xref: /openbmc/linux/net/sunrpc/xprtrdma/rpc_rdma.c (revision 6724ed7f)
1 /*
2  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
3  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the BSD-type
9  * license below:
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  *      Redistributions of source code must retain the above copyright
16  *      notice, this list of conditions and the following disclaimer.
17  *
18  *      Redistributions in binary form must reproduce the above
19  *      copyright notice, this list of conditions and the following
20  *      disclaimer in the documentation and/or other materials provided
21  *      with the distribution.
22  *
23  *      Neither the name of the Network Appliance, Inc. nor the names of
24  *      its contributors may be used to endorse or promote products
25  *      derived from this software without specific prior written
26  *      permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39  */
40 
41 /*
42  * rpc_rdma.c
43  *
44  * This file contains the guts of the RPC RDMA protocol, and
45  * does marshaling/unmarshaling, etc. It is also where interfacing
46  * to the Linux RPC framework lives.
47  */
48 
49 #include "xprt_rdma.h"
50 
51 #include <linux/highmem.h>
52 
53 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
54 # define RPCDBG_FACILITY	RPCDBG_TRANS
55 #endif
56 
57 static const char transfertypes[][12] = {
58 	"inline",	/* no chunks */
59 	"read list",	/* some argument via rdma read */
60 	"*read list",	/* entire request via rdma read */
61 	"write list",	/* some result via rdma write */
62 	"reply chunk"	/* entire reply via rdma write */
63 };
64 
65 /* Returns size of largest RPC-over-RDMA header in a Call message
66  *
67  * The largest Call header contains a full-size Read list and a
68  * minimal Reply chunk.
69  */
70 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
71 {
72 	unsigned int size;
73 
74 	/* Fixed header fields and list discriminators */
75 	size = RPCRDMA_HDRLEN_MIN;
76 
77 	/* Maximum Read list size */
78 	maxsegs += 2;	/* segment for head and tail buffers */
79 	size = maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
80 
81 	/* Minimal Read chunk size */
82 	size += sizeof(__be32);	/* segment count */
83 	size += rpcrdma_segment_maxsz * sizeof(__be32);
84 	size += sizeof(__be32);	/* list discriminator */
85 
86 	dprintk("RPC:       %s: max call header size = %u\n",
87 		__func__, size);
88 	return size;
89 }
90 
91 /* Returns size of largest RPC-over-RDMA header in a Reply message
92  *
93  * There is only one Write list or one Reply chunk per Reply
94  * message.  The larger list is the Write list.
95  */
96 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
97 {
98 	unsigned int size;
99 
100 	/* Fixed header fields and list discriminators */
101 	size = RPCRDMA_HDRLEN_MIN;
102 
103 	/* Maximum Write list size */
104 	maxsegs += 2;	/* segment for head and tail buffers */
105 	size = sizeof(__be32);		/* segment count */
106 	size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
107 	size += sizeof(__be32);	/* list discriminator */
108 
109 	dprintk("RPC:       %s: max reply header size = %u\n",
110 		__func__, size);
111 	return size;
112 }
113 
114 void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt)
115 {
116 	struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
117 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
118 	unsigned int maxsegs = ia->ri_max_segs;
119 
120 	ia->ri_max_inline_write = cdata->inline_wsize -
121 				  rpcrdma_max_call_header_size(maxsegs);
122 	ia->ri_max_inline_read = cdata->inline_rsize -
123 				 rpcrdma_max_reply_header_size(maxsegs);
124 }
125 
126 /* The client can send a request inline as long as the RPCRDMA header
127  * plus the RPC call fit under the transport's inline limit. If the
128  * combined call message size exceeds that limit, the client must use
129  * a Read chunk for this operation.
130  *
131  * A Read chunk is also required if sending the RPC call inline would
132  * exceed this device's max_sge limit.
133  */
134 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
135 				struct rpc_rqst *rqst)
136 {
137 	struct xdr_buf *xdr = &rqst->rq_snd_buf;
138 	unsigned int count, remaining, offset;
139 
140 	if (xdr->len > r_xprt->rx_ia.ri_max_inline_write)
141 		return false;
142 
143 	if (xdr->page_len) {
144 		remaining = xdr->page_len;
145 		offset = offset_in_page(xdr->page_base);
146 		count = 0;
147 		while (remaining) {
148 			remaining -= min_t(unsigned int,
149 					   PAGE_SIZE - offset, remaining);
150 			offset = 0;
151 			if (++count > r_xprt->rx_ia.ri_max_send_sges)
152 				return false;
153 		}
154 	}
155 
156 	return true;
157 }
158 
159 /* The client can't know how large the actual reply will be. Thus it
160  * plans for the largest possible reply for that particular ULP
161  * operation. If the maximum combined reply message size exceeds that
162  * limit, the client must provide a write list or a reply chunk for
163  * this request.
164  */
165 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
166 				   struct rpc_rqst *rqst)
167 {
168 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
169 
170 	return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read;
171 }
172 
173 /* Split @vec on page boundaries into SGEs. FMR registers pages, not
174  * a byte range. Other modes coalesce these SGEs into a single MR
175  * when they can.
176  *
177  * Returns pointer to next available SGE, and bumps the total number
178  * of SGEs consumed.
179  */
180 static struct rpcrdma_mr_seg *
181 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
182 		     unsigned int *n)
183 {
184 	u32 remaining, page_offset;
185 	char *base;
186 
187 	base = vec->iov_base;
188 	page_offset = offset_in_page(base);
189 	remaining = vec->iov_len;
190 	while (remaining) {
191 		seg->mr_page = NULL;
192 		seg->mr_offset = base;
193 		seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
194 		remaining -= seg->mr_len;
195 		base += seg->mr_len;
196 		++seg;
197 		++(*n);
198 		page_offset = 0;
199 	}
200 	return seg;
201 }
202 
203 /* Convert @xdrbuf into SGEs no larger than a page each. As they
204  * are registered, these SGEs are then coalesced into RDMA segments
205  * when the selected memreg mode supports it.
206  *
207  * Returns positive number of SGEs consumed, or a negative errno.
