1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (c) 2014-2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the BSD-type 10 * license below: 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 19 * Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials provided 22 * with the distribution. 23 * 24 * Neither the name of the Network Appliance, Inc. nor the names of 25 * its contributors may be used to endorse or promote products 26 * derived from this software without specific prior written 27 * permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42 /* 43 * rpc_rdma.c 44 * 45 * This file contains the guts of the RPC RDMA protocol, and 46 * does marshaling/unmarshaling, etc. It is also where interfacing 47 * to the Linux RPC framework lives. 48 */ 49 50 #include <linux/highmem.h> 51 52 #include <linux/sunrpc/svc_rdma.h> 53 54 #include "xprt_rdma.h" 55 #include <trace/events/rpcrdma.h> 56 57 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 58 # define RPCDBG_FACILITY RPCDBG_TRANS 59 #endif 60 61 /* Returns size of largest RPC-over-RDMA header in a Call message 62 * 63 * The largest Call header contains a full-size Read list and a 64 * minimal Reply chunk. 65 */ 66 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs) 67 { 68 unsigned int size; 69 70 /* Fixed header fields and list discriminators */ 71 size = RPCRDMA_HDRLEN_MIN; 72 73 /* Maximum Read list size */ 74 size = maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32); 75 76 /* Minimal Read chunk size */ 77 size += sizeof(__be32); /* segment count */ 78 size += rpcrdma_segment_maxsz * sizeof(__be32); 79 size += sizeof(__be32); /* list discriminator */ 80 81 dprintk("RPC: %s: max call header size = %u\n", 82 __func__, size); 83 return size; 84 } 85 86 /* Returns size of largest RPC-over-RDMA header in a Reply message 87 * 88 * There is only one Write list or one Reply chunk per Reply 89 * message. The larger list is the Write list. 90 */ 91 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs) 92 { 93 unsigned int size; 94 95 /* Fixed header fields and list discriminators */ 96 size = RPCRDMA_HDRLEN_MIN; 97 98 /* Maximum Write list size */ 99 size = sizeof(__be32); /* segment count */ 100 size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32); 101 size += sizeof(__be32); /* list discriminator */ 102 103 dprintk("RPC: %s: max reply header size = %u\n", 104 __func__, size); 105 return size; 106 } 107 108 /** 109 * rpcrdma_set_max_header_sizes - Initialize inline payload sizes 110 * @r_xprt: transport instance to initialize 111 * 112 * The max_inline fields contain the maximum size of an RPC message 113 * so the marshaling code doesn't have to repeat this calculation 114 * for every RPC. 115 */ 116 void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt) 117 { 118 unsigned int maxsegs = r_xprt->rx_ia.ri_max_segs; 119 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 120 121 ep->rep_max_inline_send = 122 ep->rep_inline_send - rpcrdma_max_call_header_size(maxsegs); 123 ep->rep_max_inline_recv = 124 ep->rep_inline_recv - rpcrdma_max_reply_header_size(maxsegs); 125 } 126 127 /* The client can send a request inline as long as the RPCRDMA header 128 * plus the RPC call fit under the transport's inline limit. If the 129 * combined call message size exceeds that limit, the client must use 130 * a Read chunk for this operation. 131 * 132 * A Read chunk is also required if sending the RPC call inline would 133 * exceed this device's max_sge limit. 134 */ 135 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt, 136 struct rpc_rqst *rqst) 137 { 138 struct xdr_buf *xdr = &rqst->rq_snd_buf; 139 unsigned int count, remaining, offset; 140 141 if (xdr->len > r_xprt->rx_ep.rep_max_inline_send) 142 return false; 143 144 if (xdr->page_len) { 145 remaining = xdr->page_len; 146 offset = offset_in_page(xdr->page_base); 147 count = RPCRDMA_MIN_SEND_SGES; 148 while (remaining) { 149 remaining -= min_t(unsigned int, 150 PAGE_SIZE - offset, remaining); 151 offset = 0; 152 if (++count > r_xprt->rx_ia.ri_max_send_sges) 153 return false; 154 } 155 } 156 157 return true; 158 } 159 160 /* The client can't know how large the actual reply will be. Thus it 161 * plans for the largest possible reply for that particular ULP 162 * operation. If the maximum combined reply message size exceeds that 163 * limit, the client must provide a write list or a reply chunk for 164 * this request. 165 */ 166 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt, 167 struct rpc_rqst *rqst) 168 { 169 return rqst->rq_rcv_buf.buflen <= r_xprt->rx_ep.rep_max_inline_recv; 170 } 171 172 /* The client is required to provide a Reply chunk if the maximum 173 * size of the non-payload part of the RPC Reply is larger than 174 * the inline threshold. 