xref: /openbmc/linux/net/sunrpc/xprtrdma/rpc_rdma.c (revision 61bf3293)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the BSD-type
10  * license below:
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  *
16  *      Redistributions of source code must retain the above copyright
17  *      notice, this list of conditions and the following disclaimer.
18  *
19  *      Redistributions in binary form must reproduce the above
20  *      copyright notice, this list of conditions and the following
21  *      disclaimer in the documentation and/or other materials provided
22  *      with the distribution.
23  *
24  *      Neither the name of the Network Appliance, Inc. nor the names of
25  *      its contributors may be used to endorse or promote products
26  *      derived from this software without specific prior written
27  *      permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41 
42 /*
43  * rpc_rdma.c
44  *
45  * This file contains the guts of the RPC RDMA protocol, and
46  * does marshaling/unmarshaling, etc. It is also where interfacing
47  * to the Linux RPC framework lives.
48  */
49 
50 #include <linux/highmem.h>
51 
52 #include <linux/sunrpc/svc_rdma.h>
53 
54 #include "xprt_rdma.h"
55 #include <trace/events/rpcrdma.h>
56 
57 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
58 # define RPCDBG_FACILITY	RPCDBG_TRANS
59 #endif
60 
61 /* Returns size of largest RPC-over-RDMA header in a Call message
62  *
63  * The largest Call header contains a full-size Read list and a
64  * minimal Reply chunk.
65  */
66 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
67 {
68 	unsigned int size;
69 
70 	/* Fixed header fields and list discriminators */
71 	size = RPCRDMA_HDRLEN_MIN;
72 
73 	/* Maximum Read list size */
74 	size = maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
75 
76 	/* Minimal Read chunk size */
77 	size += sizeof(__be32);	/* segment count */
78 	size += rpcrdma_segment_maxsz * sizeof(__be32);
79 	size += sizeof(__be32);	/* list discriminator */
80 
81 	return size;
82 }
83 
84 /* Returns size of largest RPC-over-RDMA header in a Reply message
85  *
86  * There is only one Write list or one Reply chunk per Reply
87  * message.  The larger list is the Write list.
88  */
89 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
90 {
91 	unsigned int size;
92 
93 	/* Fixed header fields and list discriminators */
94 	size = RPCRDMA_HDRLEN_MIN;
95 
96 	/* Maximum Write list size */
97 	size = sizeof(__be32);		/* segment count */
98 	size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
99 	size += sizeof(__be32);	/* list discriminator */
100 
101 	return size;
102 }
103 
104 /**
105  * rpcrdma_set_max_header_sizes - Initialize inline payload sizes
106  * @ep: endpoint to initialize
107  *
108  * The max_inline fields contain the maximum size of an RPC message
109  * so the marshaling code doesn't have to repeat this calculation
110  * for every RPC.
111  */
112 void rpcrdma_set_max_header_sizes(struct rpcrdma_ep *ep)
113 {
114 	unsigned int maxsegs = ep->re_max_rdma_segs;
115 
116 	ep->re_max_inline_send =
117 		ep->re_inline_send - rpcrdma_max_call_header_size(maxsegs);
118 	ep->re_max_inline_recv =
119 		ep->re_inline_recv - rpcrdma_max_reply_header_size(maxsegs);
120 }
121 
122 /* The client can send a request inline as long as the RPCRDMA header
123  * plus the RPC call fit under the transport's inline limit. If the
124  * combined call message size exceeds that limit, the client must use
125  * a Read chunk for this operation.
126  *
127  * A Read chunk is also required if sending the RPC call inline would
128  * exceed this device's max_sge limit.
129  */
130 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
131 				struct rpc_rqst *rqst)
132 {
133 	struct xdr_buf *xdr = &rqst->rq_snd_buf;
134 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
135 	unsigned int count, remaining, offset;
136 
137 	if (xdr->len > ep->re_max_inline_send)
138 		return false;
139 
140 	if (xdr->page_len) {
141 		remaining = xdr->page_len;
142 		offset = offset_in_page(xdr->page_base);
143 		count = RPCRDMA_MIN_SEND_SGES;
144 		while (remaining) {
145 			remaining -= min_t(unsigned int,
146 					   PAGE_SIZE - offset, remaining);
147 			offset = 0;
148 			if (++count > ep->re_attr.cap.max_send_sge)
149 				return false;
150 		}
151 	}
152 
153 	return true;
154 }
155 
156 /* The client can't know how large the actual reply will be. Thus it
157  * plans for the largest possible reply for that particular ULP
158  * operation. If the maximum combined reply message size exceeds that
159  * limit, the client must provide a write list or a reply chunk for
160  * this request.
161  */
162 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
163 				   struct rpc_rqst *rqst)
164 {
165 	return rqst->rq_rcv_buf.buflen <= r_xprt->rx_ep->re_max_inline_recv;
166 }
167 
168 /* The client is required to provide a Reply chunk if the maximum
169  * size of the non-payload part of the RPC Reply is larger than
170  * the inline threshold.
171  */
172 static bool
173 rpcrdma_nonpayload_inline(const struct rpcrdma_xprt *r_xprt,
174 			  const struct rpc_rqst *rqst)
175 {
176 	const struct xdr_buf *buf = &rqst->rq_rcv_buf;
177 
178 	return (buf->head[0].iov_len + buf->tail[0].iov_len) <
179 		r_xprt->rx_ep->re_max_inline_recv;
180 }
181 
182 /* Split @vec on page boundaries into SGEs. FMR registers pages, not
183  * a byte range. Other modes coalesce these SGEs into a single MR
184  * when they can.
185  *
186  * Returns pointer to next available SGE, and bumps the total number
187  * of SGEs consumed.
188  */
189 static struct rpcrdma_mr_seg *
190 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
191 		     unsigned int *n)
192 {
193 	u32 remaining, page_offset;
194 	char *base;
195 
196 	base = vec->iov_base;
197 	page_offset = offset_in_page(base);
198 	remaining = vec->iov_len;
199 	while (remaining) {
200 		seg->mr_page = NULL;
201 		seg->mr_offset = base;
202 		seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
203 		remaining -= seg->mr_len;
204 		base += seg->mr_len;
205 		++seg;
206 		++(*n);
207 		page_offset = 0;
208 	}
209 	return seg;
210 }
211 
212 /* Convert @xdrbuf into SGEs no larger than a page each. As they
213  * are registered, these SGEs are then coalesced into RDMA segments
214  * when the selected memreg mode supports it.
215  *
216  * Returns positive number of SGEs consumed, or a negative errno.
