xref: /openbmc/linux/net/sunrpc/xprtrdma/rpc_rdma.c (revision 711aab1d)
1 /*
2  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * rpc_rdma.c
42  *
43  * This file contains the guts of the RPC RDMA protocol, and
44  * does marshaling/unmarshaling, etc. It is also where interfacing
45  * to the Linux RPC framework lives.
46  */
47 
48 #include "xprt_rdma.h"
49 
50 #include <linux/highmem.h>
51 
52 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
53 # define RPCDBG_FACILITY	RPCDBG_TRANS
54 #endif
55 
56 static const char transfertypes[][12] = {
57 	"inline",	/* no chunks */
58 	"read list",	/* some argument via rdma read */
59 	"*read list",	/* entire request via rdma read */
60 	"write list",	/* some result via rdma write */
61 	"reply chunk"	/* entire reply via rdma write */
62 };
63 
64 /* Returns size of largest RPC-over-RDMA header in a Call message
65  *
66  * The largest Call header contains a full-size Read list and a
67  * minimal Reply chunk.
68  */
69 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
70 {
71 	unsigned int size;
72 
73 	/* Fixed header fields and list discriminators */
74 	size = RPCRDMA_HDRLEN_MIN;
75 
76 	/* Maximum Read list size */
77 	maxsegs += 2;	/* segment for head and tail buffers */
78 	size = maxsegs * sizeof(struct rpcrdma_read_chunk);
79 
80 	/* Minimal Read chunk size */
81 	size += sizeof(__be32);	/* segment count */
82 	size += sizeof(struct rpcrdma_segment);
83 	size += sizeof(__be32);	/* list discriminator */
84 
85 	dprintk("RPC:       %s: max call header size = %u\n",
86 		__func__, size);
87 	return size;
88 }
89 
90 /* Returns size of largest RPC-over-RDMA header in a Reply message
91  *
92  * There is only one Write list or one Reply chunk per Reply
93  * message.  The larger list is the Write list.
94  */
95 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
96 {
97 	unsigned int size;
98 
99 	/* Fixed header fields and list discriminators */
100 	size = RPCRDMA_HDRLEN_MIN;
101 
102 	/* Maximum Write list size */
103 	maxsegs += 2;	/* segment for head and tail buffers */
104 	size = sizeof(__be32);		/* segment count */
105 	size += maxsegs * sizeof(struct rpcrdma_segment);
106 	size += sizeof(__be32);	/* list discriminator */
107 
108 	dprintk("RPC:       %s: max reply header size = %u\n",
109 		__func__, size);
110 	return size;
111 }
112 
113 void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt)
114 {
115 	struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
116 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
117 	unsigned int maxsegs = ia->ri_max_segs;
118 
119 	ia->ri_max_inline_write = cdata->inline_wsize -
120 				  rpcrdma_max_call_header_size(maxsegs);
121 	ia->ri_max_inline_read = cdata->inline_rsize -
122 				 rpcrdma_max_reply_header_size(maxsegs);
123 }
124 
125 /* The client can send a request inline as long as the RPCRDMA header
126  * plus the RPC call fit under the transport's inline limit. If the
127  * combined call message size exceeds that limit, the client must use
128  * a Read chunk for this operation.
129  *
130  * A Read chunk is also required if sending the RPC call inline would
131  * exceed this device's max_sge limit.
132  */
133 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
134 				struct rpc_rqst *rqst)
135 {
136 	struct xdr_buf *xdr = &rqst->rq_snd_buf;
137 	unsigned int count, remaining, offset;
138 
139 	if (xdr->len > r_xprt->rx_ia.ri_max_inline_write)
140 		return false;
141 
142 	if (xdr->page_len) {
143 		remaining = xdr->page_len;
144 		offset = offset_in_page(xdr->page_base);
145 		count = 0;
146 		while (remaining) {
147 			remaining -= min_t(unsigned int,
148 					   PAGE_SIZE - offset, remaining);
149 			offset = 0;
150 			if (++count > r_xprt->rx_ia.ri_max_send_sges)
151 				return false;
152 		}
153 	}
154 
155 	return true;
156 }
157 
158 /* The client can't know how large the actual reply will be. Thus it
159  * plans for the largest possible reply for that particular ULP
160  * operation. If the maximum combined reply message size exceeds that
161  * limit, the client must provide a write list or a reply chunk for
162  * this request.
163  */
164 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
165 				   struct rpc_rqst *rqst)
166 {
167 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
168 
169 	return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read;
170 }
171 
172 /* Split @vec on page boundaries into SGEs. FMR registers pages, not
173  * a byte range. Other modes coalesce these SGEs into a single MR
174  * when they can.
175  *
176  * Returns pointer to next available SGE, and bumps the total number
177  * of SGEs consumed.
178  */
179 static struct rpcrdma_mr_seg *
180 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
181 		     unsigned int *n)
182 {
183 	u32 remaining, page_offset;
184 	char *base;
185 
186 	base = vec->iov_base;
187 	page_offset = offset_in_page(base);
188 	remaining = vec->iov_len;
189 	while (remaining) {
190 		seg->mr_page = NULL;
191 		seg->mr_offset = base;
192 		seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
193 		remaining -= seg->mr_len;
194 		base += seg->mr_len;
195 		++seg;
196 		++(*n);
197 		page_offset = 0;
198 	}
199 	return seg;
200 }
201 
202 /* Convert @xdrbuf into SGEs no larger than a page each. As they
203  * are registered, these SGEs are then coalesced into RDMA segments
204  * when the selected memreg mode supports it.
205  *
206  * Returns positive number of SGEs consumed, or a negative errno.