175 */ 176 static bool 177 rpcrdma_nonpayload_inline(const struct rpcrdma_xprt *r_xprt, 178 const struct rpc_rqst *rqst) 179 { 180 const struct xdr_buf *buf = &rqst->rq_rcv_buf; 181 182 return (buf->head[0].iov_len + buf->tail[0].iov_len) < 183 r_xprt->rx_ep.rep_max_inline_recv; 184 } 185 186 /* Split @vec on page boundaries into SGEs. FMR registers pages, not 187 * a byte range. Other modes coalesce these SGEs into a single MR 188 * when they can. 189 * 190 * Returns pointer to next available SGE, and bumps the total number 191 * of SGEs consumed. 192 */ 193 static struct rpcrdma_mr_seg * 194 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg, 195 unsigned int *n) 196 { 197 u32 remaining, page_offset; 198 char *base; 199 200 base = vec->iov_base; 201 page_offset = offset_in_page(base); 202 remaining = vec->iov_len; 203 while (remaining) { 204 seg->mr_page = NULL; 205 seg->mr_offset = base; 206 seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining); 207 remaining -= seg->mr_len; 208 base += seg->mr_len; 209 ++seg; 210 ++(*n); 211 page_offset = 0; 212 } 213 return seg; 214 } 215 216 /* Convert @xdrbuf into SGEs no larger than a page each. As they 217 * are registered, these SGEs are then coalesced into RDMA segments 218 * when the selected memreg mode supports it. 219 * 220 * Returns positive number of SGEs consumed, or a negative errno. 221 */ 222 223 static int 224 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf, 225 unsigned int pos, enum rpcrdma_chunktype type, 226 struct rpcrdma_mr_seg *seg) 227 { 228 unsigned long page_base; 229 unsigned int len, n; 230 struct page **ppages; 231 232 n = 0; 233 if (pos == 0) 234 seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n); 235 236 len = xdrbuf->page_len; 237 ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT); 238 page_base = offset_in_page(xdrbuf->page_base); 239 while (len) { 240 /* ACL likes to be lazy in allocating pages - ACLs 241 * are small by default but can get huge. 242 */ 243 if (unlikely(xdrbuf->flags & XDRBUF_SPARSE_PAGES)) { 244 if (!*ppages) 245 *ppages = alloc_page(GFP_NOWAIT | __GFP_NOWARN); 246 if (!*ppages) 247 return -ENOBUFS; 248 } 249 seg->mr_page = *ppages; 250 seg->mr_offset = (char *)page_base; 251 seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len); 252 len -= seg->mr_len; 253 ++ppages; 254 ++seg; 255 ++n; 256 page_base = 0; 257 } 258 259 /* When encoding a Read chunk, the tail iovec contains an 260 * XDR pad and may be omitted. 261 */ 262 if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup) 263 goto out; 264 265 /* When encoding a Write chunk, some servers need to see an 266 * extra segment for non-XDR-aligned Write chunks. The upper 267 * layer provides space in the tail iovec that may be used 268 * for this purpose. 269 */ 270 if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup) 271 goto out; 272 273 if (xdrbuf->tail[0].iov_len) 274 seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n); 275 276 out: 277 if (unlikely(n > RPCRDMA_MAX_SEGS)) 278 return -EIO; 279 return n; 280 } 281 282 static inline int 283 encode_item_present(struct xdr_stream *xdr) 284 { 285 __be32 *p; 286 287 p = xdr_reserve_space(xdr, sizeof(*p)); 288 if (unlikely(!p)) 289 return -EMSGSIZE; 290 291 *p = xdr_one; 292 return 0; 293 } 294 295 static inline int 296 encode_item_not_present(struct xdr_stream *xdr) 297 { 298 __be32 *p; 299 300 p = xdr_reserve_space(xdr, sizeof(*p)); 301 if (unlikely(!p)) 302 return -EMSGSIZE; 303 304 *p = xdr_zero; 305 return 0; 306 } 307 308 static void 309 xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mr *mr) 310 { 311 *iptr++ = cpu_to_be32(mr->mr_handle); 312 *iptr++ = cpu_to_be32(mr->mr_length); 313 xdr_encode_hyper(iptr, mr->mr_offset); 314 } 315 316 static int 317 encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr) 318 { 319 __be32 *p; 320 321 p = xdr_reserve_space(xdr, 4 * sizeof(*p)); 322 if (unlikely(!p)) 323 return -EMSGSIZE; 324 325 xdr_encode_rdma_segment(p, mr); 326 return 0; 327 } 328 329 static int 330 encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr, 331 u32 position) 332 { 333 __be32 *p; 334 335 p = xdr_reserve_space(xdr, 6 * sizeof(*p)); 336 if (unlikely(!p)) 337 return -EMSGSIZE; 338 339 *p++ = xdr_one; /* Item present */ 340 *p++ = cpu_to_be32(position); 341 xdr_encode_rdma_segment(p, mr); 342 return 0; 343 } 344 345 /* Register and XDR encode the Read list. Supports encoding a list of read 346 * segments that belong to a single read chunk. 347 * 348 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): 349 * 350 * Read chunklist (a linked list): 351 * N elements, position P (same P for all chunks of same arg!): 352 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0 353 * 354 * Returns zero on success, or a negative errno if a failure occurred. 355 * @xdr is advanced to the next position in the stream. 356 * 357 * Only a single @pos value is currently supported. 