217  */
218 
219 static int
220 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
221 		     unsigned int pos, enum rpcrdma_chunktype type,
222 		     struct rpcrdma_mr_seg *seg)
223 {
224 	unsigned long page_base;
225 	unsigned int len, n;
226 	struct page **ppages;
227 
228 	n = 0;
229 	if (pos == 0)
230 		seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
231 
232 	len = xdrbuf->page_len;
233 	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
234 	page_base = offset_in_page(xdrbuf->page_base);
235 	while (len) {
236 		/* ACL likes to be lazy in allocating pages - ACLs
237 		 * are small by default but can get huge.
238 		 */
239 		if (unlikely(xdrbuf->flags & XDRBUF_SPARSE_PAGES)) {
240 			if (!*ppages)
241 				*ppages = alloc_page(GFP_NOWAIT | __GFP_NOWARN);
242 			if (!*ppages)
243 				return -ENOBUFS;
244 		}
245 		seg->mr_page = *ppages;
246 		seg->mr_offset = (char *)page_base;
247 		seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
248 		len -= seg->mr_len;
249 		++ppages;
250 		++seg;
251 		++n;
252 		page_base = 0;
253 	}
254 
255 	/* When encoding a Read chunk, the tail iovec contains an
256 	 * XDR pad and may be omitted.
257 	 */
258 	if (type == rpcrdma_readch && r_xprt->rx_ep->re_implicit_roundup)
259 		goto out;
260 
261 	/* When encoding a Write chunk, some servers need to see an
262 	 * extra segment for non-XDR-aligned Write chunks. The upper
263 	 * layer provides space in the tail iovec that may be used
264 	 * for this purpose.
265 	 */
266 	if (type == rpcrdma_writech && r_xprt->rx_ep->re_implicit_roundup)
267 		goto out;
268 
269 	if (xdrbuf->tail[0].iov_len)
270 		seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
271 
272 out:
273 	if (unlikely(n > RPCRDMA_MAX_SEGS))
274 		return -EIO;
275 	return n;
276 }
277 
278 static void
279 xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mr *mr)
280 {
281 	*iptr++ = cpu_to_be32(mr->mr_handle);
282 	*iptr++ = cpu_to_be32(mr->mr_length);
283 	xdr_encode_hyper(iptr, mr->mr_offset);
284 }
285 
286 static int
287 encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr)
288 {
289 	__be32 *p;
290 
291 	p = xdr_reserve_space(xdr, 4 * sizeof(*p));
292 	if (unlikely(!p))
293 		return -EMSGSIZE;
294 
295 	xdr_encode_rdma_segment(p, mr);
296 	return 0;
297 }
298 
299 static int
300 encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr,
301 		    u32 position)
302 {
303 	__be32 *p;
304 
305 	p = xdr_reserve_space(xdr, 6 * sizeof(*p));
306 	if (unlikely(!p))
307 		return -EMSGSIZE;
308 
309 	*p++ = xdr_one;			/* Item present */
310 	*p++ = cpu_to_be32(position);
311 	xdr_encode_rdma_segment(p, mr);
312 	return 0;
313 }
314 
315 static struct rpcrdma_mr_seg *rpcrdma_mr_prepare(struct rpcrdma_xprt *r_xprt,
316 						 struct rpcrdma_req *req,
317 						 struct rpcrdma_mr_seg *seg,
318 						 int nsegs, bool writing,
319 						 struct rpcrdma_mr **mr)
320 {
321 	*mr = rpcrdma_mr_pop(&req->rl_free_mrs);
322 	if (!*mr) {
323 		*mr = rpcrdma_mr_get(r_xprt);
324 		if (!*mr)
325 			goto out_getmr_err;
326 		trace_xprtrdma_mr_get(req);
327 		(*mr)->mr_req = req;
328 	}
329 
330 	rpcrdma_mr_push(*mr, &req->rl_registered);
331 	return frwr_map(r_xprt, seg, nsegs, writing, req->rl_slot.rq_xid, *mr);
332 
333 out_getmr_err:
334 	trace_xprtrdma_nomrs(req);
335 	xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
336 	rpcrdma_mrs_refresh(r_xprt);
337 	return ERR_PTR(-EAGAIN);
338 }
339 
340 /* Register and XDR encode the Read list. Supports encoding a list of read
341  * segments that belong to a single read chunk.
342  *
343  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
344  *
345  *  Read chunklist (a linked list):
346  *   N elements, position P (same P for all chunks of same arg!):
347  *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
348  *
349  * Returns zero on success, or a negative errno if a failure occurred.
350  * @xdr is advanced to the next position in the stream.
351  *
352  * Only a single @pos value is currently supported.
353  */
354 static int rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
355 				    struct rpcrdma_req *req,
356 				    struct rpc_rqst *rqst,
357 				    enum rpcrdma_chunktype rtype)
358 {
359 	struct xdr_stream *xdr = &req->rl_stream;
360 	struct rpcrdma_mr_seg *seg;
361 	struct rpcrdma_mr *mr;
362 	unsigned int pos;
363 	int nsegs;
364 
365 	if (rtype == rpcrdma_noch_pullup || rtype == rpcrdma_noch_mapped)
366 		goto done;
367 
368 	pos = rqst->rq_snd_buf.head[0].iov_len;
369 	if (rtype == rpcrdma_areadch)
370 		pos = 0;
371 	seg = req->rl_segments;
372 	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
373 				     rtype, seg);
374 	if (nsegs < 0)
375 		return nsegs;
376 
377 	do {
378 		seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, false, &mr);
379 		if (IS_ERR(seg))
380 			return PTR_ERR(seg);
381 
382 		if (encode_read_segment(xdr, mr, pos) < 0)
383 			return -EMSGSIZE;
384 
385 		trace_xprtrdma_chunk_read(rqst->rq_task, pos, mr, nsegs);
386 		r_xprt->rx_stats.read_chunk_count++;
387 		nsegs -= mr->mr_nents;
388 	} while (nsegs);
389 
390 done:
391 	if (xdr_stream_encode_item_absent(xdr) < 0)
392 		return -EMSGSIZE;
393 	return 0;
394 }
395 
396 /* Register and XDR encode the Write list. Supports encoding a list
397  * containing one array of plain segments that belong to a single
398  * write chunk.
399  *
400  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
401  *
402  *  Write chunklist (a list of (one) counted array):
403  *   N elements:
404  *    1 - N - HLOO - HLOO - ... - HLOO - 0
405  *
406  * Returns zero on success, or a negative errno if a failure occurred.
407  * @xdr is advanced to the next position in the stream.
408  *
409  * Only a single Write chunk is currently supported.