207  */
208 
209 static int
210 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
211 		     unsigned int pos, enum rpcrdma_chunktype type,
212 		     struct rpcrdma_mr_seg *seg)
213 {
214 	unsigned long page_base;
215 	unsigned int len, n;
216 	struct page **ppages;
217 
218 	n = 0;
219 	if (pos == 0)
220 		seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
221 
222 	len = xdrbuf->page_len;
223 	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
224 	page_base = offset_in_page(xdrbuf->page_base);
225 	while (len) {
226 		if (unlikely(!*ppages)) {
227 			/* XXX: Certain upper layer operations do
228 			 *	not provide receive buffer pages.
229 			 */
230 			*ppages = alloc_page(GFP_ATOMIC);
231 			if (!*ppages)
232 				return -EAGAIN;
233 		}
234 		seg->mr_page = *ppages;
235 		seg->mr_offset = (char *)page_base;
236 		seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
237 		len -= seg->mr_len;
238 		++ppages;
239 		++seg;
240 		++n;
241 		page_base = 0;
242 	}
243 
244 	/* When encoding a Read chunk, the tail iovec contains an
245 	 * XDR pad and may be omitted.
246 	 */
247 	if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup)
248 		goto out;
249 
250 	/* When encoding a Write chunk, some servers need to see an
251 	 * extra segment for non-XDR-aligned Write chunks. The upper
252 	 * layer provides space in the tail iovec that may be used
253 	 * for this purpose.
254 	 */
255 	if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup)
256 		goto out;
257 
258 	if (xdrbuf->tail[0].iov_len)
259 		seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
260 
261 out:
262 	if (unlikely(n > RPCRDMA_MAX_SEGS))
263 		return -EIO;
264 	return n;
265 }
266 
267 static inline int
268 encode_item_present(struct xdr_stream *xdr)
269 {
270 	__be32 *p;
271 
272 	p = xdr_reserve_space(xdr, sizeof(*p));
273 	if (unlikely(!p))
274 		return -EMSGSIZE;
275 
276 	*p = xdr_one;
277 	return 0;
278 }
279 
280 static inline int
281 encode_item_not_present(struct xdr_stream *xdr)
282 {
283 	__be32 *p;
284 
285 	p = xdr_reserve_space(xdr, sizeof(*p));
286 	if (unlikely(!p))
287 		return -EMSGSIZE;
288 
289 	*p = xdr_zero;
290 	return 0;
291 }
292 
293 static void
294 xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mw *mw)
295 {
296 	*iptr++ = cpu_to_be32(mw->mw_handle);
297 	*iptr++ = cpu_to_be32(mw->mw_length);
298 	xdr_encode_hyper(iptr, mw->mw_offset);
299 }
300 
301 static int
302 encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mw *mw)
303 {
304 	__be32 *p;
305 
306 	p = xdr_reserve_space(xdr, 4 * sizeof(*p));
307 	if (unlikely(!p))
308 		return -EMSGSIZE;
309 
310 	xdr_encode_rdma_segment(p, mw);
311 	return 0;
312 }
313 
314 static int
315 encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mw *mw,
316 		    u32 position)
317 {
318 	__be32 *p;
319 
320 	p = xdr_reserve_space(xdr, 6 * sizeof(*p));
321 	if (unlikely(!p))
322 		return -EMSGSIZE;
323 
324 	*p++ = xdr_one;			/* Item present */
325 	*p++ = cpu_to_be32(position);
326 	xdr_encode_rdma_segment(p, mw);
327 	return 0;
328 }
329 
330 /* Register and XDR encode the Read list. Supports encoding a list of read
331  * segments that belong to a single read chunk.
332  *
333  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
334  *
335  *  Read chunklist (a linked list):
336  *   N elements, position P (same P for all chunks of same arg!):
337  *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
338  *
339  * Returns zero on success, or a negative errno if a failure occurred.
340  * @xdr is advanced to the next position in the stream.
341  *
342  * Only a single @pos value is currently supported.
343  */
344 static noinline int
345 rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
346 			 struct rpc_rqst *rqst, enum rpcrdma_chunktype rtype)
347 {
348 	struct xdr_stream *xdr = &req->rl_stream;
349 	struct rpcrdma_mr_seg *seg;
350 	struct rpcrdma_mw *mw;
351 	unsigned int pos;
352 	int nsegs;
353 
354 	pos = rqst->rq_snd_buf.head[0].iov_len;
355 	if (rtype == rpcrdma_areadch)
356 		pos = 0;
357 	seg = req->rl_segments;
358 	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
359 				     rtype, seg);
360 	if (nsegs < 0)
361 		return nsegs;
362 
363 	do {
364 		seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
365 						   false, &mw);
366 		if (IS_ERR(seg))
367 			return PTR_ERR(seg);
368 		rpcrdma_push_mw(mw, &req->rl_registered);
369 
370 		if (encode_read_segment(xdr, mw, pos) < 0)
371 			return -EMSGSIZE;
372 
373 		dprintk("RPC: %5u %s: pos %u %u@0x%016llx:0x%08x (%s)\n",
374 			rqst->rq_task->tk_pid, __func__, pos,
375 			mw->mw_length, (unsigned long long)mw->mw_offset,
376 			mw->mw_handle, mw->mw_nents < nsegs ? "more" : "last");
377 
378 		r_xprt->rx_stats.read_chunk_count++;
379 		nsegs -= mw->mw_nents;
380 	} while (nsegs);
381 
382 	return 0;
383 }
384 
385 /* Register and XDR encode the Write list. Supports encoding a list
386  * containing one array of plain segments that belong to a single
387  * write chunk.
388  *
389  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
390  *
391  *  Write chunklist (a list of (one) counted array):
392  *   N elements:
393  *    1 - N - HLOO - HLOO - ... - HLOO - 0
394  *
395  * Returns zero on success, or a negative errno if a failure occurred.
396  * @xdr is advanced to the next position in the stream.
397  *
398  * Only a single Write chunk is currently supported.