358 */ 359 static noinline int 360 rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, 361 struct rpc_rqst *rqst, enum rpcrdma_chunktype rtype) 362 { 363 struct xdr_stream *xdr = &req->rl_stream; 364 struct rpcrdma_mr_seg *seg; 365 struct rpcrdma_mr *mr; 366 unsigned int pos; 367 int nsegs; 368 369 if (rtype == rpcrdma_noch) 370 goto done; 371 372 pos = rqst->rq_snd_buf.head[0].iov_len; 373 if (rtype == rpcrdma_areadch) 374 pos = 0; 375 seg = req->rl_segments; 376 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos, 377 rtype, seg); 378 if (nsegs < 0) 379 return nsegs; 380 381 do { 382 seg = frwr_map(r_xprt, seg, nsegs, false, rqst->rq_xid, &mr); 383 if (IS_ERR(seg)) 384 return PTR_ERR(seg); 385 rpcrdma_mr_push(mr, &req->rl_registered); 386 387 if (encode_read_segment(xdr, mr, pos) < 0) 388 return -EMSGSIZE; 389 390 trace_xprtrdma_chunk_read(rqst->rq_task, pos, mr, nsegs); 391 r_xprt->rx_stats.read_chunk_count++; 392 nsegs -= mr->mr_nents; 393 } while (nsegs); 394 395 done: 396 return encode_item_not_present(xdr); 397 } 398 399 /* Register and XDR encode the Write list. Supports encoding a list 400 * containing one array of plain segments that belong to a single 401 * write chunk. 402 * 403 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): 404 * 405 * Write chunklist (a list of (one) counted array): 406 * N elements: 407 * 1 - N - HLOO - HLOO - ... - HLOO - 0 408 * 409 * Returns zero on success, or a negative errno if a failure occurred. 410 * @xdr is advanced to the next position in the stream. 411 * 412 * Only a single Write chunk is currently supported. 413 */ 414 static noinline int 415 rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, 416 struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype) 417 { 418 struct xdr_stream *xdr = &req->rl_stream; 419 struct rpcrdma_mr_seg *seg; 420 struct rpcrdma_mr *mr; 421 int nsegs, nchunks; 422 __be32 *segcount; 423 424 if (wtype != rpcrdma_writech) 425 goto done; 426 427 seg = req->rl_segments; 428 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 429 rqst->rq_rcv_buf.head[0].iov_len, 430 wtype, seg); 431 if (nsegs < 0) 432 return nsegs; 433 434 if (encode_item_present(xdr) < 0) 435 return -EMSGSIZE; 436 segcount = xdr_reserve_space(xdr, sizeof(*segcount)); 437 if (unlikely(!segcount)) 438 return -EMSGSIZE; 439 /* Actual value encoded below */ 440 441 nchunks = 0; 442 do { 443 seg = frwr_map(r_xprt, seg, nsegs, true, rqst->rq_xid, &mr); 444 if (IS_ERR(seg)) 445 return PTR_ERR(seg); 446 rpcrdma_mr_push(mr, &req->rl_registered); 447 448 if (encode_rdma_segment(xdr, mr) < 0) 449 return -EMSGSIZE; 450 451 trace_xprtrdma_chunk_write(rqst->rq_task, mr, nsegs); 452 r_xprt->rx_stats.write_chunk_count++; 453 r_xprt->rx_stats.total_rdma_request += mr->mr_length; 454 nchunks++; 455 nsegs -= mr->mr_nents; 456 } while (nsegs); 457 458 /* Update count of segments in this Write chunk */ 459 *segcount = cpu_to_be32(nchunks); 460 461 done: 462 return encode_item_not_present(xdr); 463 } 464 465 /* Register and XDR encode the Reply chunk. Supports encoding an array 466 * of plain segments that belong to a single write (reply) chunk. 467 * 468 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): 469 * 470 * Reply chunk (a counted array): 471 * N elements: 472 * 1 - N - HLOO - HLOO - ... - HLOO 473 * 474 * Returns zero on success, or a negative errno if a failure occurred. 475 * @xdr is advanced to the next position in the stream. 476 */ 477 static noinline int 478 rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, 479 struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype) 480 { 481 struct xdr_stream *xdr = &req->rl_stream; 482 struct rpcrdma_mr_seg *seg; 483 struct rpcrdma_mr *mr; 484 int nsegs, nchunks; 485 __be32 *segcount; 486 487 if (wtype != rpcrdma_replych) 488 return encode_item_not_present(xdr); 489 490 seg = req->rl_segments; 491 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg); 492 if (nsegs < 0) 493 return nsegs; 494 495 if (encode_item_present(xdr) < 0) 496 return -EMSGSIZE; 497 segcount = xdr_reserve_space(xdr, sizeof(*segcount)); 498 if (unlikely(!segcount)) 499 return -EMSGSIZE; 500 /* Actual value encoded below */ 501 502 nchunks = 0; 503 do { 504 seg = frwr_map(r_xprt, seg, nsegs, true, rqst->rq_xid, &mr); 505 if (IS_ERR(seg)) 506 return PTR_ERR(seg); 507 rpcrdma_mr_push(mr, &req->rl_registered); 508 509 if (encode_rdma_segment(xdr, mr) < 0) 510 return -EMSGSIZE; 511 512 trace_xprtrdma_chunk_reply(rqst->rq_task, mr, nsegs); 513 r_xprt->rx_stats.reply_chunk_count++; 514 r_xprt->rx_stats.total_rdma_request += mr->mr_length; 515 nchunks++; 516 nsegs -= mr->mr_nents; 517 } while (nsegs); 518 519 /* Update count of segments in the Reply chunk */ 520 *segcount = cpu_to_be32(nchunks); 521 522 return 0; 523 } 524 525 static void rpcrdma_sendctx_done(struct kref *kref) 526 { 527 struct rpcrdma_req *req = 528 container_of(kref, struct rpcrdma_req, rl_kref); 529 struct rpcrdma_rep *rep = req->rl_reply; 530 531 rpcrdma_complete_rqst(rep); 532 rep->rr_rxprt->rx_stats.reply_waits_for_send++; 533 } 534 535 /** 536 * rpcrdma_sendctx_unmap - DMA-unmap Send buffer 537 * @sc: sendctx containing SGEs to unmap 538 * 539 */ 540 void rpcrdma_sendctx_unmap(struct rpcrdma_sendctx *sc) 541 { 542 struct ib_sge *sge; 543 544 if (!sc->sc_unmap_count) 545 return; 546 547 /* The first two SGEs contain the transport header and 548 * the inline buffer. These are always left mapped so 549 * they can be cheaply re-used. 550 */ 551 for (sge = &sc->sc_sges[2]; sc->sc_unmap_count; 552 ++sge, --sc->sc_unmap_count) 553 ib_dma_unmap_page(sc->sc_device, sge->addr, sge->length, 554 DMA_TO_DEVICE); 555 556 kref_put(&sc->sc_req->rl_kref, rpcrdma_sendctx_done); 557 } 558 559 /* Prepare an SGE for the RPC-over-RDMA transport header. 