208  */
209 
210 static int
211 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
212 		     unsigned int pos, enum rpcrdma_chunktype type,
213 		     struct rpcrdma_mr_seg *seg)
214 {
215 	unsigned long page_base;
216 	unsigned int len, n;
217 	struct page **ppages;
218 
219 	n = 0;
220 	if (pos == 0)
221 		seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
222 
223 	len = xdrbuf->page_len;
224 	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
225 	page_base = offset_in_page(xdrbuf->page_base);
226 	while (len) {
227 		if (unlikely(!*ppages)) {
228 			/* XXX: Certain upper layer operations do
229 			 *	not provide receive buffer pages.
230 			 */
231 			*ppages = alloc_page(GFP_ATOMIC);
232 			if (!*ppages)
233 				return -EAGAIN;
234 		}
235 		seg->mr_page = *ppages;
236 		seg->mr_offset = (char *)page_base;
237 		seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
238 		len -= seg->mr_len;
239 		++ppages;
240 		++seg;
241 		++n;
242 		page_base = 0;
243 	}
244 
245 	/* When encoding a Read chunk, the tail iovec contains an
246 	 * XDR pad and may be omitted.
247 	 */
248 	if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup)
249 		goto out;
250 
251 	/* When encoding a Write chunk, some servers need to see an
252 	 * extra segment for non-XDR-aligned Write chunks. The upper
253 	 * layer provides space in the tail iovec that may be used
254 	 * for this purpose.
255 	 */
256 	if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup)
257 		goto out;
258 
259 	if (xdrbuf->tail[0].iov_len)
260 		seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
261 
262 out:
263 	if (unlikely(n > RPCRDMA_MAX_SEGS))
264 		return -EIO;
265 	return n;
266 }
267 
268 static inline int
269 encode_item_present(struct xdr_stream *xdr)
270 {
271 	__be32 *p;
272 
273 	p = xdr_reserve_space(xdr, sizeof(*p));
274 	if (unlikely(!p))
275 		return -EMSGSIZE;
276 
277 	*p = xdr_one;
278 	return 0;
279 }
280 
281 static inline int
282 encode_item_not_present(struct xdr_stream *xdr)
283 {
284 	__be32 *p;
285 
286 	p = xdr_reserve_space(xdr, sizeof(*p));
287 	if (unlikely(!p))
288 		return -EMSGSIZE;
289 
290 	*p = xdr_zero;
291 	return 0;
292 }
293 
294 static void
295 xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mw *mw)
296 {
297 	*iptr++ = cpu_to_be32(mw->mw_handle);
298 	*iptr++ = cpu_to_be32(mw->mw_length);
299 	xdr_encode_hyper(iptr, mw->mw_offset);
300 }
301 
302 static int
303 encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mw *mw)
304 {
305 	__be32 *p;
306 
307 	p = xdr_reserve_space(xdr, 4 * sizeof(*p));
308 	if (unlikely(!p))
309 		return -EMSGSIZE;
310 
311 	xdr_encode_rdma_segment(p, mw);
312 	return 0;
313 }
314 
315 static int
316 encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mw *mw,
317 		    u32 position)
318 {
319 	__be32 *p;
320 
321 	p = xdr_reserve_space(xdr, 6 * sizeof(*p));
322 	if (unlikely(!p))
323 		return -EMSGSIZE;
324 
325 	*p++ = xdr_one;			/* Item present */
326 	*p++ = cpu_to_be32(position);
327 	xdr_encode_rdma_segment(p, mw);
328 	return 0;
329 }
330 
331 /* Register and XDR encode the Read list. Supports encoding a list of read
332  * segments that belong to a single read chunk.
333  *
334  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
335  *
336  *  Read chunklist (a linked list):
337  *   N elements, position P (same P for all chunks of same arg!):
338  *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
339  *
340  * Returns zero on success, or a negative errno if a failure occurred.
341  * @xdr is advanced to the next position in the stream.
342  *
343  * Only a single @pos value is currently supported.
344  */
345 static noinline int
346 rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
347 			 struct rpc_rqst *rqst, enum rpcrdma_chunktype rtype)
348 {
349 	struct xdr_stream *xdr = &req->rl_stream;
350 	struct rpcrdma_mr_seg *seg;
351 	struct rpcrdma_mw *mw;
352 	unsigned int pos;
353 	int nsegs;
354 
355 	pos = rqst->rq_snd_buf.head[0].iov_len;
356 	if (rtype == rpcrdma_areadch)
357 		pos = 0;
358 	seg = req->rl_segments;
359 	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
360 				     rtype, seg);
361 	if (nsegs < 0)
362 		return nsegs;
363 
364 	do {
365 		seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
366 						   false, &mw);
367 		if (IS_ERR(seg))
368 			return PTR_ERR(seg);
369 		rpcrdma_push_mw(mw, &req->rl_registered);
370 
371 		if (encode_read_segment(xdr, mw, pos) < 0)
372 			return -EMSGSIZE;
373 
374 		dprintk("RPC: %5u %s: pos %u %u@0x%016llx:0x%08x (%s)\n",
375 			rqst->rq_task->tk_pid, __func__, pos,
376 			mw->mw_length, (unsigned long long)mw->mw_offset,
377 			mw->mw_handle, mw->mw_nents < nsegs ? "more" : "last");
378 
379 		r_xprt->rx_stats.read_chunk_count++;
380 		nsegs -= mw->mw_nents;
381 	} while (nsegs);
382 
383 	return 0;
384 }
385 
386 /* Register and XDR encode the Write list. Supports encoding a list
387  * containing one array of plain segments that belong to a single
388  * write chunk.
389  *
390  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
391  *
392  *  Write chunklist (a list of (one) counted array):
393  *   N elements:
394  *    1 - N - HLOO - HLOO - ... - HLOO - 0
395  *
396  * Returns zero on success, or a negative errno if a failure occurred.
397  * @xdr is advanced to the next position in the stream.
398  *
399  * Only a single Write chunk is currently supported.