399  */
400 static noinline int
401 rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
402 			  struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype)
403 {
404 	struct xdr_stream *xdr = &req->rl_stream;
405 	struct rpcrdma_mr_seg *seg;
406 	struct rpcrdma_mw *mw;
407 	int nsegs, nchunks;
408 	__be32 *segcount;
409 
410 	seg = req->rl_segments;
411 	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
412 				     rqst->rq_rcv_buf.head[0].iov_len,
413 				     wtype, seg);
414 	if (nsegs < 0)
415 		return nsegs;
416 
417 	if (encode_item_present(xdr) < 0)
418 		return -EMSGSIZE;
419 	segcount = xdr_reserve_space(xdr, sizeof(*segcount));
420 	if (unlikely(!segcount))
421 		return -EMSGSIZE;
422 	/* Actual value encoded below */
423 
424 	nchunks = 0;
425 	do {
426 		seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
427 						   true, &mw);
428 		if (IS_ERR(seg))
429 			return PTR_ERR(seg);
430 		rpcrdma_push_mw(mw, &req->rl_registered);
431 
432 		if (encode_rdma_segment(xdr, mw) < 0)
433 			return -EMSGSIZE;
434 
435 		dprintk("RPC: %5u %s: %u@0x016%llx:0x%08x (%s)\n",
436 			rqst->rq_task->tk_pid, __func__,
437 			mw->mw_length, (unsigned long long)mw->mw_offset,
438 			mw->mw_handle, mw->mw_nents < nsegs ? "more" : "last");
439 
440 		r_xprt->rx_stats.write_chunk_count++;
441 		r_xprt->rx_stats.total_rdma_request += seg->mr_len;
442 		nchunks++;
443 		nsegs -= mw->mw_nents;
444 	} while (nsegs);
445 
446 	/* Update count of segments in this Write chunk */
447 	*segcount = cpu_to_be32(nchunks);
448 
449 	return 0;
450 }
451 
452 /* Register and XDR encode the Reply chunk. Supports encoding an array
453  * of plain segments that belong to a single write (reply) chunk.
454  *
455  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
456  *
457  *  Reply chunk (a counted array):
458  *   N elements:
459  *    1 - N - HLOO - HLOO - ... - HLOO
460  *
461  * Returns zero on success, or a negative errno if a failure occurred.
462  * @xdr is advanced to the next position in the stream.
463  */
464 static noinline int
465 rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
466 			   struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype)
467 {
468 	struct xdr_stream *xdr = &req->rl_stream;
469 	struct rpcrdma_mr_seg *seg;
470 	struct rpcrdma_mw *mw;
471 	int nsegs, nchunks;
472 	__be32 *segcount;
473 
474 	seg = req->rl_segments;
475 	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
476 	if (nsegs < 0)
477 		return nsegs;
478 
479 	if (encode_item_present(xdr) < 0)
480 		return -EMSGSIZE;
481 	segcount = xdr_reserve_space(xdr, sizeof(*segcount));
482 	if (unlikely(!segcount))
483 		return -EMSGSIZE;
484 	/* Actual value encoded below */
485 
486 	nchunks = 0;
487 	do {
488 		seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
489 						   true, &mw);
490 		if (IS_ERR(seg))
491 			return PTR_ERR(seg);
492 		rpcrdma_push_mw(mw, &req->rl_registered);
493 
494 		if (encode_rdma_segment(xdr, mw) < 0)
495 			return -EMSGSIZE;
496 
497 		dprintk("RPC: %5u %s: %u@0x%016llx:0x%08x (%s)\n",
498 			rqst->rq_task->tk_pid, __func__,
499 			mw->mw_length, (unsigned long long)mw->mw_offset,
500 			mw->mw_handle, mw->mw_nents < nsegs ? "more" : "last");
501 
502 		r_xprt->rx_stats.reply_chunk_count++;
503 		r_xprt->rx_stats.total_rdma_request += seg->mr_len;
504 		nchunks++;
505 		nsegs -= mw->mw_nents;
506 	} while (nsegs);
507 
508 	/* Update count of segments in the Reply chunk */
509 	*segcount = cpu_to_be32(nchunks);
510 
511 	return 0;
512 }
513 
514 /* Prepare the RPC-over-RDMA header SGE.
515  */
516 static bool
517 rpcrdma_prepare_hdr_sge(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
518 			u32 len)
519 {
520 	struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
521 	struct ib_sge *sge = &req->rl_send_sge[0];
522 
523 	if (unlikely(!rpcrdma_regbuf_is_mapped(rb))) {
524 		if (!__rpcrdma_dma_map_regbuf(ia, rb))
525 			return false;
526 		sge->addr = rdmab_addr(rb);
527 		sge->lkey = rdmab_lkey(rb);
528 	}
529 	sge->length = len;
530 
531 	ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr,
532 				      sge->length, DMA_TO_DEVICE);
533 	req->rl_send_wr.num_sge++;
534 	return true;
535 }
536 
537 /* Prepare the Send SGEs. The head and tail iovec, and each entry
538  * in the page list, gets its own SGE.
539  */
540 static bool
541 rpcrdma_prepare_msg_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
542 			 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
543 {
544 	unsigned int sge_no, page_base, len, remaining;
545 	struct rpcrdma_regbuf *rb = req->rl_sendbuf;
546 	struct ib_device *device = ia->ri_device;
547 	struct ib_sge *sge = req->rl_send_sge;
548 	u32 lkey = ia->ri_pd->local_dma_lkey;
549 	struct page *page, **ppages;
550 
551 	/* The head iovec is straightforward, as it is already
552 	 * DMA-mapped. Sync the content that has changed.