560 */ 561 static bool rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt *r_xprt, 562 struct rpcrdma_req *req, u32 len) 563 { 564 struct rpcrdma_sendctx *sc = req->rl_sendctx; 565 struct rpcrdma_regbuf *rb = req->rl_rdmabuf; 566 struct ib_sge *sge = sc->sc_sges; 567 568 if (!rpcrdma_regbuf_dma_map(r_xprt, rb)) 569 goto out_regbuf; 570 sge->addr = rdmab_addr(rb); 571 sge->length = len; 572 sge->lkey = rdmab_lkey(rb); 573 574 ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length, 575 DMA_TO_DEVICE); 576 sc->sc_wr.num_sge++; 577 return true; 578 579 out_regbuf: 580 pr_err("rpcrdma: failed to DMA map a Send buffer\n"); 581 return false; 582 } 583 584 /* Prepare the Send SGEs. The head and tail iovec, and each entry 585 * in the page list, gets its own SGE. 586 */ 587 static bool rpcrdma_prepare_msg_sges(struct rpcrdma_xprt *r_xprt, 588 struct rpcrdma_req *req, 589 struct xdr_buf *xdr, 590 enum rpcrdma_chunktype rtype) 591 { 592 struct rpcrdma_sendctx *sc = req->rl_sendctx; 593 unsigned int sge_no, page_base, len, remaining; 594 struct rpcrdma_regbuf *rb = req->rl_sendbuf; 595 struct ib_sge *sge = sc->sc_sges; 596 struct page *page, **ppages; 597 598 /* The head iovec is straightforward, as it is already 599 * DMA-mapped. Sync the content that has changed. 600 */ 601 if (!rpcrdma_regbuf_dma_map(r_xprt, rb)) 602 goto out_regbuf; 603 sc->sc_device = rdmab_device(rb); 604 sge_no = 1; 605 sge[sge_no].addr = rdmab_addr(rb); 606 sge[sge_no].length = xdr->head[0].iov_len; 607 sge[sge_no].lkey = rdmab_lkey(rb); 608 ib_dma_sync_single_for_device(rdmab_device(rb), sge[sge_no].addr, 609 sge[sge_no].length, DMA_TO_DEVICE); 610 611 /* If there is a Read chunk, the page list is being handled 612 * via explicit RDMA, and thus is skipped here. However, the 613 * tail iovec may include an XDR pad for the page list, as 614 * well as additional content, and may not reside in the 615 * same page as the head iovec. 616 */ 617 if (rtype == rpcrdma_readch) { 618 len = xdr->tail[0].iov_len; 619 620 /* Do not include the tail if it is only an XDR pad */ 621 if (len < 4) 622 goto out; 623 624 page = virt_to_page(xdr->tail[0].iov_base); 625 page_base = offset_in_page(xdr->tail[0].iov_base); 626 627 /* If the content in the page list is an odd length, 628 * xdr_write_pages() has added a pad at the beginning 629 * of the tail iovec. Force the tail's non-pad content 630 * to land at the next XDR position in the Send message. 631 */ 632 page_base += len & 3; 633 len -= len & 3; 634 goto map_tail; 635 } 636 637 /* If there is a page list present, temporarily DMA map 638 * and prepare an SGE for each page to be sent. 639 */ 640 if (xdr->page_len) { 641 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT); 642 page_base = offset_in_page(xdr->page_base); 643 remaining = xdr->page_len; 644 while (remaining) { 645 sge_no++; 646 if (sge_no > RPCRDMA_MAX_SEND_SGES - 2) 647 goto out_mapping_overflow; 648 649 len = min_t(u32, PAGE_SIZE - page_base, remaining); 650 sge[sge_no].addr = 651 ib_dma_map_page(rdmab_device(rb), *ppages, 652 page_base, len, DMA_TO_DEVICE); 653 if (ib_dma_mapping_error(rdmab_device(rb), 654 sge[sge_no].addr)) 655 goto out_mapping_err; 656 sge[sge_no].length = len; 657 sge[sge_no].lkey = rdmab_lkey(rb); 658 659 sc->sc_unmap_count++; 660 ppages++; 661 remaining -= len; 662 page_base = 0; 663 } 664 } 665 666 /* The tail iovec is not always constructed in the same 667 * page where the head iovec resides (see, for example, 668 * gss_wrap_req_priv). To neatly accommodate that case, 669 * DMA map it separately. 