xref: /openbmc/linux/net/sunrpc/xprtrdma/rpc_rdma.c (revision 4800cd83)
1 /*
2  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * rpc_rdma.c
42  *
43  * This file contains the guts of the RPC RDMA protocol, and
44  * does marshaling/unmarshaling, etc. It is also where interfacing
45  * to the Linux RPC framework lives.
46  */
47 
48 #include "xprt_rdma.h"
49 
50 #include <linux/highmem.h>
51 
52 #ifdef RPC_DEBUG
53 # define RPCDBG_FACILITY	RPCDBG_TRANS
54 #endif
55 
56 enum rpcrdma_chunktype {
57 	rpcrdma_noch = 0,
58 	rpcrdma_readch,
59 	rpcrdma_areadch,
60 	rpcrdma_writech,
61 	rpcrdma_replych
62 };
63 
64 #ifdef RPC_DEBUG
65 static const char transfertypes[][12] = {
66 	"pure inline",	/* no chunks */
67 	" read chunk",	/* some argument via rdma read */
68 	"*read chunk",	/* entire request via rdma read */
69 	"write chunk",	/* some result via rdma write */
70 	"reply chunk"	/* entire reply via rdma write */
71 };
72 #endif
73 
74 /*
75  * Chunk assembly from upper layer xdr_buf.
76  *
77  * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
78  * elements. Segments are then coalesced when registered, if possible
79  * within the selected memreg mode.
80  *
81  * Note, this routine is never called if the connection's memory
82  * registration strategy is 0 (bounce buffers).
83  */
84 
85 static int
86 rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
87 	enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
88 {
89 	int len, n = 0, p;
90 
91 	if (pos == 0 && xdrbuf->head[0].iov_len) {
92 		seg[n].mr_page = NULL;
93 		seg[n].mr_offset = xdrbuf->head[0].iov_base;
94 		seg[n].mr_len = xdrbuf->head[0].iov_len;
95 		++n;
96 	}
97 
98 	if (xdrbuf->page_len && (xdrbuf->pages[0] != NULL)) {
99 		if (n == nsegs)
100 			return 0;
101 		seg[n].mr_page = xdrbuf->pages[0];
102 		seg[n].mr_offset = (void *)(unsigned long) xdrbuf->page_base;
103 		seg[n].mr_len = min_t(u32,
104 			PAGE_SIZE - xdrbuf->page_base, xdrbuf->page_len);
105 		len = xdrbuf->page_len - seg[n].mr_len;
106 		++n;
107 		p = 1;
108 		while (len > 0) {
109 			if (n == nsegs)
110 				return 0;
111 			seg[n].mr_page = xdrbuf->pages[p];
112 			seg[n].mr_offset = NULL;
113 			seg[n].mr_len = min_t(u32, PAGE_SIZE, len);
114 			len -= seg[n].mr_len;
115 			++n;
116 			++p;
117 		}
118 	}
119 
120 	if (xdrbuf->tail[0].iov_len) {
121 		/* the rpcrdma protocol allows us to omit any trailing
122 		 * xdr pad bytes, saving the server an RDMA operation. */
123 		if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
124 			return n;
125 		if (n == nsegs)
126 			return 0;
127 		seg[n].mr_page = NULL;
128 		seg[n].mr_offset = xdrbuf->tail[0].iov_base;
129 		seg[n].mr_len = xdrbuf->tail[0].iov_len;
130 		++n;
131 	}
132 
133 	return n;
134 }
135 
136 /*
137  * Create read/write chunk lists, and reply chunks, for RDMA
138  *
139  *   Assume check against THRESHOLD has been done, and chunks are required.
140  *   Assume only encoding one list entry for read|write chunks. The NFSv3
141  *     protocol is simple enough to allow this as it only has a single "bulk
142  *     result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
143  *     RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
144  *
145  * When used for a single reply chunk (which is a special write
146  * chunk used for the entire reply, rather than just the data), it
147  * is used primarily for READDIR and READLINK which would otherwise
148  * be severely size-limited by a small rdma inline read max. The server
149  * response will come back as an RDMA Write, followed by a message
150  * of type RDMA_NOMSG carrying the xid and length. As a result, reply
151  * chunks do not provide data alignment, however they do not require
152  * "fixup" (moving the response to the upper layer buffer) either.