553 	 */
554 	if (!rpcrdma_dma_map_regbuf(ia, rb))
555 		return false;
556 	sge_no = 1;
557 	sge[sge_no].addr = rdmab_addr(rb);
558 	sge[sge_no].length = xdr->head[0].iov_len;
559 	sge[sge_no].lkey = rdmab_lkey(rb);
560 	ib_dma_sync_single_for_device(rdmab_device(rb), sge[sge_no].addr,
561 				      sge[sge_no].length, DMA_TO_DEVICE);
562 
563 	/* If there is a Read chunk, the page list is being handled
564 	 * via explicit RDMA, and thus is skipped here. However, the
565 	 * tail iovec may include an XDR pad for the page list, as
566 	 * well as additional content, and may not reside in the
567 	 * same page as the head iovec.
568 	 */
569 	if (rtype == rpcrdma_readch) {
570 		len = xdr->tail[0].iov_len;
571 
572 		/* Do not include the tail if it is only an XDR pad */
573 		if (len < 4)
574 			goto out;
575 
576 		page = virt_to_page(xdr->tail[0].iov_base);
577 		page_base = offset_in_page(xdr->tail[0].iov_base);
578 
579 		/* If the content in the page list is an odd length,
580 		 * xdr_write_pages() has added a pad at the beginning
581 		 * of the tail iovec. Force the tail's non-pad content
582 		 * to land at the next XDR position in the Send message.
583 		 */
584 		page_base += len & 3;
585 		len -= len & 3;
586 		goto map_tail;
587 	}
588 
589 	/* If there is a page list present, temporarily DMA map
590 	 * and prepare an SGE for each page to be sent.
591 	 */
592 	if (xdr->page_len) {
593 		ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
594 		page_base = offset_in_page(xdr->page_base);
595 		remaining = xdr->page_len;
596 		while (remaining) {
597 			sge_no++;
598 			if (sge_no > RPCRDMA_MAX_SEND_SGES - 2)
599 				goto out_mapping_overflow;
600 
601 			len = min_t(u32, PAGE_SIZE - page_base, remaining);
602 			sge[sge_no].addr = ib_dma_map_page(device, *ppages,
603 							   page_base, len,
604 							   DMA_TO_DEVICE);
605 			if (ib_dma_mapping_error(device, sge[sge_no].addr))
606 				goto out_mapping_err;
607 			sge[sge_no].length = len;
608 			sge[sge_no].lkey = lkey;
609 
610 			req->rl_mapped_sges++;
611 			ppages++;
612 			remaining -= len;
613 			page_base = 0;
614 		}
615 	}
616 
617 	/* The tail iovec is not always constructed in the same
618 	 * page where the head iovec resides (see, for example,
619 	 * gss_wrap_req_priv). To neatly accommodate that case,
620 	 * DMA map it separately.
621 	 */
622 	if (xdr->tail[0].iov_len) {
623 		page = virt_to_page(xdr->tail[0].iov_base);
624 		page_base = offset_in_page(xdr->tail[0].iov_base);
625 		len = xdr->tail[0].iov_len;
626 
627 map_tail:
628 		sge_no++;
629 		sge[sge_no].addr = ib_dma_map_page(device, page,
630 						   page_base, len,
631 						   DMA_TO_DEVICE);
632 		if (ib_dma_mapping_error(device, sge[sge_no].addr))
633 			goto out_mapping_err;
634 		sge[sge_no].length = len;
635 		sge[sge_no].lkey = lkey;
636 		req->rl_mapped_sges++;
637 	}
638 
639 out:
640 	req->rl_send_wr.num_sge = sge_no + 1;
641 	return true;
642 
643 out_mapping_overflow:
644 	pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no);
645 	return false;
646 
647 out_mapping_err:
648 	pr_err("rpcrdma: Send mapping error\n");
649 	return false;
650 }
651 
652 bool
653 rpcrdma_prepare_send_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
654 			  u32 hdrlen, struct xdr_buf *xdr,
655 			  enum rpcrdma_chunktype rtype)
656 {
657 	req->rl_send_wr.num_sge = 0;
658 	req->rl_mapped_sges = 0;
659 
660 	if (!rpcrdma_prepare_hdr_sge(ia, req, hdrlen))
661 		goto out_map;
662 
663 	if (rtype != rpcrdma_areadch)
664 		if (!rpcrdma_prepare_msg_sges(ia, req, xdr, rtype))
665 			goto out_map;
666 
667 	return true;
668 
669 out_map:
670 	pr_err("rpcrdma: failed to DMA map a Send buffer\n");
671 	return false;
672 }
673 
674 void
675 rpcrdma_unmap_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req)
676 {
677 	struct ib_device *device = ia->ri_device;
678 	struct ib_sge *sge;
679 	int count;
680 
681 	sge = &req->rl_send_sge[2];
682 	for (count = req->rl_mapped_sges; count--; sge++)
683 		ib_dma_unmap_page(device, sge->addr, sge->length,
684 				  DMA_TO_DEVICE);
685 	req->rl_mapped_sges = 0;
686 }
687 
688 /**
689  * rpcrdma_marshal_req - Marshal and send one RPC request
690  * @r_xprt: controlling transport
691  * @rqst: RPC request to be marshaled
692  *
693  * For the RPC in "rqst", this function:
694  *  - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
695  *  - Registers Read, Write, and Reply chunks
696  *  - Constructs the transport header
697  *  - Posts a Send WR to send the transport header and request
698  *
699  * Returns:
700  *	%0 if the RPC was sent successfully,
701  *	%-ENOTCONN if the connection was lost,
702  *	%-EAGAIN if not enough pages are available for on-demand reply buffer,
703  *	%-ENOBUFS if no MRs are available to register chunks,
704  *	%-EMSGSIZE if the transport header is too small,
705  *	%-EIO if a permanent problem occurred while marshaling.