670 */ 671 if (xdr->tail[0].iov_len) { 672 page = virt_to_page(xdr->tail[0].iov_base); 673 page_base = offset_in_page(xdr->tail[0].iov_base); 674 len = xdr->tail[0].iov_len; 675 676 map_tail: 677 sge_no++; 678 sge[sge_no].addr = 679 ib_dma_map_page(rdmab_device(rb), page, page_base, len, 680 DMA_TO_DEVICE); 681 if (ib_dma_mapping_error(rdmab_device(rb), sge[sge_no].addr)) 682 goto out_mapping_err; 683 sge[sge_no].length = len; 684 sge[sge_no].lkey = rdmab_lkey(rb); 685 sc->sc_unmap_count++; 686 } 687 688 out: 689 sc->sc_wr.num_sge += sge_no; 690 if (sc->sc_unmap_count) 691 kref_get(&req->rl_kref); 692 return true; 693 694 out_regbuf: 695 pr_err("rpcrdma: failed to DMA map a Send buffer\n"); 696 return false; 697 698 out_mapping_overflow: 699 rpcrdma_sendctx_unmap(sc); 700 pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no); 701 return false; 702 703 out_mapping_err: 704 rpcrdma_sendctx_unmap(sc); 705 trace_xprtrdma_dma_maperr(sge[sge_no].addr); 706 return false; 707 } 708 709 /** 710 * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR 711 * @r_xprt: controlling transport 712 * @req: context of RPC Call being marshalled 713 * @hdrlen: size of transport header, in bytes 714 * @xdr: xdr_buf containing RPC Call 715 * @rtype: chunk type being encoded 716 * 717 * Returns 0 on success; otherwise a negative errno is returned. 718 */ 719 int 720 rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt, 721 struct rpcrdma_req *req, u32 hdrlen, 722 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype) 723 { 724 int ret; 725 726 ret = -EAGAIN; 727 req->rl_sendctx = rpcrdma_sendctx_get_locked(r_xprt); 728 if (!req->rl_sendctx) 729 goto err; 730 req->rl_sendctx->sc_wr.num_sge = 0; 731 req->rl_sendctx->sc_unmap_count = 0; 732 req->rl_sendctx->sc_req = req; 733 kref_init(&req->rl_kref); 734 735 ret = -EIO; 736 if (!rpcrdma_prepare_hdr_sge(r_xprt, req, hdrlen)) 737 goto err; 738 if (rtype != rpcrdma_areadch) 739 if (!rpcrdma_prepare_msg_sges(r_xprt, req, xdr, rtype)) 740 goto err; 741 return 0; 742 743 err: 744 trace_xprtrdma_prepsend_failed(&req->rl_slot, ret); 745 return ret; 746 } 747 748 /** 749 * rpcrdma_marshal_req - Marshal and send one RPC request 750 * @r_xprt: controlling transport 751 * @rqst: RPC request to be marshaled 752 * 753 * For the RPC in "rqst", this function: 754 * - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG) 755 * - Registers Read, Write, and Reply chunks 756 * - Constructs the transport header 757 * - Posts a Send WR to send the transport header and request 758 * 759 * Returns: 760 * %0 if the RPC was sent successfully, 761 * %-ENOTCONN if the connection was lost, 762 * %-EAGAIN if the caller should call again with the same arguments, 763 * %-ENOBUFS if the caller should call again after a delay, 764 * %-EMSGSIZE if the transport header is too small, 765 * %-EIO if a permanent problem occurred while marshaling. 766 */ 767 int 768 rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst) 769 { 770 struct rpcrdma_req *req = rpcr_to_rdmar(rqst); 771 struct xdr_stream *xdr = &req->rl_stream; 772 enum rpcrdma_chunktype rtype, wtype; 773 bool ddp_allowed; 774 __be32 *p; 775 int ret; 776 777 rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0); 778 xdr_init_encode(xdr, &req->rl_hdrbuf, rdmab_data(req->rl_rdmabuf), 779 rqst); 780 781 /* Fixed header fields */ 782 ret = -EMSGSIZE; 783 p = xdr_reserve_space(xdr, 4 * sizeof(*p)); 784 if (!p) 785 goto out_err; 786 *p++ = rqst->rq_xid; 787 *p++ = rpcrdma_version; 788 *p++ = cpu_to_be32(r_xprt->rx_buf.rb_max_requests); 789 790 /* When the ULP employs a GSS flavor that guarantees integrity 791 * or privacy, direct data placement of individual data items 792 * is not allowed. 793 */ 794 ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags & 795 RPCAUTH_AUTH_DATATOUCH); 796 797 /* 798 * Chunks needed for results? 799 * 800 * o If the expected result is under the inline threshold, all ops 801 * return as inline. 802 * o Large read ops return data as write chunk(s), header as 803 * inline. 804 * o Large non-read ops return as a single reply chunk. 805 */ 806 if (rpcrdma_results_inline(r_xprt, rqst)) 807 wtype = rpcrdma_noch; 808 else if ((ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) && 809 rpcrdma_nonpayload_inline(r_xprt, rqst)) 810 wtype = rpcrdma_writech; 811 else 812 wtype = rpcrdma_replych; 813 814 /* 815 * Chunks needed for arguments? 816 * 817 * o If the total request is under the inline threshold, all ops 818 * are sent as inline. 819 * o Large write ops transmit data as read chunk(s), header as 820 * inline. 821 * o Large non-write ops are sent with the entire message as a 822 * single read chunk (protocol 0-position special case). 823 * 824 * This assumes that the upper layer does not present a request 825 * that both has a data payload, and whose non-data arguments 826 * by themselves are larger than the inline threshold. 827 */ 828 if (rpcrdma_args_inline(r_xprt, rqst)) { 829 *p++ = rdma_msg; 830 rtype = rpcrdma_noch; 831 } else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) { 832 *p++ = rdma_msg; 833 rtype = rpcrdma_readch; 834 } else { 835 r_xprt->rx_stats.nomsg_call_count++; 836 *p++ = rdma_nomsg; 837 rtype = rpcrdma_areadch; 838 } 839 840 /* If this is a retransmit, discard previously registered 841 * chunks. Very likely the connection has been replaced, 842 * so these registrations are invalid and unusable. 