400  */
401 static noinline int
402 rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
403 			  struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype)
404 {
405 	struct xdr_stream *xdr = &req->rl_stream;
406 	struct rpcrdma_mr_seg *seg;
407 	struct rpcrdma_mw *mw;
408 	int nsegs, nchunks;
409 	__be32 *segcount;
410 
411 	seg = req->rl_segments;
412 	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
413 				     rqst->rq_rcv_buf.head[0].iov_len,
414 				     wtype, seg);
415 	if (nsegs < 0)
416 		return nsegs;
417 
418 	if (encode_item_present(xdr) < 0)
419 		return -EMSGSIZE;
420 	segcount = xdr_reserve_space(xdr, sizeof(*segcount));
421 	if (unlikely(!segcount))
422 		return -EMSGSIZE;
423 	/* Actual value encoded below */
424 
425 	nchunks = 0;
426 	do {
427 		seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
428 						   true, &mw);
429 		if (IS_ERR(seg))
430 			return PTR_ERR(seg);
431 		rpcrdma_push_mw(mw, &req->rl_registered);
432 
433 		if (encode_rdma_segment(xdr, mw) < 0)
434 			return -EMSGSIZE;
435 
436 		dprintk("RPC: %5u %s: %u@0x016%llx:0x%08x (%s)\n",
437 			rqst->rq_task->tk_pid, __func__,
438 			mw->mw_length, (unsigned long long)mw->mw_offset,
439 			mw->mw_handle, mw->mw_nents < nsegs ? "more" : "last");
440 
441 		r_xprt->rx_stats.write_chunk_count++;
442 		r_xprt->rx_stats.total_rdma_request += seg->mr_len;
443 		nchunks++;
444 		nsegs -= mw->mw_nents;
445 	} while (nsegs);
446 
447 	/* Update count of segments in this Write chunk */
448 	*segcount = cpu_to_be32(nchunks);
449 
450 	return 0;
451 }
452 
453 /* Register and XDR encode the Reply chunk. Supports encoding an array
454  * of plain segments that belong to a single write (reply) chunk.
455  *
456  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
457  *
458  *  Reply chunk (a counted array):
459  *   N elements:
460  *    1 - N - HLOO - HLOO - ... - HLOO
461  *
462  * Returns zero on success, or a negative errno if a failure occurred.
463  * @xdr is advanced to the next position in the stream.
464  */
465 static noinline int
466 rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
467 			   struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype)
468 {
469 	struct xdr_stream *xdr = &req->rl_stream;
470 	struct rpcrdma_mr_seg *seg;
471 	struct rpcrdma_mw *mw;
472 	int nsegs, nchunks;
473 	__be32 *segcount;
474 
475 	seg = req->rl_segments;
476 	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
477 	if (nsegs < 0)
478 		return nsegs;
479 
480 	if (encode_item_present(xdr) < 0)
481 		return -EMSGSIZE;
482 	segcount = xdr_reserve_space(xdr, sizeof(*segcount));
483 	if (unlikely(!segcount))
484 		return -EMSGSIZE;
485 	/* Actual value encoded below */
486 
487 	nchunks = 0;
488 	do {
489 		seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
490 						   true, &mw);
491 		if (IS_ERR(seg))
492 			return PTR_ERR(seg);
493 		rpcrdma_push_mw(mw, &req->rl_registered);
494 
495 		if (encode_rdma_segment(xdr, mw) < 0)
496 			return -EMSGSIZE;
497 
498 		dprintk("RPC: %5u %s: %u@0x%016llx:0x%08x (%s)\n",
499 			rqst->rq_task->tk_pid, __func__,
500 			mw->mw_length, (unsigned long long)mw->mw_offset,
501 			mw->mw_handle, mw->mw_nents < nsegs ? "more" : "last");
502 
503 		r_xprt->rx_stats.reply_chunk_count++;
504 		r_xprt->rx_stats.total_rdma_request += seg->mr_len;
505 		nchunks++;
506 		nsegs -= mw->mw_nents;
507 	} while (nsegs);
508 
509 	/* Update count of segments in the Reply chunk */
510 	*segcount = cpu_to_be32(nchunks);
511 
512 	return 0;
513 }
514 
515 /**
516  * rpcrdma_unmap_sendctx - DMA-unmap Send buffers
517  * @sc: sendctx containing SGEs to unmap
518  *
519  */
520 void
521 rpcrdma_unmap_sendctx(struct rpcrdma_sendctx *sc)
522 {
523 	struct rpcrdma_ia *ia = &sc->sc_xprt->rx_ia;
524 	struct ib_sge *sge;
525 	unsigned int count;
526 
527 	dprintk("RPC:       %s: unmapping %u sges for sc=%p\n",
528 		__func__, sc->sc_unmap_count, sc);
529 
530 	/* The first two SGEs contain the transport header and
531 	 * the inline buffer. These are always left mapped so
532 	 * they can be cheaply re-used.
533 	 */
534 	sge = &sc->sc_sges[2];
535 	for (count = sc->sc_unmap_count; count; ++sge, --count)
536 		ib_dma_unmap_page(ia->ri_device,
537 				  sge->addr, sge->length, DMA_TO_DEVICE);
538 
539 	if (test_and_clear_bit(RPCRDMA_REQ_F_TX_RESOURCES, &sc->sc_req->rl_flags)) {
540 		smp_mb__after_atomic();
541 		wake_up_bit(&sc->sc_req->rl_flags, RPCRDMA_REQ_F_TX_RESOURCES);
542 	}
543 }
544 
545 /* Prepare an SGE for the RPC-over-RDMA transport header.
546  */
547 static bool
548 rpcrdma_prepare_hdr_sge(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
549 			u32 len)
550 {
551 	struct rpcrdma_sendctx *sc = req->rl_sendctx;
552 	struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
553 	struct ib_sge *sge = sc->sc_sges;
554 
555 	if (!rpcrdma_dma_map_regbuf(ia, rb))
556 		goto out_regbuf;
557 	sge->addr = rdmab_addr(rb);
558 	sge->length = len;
559 	sge->lkey = rdmab_lkey(rb);
560 
561 	ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr,
562 				      sge->length, DMA_TO_DEVICE);
563 	sc->sc_wr.num_sge++;
564 	return true;
565 
566 out_regbuf:
567 	pr_err("rpcrdma: failed to DMA map a Send buffer\n");
568 	return false;
569 }
570 
571 /* Prepare the Send SGEs. The head and tail iovec, and each entry
572  * in the page list, gets its own SGE.
573  */
574 static bool
575 rpcrdma_prepare_msg_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
576 			 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
577 {
578 	struct rpcrdma_sendctx *sc = req->rl_sendctx;
579 	unsigned int sge_no, page_base, len, remaining;
580 	struct rpcrdma_regbuf *rb = req->rl_sendbuf;
581 	struct ib_device *device = ia->ri_device;
582 	struct ib_sge *sge = sc->sc_sges;
583 	u32 lkey = ia->ri_pd->local_dma_lkey;
584 	struct page *page, **ppages;
585 
586 	/* The head iovec is straightforward, as it is already
587 	 * DMA-mapped. Sync the content that has changed.