706  */
707 int
708 rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
709 {
710 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
711 	struct xdr_stream *xdr = &req->rl_stream;
712 	enum rpcrdma_chunktype rtype, wtype;
713 	bool ddp_allowed;
714 	__be32 *p;
715 	int ret;
716 
717 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
718 	if (test_bit(RPC_BC_PA_IN_USE, &rqst->rq_bc_pa_state))
719 		return rpcrdma_bc_marshal_reply(rqst);
720 #endif
721 
722 	rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
723 	xdr_init_encode(xdr, &req->rl_hdrbuf,
724 			req->rl_rdmabuf->rg_base);
725 
726 	/* Fixed header fields */
727 	ret = -EMSGSIZE;
728 	p = xdr_reserve_space(xdr, 4 * sizeof(*p));
729 	if (!p)
730 		goto out_err;
731 	*p++ = rqst->rq_xid;
732 	*p++ = rpcrdma_version;
733 	*p++ = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
734 
735 	/* When the ULP employs a GSS flavor that guarantees integrity
736 	 * or privacy, direct data placement of individual data items
737 	 * is not allowed.
738 	 */
739 	ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
740 						RPCAUTH_AUTH_DATATOUCH);
741 
742 	/*
743 	 * Chunks needed for results?
744 	 *
745 	 * o If the expected result is under the inline threshold, all ops
746 	 *   return as inline.
747 	 * o Large read ops return data as write chunk(s), header as
748 	 *   inline.
749 	 * o Large non-read ops return as a single reply chunk.
750 	 */
751 	if (rpcrdma_results_inline(r_xprt, rqst))
752 		wtype = rpcrdma_noch;
753 	else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ)
754 		wtype = rpcrdma_writech;
755 	else
756 		wtype = rpcrdma_replych;
757 
758 	/*
759 	 * Chunks needed for arguments?
760 	 *
761 	 * o If the total request is under the inline threshold, all ops
762 	 *   are sent as inline.
763 	 * o Large write ops transmit data as read chunk(s), header as
764 	 *   inline.
765 	 * o Large non-write ops are sent with the entire message as a
766 	 *   single read chunk (protocol 0-position special case).
767 	 *
768 	 * This assumes that the upper layer does not present a request
769 	 * that both has a data payload, and whose non-data arguments
770 	 * by themselves are larger than the inline threshold.
771 	 */
772 	if (rpcrdma_args_inline(r_xprt, rqst)) {
773 		*p++ = rdma_msg;
774 		rtype = rpcrdma_noch;
775 	} else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
776 		*p++ = rdma_msg;
777 		rtype = rpcrdma_readch;
778 	} else {
779 		r_xprt->rx_stats.nomsg_call_count++;
780 		*p++ = rdma_nomsg;
781 		rtype = rpcrdma_areadch;
782 	}
783 
784 	/* This implementation supports the following combinations
785 	 * of chunk lists in one RPC-over-RDMA Call message:
786 	 *
787 	 *   - Read list
788 	 *   - Write list
789 	 *   - Reply chunk
790 	 *   - Read list + Reply chunk
791 	 *
792 	 * It might not yet support the following combinations:
793 	 *
794 	 *   - Read list + Write list
795 	 *
796 	 * It does not support the following combinations:
797 	 *
798 	 *   - Write list + Reply chunk
799 	 *   - Read list + Write list + Reply chunk
800 	 *
801 	 * This implementation supports only a single chunk in each
802 	 * Read or Write list. Thus for example the client cannot
803 	 * send a Call message with a Position Zero Read chunk and a
804 	 * regular Read chunk at the same time.
805 	 */
806 	if (rtype != rpcrdma_noch) {
807 		ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
808 		if (ret)
809 			goto out_err;
810 	}
811 	ret = encode_item_not_present(xdr);
812 	if (ret)
813 		goto out_err;
814 
815 	if (wtype == rpcrdma_writech) {
816 		ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
817 		if (ret)
818 			goto out_err;
819 	}
820 	ret = encode_item_not_present(xdr);
821 	if (ret)
822 		goto out_err;
823 
824 	if (wtype != rpcrdma_replych)
825 		ret = encode_item_not_present(xdr);
826 	else
827 		ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
828 	if (ret)
829 		goto out_err;
830 
831 	dprintk("RPC: %5u %s: %s/%s: hdrlen %u rpclen\n",
832 		rqst->rq_task->tk_pid, __func__,
833 		transfertypes[rtype], transfertypes[wtype],
834 		xdr_stream_pos(xdr));
835 
836 	if (!rpcrdma_prepare_send_sges(&r_xprt->rx_ia, req,
837 				       xdr_stream_pos(xdr),
838 				       &rqst->rq_snd_buf, rtype)) {
839 		ret = -EIO;
840 		goto out_err;
841 	}
842 	return 0;
843 
844 out_err:
845 	if (ret != -ENOBUFS) {
846 		pr_err("rpcrdma: header marshaling failed (%d)\n", ret);
847 		r_xprt->rx_stats.failed_marshal_count++;
848 	}
849 	return ret;
850 }
851 
852 /**
853  * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
854  * @rqst: controlling RPC request
855  * @srcp: points to RPC message payload in receive buffer
856  * @copy_len: remaining length of receive buffer content
857  * @pad: Write chunk pad bytes needed (zero for pure inline)
858  *
859  * The upper layer has set the maximum number of bytes it can
860  * receive in each component of rq_rcv_buf. These values are set in
861  * the head.iov_len, page_len, tail.iov_len, and buflen fields.
862  *
863  * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
864  * many cases this function simply updates iov_base pointers in
865  * rq_rcv_buf to point directly to the received reply data, to
866  * avoid copying reply data.
867  *
868  * Returns the count of bytes which had to be memcopied.
869  */
870 static unsigned long
871 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
872 {
873 	unsigned long fixup_copy_count;
874 	int i, npages, curlen;
875 	char *destp;
876 	struct page **ppages;
877 	int page_base;
878 
879 	/* The head iovec is redirected to the RPC reply message
880 	 * in the receive buffer, to avoid a memcopy.