843 */ 844 while (unlikely(!list_empty(&req->rl_registered))) { 845 struct rpcrdma_mr *mr; 846 847 mr = rpcrdma_mr_pop(&req->rl_registered); 848 rpcrdma_mr_recycle(mr); 849 } 850 851 /* This implementation supports the following combinations 852 * of chunk lists in one RPC-over-RDMA Call message: 853 * 854 * - Read list 855 * - Write list 856 * - Reply chunk 857 * - Read list + Reply chunk 858 * 859 * It might not yet support the following combinations: 860 * 861 * - Read list + Write list 862 * 863 * It does not support the following combinations: 864 * 865 * - Write list + Reply chunk 866 * - Read list + Write list + Reply chunk 867 * 868 * This implementation supports only a single chunk in each 869 * Read or Write list. Thus for example the client cannot 870 * send a Call message with a Position Zero Read chunk and a 871 * regular Read chunk at the same time. 872 */ 873 ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype); 874 if (ret) 875 goto out_err; 876 ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype); 877 if (ret) 878 goto out_err; 879 ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype); 880 if (ret) 881 goto out_err; 882 883 ret = rpcrdma_prepare_send_sges(r_xprt, req, req->rl_hdrbuf.len, 884 &rqst->rq_snd_buf, rtype); 885 if (ret) 886 goto out_err; 887 888 trace_xprtrdma_marshal(req, rtype, wtype); 889 return 0; 890 891 out_err: 892 trace_xprtrdma_marshal_failed(rqst, ret); 893 r_xprt->rx_stats.failed_marshal_count++; 894 frwr_reset(req); 895 return ret; 896 } 897 898 /** 899 * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs 900 * @rqst: controlling RPC request 901 * @srcp: points to RPC message payload in receive buffer 902 * @copy_len: remaining length of receive buffer content 903 * @pad: Write chunk pad bytes needed (zero for pure inline) 904 * 905 * The upper layer has set the maximum number of bytes it can 906 * receive in each component of rq_rcv_buf. These values are set in 907 * the head.iov_len, page_len, tail.iov_len, and buflen fields. 908 * 909 * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in 910 * many cases this function simply updates iov_base pointers in 911 * rq_rcv_buf to point directly to the received reply data, to 912 * avoid copying reply data. 913 * 914 * Returns the count of bytes which had to be memcopied. 915 */ 916 static unsigned long 917 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad) 918 { 919 unsigned long fixup_copy_count; 920 int i, npages, curlen; 921 char *destp; 922 struct page **ppages; 923 int page_base; 924 925 /* The head iovec is redirected to the RPC reply message 926 * in the receive buffer, to avoid a memcopy. 927 */ 928 rqst->rq_rcv_buf.head[0].iov_base = srcp; 929 rqst->rq_private_buf.head[0].iov_base = srcp; 930 931 /* The contents of the receive buffer that follow 932 * head.iov_len bytes are copied into the page list. 933 */ 934 curlen = rqst->rq_rcv_buf.head[0].iov_len; 935 if (curlen > copy_len) 936 curlen = copy_len; 937 trace_xprtrdma_fixup(rqst, copy_len, curlen); 938 srcp += curlen; 939 copy_len -= curlen; 940 941 ppages = rqst->rq_rcv_buf.pages + 942 (rqst->rq_rcv_buf.page_base >> PAGE_SHIFT); 943 page_base = offset_in_page(rqst->rq_rcv_buf.page_base); 944 fixup_copy_count = 0; 945 if (copy_len && rqst->rq_rcv_buf.page_len) { 946 int pagelist_len; 947 948 pagelist_len = rqst->rq_rcv_buf.page_len; 949 if (pagelist_len > copy_len) 950 pagelist_len = copy_len; 951 npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT; 952 for (i = 0; i < npages; i++) { 953 curlen = PAGE_SIZE - page_base; 954 if (curlen > pagelist_len) 955 curlen = pagelist_len; 956 957 trace_xprtrdma_fixup_pg(rqst, i, srcp, 958 copy_len, curlen); 959 destp = kmap_atomic(ppages[i]); 960 memcpy(destp + page_base, srcp, curlen); 961 flush_dcache_page(ppages[i]); 962 kunmap_atomic(destp); 963 srcp += curlen; 964 copy_len -= curlen; 965 fixup_copy_count += curlen; 966 pagelist_len -= curlen; 967 if (!pagelist_len) 968 break; 969 page_base = 0; 970 } 971 972 /* Implicit padding for the last segment in a Write 973 * chunk is inserted inline at the front of the tail 974 * iovec. The upper layer ignores the content of 975 * the pad. Simply ensure inline content in the tail 976 * that follows the Write chunk is properly aligned. 977 */ 978 if (pad) 979 srcp -= pad; 980 } 981 982 /* The tail iovec is redirected to the remaining data 983 * in the receive buffer, to avoid a memcopy. 984 */ 985 if (copy_len || pad) { 986 rqst->rq_rcv_buf.tail[0].iov_base = srcp; 987 rqst->rq_private_buf.tail[0].iov_base = srcp; 988 } 989 990 return fixup_copy_count; 991 } 992 993 /* By convention, backchannel calls arrive via rdma_msg type 994 * messages, and never populate the chunk lists. This makes 995 * the RPC/RDMA header small and fixed in size, so it is 996 * straightforward to check the RPC header's direction field. 