410  */
411 static int rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt,
412 				     struct rpcrdma_req *req,
413 				     struct rpc_rqst *rqst,
414 				     enum rpcrdma_chunktype wtype)
415 {
416 	struct xdr_stream *xdr = &req->rl_stream;
417 	struct rpcrdma_mr_seg *seg;
418 	struct rpcrdma_mr *mr;
419 	int nsegs, nchunks;
420 	__be32 *segcount;
421 
422 	if (wtype != rpcrdma_writech)
423 		goto done;
424 
425 	seg = req->rl_segments;
426 	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
427 				     rqst->rq_rcv_buf.head[0].iov_len,
428 				     wtype, seg);
429 	if (nsegs < 0)
430 		return nsegs;
431 
432 	if (xdr_stream_encode_item_present(xdr) < 0)
433 		return -EMSGSIZE;
434 	segcount = xdr_reserve_space(xdr, sizeof(*segcount));
435 	if (unlikely(!segcount))
436 		return -EMSGSIZE;
437 	/* Actual value encoded below */
438 
439 	nchunks = 0;
440 	do {
441 		seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
442 		if (IS_ERR(seg))
443 			return PTR_ERR(seg);
444 
445 		if (encode_rdma_segment(xdr, mr) < 0)
446 			return -EMSGSIZE;
447 
448 		trace_xprtrdma_chunk_write(rqst->rq_task, mr, nsegs);
449 		r_xprt->rx_stats.write_chunk_count++;
450 		r_xprt->rx_stats.total_rdma_request += mr->mr_length;
451 		nchunks++;
452 		nsegs -= mr->mr_nents;
453 	} while (nsegs);
454 
455 	/* Update count of segments in this Write chunk */
456 	*segcount = cpu_to_be32(nchunks);
457 
458 done:
459 	if (xdr_stream_encode_item_absent(xdr) < 0)
460 		return -EMSGSIZE;
461 	return 0;
462 }
463 
464 /* Register and XDR encode the Reply chunk. Supports encoding an array
465  * of plain segments that belong to a single write (reply) chunk.
466  *
467  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
468  *
469  *  Reply chunk (a counted array):
470  *   N elements:
471  *    1 - N - HLOO - HLOO - ... - HLOO
472  *
473  * Returns zero on success, or a negative errno if a failure occurred.
474  * @xdr is advanced to the next position in the stream.
475  */
476 static int rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
477 				      struct rpcrdma_req *req,
478 				      struct rpc_rqst *rqst,
479 				      enum rpcrdma_chunktype wtype)
480 {
481 	struct xdr_stream *xdr = &req->rl_stream;
482 	struct rpcrdma_mr_seg *seg;
483 	struct rpcrdma_mr *mr;
484 	int nsegs, nchunks;
485 	__be32 *segcount;
486 
487 	if (wtype != rpcrdma_replych) {
488 		if (xdr_stream_encode_item_absent(xdr) < 0)
489 			return -EMSGSIZE;
490 		return 0;
491 	}
492 
493 	seg = req->rl_segments;
494 	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
495 	if (nsegs < 0)
496 		return nsegs;
497 
498 	if (xdr_stream_encode_item_present(xdr) < 0)
499 		return -EMSGSIZE;
500 	segcount = xdr_reserve_space(xdr, sizeof(*segcount));
501 	if (unlikely(!segcount))
502 		return -EMSGSIZE;
503 	/* Actual value encoded below */
504 
505 	nchunks = 0;
506 	do {
507 		seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
508 		if (IS_ERR(seg))
509 			return PTR_ERR(seg);
510 
511 		if (encode_rdma_segment(xdr, mr) < 0)
512 			return -EMSGSIZE;
513 
514 		trace_xprtrdma_chunk_reply(rqst->rq_task, mr, nsegs);
515 		r_xprt->rx_stats.reply_chunk_count++;
516 		r_xprt->rx_stats.total_rdma_request += mr->mr_length;
517 		nchunks++;
518 		nsegs -= mr->mr_nents;
519 	} while (nsegs);
520 
521 	/* Update count of segments in the Reply chunk */
522 	*segcount = cpu_to_be32(nchunks);
523 
524 	return 0;
525 }
526 
527 static void rpcrdma_sendctx_done(struct kref *kref)
528 {
529 	struct rpcrdma_req *req =
530 		container_of(kref, struct rpcrdma_req, rl_kref);
531 	struct rpcrdma_rep *rep = req->rl_reply;
532 
533 	rpcrdma_complete_rqst(rep);
534 	rep->rr_rxprt->rx_stats.reply_waits_for_send++;
535 }
536 
537 /**
538  * rpcrdma_sendctx_unmap - DMA-unmap Send buffer
539  * @sc: sendctx containing SGEs to unmap
540  *
541  */
542 void rpcrdma_sendctx_unmap(struct rpcrdma_sendctx *sc)
543 {
544 	struct rpcrdma_regbuf *rb = sc->sc_req->rl_sendbuf;
545 	struct ib_sge *sge;
546 
547 	if (!sc->sc_unmap_count)
548 		return;
549 
550 	/* The first two SGEs contain the transport header and
551 	 * the inline buffer. These are always left mapped so
552 	 * they can be cheaply re-used.
553 	 */
554 	for (sge = &sc->sc_sges[2]; sc->sc_unmap_count;
555 	     ++sge, --sc->sc_unmap_count)
556 		ib_dma_unmap_page(rdmab_device(rb), sge->addr, sge->length,
557 				  DMA_TO_DEVICE);
558 
559 	kref_put(&sc->sc_req->rl_kref, rpcrdma_sendctx_done);
560 }
561 
562 /* Prepare an SGE for the RPC-over-RDMA transport header.
563  */
564 static void rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt *r_xprt,
565 				    struct rpcrdma_req *req, u32 len)
566 {
567 	struct rpcrdma_sendctx *sc = req->rl_sendctx;
568 	struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
569 	struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
570 
571 	sge->addr = rdmab_addr(rb);
572 	sge->length = len;
573 	sge->lkey = rdmab_lkey(rb);
574 
575 	ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
576 				      DMA_TO_DEVICE);
577 }
578 
579 /* The head iovec is straightforward, as it is usually already
580  * DMA-mapped. Sync the content that has changed.
581  */
582 static bool rpcrdma_prepare_head_iov(struct rpcrdma_xprt *r_xprt,
583 				     struct rpcrdma_req *req, unsigned int len)
584 {
585 	struct rpcrdma_sendctx *sc = req->rl_sendctx;
586 	struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
587 	struct rpcrdma_regbuf *rb = req->rl_sendbuf;
588 
589 	if (!rpcrdma_regbuf_dma_map(r_xprt, rb))
590 		return false;
591 
592 	sge->addr = rdmab_addr(rb);
593 	sge->length = len;
594 	sge->lkey = rdmab_lkey(rb);
595 
596 	ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
597 				      DMA_TO_DEVICE);
598 	return true;
599 }
600 
601 /* If there is a page list present, DMA map and prepare an
602  * SGE for each page to be sent.