881 	 */
882 	rqst->rq_rcv_buf.head[0].iov_base = srcp;
883 	rqst->rq_private_buf.head[0].iov_base = srcp;
884 
885 	/* The contents of the receive buffer that follow
886 	 * head.iov_len bytes are copied into the page list.
887 	 */
888 	curlen = rqst->rq_rcv_buf.head[0].iov_len;
889 	if (curlen > copy_len)
890 		curlen = copy_len;
891 	dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
892 		__func__, srcp, copy_len, curlen);
893 	srcp += curlen;
894 	copy_len -= curlen;
895 
896 	ppages = rqst->rq_rcv_buf.pages +
897 		(rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
898 	page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
899 	fixup_copy_count = 0;
900 	if (copy_len && rqst->rq_rcv_buf.page_len) {
901 		int pagelist_len;
902 
903 		pagelist_len = rqst->rq_rcv_buf.page_len;
904 		if (pagelist_len > copy_len)
905 			pagelist_len = copy_len;
906 		npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
907 		for (i = 0; i < npages; i++) {
908 			curlen = PAGE_SIZE - page_base;
909 			if (curlen > pagelist_len)
910 				curlen = pagelist_len;
911 
912 			dprintk("RPC:       %s: page %d"
913 				" srcp 0x%p len %d curlen %d\n",
914 				__func__, i, srcp, copy_len, curlen);
915 			destp = kmap_atomic(ppages[i]);
916 			memcpy(destp + page_base, srcp, curlen);
917 			flush_dcache_page(ppages[i]);
918 			kunmap_atomic(destp);
919 			srcp += curlen;
920 			copy_len -= curlen;
921 			fixup_copy_count += curlen;
922 			pagelist_len -= curlen;
923 			if (!pagelist_len)
924 				break;
925 			page_base = 0;
926 		}
927 
928 		/* Implicit padding for the last segment in a Write
929 		 * chunk is inserted inline at the front of the tail
930 		 * iovec. The upper layer ignores the content of
931 		 * the pad. Simply ensure inline content in the tail
932 		 * that follows the Write chunk is properly aligned.
933 		 */
934 		if (pad)
935 			srcp -= pad;
936 	}
937 
938 	/* The tail iovec is redirected to the remaining data
939 	 * in the receive buffer, to avoid a memcopy.
940 	 */
941 	if (copy_len || pad) {
942 		rqst->rq_rcv_buf.tail[0].iov_base = srcp;
943 		rqst->rq_private_buf.tail[0].iov_base = srcp;
944 	}
945 
946 	return fixup_copy_count;
947 }
948 
949 /* Caller must guarantee @rep remains stable during this call.
950  */
951 static void
952 rpcrdma_mark_remote_invalidation(struct list_head *mws,
953 				 struct rpcrdma_rep *rep)
954 {
955 	struct rpcrdma_mw *mw;
956 
957 	if (!(rep->rr_wc_flags & IB_WC_WITH_INVALIDATE))
958 		return;
959 
960 	list_for_each_entry(mw, mws, mw_list)
961 		if (mw->mw_handle == rep->rr_inv_rkey) {
962 			mw->mw_flags = RPCRDMA_MW_F_RI;
963 			break; /* only one invalidated MR per RPC */
964 		}
965 }
966 
967 /* By convention, backchannel calls arrive via rdma_msg type
968  * messages, and never populate the chunk lists. This makes
969  * the RPC/RDMA header small and fixed in size, so it is
970  * straightforward to check the RPC header's direction field.
971  */
972 static bool
973 rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
974 		 __be32 xid, __be32 proc)
975 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
976 {
977 	struct xdr_stream *xdr = &rep->rr_stream;
978 	__be32 *p;
979 
980 	if (proc != rdma_msg)
981 		return false;
982 
983 	/* Peek at stream contents without advancing. */
984 	p = xdr_inline_decode(xdr, 0);
985 
986 	/* Chunk lists */
987 	if (*p++ != xdr_zero)
988 		return false;
989 	if (*p++ != xdr_zero)
990 		return false;
991 	if (*p++ != xdr_zero)
992 		return false;
993 
994 	/* RPC header */
995 	if (*p++ != xid)
996 		return false;
997 	if (*p != cpu_to_be32(RPC_CALL))
998 		return false;
999 
1000 	/* Now that we are sure this is a backchannel call,
1001 	 * advance to the RPC header.
1002 	 */
1003 	p = xdr_inline_decode(xdr, 3 * sizeof(*p));
1004 	if (unlikely(!p))
1005 		goto out_short;
1006 
1007 	rpcrdma_bc_receive_call(r_xprt, rep);
1008 	return true;
1009 
1010 out_short:
1011 	pr_warn("RPC/RDMA short backward direction call\n");
1012 	if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, rep))
1013 		xprt_disconnect_done(&r_xprt->rx_xprt);
1014 	return true;
1015 }
1016 #else	/* CONFIG_SUNRPC_BACKCHANNEL */
1017 {
1018 	return false;
1019 }
1020 #endif	/* CONFIG_SUNRPC_BACKCHANNEL */
1021 
1022 static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
1023 {
1024 	__be32 *p;
1025 
1026 	p = xdr_inline_decode(xdr, 4 * sizeof(*p));
1027 	if (unlikely(!p))
1028 		return -EIO;
1029 
1030 	ifdebug(FACILITY) {
1031 		u64 offset;
1032 		u32 handle;
1033 
1034 		handle = be32_to_cpup(p++);
1035 		*length = be32_to_cpup(p++);
1036 		xdr_decode_hyper(p, &offset);
1037 		dprintk("RPC:       %s:   segment %u@0x%016llx:0x%08x\n",
1038 			__func__, *length, (unsigned long long)offset,
1039 			handle);
1040 	} else {
1041 		*length = be32_to_cpup(p + 1);
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
1048 {
1049 	u32 segcount, seglength;
1050 	__be32 *p;
1051 
1052 	p = xdr_inline_decode(xdr, sizeof(*p));
1053 	if (unlikely(!p))
1054 		return -EIO;
1055 
1056 	*length = 0;
1057 	segcount = be32_to_cpup(p);
1058 	while (segcount--) {
1059 		if (decode_rdma_segment(xdr, &seglength))
1060 			return -EIO;
1061 		*length += seglength;
1062 	}
1063 
1064 	dprintk("RPC:       %s: segcount=%u, %u bytes\n",
1065 		__func__, be32_to_cpup(p), *length);
1066 	return 0;
1067 }
1068 
1069 /* In RPC-over-RDMA Version One replies, a Read list is never
1070  * expected. This decoder is a stub that returns an error if
1071  * a Read list is present.