997 */ 998 static bool 999 rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep) 1000 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1001 { 1002 struct xdr_stream *xdr = &rep->rr_stream; 1003 __be32 *p; 1004 1005 if (rep->rr_proc != rdma_msg) 1006 return false; 1007 1008 /* Peek at stream contents without advancing. */ 1009 p = xdr_inline_decode(xdr, 0); 1010 1011 /* Chunk lists */ 1012 if (*p++ != xdr_zero) 1013 return false; 1014 if (*p++ != xdr_zero) 1015 return false; 1016 if (*p++ != xdr_zero) 1017 return false; 1018 1019 /* RPC header */ 1020 if (*p++ != rep->rr_xid) 1021 return false; 1022 if (*p != cpu_to_be32(RPC_CALL)) 1023 return false; 1024 1025 /* Now that we are sure this is a backchannel call, 1026 * advance to the RPC header. 1027 */ 1028 p = xdr_inline_decode(xdr, 3 * sizeof(*p)); 1029 if (unlikely(!p)) 1030 goto out_short; 1031 1032 rpcrdma_bc_receive_call(r_xprt, rep); 1033 return true; 1034 1035 out_short: 1036 pr_warn("RPC/RDMA short backward direction call\n"); 1037 return true; 1038 } 1039 #else /* CONFIG_SUNRPC_BACKCHANNEL */ 1040 { 1041 return false; 1042 } 1043 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1044 1045 static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length) 1046 { 1047 u32 handle; 1048 u64 offset; 1049 __be32 *p; 1050 1051 p = xdr_inline_decode(xdr, 4 * sizeof(*p)); 1052 if (unlikely(!p)) 1053 return -EIO; 1054 1055 handle = be32_to_cpup(p++); 1056 *length = be32_to_cpup(p++); 1057 xdr_decode_hyper(p, &offset); 1058 1059 trace_xprtrdma_decode_seg(handle, *length, offset); 1060 return 0; 1061 } 1062 1063 static int decode_write_chunk(struct xdr_stream *xdr, u32 *length) 1064 { 1065 u32 segcount, seglength; 1066 __be32 *p; 1067 1068 p = xdr_inline_decode(xdr, sizeof(*p)); 1069 if (unlikely(!p)) 1070 return -EIO; 1071 1072 *length = 0; 1073 segcount = be32_to_cpup(p); 1074 while (segcount--) { 1075 if (decode_rdma_segment(xdr, &seglength)) 1076 return -EIO; 1077 *length += seglength; 1078 } 1079 1080 return 0; 1081 } 1082 1083 /* In RPC-over-RDMA Version One replies, a Read list is never 1084 * expected. This decoder is a stub that returns an error if 1085 * a Read list is present. 1086 */ 1087 static int decode_read_list(struct xdr_stream *xdr) 1088 { 1089 __be32 *p; 1090 1091 p = xdr_inline_decode(xdr, sizeof(*p)); 1092 if (unlikely(!p)) 1093 return -EIO; 1094 if (unlikely(*p != xdr_zero)) 1095 return -EIO; 1096 return 0; 1097 } 1098 1099 /* Supports only one Write chunk in the Write list 1100 */ 1101 static int decode_write_list(struct xdr_stream *xdr, u32 *length) 1102 { 1103 u32 chunklen; 1104 bool first; 1105 __be32 *p; 1106 1107 *length = 0; 1108 first = true; 1109 do { 1110 p = xdr_inline_decode(xdr, sizeof(*p)); 1111 if (unlikely(!p)) 1112 return -EIO; 1113 if (*p == xdr_zero) 1114 break; 1115 if (!first) 1116 return -EIO; 1117 1118 if (decode_write_chunk(xdr, &chunklen)) 1119 return -EIO; 1120 *length += chunklen; 1121 first = false; 1122 } while (true); 1123 return 0; 1124 } 1125 1126 static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length) 1127 { 1128 __be32 *p; 1129 1130 p = xdr_inline_decode(xdr, sizeof(*p)); 1131 if (unlikely(!p)) 1132 return -EIO; 1133 1134 *length = 0; 1135 if (*p != xdr_zero) 1136 if (decode_write_chunk(xdr, length)) 1137 return -EIO; 1138 return 0; 1139 } 1140 1141 static int 1142 rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep, 1143 struct rpc_rqst *rqst) 1144 { 1145 struct xdr_stream *xdr = &rep->rr_stream; 1146 u32 writelist, replychunk, rpclen; 1147 char *base; 1148 1149 /* Decode the chunk lists */ 1150 if (decode_read_list(xdr)) 1151 return -EIO; 1152 if (decode_write_list(xdr, &writelist)) 1153 return -EIO; 1154 if (decode_reply_chunk(xdr, &replychunk)) 1155 return -EIO; 1156 1157 /* RDMA_MSG sanity checks */ 1158 if (unlikely(replychunk)) 1159 return -EIO; 1160 1161 /* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */ 1162 base = (char *)xdr_inline_decode(xdr, 0); 1163 rpclen = xdr_stream_remaining(xdr); 1164 r_xprt->rx_stats.fixup_copy_count += 1165 rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3); 1166 1167 r_xprt->rx_stats.total_rdma_reply += writelist; 1168 return rpclen + xdr_align_size(writelist); 1169 } 1170 1171 static noinline int 1172 rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep) 1173 { 1174 struct xdr_stream *xdr = &rep->rr_stream; 1175 u32 writelist, replychunk; 1176 1177 /* Decode the chunk lists */ 1178 if (decode_read_list(xdr)) 1179 return -EIO; 1180 if (decode_write_list(xdr, &writelist)) 1181 return -EIO; 1182 if (decode_reply_chunk(xdr, &replychunk)) 1183 return -EIO; 1184 1185 /* RDMA_NOMSG sanity checks */ 1186 if (unlikely(writelist)) 1187 return -EIO; 1188 if (unlikely(!replychunk)) 1189 return -EIO; 1190 1191 /* Reply chunk buffer already is the reply vector */ 1192 r_xprt->rx_stats.total_rdma_reply += replychunk; 1193 return replychunk; 1194 } 1195 1196 static noinline int 1197 rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep, 1198 struct rpc_rqst *rqst) 1199 { 1200 struct xdr_stream *xdr = &rep->rr_stream; 1201 __be32 *p; 1202 1203 p = xdr_inline_decode(xdr, sizeof(*p)); 1204 if (unlikely(!p)) 1205 return -EIO; 1206 1207 switch (*p) { 1208 case err_vers: 1209 p = xdr_inline_decode(xdr, 2 * sizeof(*p)); 1210 if (!p) 1211 break; 1212 dprintk("RPC: %s: server reports " 1213 "version error (%u-%u), xid %08x\n", __func__, 1214 be32_to_cpup(p), be32_to_cpu(*(p + 1)), 1215 be32_to_cpu(rep->rr_xid)); 1216 break; 1217 case err_chunk: 1218 dprintk("RPC: %s: server reports " 1219 "header decoding error, xid %08x\n", __func__, 1220 be32_to_cpu(rep->rr_xid)); 1221 break; 1222 default: 1223 dprintk("RPC: %s: server reports " 1224 "unrecognized error %d, xid %08x\n", __func__, 1225 be32_to_cpup(p), be32_to_cpu(rep->rr_xid)); 1226 } 1227 1228 r_xprt->rx_stats.bad_reply_count++; 1229 return -EREMOTEIO; 1230 } 1231 1232 /* Perform XID lookup, reconstruction of the RPC reply, and 1233 * RPC completion while holding the transport lock to ensure 1234 * the rep, rqst, and rq_task pointers remain stable. 1235 */ 1236 void rpcrdma_complete_rqst(struct rpcrdma_rep *rep) 1237 { 1238 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; 1239 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 1240 struct rpc_rqst *rqst = rep->rr_rqst; 1241 int status; 1242 1243 xprt->reestablish_timeout = 0; 1244 1245 switch (rep->rr_proc) { 1246 case rdma_msg: 1247 status = rpcrdma_decode_msg(r_xprt, rep, rqst); 1248 break; 1249 case rdma_nomsg: 1250 status = rpcrdma_decode_nomsg(r_xprt, rep); 1251 break; 1252 case rdma_error: 1253 status = rpcrdma_decode_error(r_xprt, rep, rqst); 1254 break; 1255 default: 1256 status = -EIO; 1257 } 1258 if (status < 0) 1259 goto out_badheader; 1260 1261 out: 1262 spin_lock(&xprt->queue_lock); 1263 xprt_complete_rqst(rqst->rq_task, status); 1264 xprt_unpin_rqst(rqst); 1265 spin_unlock(&xprt->queue_lock); 1266 return; 1267 1268 /* If the incoming reply terminated a pending RPC, the next 1269 * RPC call will post a replacement receive buffer as it is 1270 * being marshaled. 1271 */ 1272 out_badheader: 1273 trace_xprtrdma_reply_hdr(rep); 1274 r_xprt->rx_stats.bad_reply_count++; 1275 goto out; 1276 } 1277 1278 static void rpcrdma_reply_done(struct kref *kref) 1279 { 1280 struct rpcrdma_req *req = 1281 container_of(kref, struct rpcrdma_req, rl_kref); 1282 1283 rpcrdma_complete_rqst(req->rl_reply); 1284 } 1285 1286 /** 1287 * rpcrdma_reply_handler - Process received RPC/RDMA messages 1288 * @rep: Incoming rpcrdma_rep object to process 1289 * 1290 * Errors must result in the RPC task either being awakened, or 1291 * allowed to timeout, to discover the errors at that time. 1292 */ 1293 void rpcrdma_reply_handler(struct rpcrdma_rep *rep) 1294 { 1295 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; 1296 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 1297 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1298 struct rpcrdma_req *req; 1299 struct rpc_rqst *rqst; 1300 u32 credits; 1301 __be32 *p; 1302 1303 /* Fixed transport header fields */ 1304 xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf, 1305 rep->rr_hdrbuf.head[0].iov_base, NULL); 1306 p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p)); 1307 if (unlikely(!p)) 1308 goto out_shortreply; 1309 rep->rr_xid = *p++; 1310 rep->rr_vers = *p++; 1311 credits = be32_to_cpu(*p++); 1312 rep->rr_proc = *p++; 1313 1314 if (rep->rr_vers != rpcrdma_version) 1315 goto out_badversion; 1316 1317 if (rpcrdma_is_bcall(r_xprt, rep)) 1318 return; 1319 1320 /* Match incoming rpcrdma_rep to an rpcrdma_req to 1321 * get context for handling any incoming chunks. 1322 */ 1323 spin_lock(&xprt->queue_lock); 1324 rqst = xprt_lookup_rqst(xprt, rep->rr_xid); 1325 if (!rqst) 1326 goto out_norqst; 1327 xprt_pin_rqst(rqst); 1328 spin_unlock(&xprt->queue_lock); 1329 1330 if (credits == 0) 1331 credits = 1; /* don't deadlock */ 1332 else if (credits > buf->rb_max_requests) 1333 credits = buf->rb_max_requests; 1334 if (buf->rb_credits != credits) { 1335 spin_lock(&xprt->transport_lock); 1336 buf->rb_credits = credits; 1337 xprt->cwnd = credits << RPC_CWNDSHIFT; 1338 spin_unlock(&xprt->transport_lock); 1339 } 1340 1341 req = rpcr_to_rdmar(rqst); 1342 if (req->rl_reply) { 1343 trace_xprtrdma_leaked_rep(rqst, req->rl_reply); 1344 rpcrdma_recv_buffer_put(req->rl_reply); 1345 } 1346 req->rl_reply = rep; 1347 rep->rr_rqst = rqst; 1348 1349 trace_xprtrdma_reply(rqst->rq_task, rep, req, credits); 1350 1351 if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE) 1352 frwr_reminv(rep, &req->rl_registered); 1353 if (!list_empty(&req->rl_registered)) 1354 frwr_unmap_async(r_xprt, req); 1355 /* LocalInv completion will complete the RPC */ 1356 else 1357 kref_put(&req->rl_kref, rpcrdma_reply_done); 1358 return; 1359 1360 out_badversion: 1361 trace_xprtrdma_reply_vers(rep); 1362 goto out; 1363 1364 out_norqst: 1365 spin_unlock(&xprt->queue_lock); 1366 trace_xprtrdma_reply_rqst(rep); 1367 goto out; 1368 1369 out_shortreply: 1370 trace_xprtrdma_reply_short(rep); 1371 1372 out: 1373 rpcrdma_recv_buffer_put(rep); 1374 } 1375