603  */
604 static bool rpcrdma_prepare_pagelist(struct rpcrdma_req *req,
605 				     struct xdr_buf *xdr)
606 {
607 	struct rpcrdma_sendctx *sc = req->rl_sendctx;
608 	struct rpcrdma_regbuf *rb = req->rl_sendbuf;
609 	unsigned int page_base, len, remaining;
610 	struct page **ppages;
611 	struct ib_sge *sge;
612 
613 	ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
614 	page_base = offset_in_page(xdr->page_base);
615 	remaining = xdr->page_len;
616 	while (remaining) {
617 		sge = &sc->sc_sges[req->rl_wr.num_sge++];
618 		len = min_t(unsigned int, PAGE_SIZE - page_base, remaining);
619 		sge->addr = ib_dma_map_page(rdmab_device(rb), *ppages,
620 					    page_base, len, DMA_TO_DEVICE);
621 		if (ib_dma_mapping_error(rdmab_device(rb), sge->addr))
622 			goto out_mapping_err;
623 
624 		sge->length = len;
625 		sge->lkey = rdmab_lkey(rb);
626 
627 		sc->sc_unmap_count++;
628 		ppages++;
629 		remaining -= len;
630 		page_base = 0;
631 	}
632 
633 	return true;
634 
635 out_mapping_err:
636 	trace_xprtrdma_dma_maperr(sge->addr);
637 	return false;
638 }
639 
640 /* The tail iovec may include an XDR pad for the page list,
641  * as well as additional content, and may not reside in the
642  * same page as the head iovec.
643  */
644 static bool rpcrdma_prepare_tail_iov(struct rpcrdma_req *req,
645 				     struct xdr_buf *xdr,
646 				     unsigned int page_base, unsigned int len)
647 {
648 	struct rpcrdma_sendctx *sc = req->rl_sendctx;
649 	struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
650 	struct rpcrdma_regbuf *rb = req->rl_sendbuf;
651 	struct page *page = virt_to_page(xdr->tail[0].iov_base);
652 
653 	sge->addr = ib_dma_map_page(rdmab_device(rb), page, page_base, len,
654 				    DMA_TO_DEVICE);
655 	if (ib_dma_mapping_error(rdmab_device(rb), sge->addr))
656 		goto out_mapping_err;
657 
658 	sge->length = len;
659 	sge->lkey = rdmab_lkey(rb);
660 	++sc->sc_unmap_count;
661 	return true;
662 
663 out_mapping_err:
664 	trace_xprtrdma_dma_maperr(sge->addr);
665 	return false;
666 }
667 
668 /* Copy the tail to the end of the head buffer.
669  */
670 static void rpcrdma_pullup_tail_iov(struct rpcrdma_xprt *r_xprt,
671 				    struct rpcrdma_req *req,
672 				    struct xdr_buf *xdr)
673 {
674 	unsigned char *dst;
675 
676 	dst = (unsigned char *)xdr->head[0].iov_base;
677 	dst += xdr->head[0].iov_len + xdr->page_len;
678 	memmove(dst, xdr->tail[0].iov_base, xdr->tail[0].iov_len);
679 	r_xprt->rx_stats.pullup_copy_count += xdr->tail[0].iov_len;
680 }
681 
682 /* Copy pagelist content into the head buffer.
683  */
684 static void rpcrdma_pullup_pagelist(struct rpcrdma_xprt *r_xprt,
685 				    struct rpcrdma_req *req,
686 				    struct xdr_buf *xdr)
687 {
688 	unsigned int len, page_base, remaining;
689 	struct page **ppages;
690 	unsigned char *src, *dst;
691 
692 	dst = (unsigned char *)xdr->head[0].iov_base;
693 	dst += xdr->head[0].iov_len;
694 	ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
695 	page_base = offset_in_page(xdr->page_base);
696 	remaining = xdr->page_len;
697 	while (remaining) {
698 		src = page_address(*ppages);
699 		src += page_base;
700 		len = min_t(unsigned int, PAGE_SIZE - page_base, remaining);
701 		memcpy(dst, src, len);
702 		r_xprt->rx_stats.pullup_copy_count += len;
703 
704 		ppages++;
705 		dst += len;
706 		remaining -= len;
707 		page_base = 0;
708 	}
709 }
710 
711 /* Copy the contents of @xdr into @rl_sendbuf and DMA sync it.
712  * When the head, pagelist, and tail are small, a pull-up copy
713  * is considerably less costly than DMA mapping the components
714  * of @xdr.
715  *
716  * Assumptions:
717  *  - the caller has already verified that the total length
718  *    of the RPC Call body will fit into @rl_sendbuf.
719  */
720 static bool rpcrdma_prepare_noch_pullup(struct rpcrdma_xprt *r_xprt,
721 					struct rpcrdma_req *req,
722 					struct xdr_buf *xdr)
723 {
724 	if (unlikely(xdr->tail[0].iov_len))
725 		rpcrdma_pullup_tail_iov(r_xprt, req, xdr);
726 
727 	if (unlikely(xdr->page_len))
728 		rpcrdma_pullup_pagelist(r_xprt, req, xdr);
729 
730 	/* The whole RPC message resides in the head iovec now */
731 	return rpcrdma_prepare_head_iov(r_xprt, req, xdr->len);
732 }
733 
734 static bool rpcrdma_prepare_noch_mapped(struct rpcrdma_xprt *r_xprt,
735 					struct rpcrdma_req *req,
736 					struct xdr_buf *xdr)
737 {
738 	struct kvec *tail = &xdr->tail[0];
739 
740 	if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len))
741 		return false;
742 	if (xdr->page_len)
743 		if (!rpcrdma_prepare_pagelist(req, xdr))
744 			return false;
745 	if (tail->iov_len)
746 		if (!rpcrdma_prepare_tail_iov(req, xdr,
747 					      offset_in_page(tail->iov_base),
748 					      tail->iov_len))
749 			return false;
750 
751 	if (req->rl_sendctx->sc_unmap_count)
752 		kref_get(&req->rl_kref);
753 	return true;
754 }
755 
756 static bool rpcrdma_prepare_readch(struct rpcrdma_xprt *r_xprt,
757 				   struct rpcrdma_req *req,
758 				   struct xdr_buf *xdr)
759 {
760 	if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len))
761 		return false;
762 
763 	/* If there is a Read chunk, the page list is being handled
764 	 * via explicit RDMA, and thus is skipped here.