153  *
154  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
155  *
156  *  Read chunklist (a linked list):
157  *   N elements, position P (same P for all chunks of same arg!):
158  *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
159  *
160  *  Write chunklist (a list of (one) counted array):
161  *   N elements:
162  *    1 - N - HLOO - HLOO - ... - HLOO - 0
163  *
164  *  Reply chunk (a counted array):
165  *   N elements:
166  *    1 - N - HLOO - HLOO - ... - HLOO
167  */
168 
169 static unsigned int
170 rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
171 		struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
172 {
173 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
174 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_task->tk_xprt);
175 	int nsegs, nchunks = 0;
176 	unsigned int pos;
177 	struct rpcrdma_mr_seg *seg = req->rl_segments;
178 	struct rpcrdma_read_chunk *cur_rchunk = NULL;
179 	struct rpcrdma_write_array *warray = NULL;
180 	struct rpcrdma_write_chunk *cur_wchunk = NULL;
181 	__be32 *iptr = headerp->rm_body.rm_chunks;
182 
183 	if (type == rpcrdma_readch || type == rpcrdma_areadch) {
184 		/* a read chunk - server will RDMA Read our memory */
185 		cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
186 	} else {
187 		/* a write or reply chunk - server will RDMA Write our memory */
188 		*iptr++ = xdr_zero;	/* encode a NULL read chunk list */
189 		if (type == rpcrdma_replych)
190 			*iptr++ = xdr_zero;	/* a NULL write chunk list */
191 		warray = (struct rpcrdma_write_array *) iptr;
192 		cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
193 	}
194 
195 	if (type == rpcrdma_replych || type == rpcrdma_areadch)
196 		pos = 0;
197 	else
198 		pos = target->head[0].iov_len;
199 
200 	nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
201 	if (nsegs == 0)
202 		return 0;
203 
204 	do {
205 		/* bind/register the memory, then build chunk from result. */
206 		int n = rpcrdma_register_external(seg, nsegs,
207 						cur_wchunk != NULL, r_xprt);
208 		if (n <= 0)
209 			goto out;
210 		if (cur_rchunk) {	/* read */
211 			cur_rchunk->rc_discrim = xdr_one;
212 			/* all read chunks have the same "position" */
213 			cur_rchunk->rc_position = htonl(pos);
214 			cur_rchunk->rc_target.rs_handle = htonl(seg->mr_rkey);
215 			cur_rchunk->rc_target.rs_length = htonl(seg->mr_len);
216 			xdr_encode_hyper(
217 					(__be32 *)&cur_rchunk->rc_target.rs_offset,
218 					seg->mr_base);
219 			dprintk("RPC:       %s: read chunk "
220 				"elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
221 				seg->mr_len, (unsigned long long)seg->mr_base,
222 				seg->mr_rkey, pos, n < nsegs ? "more" : "last");
223 			cur_rchunk++;
224 			r_xprt->rx_stats.read_chunk_count++;
225 		} else {		/* write/reply */
226 			cur_wchunk->wc_target.rs_handle = htonl(seg->mr_rkey);
227 			cur_wchunk->wc_target.rs_length = htonl(seg->mr_len);
228 			xdr_encode_hyper(
229 					(__be32 *)&cur_wchunk->wc_target.rs_offset,
230 					seg->mr_base);
231 			dprintk("RPC:       %s: %s chunk "
232 				"elem %d@0x%llx:0x%x (%s)\n", __func__,
233 				(type == rpcrdma_replych) ? "reply" : "write",
234 				seg->mr_len, (unsigned long long)seg->mr_base,
235 				seg->mr_rkey, n < nsegs ? "more" : "last");
236 			cur_wchunk++;
237 			if (type == rpcrdma_replych)
238 				r_xprt->rx_stats.reply_chunk_count++;
239 			else
240 				r_xprt->rx_stats.write_chunk_count++;
241 			r_xprt->rx_stats.total_rdma_request += seg->mr_len;
242 		}
243 		nchunks++;
244 		seg   += n;
245 		nsegs -= n;
246 	} while (nsegs);
247 
248 	/* success. all failures return above */
249 	req->rl_nchunks = nchunks;
250 
251 	BUG_ON(nchunks == 0);
252 	BUG_ON((r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_FRMR)
253 	       && (nchunks > 3));
254 
255 	/*
256 	 * finish off header. If write, marshal discrim and nchunks.