1072  */
1073 static int decode_read_list(struct xdr_stream *xdr)
1074 {
1075 	__be32 *p;
1076 
1077 	p = xdr_inline_decode(xdr, sizeof(*p));
1078 	if (unlikely(!p))
1079 		return -EIO;
1080 	if (unlikely(*p != xdr_zero))
1081 		return -EIO;
1082 	return 0;
1083 }
1084 
1085 /* Supports only one Write chunk in the Write list
1086  */
1087 static int decode_write_list(struct xdr_stream *xdr, u32 *length)
1088 {
1089 	u32 chunklen;
1090 	bool first;
1091 	__be32 *p;
1092 
1093 	*length = 0;
1094 	first = true;
1095 	do {
1096 		p = xdr_inline_decode(xdr, sizeof(*p));
1097 		if (unlikely(!p))
1098 			return -EIO;
1099 		if (*p == xdr_zero)
1100 			break;
1101 		if (!first)
1102 			return -EIO;
1103 
1104 		if (decode_write_chunk(xdr, &chunklen))
1105 			return -EIO;
1106 		*length += chunklen;
1107 		first = false;
1108 	} while (true);
1109 	return 0;
1110 }
1111 
1112 static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
1113 {
1114 	__be32 *p;
1115 
1116 	p = xdr_inline_decode(xdr, sizeof(*p));
1117 	if (unlikely(!p))
1118 		return -EIO;
1119 
1120 	*length = 0;
1121 	if (*p != xdr_zero)
1122 		if (decode_write_chunk(xdr, length))
1123 			return -EIO;
1124 	return 0;
1125 }
1126 
1127 static int
1128 rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1129 		   struct rpc_rqst *rqst)
1130 {
1131 	struct xdr_stream *xdr = &rep->rr_stream;
1132 	u32 writelist, replychunk, rpclen;
1133 	char *base;
1134 
1135 	/* Decode the chunk lists */
1136 	if (decode_read_list(xdr))
1137 		return -EIO;
1138 	if (decode_write_list(xdr, &writelist))
1139 		return -EIO;
1140 	if (decode_reply_chunk(xdr, &replychunk))
1141 		return -EIO;
1142 
1143 	/* RDMA_MSG sanity checks */
1144 	if (unlikely(replychunk))
1145 		return -EIO;
1146 
1147 	/* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
1148 	base = (char *)xdr_inline_decode(xdr, 0);
1149 	rpclen = xdr_stream_remaining(xdr);
1150 	r_xprt->rx_stats.fixup_copy_count +=
1151 		rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
1152 
1153 	r_xprt->rx_stats.total_rdma_reply += writelist;
1154 	return rpclen + xdr_align_size(writelist);
1155 }
1156 
1157 static noinline int
1158 rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1159 {
1160 	struct xdr_stream *xdr = &rep->rr_stream;
1161 	u32 writelist, replychunk;
1162 
1163 	/* Decode the chunk lists */
1164 	if (decode_read_list(xdr))
1165 		return -EIO;
1166 	if (decode_write_list(xdr, &writelist))
1167 		return -EIO;
1168 	if (decode_reply_chunk(xdr, &replychunk))
1169 		return -EIO;
1170 
1171 	/* RDMA_NOMSG sanity checks */
1172 	if (unlikely(writelist))
1173 		return -EIO;
1174 	if (unlikely(!replychunk))
1175 		return -EIO;
1176 
1177 	/* Reply chunk buffer already is the reply vector */
1178 	r_xprt->rx_stats.total_rdma_reply += replychunk;
1179 	return replychunk;
1180 }
1181 
1182 static noinline int
1183 rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1184 		     struct rpc_rqst *rqst)
1185 {
1186 	struct xdr_stream *xdr = &rep->rr_stream;
1187 	__be32 *p;
1188 
1189 	p = xdr_inline_decode(xdr, sizeof(*p));
1190 	if (unlikely(!p))
1191 		return -EIO;
1192 
1193 	switch (*p) {
1194 	case err_vers:
1195 		p = xdr_inline_decode(xdr, 2 * sizeof(*p));
1196 		if (!p)
1197 			break;
1198 		dprintk("RPC: %5u: %s: server reports version error (%u-%u)\n",
1199 			rqst->rq_task->tk_pid, __func__,
1200 			be32_to_cpup(p), be32_to_cpu(*(p + 1)));
1201 		break;
1202 	case err_chunk:
1203 		dprintk("RPC: %5u: %s: server reports header decoding error\n",
1204 			rqst->rq_task->tk_pid, __func__);
1205 		break;
1206 	default:
1207 		dprintk("RPC: %5u: %s: server reports unrecognized error %d\n",
1208 			rqst->rq_task->tk_pid, __func__, be32_to_cpup(p));
1209 	}
1210 
1211 	r_xprt->rx_stats.bad_reply_count++;
1212 	return -EREMOTEIO;
1213 }
1214 
1215 /* Process received RPC/RDMA messages.
1216  *
1217  * Errors must result in the RPC task either being awakened, or
1218  * allowed to timeout, to discover the errors at that time.
