270 	return 0;
1271 }
1272 
1273 static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
1274 {
1275 	__be32 *p;
1276 
1277 	p = xdr_inline_decode(xdr, sizeof(*p));
1278 	if (unlikely(!p))
1279 		return -EIO;
1280 
1281 	*length = 0;
1282 	if (*p != xdr_zero)
1283 		if (decode_write_chunk(xdr, length))
1284 			return -EIO;
1285 	return 0;
1286 }
1287 
1288 static int
1289 rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1290 		   struct rpc_rqst *rqst)
1291 {
1292 	struct xdr_stream *xdr = &rep->rr_stream;
1293 	u32 writelist, replychunk, rpclen;
1294 	char *base;
1295 
1296 	/* Decode the chunk lists */
1297 	if (decode_read_list(xdr))
1298 		return -EIO;
1299 	if (decode_write_list(xdr, &writelist))
1300 		return -EIO;
1301 	if (decode_reply_chunk(xdr, &replychunk))
1302 		return -EIO;
1303 
1304 	/* RDMA_MSG sanity checks */
1305 	if (unlikely(replychunk))
1306 		return -EIO;
1307 
1308 	/* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
1309 	base = (char *)xdr_inline_decode(xdr, 0);
1310 	rpclen = xdr_stream_remaining(xdr);
1311 	r_xprt->rx_stats.fixup_copy_count +=
1312 		rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
1313 
1314 	r_xprt->rx_stats.total_rdma_reply += writelist;
1315 	return rpclen + xdr_align_size(writelist);
1316 }
1317 
1318 static noinline int
1319 rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1320 {
1321 	struct xdr_stream *xdr = &rep->rr_stream;
1322 	u32 writelist, replychunk;
1323 
1324 	/* Decode the chunk lists */
1325 	if (decode_read_list(xdr))
1326 		return -EIO;
1327 	if (decode_write_list(xdr, &writelist))
1328 		return -EIO;
1329 	if (decode_reply_chunk(xdr, &replychunk))
1330 		return -EIO;
1331 
1332 	/* RDMA_NOMSG sanity checks */
1333 	if (unlikely(writelist))
1334 		return -EIO;
1335 	if (unlikely(!replychunk))
1336 		return -EIO;
1337 
1338 	/* Reply chunk buffer already is the reply vector */
1339 	r_xprt->rx_stats.total_rdma_reply += replychunk;
1340 	return replychunk;
1341 }
1342 
1343 static noinline int
1344 rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1345 		     struct rpc_rqst *rqst)
1346 {
1347 	struct xdr_stream *xdr = &rep->rr_stream;
1348 	__be32 *p;
1349 
1350 	p = xdr_inline_decode(xdr, sizeof(*p));
1351 	if (unlikely(!p))
1352 		return -EIO;
1353 
1354 	switch (*p) {
1355 	case err_vers:
1356 		p = xdr_inline_decode(xdr, 2 * sizeof(*p));
1357 		if (!p)
1358 			break;
1359 		dprintk("RPC:       %s: server reports "
1360 			"version error (%u-%u), xid %08x\n", __func__,
1361 			be32_to_cpup(p), be32_to_cpu(*(p + 1)),
1362 			be32_to_cpu(rep->rr_xid));
1363 		break;
1364 	case err_chunk:
1365 		dprintk("RPC:       %s: server reports "
1366 			"header decoding error, xid %08x\n", __func__,
1367 			be32_to_cpu(rep->rr_xid));
1368 		break;
1369 	default:
1370 		dprintk("RPC:       %s: server reports "
1371 			"unrecognized error %d, xid %08x\n", __func__,
1372 			be32_to_cpup(p), be32_to_cpu(rep->rr_xid));
1373 	}
1374 
1375 	r_xprt->rx_stats.bad_reply_count++;
1376 	return -EREMOTEIO;
1377 }
1378 
1379 /* Perform XID lookup, reconstruction of the RPC reply, and
1380  * RPC completion while holding the transport lock to ensure
1381  * the rep, rqst, and rq_task pointers remain stable.
1382  */
1383 void rpcrdma_complete_rqst(struct rpcrdma_rep *rep)
1384 {
1385 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1386 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1387 	struct rpc_rqst *rqst = rep->rr_rqst;
1388 	int status;
1389 
1390 	switch (rep->rr_proc) {
1391 	case rdma_msg:
1392 		status = rpcrdma_decode_msg(r_xprt, rep, rqst);
1393 		break;
1394 	case rdma_nomsg:
1395 		status = rpcrdma_decode_nomsg(r_xprt, rep);
1396 		break;
1397 	case rdma_error:
1398 		status = rpcrdma_decode_error(r_xprt, rep, rqst);
1399 		break;
1400 	default:
1401 		status = -EIO;
1402 	}
1403 	if (status < 0)
1404 		goto out_badheader;
1405 
1406 out:
1407 	spin_lock(&xprt->queue_lock);
1408 	xprt_complete_rqst(rqst->rq_task, status);
1409 	xprt_unpin_rqst(rqst);
1410 	spin_unlock(&xprt->queue_lock);
1411 	return;
1412 
1413 /* If the incoming reply terminated a pending RPC, the next
1414  * RPC call will post a replacement receive buffer as it is
1415  * being marshaled.