257 	 */
258 	if (cur_rchunk) {
259 		iptr = (__be32 *) cur_rchunk;
260 		*iptr++ = xdr_zero;	/* finish the read chunk list */
261 		*iptr++ = xdr_zero;	/* encode a NULL write chunk list */
262 		*iptr++ = xdr_zero;	/* encode a NULL reply chunk */
263 	} else {
264 		warray->wc_discrim = xdr_one;
265 		warray->wc_nchunks = htonl(nchunks);
266 		iptr = (__be32 *) cur_wchunk;
267 		if (type == rpcrdma_writech) {
268 			*iptr++ = xdr_zero; /* finish the write chunk list */
269 			*iptr++ = xdr_zero; /* encode a NULL reply chunk */
270 		}
271 	}
272 
273 	/*
274 	 * Return header size.
275 	 */
276 	return (unsigned char *)iptr - (unsigned char *)headerp;
277 
278 out:
279 	for (pos = 0; nchunks--;)
280 		pos += rpcrdma_deregister_external(
281 				&req->rl_segments[pos], r_xprt, NULL);
282 	return 0;
283 }
284 
285 /*
286  * Copy write data inline.
287  * This function is used for "small" requests. Data which is passed
288  * to RPC via iovecs (or page list) is copied directly into the
289  * pre-registered memory buffer for this request. For small amounts
290  * of data, this is efficient. The cutoff value is tunable.
291  */
292 static int
293 rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad)
294 {
295 	int i, npages, curlen;
296 	int copy_len;
297 	unsigned char *srcp, *destp;
298 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
299 
300 	destp = rqst->rq_svec[0].iov_base;
301 	curlen = rqst->rq_svec[0].iov_len;
302 	destp += curlen;
303 	/*
304 	 * Do optional padding where it makes sense. Alignment of write
305 	 * payload can help the server, if our setting is accurate.
306 	 */
307 	pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/);
308 	if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH)
309 		pad = 0;	/* don't pad this request */
310 
311 	dprintk("RPC:       %s: pad %d destp 0x%p len %d hdrlen %d\n",
312 		__func__, pad, destp, rqst->rq_slen, curlen);
313 
314 	copy_len = rqst->rq_snd_buf.page_len;
315 
316 	if (rqst->rq_snd_buf.tail[0].iov_len) {
317 		curlen = rqst->rq_snd_buf.tail[0].iov_len;
318 		if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
319 			memmove(destp + copy_len,
320 				rqst->rq_snd_buf.tail[0].iov_base, curlen);
321 			r_xprt->rx_stats.pullup_copy_count += curlen;
322 		}
323 		dprintk("RPC:       %s: tail destp 0x%p len %d\n",
324 			__func__, destp + copy_len, curlen);
325 		rqst->rq_svec[0].iov_len += curlen;
326 	}
327 
328 	r_xprt->rx_stats.pullup_copy_count += copy_len;
329 	npages = PAGE_ALIGN(rqst->rq_snd_buf.page_base+copy_len) >> PAGE_SHIFT;
330 	for (i = 0; copy_len && i < npages; i++) {
331 		if (i == 0)
332 			curlen = PAGE_SIZE - rqst->rq_snd_buf.page_base;
333 		else
334 			curlen = PAGE_SIZE;
335 		if (curlen > copy_len)
336 			curlen = copy_len;
337 		dprintk("RPC:       %s: page %d destp 0x%p len %d curlen %d\n",
338 			__func__, i, destp, copy_len, curlen);
339 		srcp = kmap_atomic(rqst->rq_snd_buf.pages[i],
340 					KM_SKB_SUNRPC_DATA);
341 		if (i == 0)
342 			memcpy(destp, srcp+rqst->rq_snd_buf.page_base, curlen);
343 		else
344 			memcpy(destp, srcp, curlen);
345 		kunmap_atomic(srcp, KM_SKB_SUNRPC_DATA);
346 		rqst->rq_svec[0].iov_len += curlen;
347 		destp += curlen;
348 		copy_len -= curlen;
349 	}
350 	/* header now contains entire send message */
351 	return pad;
352 }
353 
354 /*
355  * Marshal a request: the primary job of this routine is to choose
356  * the transfer modes. See comments below.
357  *
358  * Uses multiple RDMA IOVs for a request:
359  *  [0] -- RPC RDMA header, which uses memory from the *start* of the
360  *         preregistered buffer that already holds the RPC data in
361  *         its middle.
362  *  [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
363  *  [2] -- optional padding.
364  *  [3] -- if padded, header only in [1] and data here.
365  */
366 
367 int
368 rpcrdma_marshal_req(struct rpc_rqst *rqst)
369 {
370 	struct rpc_xprt *xprt = rqst->rq_task->tk_xprt;
371 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
372 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
373 	char *base;
374 	size_t hdrlen, rpclen, padlen;
375 	enum rpcrdma_chunktype rtype, wtype;
376 	struct rpcrdma_msg *headerp;
377 
378 	/*
379 	 * rpclen gets amount of data in first buffer, which is the
380 	 * pre-registered buffer.