588 	 */
589 	if (!rpcrdma_dma_map_regbuf(ia, rb))
590 		goto out_regbuf;
591 	sge_no = 1;
592 	sge[sge_no].addr = rdmab_addr(rb);
593 	sge[sge_no].length = xdr->head[0].iov_len;
594 	sge[sge_no].lkey = rdmab_lkey(rb);
595 	ib_dma_sync_single_for_device(rdmab_device(rb), sge[sge_no].addr,
596 				      sge[sge_no].length, DMA_TO_DEVICE);
597 
598 	/* If there is a Read chunk, the page list is being handled
599 	 * via explicit RDMA, and thus is skipped here. However, the
600 	 * tail iovec may include an XDR pad for the page list, as
601 	 * well as additional content, and may not reside in the
602 	 * same page as the head iovec.
603 	 */
604 	if (rtype == rpcrdma_readch) {
605 		len = xdr->tail[0].iov_len;
606 
607 		/* Do not include the tail if it is only an XDR pad */
608 		if (len < 4)
609 			goto out;
610 
611 		page = virt_to_page(xdr->tail[0].iov_base);
612 		page_base = offset_in_page(xdr->tail[0].iov_base);
613 
614 		/* If the content in the page list is an odd length,
615 		 * xdr_write_pages() has added a pad at the beginning
616 		 * of the tail iovec. Force the tail's non-pad content
617 		 * to land at the next XDR position in the Send message.
618 		 */
619 		page_base += len & 3;
620 		len -= len & 3;
621 		goto map_tail;
622 	}
623 
624 	/* If there is a page list present, temporarily DMA map
625 	 * and prepare an SGE for each page to be sent.
626 	 */
627 	if (xdr->page_len) {
628 		ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
629 		page_base = offset_in_page(xdr->page_base);
630 		remaining = xdr->page_len;
631 		while (remaining) {
632 			sge_no++;
633 			if (sge_no > RPCRDMA_MAX_SEND_SGES - 2)
634 				goto out_mapping_overflow;
635 
636 			len = min_t(u32, PAGE_SIZE - page_base, remaining);
637 			sge[sge_no].addr = ib_dma_map_page(device, *ppages,
638 							   page_base, len,
639 							   DMA_TO_DEVICE);
640 			if (ib_dma_mapping_error(device, sge[sge_no].addr))
641 				goto out_mapping_err;
642 			sge[sge_no].length = len;
643 			sge[sge_no].lkey = lkey;
644 
645 			sc->sc_unmap_count++;
646 			ppages++;
647 			remaining -= len;
648 			page_base = 0;
649 		}
650 	}
651 
652 	/* The tail iovec is not always constructed in the same
653 	 * page where the head iovec resides (see, for example,
654 	 * gss_wrap_req_priv). To neatly accommodate that case,
655 	 * DMA map it separately.
656 	 */
657 	if (xdr->tail[0].iov_len) {
658 		page = virt_to_page(xdr->tail[0].iov_base);
659 		page_base = offset_in_page(xdr->tail[0].iov_base);
660 		len = xdr->tail[0].iov_len;
661 
662 map_tail:
663 		sge_no++;
664 		sge[sge_no].addr = ib_dma_map_page(device, page,
665 						   page_base, len,
666 						   DMA_TO_DEVICE);
667 		if (ib_dma_mapping_error(device, sge[sge_no].addr))
668 			goto out_mapping_err;
669 		sge[sge_no].length = len;
670 		sge[sge_no].lkey = lkey;
671 		sc->sc_unmap_count++;
672 	}
673 
674 out:
675 	sc->sc_wr.num_sge += sge_no;
676 	if (sc->sc_unmap_count)
677 		__set_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags);
678 	return true;
679 
680 out_regbuf:
681 	pr_err("rpcrdma: failed to DMA map a Send buffer\n");
682 	return false;
683 
684 out_mapping_overflow:
685 	rpcrdma_unmap_sendctx(sc);
686 	pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no);
687 	return false;
688 
689 out_mapping_err:
690 	rpcrdma_unmap_sendctx(sc);
691 	pr_err("rpcrdma: Send mapping error\n");
692 	return false;
693 }
694 
695 /**
696  * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR
697  * @r_xprt: controlling transport
698  * @req: context of RPC Call being marshalled
699  * @hdrlen: size of transport header, in bytes
700  * @xdr: xdr_buf containing RPC Call
701  * @rtype: chunk type being encoded
702  *
703  * Returns 0 on success; otherwise a negative errno is returned.
704  */
705 int
706 rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
707 			  struct rpcrdma_req *req, u32 hdrlen,
708 			  struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
709 {
710 	req->rl_sendctx = rpcrdma_sendctx_get_locked(&r_xprt->rx_buf);
711 	if (!req->rl_sendctx)
712 		return -ENOBUFS;
713 	req->rl_sendctx->sc_wr.num_sge = 0;
714 	req->rl_sendctx->sc_unmap_count = 0;
715 	req->rl_sendctx->sc_req = req;
716 	__clear_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags);
717 
718 	if (!rpcrdma_prepare_hdr_sge(&r_xprt->rx_ia, req, hdrlen))
719 		return -EIO;
720 
721 	if (rtype != rpcrdma_areadch)
722 		if (!rpcrdma_prepare_msg_sges(&r_xprt->rx_ia, req, xdr, rtype))
723 			return -EIO;
724 
725 	return 0;
726 }
727 
728 /**
729  * rpcrdma_marshal_req - Marshal and send one RPC request
730  * @r_xprt: controlling transport
731  * @rqst: RPC request to be marshaled
732  *
733  * For the RPC in "rqst", this function:
734  *  - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
735  *  - Registers Read, Write, and Reply chunks
736  *  - Constructs the transport header
737  *  - Posts a Send WR to send the transport header and request
738  *
739  * Returns:
740  *	%0 if the RPC was sent successfully,
741  *	%-ENOTCONN if the connection was lost,
742  *	%-EAGAIN if not enough pages are available for on-demand reply buffer,
743  *	%-ENOBUFS if no MRs are available to register chunks,
744  *	%-EMSGSIZE if the transport header is too small,
745  *	%-EIO if a permanent problem occurred while marshaling.