765 	 */
766 
767 	/* Do not include the tail if it is only an XDR pad */
768 	if (xdr->tail[0].iov_len > 3) {
769 		unsigned int page_base, len;
770 
771 		/* If the content in the page list is an odd length,
772 		 * xdr_write_pages() adds a pad at the beginning of
773 		 * the tail iovec. Force the tail's non-pad content to
774 		 * land at the next XDR position in the Send message.
775 		 */
776 		page_base = offset_in_page(xdr->tail[0].iov_base);
777 		len = xdr->tail[0].iov_len;
778 		page_base += len & 3;
779 		len -= len & 3;
780 		if (!rpcrdma_prepare_tail_iov(req, xdr, page_base, len))
781 			return false;
782 		kref_get(&req->rl_kref);
783 	}
784 
785 	return true;
786 }
787 
788 /**
789  * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR
790  * @r_xprt: controlling transport
791  * @req: context of RPC Call being marshalled
792  * @hdrlen: size of transport header, in bytes
793  * @xdr: xdr_buf containing RPC Call
794  * @rtype: chunk type being encoded
795  *
796  * Returns 0 on success; otherwise a negative errno is returned.
797  */
798 inline int rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
799 				     struct rpcrdma_req *req, u32 hdrlen,
800 				     struct xdr_buf *xdr,
801 				     enum rpcrdma_chunktype rtype)
802 {
803 	int ret;
804 
805 	ret = -EAGAIN;
806 	req->rl_sendctx = rpcrdma_sendctx_get_locked(r_xprt);
807 	if (!req->rl_sendctx)
808 		goto out_nosc;
809 	req->rl_sendctx->sc_unmap_count = 0;
810 	req->rl_sendctx->sc_req = req;
811 	kref_init(&req->rl_kref);
812 	req->rl_wr.wr_cqe = &req->rl_sendctx->sc_cqe;
813 	req->rl_wr.sg_list = req->rl_sendctx->sc_sges;
814 	req->rl_wr.num_sge = 0;
815 	req->rl_wr.opcode = IB_WR_SEND;
816 
817 	rpcrdma_prepare_hdr_sge(r_xprt, req, hdrlen);
818 
819 	ret = -EIO;
820 	switch (rtype) {
821 	case rpcrdma_noch_pullup:
822 		if (!rpcrdma_prepare_noch_pullup(r_xprt, req, xdr))
823 			goto out_unmap;
824 		break;
825 	case rpcrdma_noch_mapped:
826 		if (!rpcrdma_prepare_noch_mapped(r_xprt, req, xdr))
827 			goto out_unmap;
828 		break;
829 	case rpcrdma_readch:
830 		if (!rpcrdma_prepare_readch(r_xprt, req, xdr))
831 			goto out_unmap;
832 		break;
833 	case rpcrdma_areadch:
834 		break;
835 	default:
836 		goto out_unmap;
837 	}
838 
839 	return 0;
840 
841 out_unmap:
842 	rpcrdma_sendctx_unmap(req->rl_sendctx);
843 out_nosc:
844 	trace_xprtrdma_prepsend_failed(&req->rl_slot, ret);
845 	return ret;
846 }
847 
848 /**
849  * rpcrdma_marshal_req - Marshal and send one RPC request
850  * @r_xprt: controlling transport
851  * @rqst: RPC request to be marshaled
852  *
853  * For the RPC in "rqst", this function:
854  *  - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
855  *  - Registers Read, Write, and Reply chunks
856  *  - Constructs the transport header
857  *  - Posts a Send WR to send the transport header and request
858  *
859  * Returns:
860  *	%0 if the RPC was sent successfully,
861  *	%-ENOTCONN if the connection was lost,
862  *	%-EAGAIN if the caller should call again with the same arguments,
863  *	%-ENOBUFS if the caller should call again after a delay,
864  *	%-EMSGSIZE if the transport header is too small,
865  *	%-EIO if a permanent problem occurred while marshaling.
866  */
867 int
868 rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
869 {
870 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
871 	struct xdr_stream *xdr = &req->rl_stream;
872 	enum rpcrdma_chunktype rtype, wtype;
873 	struct xdr_buf *buf = &rqst->rq_snd_buf;
874 	bool ddp_allowed;
875 	__be32 *p;
876 	int ret;
877 
878 	rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
879 	xdr_init_encode(xdr, &req->rl_hdrbuf, rdmab_data(req->rl_rdmabuf),
880 			rqst);
881 
882 	/* Fixed header fields */
883 	ret = -EMSGSIZE;
884 	p = xdr_reserve_space(xdr, 4 * sizeof(*p));
885 	if (!p)
886 		goto out_err;
887 	*p++ = rqst->rq_xid;
888 	*p++ = rpcrdma_version;
889 	*p++ = r_xprt->rx_buf.rb_max_requests;
890 
891 	/* When the ULP employs a GSS flavor that guarantees integrity
892 	 * or privacy, direct data placement of individual data items
893 	 * is not allowed.
894 	 */
895 	ddp_allowed = !test_bit(RPCAUTH_AUTH_DATATOUCH,
896 				&rqst->rq_cred->cr_auth->au_flags);
897 
898 	/*
899 	 * Chunks needed for results?
900 	 *
901 	 * o If the expected result is under the inline threshold, all ops
902 	 *   return as inline.
903 	 * o Large read ops return data as write chunk(s), header as
904 	 *   inline.
905 	 * o Large non-read ops return as a single reply chunk.
906 	 */
907 	if (rpcrdma_results_inline(r_xprt, rqst))
908 		wtype = rpcrdma_noch;
909 	else if ((ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) &&
910 		 rpcrdma_nonpayload_inline(r_xprt, rqst))
911 		wtype = rpcrdma_writech;
912 	else
913 		wtype = rpcrdma_replych;
914 
915 	/*
916 	 * Chunks needed for arguments?
917 	 *
918 	 * o If the total request is under the inline threshold, all ops
919 	 *   are sent as inline.
920 	 * o Large write ops transmit data as read chunk(s), header as
921 	 *   inline.
922 	 * o Large non-write ops are sent with the entire message as a
923 	 *   single read chunk (protocol 0-position special case).
924 	 *
925 	 * This assumes that the upper layer does not present a request
926 	 * that both has a data payload, and whose non-data arguments
927 	 * by themselves are larger than the inline threshold.
928 	 */
929 	if (rpcrdma_args_inline(r_xprt, rqst)) {
930 		*p++ = rdma_msg;
931 		rtype = buf->len < rdmab_length(req->rl_sendbuf) ?