1219  */
1220 void
1221 rpcrdma_reply_handler(struct work_struct *work)
1222 {
1223 	struct rpcrdma_rep *rep =
1224 			container_of(work, struct rpcrdma_rep, rr_work);
1225 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1226 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1227 	struct xdr_stream *xdr = &rep->rr_stream;
1228 	struct rpcrdma_req *req;
1229 	struct rpc_rqst *rqst;
1230 	__be32 *p, xid, vers, proc;
1231 	unsigned long cwnd;
1232 	int status;
1233 
1234 	dprintk("RPC:       %s: incoming rep %p\n", __func__, rep);
1235 
1236 	if (rep->rr_hdrbuf.head[0].iov_len == 0)
1237 		goto out_badstatus;
1238 
1239 	xdr_init_decode(xdr, &rep->rr_hdrbuf,
1240 			rep->rr_hdrbuf.head[0].iov_base);
1241 
1242 	/* Fixed transport header fields */
1243 	p = xdr_inline_decode(xdr, 4 * sizeof(*p));
1244 	if (unlikely(!p))
1245 		goto out_shortreply;
1246 	xid = *p++;
1247 	vers = *p++;
1248 	p++;	/* credits */
1249 	proc = *p++;
1250 
1251 	if (rpcrdma_is_bcall(r_xprt, rep, xid, proc))
1252 		return;
1253 
1254 	/* Match incoming rpcrdma_rep to an rpcrdma_req to
1255 	 * get context for handling any incoming chunks.
1256 	 */
1257 	spin_lock(&xprt->recv_lock);
1258 	rqst = xprt_lookup_rqst(xprt, xid);
1259 	if (!rqst)
1260 		goto out_norqst;
1261 	xprt_pin_rqst(rqst);
1262 	spin_unlock(&xprt->recv_lock);
1263 	req = rpcr_to_rdmar(rqst);
1264 	req->rl_reply = rep;
1265 
1266 	dprintk("RPC:       %s: reply %p completes request %p (xid 0x%08x)\n",
1267 		__func__, rep, req, be32_to_cpu(xid));
1268 
1269 	/* Invalidate and unmap the data payloads before waking the
1270 	 * waiting application. This guarantees the memory regions
1271 	 * are properly fenced from the server before the application
1272 	 * accesses the data. It also ensures proper send flow control:
1273 	 * waking the next RPC waits until this RPC has relinquished
1274 	 * all its Send Queue entries.
1275 	 */
1276 	if (!list_empty(&req->rl_registered)) {
1277 		rpcrdma_mark_remote_invalidation(&req->rl_registered, rep);
1278 		r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt,
1279 						    &req->rl_registered);
1280 	}
1281 
1282 	xprt->reestablish_timeout = 0;
1283 	if (vers != rpcrdma_version)
1284 		goto out_badversion;
1285 
1286 	switch (proc) {
1287 	case rdma_msg:
1288 		status = rpcrdma_decode_msg(r_xprt, rep, rqst);
1289 		break;
1290 	case rdma_nomsg:
1291 		status = rpcrdma_decode_nomsg(r_xprt, rep);
1292 		break;
1293 	case rdma_error:
1294 		status = rpcrdma_decode_error(r_xprt, rep, rqst);
1295 		break;
1296 	default:
1297 		status = -EIO;
1298 	}
1299 	if (status < 0)
1300 		goto out_badheader;
1301 
1302 out:
1303 	spin_lock(&xprt->recv_lock);
1304 	cwnd = xprt->cwnd;
1305 	xprt->cwnd = atomic_read(&r_xprt->rx_buf.rb_credits) << RPC_CWNDSHIFT;
1306 	if (xprt->cwnd > cwnd)
1307 		xprt_release_rqst_cong(rqst->rq_task);
1308 
1309 	xprt_complete_rqst(rqst->rq_task, status);
1310 	xprt_unpin_rqst(rqst);
1311 	spin_unlock(&xprt->recv_lock);
1312 	dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
1313 		__func__, xprt, rqst, status);
1314 	return;
1315 
1316 out_badstatus:
1317 	rpcrdma_recv_buffer_put(rep);
1318 	if (r_xprt->rx_ep.rep_connected == 1) {
1319 		r_xprt->rx_ep.rep_connected = -EIO;
1320 		rpcrdma_conn_func(&r_xprt->rx_ep);
1321 	}
1322 	return;
1323 
1324 /* If the incoming reply terminated a pending RPC, the next
1325  * RPC call will post a replacement receive buffer as it is
1326  * being marshaled.
1327  */
1328 out_badversion:
1329 	dprintk("RPC:       %s: invalid version %d\n",
1330 		__func__, be32_to_cpu(vers));
1331 	status = -EIO;
1332 	r_xprt->rx_stats.bad_reply_count++;
1333 	goto out;
1334 
1335 out_badheader:
1336 	dprintk("RPC: %5u %s: invalid rpcrdma reply (type %u)\n",
1337 		rqst->rq_task->tk_pid, __func__, be32_to_cpu(proc));
1338 	r_xprt->rx_stats.bad_reply_count++;
1339 	status = -EIO;
1340 	goto out;
1341 
1342 /* The req was still available, but by the time the recv_lock
1343  * was acquired, the rqst and task had been released. Thus the RPC
1344  * has already been terminated.
1345  */
1346 out_norqst:
1347 	spin_unlock(&xprt->recv_lock);
1348 	dprintk("RPC:       %s: no match for incoming xid 0x%08x\n",
1349 		__func__, be32_to_cpu(xid));
1350 	goto repost;
1351 
1352 out_shortreply:
1353 	dprintk("RPC:       %s: short/invalid reply\n", __func__);
1354 	goto repost;
1355 
1356 /* If no pending RPC transaction was matched, post a replacement
1357  * receive buffer before returning.
1358  */
1359 repost:
1360 	r_xprt->rx_stats.bad_reply_count++;
1361 	if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, rep))
1362 		rpcrdma_recv_buffer_put(rep);
1363 }
1364