746  */
747 int
748 rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
749 {
750 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
751 	struct xdr_stream *xdr = &req->rl_stream;
752 	enum rpcrdma_chunktype rtype, wtype;
753 	bool ddp_allowed;
754 	__be32 *p;
755 	int ret;
756 
757 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
758 	if (test_bit(RPC_BC_PA_IN_USE, &rqst->rq_bc_pa_state))
759 		return rpcrdma_bc_marshal_reply(rqst);
760 #endif
761 
762 	rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
763 	xdr_init_encode(xdr, &req->rl_hdrbuf,
764 			req->rl_rdmabuf->rg_base);
765 
766 	/* Fixed header fields */
767 	ret = -EMSGSIZE;
768 	p = xdr_reserve_space(xdr, 4 * sizeof(*p));
769 	if (!p)
770 		goto out_err;
771 	*p++ = rqst->rq_xid;
772 	*p++ = rpcrdma_version;
773 	*p++ = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
774 
775 	/* When the ULP employs a GSS flavor that guarantees integrity
776 	 * or privacy, direct data placement of individual data items
777 	 * is not allowed.
778 	 */
779 	ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
780 						RPCAUTH_AUTH_DATATOUCH);
781 
782 	/*
783 	 * Chunks needed for results?
784 	 *
785 	 * o If the expected result is under the inline threshold, all ops
786 	 *   return as inline.
787 	 * o Large read ops return data as write chunk(s), header as
788 	 *   inline.
789 	 * o Large non-read ops return as a single reply chunk.
790 	 */
791 	if (rpcrdma_results_inline(r_xprt, rqst))
792 		wtype = rpcrdma_noch;
793 	else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ)
794 		wtype = rpcrdma_writech;
795 	else
796 		wtype = rpcrdma_replych;
797 
798 	/*
799 	 * Chunks needed for arguments?
800 	 *
801 	 * o If the total request is under the inline threshold, all ops
802 	 *   are sent as inline.
803 	 * o Large write ops transmit data as read chunk(s), header as
804 	 *   inline.
805 	 * o Large non-write ops are sent with the entire message as a
806 	 *   single read chunk (protocol 0-position special case).
807 	 *
808 	 * This assumes that the upper layer does not present a request
809 	 * that both has a data payload, and whose non-data arguments
810 	 * by themselves are larger than the inline threshold.
811 	 */
812 	if (rpcrdma_args_inline(r_xprt, rqst)) {
813 		*p++ = rdma_msg;
814 		rtype = rpcrdma_noch;
815 	} else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
816 		*p++ = rdma_msg;
817 		rtype = rpcrdma_readch;
818 	} else {
819 		r_xprt->rx_stats.nomsg_call_count++;
820 		*p++ = rdma_nomsg;
821 		rtype = rpcrdma_areadch;
822 	}
823 
824 	/* This implementation supports the following combinations
825 	 * of chunk lists in one RPC-over-RDMA Call message:
826 	 *
827 	 *   - Read list
828 	 *   - Write list
829 	 *   - Reply chunk
830 	 *   - Read list + Reply chunk
831 	 *
832 	 * It might not yet support the following combinations:
833 	 *
834 	 *   - Read list + Write list
835 	 *
836 	 * It does not support the following combinations:
837 	 *
838 	 *   - Write list + Reply chunk
839 	 *   - Read list + Write list + Reply chunk
840 	 *
841 	 * This implementation supports only a single chunk in each
842 	 * Read or Write list. Thus for example the client cannot
843 	 * send a Call message with a Position Zero Read chunk and a
844 	 * regular Read chunk at the same time.
845 	 */
846 	if (rtype != rpcrdma_noch) {
847 		ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
848 		if (ret)
849 			goto out_err;
850 	}
851 	ret = encode_item_not_present(xdr);
852 	if (ret)
853 		goto out_err;
854 
855 	if (wtype == rpcrdma_writech) {
856 		ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
857 		if (ret)
858 			goto out_err;
859 	}
860 	ret = encode_item_not_present(xdr);
861 	if (ret)
862 		goto out_err;
863 
864 	if (wtype != rpcrdma_replych)
865 		ret = encode_item_not_present(xdr);
866 	else
867 		ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
868 	if (ret)
869 		goto out_err;
870 
871 	dprintk("RPC: %5u %s: %s/%s: hdrlen %u rpclen\n",
872 		rqst->rq_task->tk_pid, __func__,
873 		transfertypes[rtype], transfertypes[wtype],
874 		xdr_stream_pos(xdr));
875 
876 	ret = rpcrdma_prepare_send_sges(r_xprt, req, xdr_stream_pos(xdr),
877 					&rqst->rq_snd_buf, rtype);
878 	if (ret)
879 		goto out_err;
880 	return 0;
881 
882 out_err:
883 	if (ret != -ENOBUFS) {
884 		pr_err("rpcrdma: header marshaling failed (%d)\n", ret);
885 		r_xprt->rx_stats.failed_marshal_count++;
886 	}
887 	return ret;
888 }
889 
890 /**
891  * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
892  * @rqst: controlling RPC request
893  * @srcp: points to RPC message payload in receive buffer
894  * @copy_len: remaining length of receive buffer content
895  * @pad: Write chunk pad bytes needed (zero for pure inline)
896  *
897  * The upper layer has set the maximum number of bytes it can
898  * receive in each component of rq_rcv_buf. These values are set in
899  * the head.iov_len, page_len, tail.iov_len, and buflen fields.
900  *
901  * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
902  * many cases this function simply updates iov_base pointers in
903  * rq_rcv_buf to point directly to the received reply data, to
904  * avoid copying reply data.
905  *
906  * Returns the count of bytes which had to be memcopied.
907  */
908 static unsigned long
909 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
910 {
911 	unsigned long fixup_copy_count;
912 	int i, npages, curlen;
913 	char *destp;
914 	struct page **ppages;
915 	int page_base;
916 
917 	/* The head iovec is redirected to the RPC reply message
918 	 * in the receive buffer, to avoid a memcopy.
919 	 */
920 	rqst->rq_rcv_buf.head[0].iov_base = srcp;
921 	rqst->rq_private_buf.head[0].iov_base = srcp;
922 
923 	/* The contents of the receive buffer that follow
924 	 * head.iov_len bytes are copied into the page list.