932 			rpcrdma_noch_pullup : rpcrdma_noch_mapped;
933 	} else if (ddp_allowed && buf->flags & XDRBUF_WRITE) {
934 		*p++ = rdma_msg;
935 		rtype = rpcrdma_readch;
936 	} else {
937 		r_xprt->rx_stats.nomsg_call_count++;
938 		*p++ = rdma_nomsg;
939 		rtype = rpcrdma_areadch;
940 	}
941 
942 	/* This implementation supports the following combinations
943 	 * of chunk lists in one RPC-over-RDMA Call message:
944 	 *
945 	 *   - Read list
946 	 *   - Write list
947 	 *   - Reply chunk
948 	 *   - Read list + Reply chunk
949 	 *
950 	 * It might not yet support the following combinations:
951 	 *
952 	 *   - Read list + Write list
953 	 *
954 	 * It does not support the following combinations:
955 	 *
956 	 *   - Write list + Reply chunk
957 	 *   - Read list + Write list + Reply chunk
958 	 *
959 	 * This implementation supports only a single chunk in each
960 	 * Read or Write list. Thus for example the client cannot
961 	 * send a Call message with a Position Zero Read chunk and a
962 	 * regular Read chunk at the same time.
963 	 */
964 	ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
965 	if (ret)
966 		goto out_err;
967 	ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
968 	if (ret)
969 		goto out_err;
970 	ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
971 	if (ret)
972 		goto out_err;
973 
974 	ret = rpcrdma_prepare_send_sges(r_xprt, req, req->rl_hdrbuf.len,
975 					buf, rtype);
976 	if (ret)
977 		goto out_err;
978 
979 	trace_xprtrdma_marshal(req, rtype, wtype);
980 	return 0;
981 
982 out_err:
983 	trace_xprtrdma_marshal_failed(rqst, ret);
984 	r_xprt->rx_stats.failed_marshal_count++;
985 	frwr_reset(req);
986 	return ret;
987 }
988 
989 static void __rpcrdma_update_cwnd_locked(struct rpc_xprt *xprt,
990 					 struct rpcrdma_buffer *buf,
991 					 u32 grant)
992 {
993 	buf->rb_credits = grant;
994 	xprt->cwnd = grant << RPC_CWNDSHIFT;
995 }
996 
997 static void rpcrdma_update_cwnd(struct rpcrdma_xprt *r_xprt, u32 grant)
998 {
999 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1000 
1001 	spin_lock(&xprt->transport_lock);
1002 	__rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, grant);
1003 	spin_unlock(&xprt->transport_lock);
1004 }
1005 
1006 /**
1007  * rpcrdma_reset_cwnd - Reset the xprt's congestion window
1008  * @r_xprt: controlling transport instance
1009  *
1010  * Prepare @r_xprt for the next connection by reinitializing
1011  * its credit grant to one (see RFC 8166, Section 3.3.3).
1012  */
1013 void rpcrdma_reset_cwnd(struct rpcrdma_xprt *r_xprt)
1014 {
1015 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1016 
1017 	spin_lock(&xprt->transport_lock);
1018 	xprt->cong = 0;
1019 	__rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, 1);
1020 	spin_unlock(&xprt->transport_lock);
1021 }
1022 
1023 /**
1024  * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
1025  * @rqst: controlling RPC request
1026  * @srcp: points to RPC message payload in receive buffer
1027  * @copy_len: remaining length of receive buffer content
1028  * @pad: Write chunk pad bytes needed (zero for pure inline)
1029  *
1030  * The upper layer has set the maximum number of bytes it can
1031  * receive in each component of rq_rcv_buf. These values are set in
1032  * the head.iov_len, page_len, tail.iov_len, and buflen fields.
1033  *
1034  * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
1035  * many cases this function simply updates iov_base pointers in
1036  * rq_rcv_buf to point directly to the received reply data, to
1037  * avoid copying reply data.
1038  *
1039  * Returns the count of bytes which had to be memcopied.
1040  */
1041 static unsigned long
1042 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
1043 {
1044 	unsigned long fixup_copy_count;
1045 	int i, npages, curlen;
1046 	char *destp;
1047 	struct page **ppages;
1048 	int page_base;
1049 
1050 	/* The head iovec is redirected to the RPC reply message
1051 	 * in the receive buffer, to avoid a memcopy.
1052 	 */
1053 	rqst->rq_rcv_buf.head[0].iov_base = srcp;
1054 	rqst->rq_private_buf.head[0].iov_base = srcp;
1055 
1056 	/* The contents of the receive buffer that follow
1057 	 * head.iov_len bytes are copied into the page list.
1058 	 */
1059 	curlen = rqst->rq_rcv_buf.head[0].iov_len;
1060 	if (curlen > copy_len)
1061 		curlen = copy_len;
1062 	srcp += curlen;
1063 	copy_len -= curlen;
1064 
1065 	ppages = rqst->rq_rcv_buf.pages +
1066 		(rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
1067 	page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
1068 	fixup_copy_count = 0;
1069 	if (copy_len && rqst->rq_rcv_buf.page_len) {
1070 		int pagelist_len;
1071 
1072 		pagelist_len = rqst->rq_rcv_buf.page_len;
1073 		if (pagelist_len > copy_len)
1074 			pagelist_len = copy_len;
1075 		npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
1076 		for (i = 0; i < npages; i++) {
1077 			curlen = PAGE_SIZE - page_base;
1078 			if (curlen > pagelist_len)
1079 				curlen = pagelist_len;
1080 
1081 			destp = kmap_atomic(ppages[i]);
1082 			memcpy(destp + page_base, srcp, curlen);
1083 			flush_dcache_page(ppages[i]);
1084 			kunmap_atomic(destp);
1085 			srcp += curlen;
1086 			copy_len -= curlen;
1087 			fixup_copy_count += curlen;
1088 			pagelist_len -= curlen;
1089 			if (!pagelist_len)
1090 				break;
1091 			page_base = 0;
1092 		}
1093 
1094 		/* Implicit padding for the last segment in a Write
1095 		 * chunk is inserted inline at the front of the tail
1096 		 * iovec. The upper layer ignores the content of
1097 		 * the pad. Simply ensure inline content in the tail
1098 		 * that follows the Write chunk is properly aligned.
1099 		 */
1100 		if (pad)
1101 			srcp -= pad;
1102 	}
1103 
1104 	/* The tail iovec is redirected to the remaining data
1105 	 * in the receive buffer, to avoid a memcopy.
1106 	 */
1107 	if (copy_len || pad) {
1108 		rqst->rq_rcv_buf.tail[0].iov_base = srcp;
1109 		rqst->rq_private_buf.tail[0].iov_base = srcp;
1110 	}
1111 
1112 	if (fixup_copy_count)
1113 		trace_xprtrdma_fixup(rqst, fixup_copy_count);
1114 	return fixup_copy_count;
1115 }
1116 
1117 /* By convention, backchannel calls arrive via rdma_msg type
1118  * messages, and never populate the chunk lists. This makes
1119  * the RPC/RDMA header small and fixed in size, so it is
1120  * straightforward to check the RPC header's direction field.