1416  */
1417 out_badheader:
1418 	trace_xprtrdma_reply_hdr(rep);
1419 	r_xprt->rx_stats.bad_reply_count++;
1420 	goto out;
1421 }
1422 
1423 static void rpcrdma_reply_done(struct kref *kref)
1424 {
1425 	struct rpcrdma_req *req =
1426 		container_of(kref, struct rpcrdma_req, rl_kref);
1427 
1428 	rpcrdma_complete_rqst(req->rl_reply);
1429 }
1430 
1431 /**
1432  * rpcrdma_reply_handler - Process received RPC/RDMA messages
1433  * @rep: Incoming rpcrdma_rep object to process
1434  *
1435  * Errors must result in the RPC task either being awakened, or
1436  * allowed to timeout, to discover the errors at that time.
1437  */
1438 void rpcrdma_reply_handler(struct rpcrdma_rep *rep)
1439 {
1440 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1441 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1442 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1443 	struct rpcrdma_req *req;
1444 	struct rpc_rqst *rqst;
1445 	u32 credits;
1446 	__be32 *p;
1447 
1448 	/* Any data means we had a useful conversation, so
1449 	 * then we don't need to delay the next reconnect.
1450 	 */
1451 	if (xprt->reestablish_timeout)
1452 		xprt->reestablish_timeout = 0;
1453 
1454 	/* Fixed transport header fields */
1455 	xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf,
1456 			rep->rr_hdrbuf.head[0].iov_base, NULL);
1457 	p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p));
1458 	if (unlikely(!p))
1459 		goto out_shortreply;
1460 	rep->rr_xid = *p++;
1461 	rep->rr_vers = *p++;
1462 	credits = be32_to_cpu(*p++);
1463 	rep->rr_proc = *p++;
1464 
1465 	if (rep->rr_vers != rpcrdma_version)
1466 		goto out_badversion;
1467 
1468 	if (rpcrdma_is_bcall(r_xprt, rep))
1469 		return;
1470 
1471 	/* Match incoming rpcrdma_rep to an rpcrdma_req to
1472 	 * get context for handling any incoming chunks.
1473 	 */
1474 	spin_lock(&xprt->queue_lock);
1475 	rqst = xprt_lookup_rqst(xprt, rep->rr_xid);
1476 	if (!rqst)
1477 		goto out_norqst;
1478 	xprt_pin_rqst(rqst);
1479 	spin_unlock(&xprt->queue_lock);
1480 
1481 	if (credits == 0)
1482 		credits = 1;	/* don't deadlock */
1483 	else if (credits > buf->rb_max_requests)
1484 		credits = buf->rb_max_requests;
1485 	if (buf->rb_credits != credits)
1486 		rpcrdma_update_cwnd(r_xprt, credits);
1487 	rpcrdma_post_recvs(r_xprt, false);
1488 
1489 	req = rpcr_to_rdmar(rqst);
1490 	if (req->rl_reply) {
1491 		trace_xprtrdma_leaked_rep(rqst, req->rl_reply);
1492 		rpcrdma_recv_buffer_put(req->rl_reply);
1493 	}
1494 	req->rl_reply = rep;
1495 	rep->rr_rqst = rqst;
1496 
1497 	trace_xprtrdma_reply(rqst->rq_task, rep, req, credits);
1498 
1499 	if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE)
1500 		frwr_reminv(rep, &req->rl_registered);
1501 	if (!list_empty(&req->rl_registered))
1502 		frwr_unmap_async(r_xprt, req);
1503 		/* LocalInv completion will complete the RPC */
1504 	else
1505 		kref_put(&req->rl_kref, rpcrdma_reply_done);
1506 	return;
1507 
1508 out_badversion:
1509 	trace_xprtrdma_reply_vers(rep);
1510 	goto out;
1511 
1512 out_norqst:
1513 	spin_unlock(&xprt->queue_lock);
1514 	trace_xprtrdma_reply_rqst(rep);
1515 	goto out;
1516 
1517 out_shortreply:
1518 	trace_xprtrdma_reply_short(rep);
1519 
1520 out:
1521 	rpcrdma_recv_buffer_put(rep);
1522 }
1523