925 	 */
926 	curlen = rqst->rq_rcv_buf.head[0].iov_len;
927 	if (curlen > copy_len)
928 		curlen = copy_len;
929 	dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
930 		__func__, srcp, copy_len, curlen);
931 	srcp += curlen;
932 	copy_len -= curlen;
933 
934 	ppages = rqst->rq_rcv_buf.pages +
935 		(rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
936 	page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
937 	fixup_copy_count = 0;
938 	if (copy_len && rqst->rq_rcv_buf.page_len) {
939 		int pagelist_len;
940 
941 		pagelist_len = rqst->rq_rcv_buf.page_len;
942 		if (pagelist_len > copy_len)
943 			pagelist_len = copy_len;
944 		npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
945 		for (i = 0; i < npages; i++) {
946 			curlen = PAGE_SIZE - page_base;
947 			if (curlen > pagelist_len)
948 				curlen = pagelist_len;
949 
950 			dprintk("RPC:       %s: page %d"
951 				" srcp 0x%p len %d curlen %d\n",
952 				__func__, i, srcp, copy_len, curlen);
953 			destp = kmap_atomic(ppages[i]);
954 			memcpy(destp + page_base, srcp, curlen);
955 			flush_dcache_page(ppages[i]);
956 			kunmap_atomic(destp);
957 			srcp += curlen;
958 			copy_len -= curlen;
959 			fixup_copy_count += curlen;
960 			pagelist_len -= curlen;
961 			if (!pagelist_len)
962 				break;
963 			page_base = 0;
964 		}
965 
966 		/* Implicit padding for the last segment in a Write
967 		 * chunk is inserted inline at the front of the tail
968 		 * iovec. The upper layer ignores the content of
969 		 * the pad. Simply ensure inline content in the tail
970 		 * that follows the Write chunk is properly aligned.
971 		 */
972 		if (pad)
973 			srcp -= pad;
974 	}
975 
976 	/* The tail iovec is redirected to the remaining data
977 	 * in the receive buffer, to avoid a memcopy.
978 	 */
979 	if (copy_len || pad) {
980 		rqst->rq_rcv_buf.tail[0].iov_base = srcp;
981 		rqst->rq_private_buf.tail[0].iov_base = srcp;
982 	}
983 
984 	return fixup_copy_count;
985 }
986 
987 /* Caller must guarantee @rep remains stable during this call.
988  */
989 static void
990 rpcrdma_mark_remote_invalidation(struct list_head *mws,
991 				 struct rpcrdma_rep *rep)
992 {
993 	struct rpcrdma_mw *mw;
994 
995 	if (!(rep->rr_wc_flags & IB_WC_WITH_INVALIDATE))
996 		return;
997 
998 	list_for_each_entry(mw, mws, mw_list)
999 		if (mw->mw_handle == rep->rr_inv_rkey) {
1000 			mw->mw_flags = RPCRDMA_MW_F_RI;
1001 			break; /* only one invalidated MR per RPC */
1002 		}
1003 }
1004 
1005 /* By convention, backchannel calls arrive via rdma_msg type
1006  * messages, and never populate the chunk lists. This makes
1007  * the RPC/RDMA header small and fixed in size, so it is
1008  * straightforward to check the RPC header's direction field.
1009  */
1010 static bool
1011 rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1012 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1013 {
1014 	struct xdr_stream *xdr = &rep->rr_stream;
1015 	__be32 *p;
1016 
1017 	if (rep->rr_proc != rdma_msg)
1018 		return false;
1019 
1020 	/* Peek at stream contents without advancing. */
1021 	p = xdr_inline_decode(xdr, 0);
1022 
1023 	/* Chunk lists */
1024 	if (*p++ != xdr_zero)
1025 		return false;
1026 	if (*p++ != xdr_zero)
1027 		return false;
1028 	if (*p++ != xdr_zero)
1029 		return false;
1030 
1031 	/* RPC header */
1032 	if (*p++ != rep->rr_xid)
1033 		return false;
1034 	if (*p != cpu_to_be32(RPC_CALL))
1035 		return false;
1036 
1037 	/* Now that we are sure this is a backchannel call,
1038 	 * advance to the RPC header.
1039 	 */
1040 	p = xdr_inline_decode(xdr, 3 * sizeof(*p));
1041 	if (unlikely(!p))
1042 		goto out_short;
1043 
1044 	rpcrdma_bc_receive_call(r_xprt, rep);
1045 	return true;
1046 
1047 out_short:
1048 	pr_warn("RPC/RDMA short backward direction call\n");
1049 	if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, rep))
1050 		xprt_disconnect_done(&r_xprt->rx_xprt);
1051 	return true;
1052 }
1053 #else	/* CONFIG_SUNRPC_BACKCHANNEL */
1054 {
1055 	return false;
1056 }
1057 #endif	/* CONFIG_SUNRPC_BACKCHANNEL */
1058 
1059 static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
1060 {
1061 	__be32 *p;
1062 
1063 	p = xdr_inline_decode(xdr, 4 * sizeof(*p));
1064 	if (unlikely(!p))
1065 		return -EIO;
1066 
1067 	ifdebug(FACILITY) {
1068 		u64 offset;
1069 		u32 handle;
1070 
1071 		handle = be32_to_cpup(p++);
1072 		*length = be32_to_cpup(p++);
1073 		xdr_decode_hyper(p, &offset);
1074 		dprintk("RPC:       %s:   segment %u@0x%016llx:0x%08x\n",
1075 			__func__, *length, (unsigned long long)offset,
1076 			handle);
1077 	} else {
1078 		*length = be32_to_cpup(p + 1);
1079 	}
1080 
1081 	return 0;
1082 }
1083 
1084 static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
1085 {
1086 	u32 segcount, seglength;
1087 	__be32 *p;
1088 
1089 	p = xdr_inline_decode(xdr, sizeof(*p));
1090 	if (unlikely(!p))
1091 		return -EIO;
1092 
1093 	*length = 0;
1094 	segcount = be32_to_cpup(p);
1095 	while (segcount--) {
1096 		if (decode_rdma_segment(xdr, &seglength))
1097 			return -EIO;
1098 		*length += seglength;
1099 	}
1100 
1101 	dprintk("RPC:       %s: segcount=%u, %u bytes\n",
1102 		__func__, be32_to_cpup(p), *length);
1103 	return 0;
1104 }
1105 
1106 /* In RPC-over-RDMA Version One replies, a Read list is never
1107  * expected. This decoder is a stub that returns an error if
1108  * a Read list is present.