1121  */
1122 static bool
1123 rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1124 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1125 {
1126 	struct xdr_stream *xdr = &rep->rr_stream;
1127 	__be32 *p;
1128 
1129 	if (rep->rr_proc != rdma_msg)
1130 		return false;
1131 
1132 	/* Peek at stream contents without advancing. */
1133 	p = xdr_inline_decode(xdr, 0);
1134 
1135 	/* Chunk lists */
1136 	if (*p++ != xdr_zero)
1137 		return false;
1138 	if (*p++ != xdr_zero)
1139 		return false;
1140 	if (*p++ != xdr_zero)
1141 		return false;
1142 
1143 	/* RPC header */
1144 	if (*p++ != rep->rr_xid)
1145 		return false;
1146 	if (*p != cpu_to_be32(RPC_CALL))
1147 		return false;
1148 
1149 	/* Now that we are sure this is a backchannel call,
1150 	 * advance to the RPC header.
1151 	 */
1152 	p = xdr_inline_decode(xdr, 3 * sizeof(*p));
1153 	if (unlikely(!p))
1154 		goto out_short;
1155 
1156 	rpcrdma_bc_receive_call(r_xprt, rep);
1157 	return true;
1158 
1159 out_short:
1160 	pr_warn("RPC/RDMA short backward direction call\n");
1161 	return true;
1162 }
1163 #else	/* CONFIG_SUNRPC_BACKCHANNEL */
1164 {
1165 	return false;
1166 }
1167 #endif	/* CONFIG_SUNRPC_BACKCHANNEL */
1168 
1169 static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
1170 {
1171 	u32 handle;
1172 	u64 offset;
1173 	__be32 *p;
1174 
1175 	p = xdr_inline_decode(xdr, 4 * sizeof(*p));
1176 	if (unlikely(!p))
1177 		return -EIO;
1178 
1179 	handle = be32_to_cpup(p++);
1180 	*length = be32_to_cpup(p++);
1181 	xdr_decode_hyper(p, &offset);
1182 
1183 	trace_xprtrdma_decode_seg(handle, *length, offset);
1184 	return 0;
1185 }
1186 
1187 static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
1188 {
1189 	u32 segcount, seglength;
1190 	__be32 *p;
1191 
1192 	p = xdr_inline_decode(xdr, sizeof(*p));
1193 	if (unlikely(!p))
1194 		return -EIO;
1195 
1196 	*length = 0;
1197 	segcount = be32_to_cpup(p);
1198 	while (segcount--) {
1199 		if (decode_rdma_segment(xdr, &seglength))
1200 			return -EIO;
1201 		*length += seglength;
1202 	}
1203 
1204 	return 0;
1205 }
1206 
1207 /* In RPC-over-RDMA Version One replies, a Read list is never
1208  * expected. This decoder is a stub that returns an error if
1209  * a Read list is present.
1210  */
1211 static int decode_read_list(struct xdr_stream *xdr)
1212 {
1213 	__be32 *p;
1214 
1215 	p = xdr_inline_decode(xdr, sizeof(*p));
1216 	if (unlikely(!p))
1217 		return -EIO;
1218 	if (unlikely(*p != xdr_zero))
1219 		return -EIO;
1220 	return 0;
1221 }
1222 
1223 /* Supports only one Write chunk in the Write list
1224  */
1225 static int decode_write_list(struct xdr_stream *xdr, u32 *length)
1226 {
1227 	u32 chunklen;
1228 	bool first;
1229 	__be32 *p;
1230 
1231 	*length = 0;
1232 	first = true;
1233 	do {
1234 		p = xdr_inline_decode(xdr, sizeof(*p));
1235 		if (unlikely(!p))
1236 			return -EIO;
1237 		if (*p == xdr_zero)
1238 			break;
1239 		if (!first)
1240 			return -EIO;
1241 
1242 		if (decode_write_chunk(xdr, &chunklen))
1243 			return -EIO;
1244 		*length += chunklen;
1245 		first = false;
1246 	} while (true);
1247 	return 0;
1248 }
1249 
1250 static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
1251 {
1252 	__be32 *p;
1253 
1254 	p = xdr_inline_decode(xdr, sizeof(*p));
1255 	if (unlikely(!p))
1256 		return -EIO;
1257 
1258 	*length = 0;
1259 	if (*p != xdr_zero)
1260 		if (decode_write_chunk(xdr, length))
1261 			return -EIO;
1262 	return 0;
1263 }
1264 
1265 static int
1266 rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1267 		   struct rpc_rqst *rqst)
1268 {
1269 	struct xdr_stream *xdr = &rep->rr_stream;
1270 	u32 writelist, replychunk, rpclen;
1271 	char *base;
1272 
1273 	/* Decode the chunk lists */
1274 	if (decode_read_list(xdr))
1275 		return -EIO;
1276 	if (decode_write_list(xdr, &writelist))
1277 		return -EIO;
1278 	if (decode_reply_chunk(xdr, &replychunk))
1279 		return -EIO;
1280 
1281 	/* RDMA_MSG sanity checks */
1282 	if (unlikely(replychunk))
1283 		return -EIO;
1284 
1285 	/* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
1286 	base = (char *)xdr_inline_decode(xdr, 0);
1287 	rpclen = xdr_stream_remaining(xdr);
1288 	r_xprt->rx_stats.fixup_copy_count +=
1289 		rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
1290 
1291 	r_xprt->rx_stats.total_rdma_reply += writelist;
1292 	return rpclen + xdr_align_size(writelist);
1293 }
1294 
1295 static noinline int
1296 rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1297 {
1298 	struct xdr_stream *xdr = &rep->rr_stream;
1299 	u32 writelist, replychunk;
1300 
1301 	/* Decode the chunk lists */
1302 	if (decode_read_list(xdr))
1303 		return -EIO;
1304 	if (decode_write_list(xdr, &writelist))
1305 		return -EIO;
1306 	if (decode_reply_chunk(xdr, &replychunk))
1307 		return -EIO;
1308 
1309 	/* RDMA_NOMSG sanity checks */
1310 	if (unlikely(writelist))
1311 		return -EIO;
1312 	if (unlikely(!replychunk))
1313 		return -EIO;
1314 
1315 	/* Reply chunk buffer already is the reply vector */
1316 	r_xprt->rx_stats.total_rdma_reply += replychunk;
1317 	return replychunk;
1318 }
1319 
1320 static noinline int
1321 rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1322 		     struct rpc_rqst *rqst)
1323 {
1324 	struct xdr_stream *xdr = &rep->rr_stream;
1325 	__be32 *p;
1326 
1327 	p = xdr_inline_decode(xdr, sizeof(*p));
1328 	if (unlikely(!p))
1329 		return -EIO;
1330 
1331 	switch (*p) {
1332 	case err_vers:
1333 		p = xdr_inline_decode(xdr, 2 * sizeof(*p));
1334 		if (!p)
1335 			break;
1336 		dprintk("RPC:       %s: server reports "
1337 			"version error (%u-%u), xid %08x\n", __func__,
1338 			be32_to_cpup(p), be32_to_cpu(*(p + 1)),
1339 			be32_to_cpu(rep->rr_xid));
1340 		break;
1341 	case err_chunk:
1342 		dprintk("RPC:       %s: server reports "
1343 			"header decoding error, xid %08x\n", __func__,
1344 			be32_to_cpu(rep->rr_xid));
1345 		break;
1346 	default:
1347 		dprintk("RPC:       %s: server reports "
1348 			"unrecognized error %d, xid %08x\n", __func__,
1349 			be32_to_cpup(p), be32_to_cpu(rep->rr_xid));
1350 	}
1351 
1352 	r_xprt->rx_stats.bad_reply_count++;
1353 	return -EREMOTEIO;
1354 }
1355 
1356 /* Perform XID lookup, reconstruction of the RPC reply, and
1357  * RPC completion while holding the transport lock to ensure
1358  * the rep, rqst, and rq_task pointers remain stable.