381 	 */
382 	base = rqst->rq_svec[0].iov_base;
383 	rpclen = rqst->rq_svec[0].iov_len;
384 
385 	/* build RDMA header in private area at front */
386 	headerp = (struct rpcrdma_msg *) req->rl_base;
387 	/* don't htonl XID, it's already done in request */
388 	headerp->rm_xid = rqst->rq_xid;
389 	headerp->rm_vers = xdr_one;
390 	headerp->rm_credit = htonl(r_xprt->rx_buf.rb_max_requests);
391 	headerp->rm_type = htonl(RDMA_MSG);
392 
393 	/*
394 	 * Chunks needed for results?
395 	 *
396 	 * o If the expected result is under the inline threshold, all ops
397 	 *   return as inline (but see later).
398 	 * o Large non-read ops return as a single reply chunk.
399 	 * o Large read ops return data as write chunk(s), header as inline.
400 	 *
401 	 * Note: the NFS code sending down multiple result segments implies
402 	 * the op is one of read, readdir[plus], readlink or NFSv4 getacl.
403 	 */
404 
405 	/*
406 	 * This code can handle read chunks, write chunks OR reply
407 	 * chunks -- only one type. If the request is too big to fit
408 	 * inline, then we will choose read chunks. If the request is
409 	 * a READ, then use write chunks to separate the file data
410 	 * into pages; otherwise use reply chunks.
411 	 */
412 	if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst))
413 		wtype = rpcrdma_noch;
414 	else if (rqst->rq_rcv_buf.page_len == 0)
415 		wtype = rpcrdma_replych;
416 	else if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
417 		wtype = rpcrdma_writech;
418 	else
419 		wtype = rpcrdma_replych;
420 
421 	/*
422 	 * Chunks needed for arguments?
423 	 *
424 	 * o If the total request is under the inline threshold, all ops
425 	 *   are sent as inline.
426 	 * o Large non-write ops are sent with the entire message as a
427 	 *   single read chunk (protocol 0-position special case).
428 	 * o Large write ops transmit data as read chunk(s), header as
429 	 *   inline.
430 	 *
431 	 * Note: the NFS code sending down multiple argument segments
432 	 * implies the op is a write.
433 	 * TBD check NFSv4 setacl
434 	 */
435 	if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
436 		rtype = rpcrdma_noch;
437 	else if (rqst->rq_snd_buf.page_len == 0)
438 		rtype = rpcrdma_areadch;
439 	else
440 		rtype = rpcrdma_readch;
441 
442 	/* The following simplification is not true forever */
443 	if (rtype != rpcrdma_noch && wtype == rpcrdma_replych)
444 		wtype = rpcrdma_noch;
445 	BUG_ON(rtype != rpcrdma_noch && wtype != rpcrdma_noch);
446 
447 	if (r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_BOUNCEBUFFERS &&
448 	    (rtype != rpcrdma_noch || wtype != rpcrdma_noch)) {
449 		/* forced to "pure inline"? */
450 		dprintk("RPC:       %s: too much data (%d/%d) for inline\n",
451 			__func__, rqst->rq_rcv_buf.len, rqst->rq_snd_buf.len);
452 		return -1;
453 	}
454 
455 	hdrlen = 28; /*sizeof *headerp;*/
456 	padlen = 0;
457 
458 	/*
459 	 * Pull up any extra send data into the preregistered buffer.
460 	 * When padding is in use and applies to the transfer, insert
461 	 * it and change the message type.
462 	 */
463 	if (rtype == rpcrdma_noch) {
464 
465 		padlen = rpcrdma_inline_pullup(rqst,
466 						RPCRDMA_INLINE_PAD_VALUE(rqst));
467 
468 		if (padlen) {
469 			headerp->rm_type = htonl(RDMA_MSGP);
470 			headerp->rm_body.rm_padded.rm_align =
471 				htonl(RPCRDMA_INLINE_PAD_VALUE(rqst));
472 			headerp->rm_body.rm_padded.rm_thresh =
473 				htonl(RPCRDMA_INLINE_PAD_THRESH);
474 			headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero;
475 			headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero;
476 			headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero;
477 			hdrlen += 2 * sizeof(u32); /* extra words in padhdr */
478 			BUG_ON(wtype != rpcrdma_noch);
479 
480 		} else {
481 			headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
482 			headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
483 			headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
484 			/* new length after pullup */
485 			rpclen = rqst->rq_svec[0].iov_len;
486 			/*
487 			 * Currently we try to not actually use read inline.