1109  */
1110 static int decode_read_list(struct xdr_stream *xdr)
1111 {
1112 	__be32 *p;
1113 
1114 	p = xdr_inline_decode(xdr, sizeof(*p));
1115 	if (unlikely(!p))
1116 		return -EIO;
1117 	if (unlikely(*p != xdr_zero))
1118 		return -EIO;
1119 	return 0;
1120 }
1121 
1122 /* Supports only one Write chunk in the Write list
1123  */
1124 static int decode_write_list(struct xdr_stream *xdr, u32 *length)
1125 {
1126 	u32 chunklen;
1127 	bool first;
1128 	__be32 *p;
1129 
1130 	*length = 0;
1131 	first = true;
1132 	do {
1133 		p = xdr_inline_decode(xdr, sizeof(*p));
1134 		if (unlikely(!p))
1135 			return -EIO;
1136 		if (*p == xdr_zero)
1137 			break;
1138 		if (!first)
1139 			return -EIO;
1140 
1141 		if (decode_write_chunk(xdr, &chunklen))
1142 			return -EIO;
1143 		*length += chunklen;
1144 		first = false;
1145 	} while (true);
1146 	return 0;
1147 }
1148 
1149 static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
1150 {
1151 	__be32 *p;
1152 
1153 	p = xdr_inline_decode(xdr, sizeof(*p));
1154 	if (unlikely(!p))
1155 		return -EIO;
1156 
1157 	*length = 0;
1158 	if (*p != xdr_zero)
1159 		if (decode_write_chunk(xdr, length))
1160 			return -EIO;
1161 	return 0;
1162 }
1163 
1164 static int
1165 rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1166 		   struct rpc_rqst *rqst)
1167 {
1168 	struct xdr_stream *xdr = &rep->rr_stream;
1169 	u32 writelist, replychunk, rpclen;
1170 	char *base;
1171 
1172 	/* Decode the chunk lists */
1173 	if (decode_read_list(xdr))
1174 		return -EIO;
1175 	if (decode_write_list(xdr, &writelist))
1176 		return -EIO;
1177 	if (decode_reply_chunk(xdr, &replychunk))
1178 		return -EIO;
1179 
1180 	/* RDMA_MSG sanity checks */
1181 	if (unlikely(replychunk))
1182 		return -EIO;
1183 
1184 	/* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
1185 	base = (char *)xdr_inline_decode(xdr, 0);
1186 	rpclen = xdr_stream_remaining(xdr);
1187 	r_xprt->rx_stats.fixup_copy_count +=
1188 		rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
1189 
1190 	r_xprt->rx_stats.total_rdma_reply += writelist;
1191 	return rpclen + xdr_align_size(writelist);
1192 }
1193 
1194 static noinline int
1195 rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1196 {
1197 	struct xdr_stream *xdr = &rep->rr_stream;
1198 	u32 writelist, replychunk;
1199 
1200 	/* Decode the chunk lists */
1201 	if (decode_read_list(xdr))
1202 		return -EIO;
1203 	if (decode_write_list(xdr, &writelist))
1204 		return -EIO;
1205 	if (decode_reply_chunk(xdr, &replychunk))
1206 		return -EIO;
1207 
1208 	/* RDMA_NOMSG sanity checks */
1209 	if (unlikely(writelist))
1210 		return -EIO;
1211 	if (unlikely(!replychunk))
1212 		return -EIO;
1213 
1214 	/* Reply chunk buffer already is the reply vector */
1215 	r_xprt->rx_stats.total_rdma_reply += replychunk;
1216 	return replychunk;
1217 }
1218 
1219 static noinline int
1220 rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1221 		     struct rpc_rqst *rqst)
1222 {
1223 	struct xdr_stream *xdr = &rep->rr_stream;
1224 	__be32 *p;
1225 
1226 	p = xdr_inline_decode(xdr, sizeof(*p));
1227 	if (unlikely(!p))
1228 		return -EIO;
1229 
1230 	switch (*p) {
1231 	case err_vers:
1232 		p = xdr_inline_decode(xdr, 2 * sizeof(*p));
1233 		if (!p)
1234 			break;
1235 		dprintk("RPC: %5u: %s: server reports version error (%u-%u)\n",
1236 			rqst->rq_task->tk_pid, __func__,
1237 			be32_to_cpup(p), be32_to_cpu(*(p + 1)));
1238 		break;
1239 	case err_chunk:
1240 		dprintk("RPC: %5u: %s: server reports header decoding error\n",
1241 			rqst->rq_task->tk_pid, __func__);
1242 		break;
1243 	default:
1244 		dprintk("RPC: %5u: %s: server reports unrecognized error %d\n",
1245 			rqst->rq_task->tk_pid, __func__, be32_to_cpup(p));
1246 	}
1247 
1248 	r_xprt->rx_stats.bad_reply_count++;
1249 	return -EREMOTEIO;
1250 }
1251 
1252 /* Perform XID lookup, reconstruction of the RPC reply, and
1253  * RPC completion while holding the transport lock to ensure
1254  * the rep, rqst, and rq_task pointers remain stable.
1255  */
1256 void rpcrdma_complete_rqst(struct rpcrdma_rep *rep)
1257 {
1258 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1259 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1260 	struct rpc_rqst *rqst = rep->rr_rqst;
1261 	unsigned long cwnd;
1262 	int status;
1263 
1264 	xprt->reestablish_timeout = 0;
1265 
1266 	switch (rep->rr_proc) {
1267 	case rdma_msg:
1268 		status = rpcrdma_decode_msg(r_xprt, rep, rqst);
1269 		break;
1270 	case rdma_nomsg:
1271 		status = rpcrdma_decode_nomsg(r_xprt, rep);
1272 		break;
1273 	case rdma_error:
1274 		status = rpcrdma_decode_error(r_xprt, rep, rqst);
1275 		break;
1276 	default:
1277 		status = -EIO;
1278 	}
1279 	if (status < 0)
1280 		goto out_badheader;
1281 
1282 out:
1283 	spin_lock(&xprt->recv_lock);
1284 	cwnd = xprt->cwnd;
1285 	xprt->cwnd = r_xprt->rx_buf.rb_credits << RPC_CWNDSHIFT;
1286 	if (xprt->cwnd > cwnd)
1287 		xprt_release_rqst_cong(rqst->rq_task);
1288 
1289 	xprt_complete_rqst(rqst->rq_task, status);
1290 	xprt_unpin_rqst(rqst);
1291 	spin_unlock(&xprt->recv_lock);
1292 	return;
1293 
1294 /* If the incoming reply terminated a pending RPC, the next
1295  * RPC call will post a replacement receive buffer as it is
1296  * being marshaled.