1359  */
1360 void rpcrdma_complete_rqst(struct rpcrdma_rep *rep)
1361 {
1362 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1363 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1364 	struct rpc_rqst *rqst = rep->rr_rqst;
1365 	int status;
1366 
1367 	switch (rep->rr_proc) {
1368 	case rdma_msg:
1369 		status = rpcrdma_decode_msg(r_xprt, rep, rqst);
1370 		break;
1371 	case rdma_nomsg:
1372 		status = rpcrdma_decode_nomsg(r_xprt, rep);
1373 		break;
1374 	case rdma_error:
1375 		status = rpcrdma_decode_error(r_xprt, rep, rqst);
1376 		break;
1377 	default:
1378 		status = -EIO;
1379 	}
1380 	if (status < 0)
1381 		goto out_badheader;
1382 
1383 out:
1384 	spin_lock(&xprt->queue_lock);
1385 	xprt_complete_rqst(rqst->rq_task, status);
1386 	xprt_unpin_rqst(rqst);
1387 	spin_unlock(&xprt->queue_lock);
1388 	return;
1389 
1390 /* If the incoming reply terminated a pending RPC, the next
1391  * RPC call will post a replacement receive buffer as it is
1392  * being marshaled.
1393  */
1394 out_badheader:
1395 	trace_xprtrdma_reply_hdr(rep);
1396 	r_xprt->rx_stats.bad_reply_count++;
1397 	goto out;
1398 }
1399 
1400 static void rpcrdma_reply_done(struct kref *kref)
1401 {
1402 	struct rpcrdma_req *req =
1403 		container_of(kref, struct rpcrdma_req, rl_kref);
1404 
1405 	rpcrdma_complete_rqst(req->rl_reply);
1406 }
1407 
1408 /**
1409  * rpcrdma_reply_handler - Process received RPC/RDMA messages
1410  * @rep: Incoming rpcrdma_rep object to process
1411  *
1412  * Errors must result in the RPC task either being awakened, or
1413  * allowed to timeout, to discover the errors at that time.
1414  */
1415 void rpcrdma_reply_handler(struct rpcrdma_rep *rep)
1416 {
1417 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1418 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1419 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1420 	struct rpcrdma_req *req;
1421 	struct rpc_rqst *rqst;
1422 	u32 credits;
1423 	__be32 *p;
1424 
1425 	/* Any data means we had a useful conversation, so
1426 	 * then we don't need to delay the next reconnect.
1427 	 */
1428 	if (xprt->reestablish_timeout)
1429 		xprt->reestablish_timeout = 0;
1430 
1431 	/* Fixed transport header fields */
1432 	xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf,
1433 			rep->rr_hdrbuf.head[0].iov_base, NULL);
1434 	p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p));
1435 	if (unlikely(!p))
1436 		goto out_shortreply;
1437 	rep->rr_xid = *p++;
1438 	rep->rr_vers = *p++;
1439 	credits = be32_to_cpu(*p++);
1440 	rep->rr_proc = *p++;
1441 
1442 	if (rep->rr_vers != rpcrdma_version)
1443 		goto out_badversion;
1444 
1445 	if (rpcrdma_is_bcall(r_xprt, rep))
1446 		return;
1447 
1448 	/* Match incoming rpcrdma_rep to an rpcrdma_req to
1449 	 * get context for handling any incoming chunks.
1450 	 */
1451 	spin_lock(&xprt->queue_lock);
1452 	rqst = xprt_lookup_rqst(xprt, rep->rr_xid);
1453 	if (!rqst)
1454 		goto out_norqst;
1455 	xprt_pin_rqst(rqst);
1456 	spin_unlock(&xprt->queue_lock);
1457 
1458 	if (credits == 0)
1459 		credits = 1;	/* don't deadlock */
1460 	else if (credits > r_xprt->rx_ep->re_max_requests)
1461 		credits = r_xprt->rx_ep->re_max_requests;
1462 	if (buf->rb_credits != credits)
1463 		rpcrdma_update_cwnd(r_xprt, credits);
1464 	rpcrdma_post_recvs(r_xprt, false);
1465 
1466 	req = rpcr_to_rdmar(rqst);
1467 	if (req->rl_reply) {
1468 		trace_xprtrdma_leaked_rep(rqst, req->rl_reply);
1469 		rpcrdma_recv_buffer_put(req->rl_reply);
1470 	}
1471 	req->rl_reply = rep;
1472 	rep->rr_rqst = rqst;
1473 
1474 	trace_xprtrdma_reply(rqst->rq_task, rep, req, credits);
1475 
1476 	if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE)
1477 		frwr_reminv(rep, &req->rl_registered);
1478 	if (!list_empty(&req->rl_registered))
1479 		frwr_unmap_async(r_xprt, req);
1480 		/* LocalInv completion will complete the RPC */
1481 	else
1482 		kref_put(&req->rl_kref, rpcrdma_reply_done);
1483 	return;
1484 
1485 out_badversion:
1486 	trace_xprtrdma_reply_vers(rep);
1487 	goto out;
1488 
1489 out_norqst:
1490 	spin_unlock(&xprt->queue_lock);
1491 	trace_xprtrdma_reply_rqst(rep);
1492 	goto out;
1493 
1494 out_shortreply:
1495 	trace_xprtrdma_reply_short(rep);
1496 
1497 out:
1498 	rpcrdma_recv_buffer_put(rep);
1499 }
1500