1297  */
1298 out_badheader:
1299 	dprintk("RPC: %5u %s: invalid rpcrdma reply (type %u)\n",
1300 		rqst->rq_task->tk_pid, __func__, be32_to_cpu(rep->rr_proc));
1301 	r_xprt->rx_stats.bad_reply_count++;
1302 	status = -EIO;
1303 	goto out;
1304 }
1305 
1306 void rpcrdma_release_rqst(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
1307 {
1308 	/* Invalidate and unmap the data payloads before waking
1309 	 * the waiting application. This guarantees the memory
1310 	 * regions are properly fenced from the server before the
1311 	 * application accesses the data. It also ensures proper
1312 	 * send flow control: waking the next RPC waits until this
1313 	 * RPC has relinquished all its Send Queue entries.
1314 	 */
1315 	if (!list_empty(&req->rl_registered))
1316 		r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt,
1317 						    &req->rl_registered);
1318 
1319 	/* Ensure that any DMA mapped pages associated with
1320 	 * the Send of the RPC Call have been unmapped before
1321 	 * allowing the RPC to complete. This protects argument
1322 	 * memory not controlled by the RPC client from being
1323 	 * re-used before we're done with it.
1324 	 */
1325 	if (test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) {
1326 		r_xprt->rx_stats.reply_waits_for_send++;
1327 		out_of_line_wait_on_bit(&req->rl_flags,
1328 					RPCRDMA_REQ_F_TX_RESOURCES,
1329 					bit_wait,
1330 					TASK_UNINTERRUPTIBLE);
1331 	}
1332 }
1333 
1334 /* Reply handling runs in the poll worker thread. Anything that
1335  * might wait is deferred to a separate workqueue.
1336  */
1337 void rpcrdma_deferred_completion(struct work_struct *work)
1338 {
1339 	struct rpcrdma_rep *rep =
1340 			container_of(work, struct rpcrdma_rep, rr_work);
1341 	struct rpcrdma_req *req = rpcr_to_rdmar(rep->rr_rqst);
1342 
1343 	rpcrdma_mark_remote_invalidation(&req->rl_registered, rep);
1344 	rpcrdma_release_rqst(rep->rr_rxprt, req);
1345 	rpcrdma_complete_rqst(rep);
1346 }
1347 
1348 /* Process received RPC/RDMA messages.
1349  *
1350  * Errors must result in the RPC task either being awakened, or
1351  * allowed to timeout, to discover the errors at that time.
1352  */
1353 void rpcrdma_reply_handler(struct rpcrdma_rep *rep)
1354 {
1355 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1356 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1357 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1358 	struct rpcrdma_req *req;
1359 	struct rpc_rqst *rqst;
1360 	u32 credits;
1361 	__be32 *p;
1362 
1363 	dprintk("RPC:       %s: incoming rep %p\n", __func__, rep);
1364 
1365 	if (rep->rr_hdrbuf.head[0].iov_len == 0)
1366 		goto out_badstatus;
1367 
1368 	xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf,
1369 			rep->rr_hdrbuf.head[0].iov_base);
1370 
1371 	/* Fixed transport header fields */
1372 	p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p));
1373 	if (unlikely(!p))
1374 		goto out_shortreply;
1375 	rep->rr_xid = *p++;
1376 	rep->rr_vers = *p++;
1377 	credits = be32_to_cpu(*p++);
1378 	rep->rr_proc = *p++;
1379 
1380 	if (rep->rr_vers != rpcrdma_version)
1381 		goto out_badversion;
1382 
1383 	if (rpcrdma_is_bcall(r_xprt, rep))
1384 		return;
1385 
1386 	/* Match incoming rpcrdma_rep to an rpcrdma_req to
1387 	 * get context for handling any incoming chunks.
1388 	 */
1389 	spin_lock(&xprt->recv_lock);
1390 	rqst = xprt_lookup_rqst(xprt, rep->rr_xid);
1391 	if (!rqst)
1392 		goto out_norqst;
1393 	xprt_pin_rqst(rqst);
1394 
1395 	if (credits == 0)
1396 		credits = 1;	/* don't deadlock */
1397 	else if (credits > buf->rb_max_requests)
1398 		credits = buf->rb_max_requests;
1399 	buf->rb_credits = credits;
1400 
1401 	spin_unlock(&xprt->recv_lock);
1402 
1403 	req = rpcr_to_rdmar(rqst);
1404 	req->rl_reply = rep;
1405 	rep->rr_rqst = rqst;
1406 	clear_bit(RPCRDMA_REQ_F_PENDING, &req->rl_flags);
1407 
1408 	dprintk("RPC:       %s: reply %p completes request %p (xid 0x%08x)\n",
1409 		__func__, rep, req, be32_to_cpu(rep->rr_xid));
1410 
1411 	queue_work_on(req->rl_cpu, rpcrdma_receive_wq, &rep->rr_work);
1412 	return;
1413 
1414 out_badstatus:
1415 	rpcrdma_recv_buffer_put(rep);
1416 	if (r_xprt->rx_ep.rep_connected == 1) {
1417 		r_xprt->rx_ep.rep_connected = -EIO;
1418 		rpcrdma_conn_func(&r_xprt->rx_ep);
1419 	}
1420 	return;
1421 
1422 out_badversion:
1423 	dprintk("RPC:       %s: invalid version %d\n",
1424 		__func__, be32_to_cpu(rep->rr_vers));
1425 	goto repost;
1426 
1427 /* The RPC transaction has already been terminated, or the header
1428  * is corrupt.
1429  */
1430 out_norqst:
1431 	spin_unlock(&xprt->recv_lock);
1432 	dprintk("RPC:       %s: no match for incoming xid 0x%08x\n",
1433 		__func__, be32_to_cpu(rep->rr_xid));
1434 	goto repost;
1435 
1436 out_shortreply:
1437 	dprintk("RPC:       %s: short/invalid reply\n", __func__);
1438 
1439 /* If no pending RPC transaction was matched, post a replacement
1440  * receive buffer before returning.
1441  */
1442 repost:
1443 	r_xprt->rx_stats.bad_reply_count++;
1444 	if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, rep))
1445 		rpcrdma_recv_buffer_put(rep);
1446 }
1447