488 			 * Reply chunks have the desirable property that
489 			 * they land, packed, directly in the target buffers
490 			 * without headers, so they require no fixup. The
491 			 * additional RDMA Write op sends the same amount
492 			 * of data, streams on-the-wire and adds no overhead
493 			 * on receive. Therefore, we request a reply chunk
494 			 * for non-writes wherever feasible and efficient.
495 			 */
496 			if (wtype == rpcrdma_noch &&
497 			    r_xprt->rx_ia.ri_memreg_strategy > RPCRDMA_REGISTER)
498 				wtype = rpcrdma_replych;
499 		}
500 	}
501 
502 	/*
503 	 * Marshal chunks. This routine will return the header length
504 	 * consumed by marshaling.
505 	 */
506 	if (rtype != rpcrdma_noch) {
507 		hdrlen = rpcrdma_create_chunks(rqst,
508 					&rqst->rq_snd_buf, headerp, rtype);
509 		wtype = rtype;	/* simplify dprintk */
510 
511 	} else if (wtype != rpcrdma_noch) {
512 		hdrlen = rpcrdma_create_chunks(rqst,
513 					&rqst->rq_rcv_buf, headerp, wtype);
514 	}
515 
516 	if (hdrlen == 0)
517 		return -1;
518 
519 	dprintk("RPC:       %s: %s: hdrlen %zd rpclen %zd padlen %zd"
520 		" headerp 0x%p base 0x%p lkey 0x%x\n",
521 		__func__, transfertypes[wtype], hdrlen, rpclen, padlen,
522 		headerp, base, req->rl_iov.lkey);
523 
524 	/*
525 	 * initialize send_iov's - normally only two: rdma chunk header and
526 	 * single preregistered RPC header buffer, but if padding is present,
527 	 * then use a preregistered (and zeroed) pad buffer between the RPC
528 	 * header and any write data. In all non-rdma cases, any following
529 	 * data has been copied into the RPC header buffer.
530 	 */
531 	req->rl_send_iov[0].addr = req->rl_iov.addr;
532 	req->rl_send_iov[0].length = hdrlen;
533 	req->rl_send_iov[0].lkey = req->rl_iov.lkey;
534 
535 	req->rl_send_iov[1].addr = req->rl_iov.addr + (base - req->rl_base);
536 	req->rl_send_iov[1].length = rpclen;
537 	req->rl_send_iov[1].lkey = req->rl_iov.lkey;
538 
539 	req->rl_niovs = 2;
540 
541 	if (padlen) {
542 		struct rpcrdma_ep *ep = &r_xprt->rx_ep;
543 
544 		req->rl_send_iov[2].addr = ep->rep_pad.addr;
545 		req->rl_send_iov[2].length = padlen;
546 		req->rl_send_iov[2].lkey = ep->rep_pad.lkey;
547 
548 		req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen;
549 		req->rl_send_iov[3].length = rqst->rq_slen - rpclen;
550 		req->rl_send_iov[3].lkey = req->rl_iov.lkey;
551 
552 		req->rl_niovs = 4;
553 	}
554 
555 	return 0;
556 }
557 
558 /*
559  * Chase down a received write or reply chunklist to get length
560  * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
561  */
562 static int
563 rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
564 {
565 	unsigned int i, total_len;
566 	struct rpcrdma_write_chunk *cur_wchunk;
567 
568 	i = ntohl(**iptrp);	/* get array count */
569 	if (i > max)
570 		return -1;
571 	cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
572 	total_len = 0;
573 	while (i--) {
574 		struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
575 		ifdebug(FACILITY) {
576 			u64 off;
577 			xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
578 			dprintk("RPC:       %s: chunk %d@0x%llx:0x%x\n",
579 				__func__,
580 				ntohl(seg->rs_length),
581 				(unsigned long long)off,
582 				ntohl(seg->rs_handle));
583 		}
584 		total_len += ntohl(seg->rs_length);
585 		++cur_wchunk;
586 	}
587 	/* check and adjust for properly terminated write chunk */
588 	if (wrchunk) {
589 		__be32 *w = (__be32 *) cur_wchunk;
590 		if (*w++ != xdr_zero)
591 			return -1;
592 		cur_wchunk = (struct rpcrdma_write_chunk *) w;
593 	}
594 	if ((char *) cur_wchunk > rep->rr_base + rep->rr_len)
595 		return -1;
596 
597 	*iptrp = (__be32 *) cur_wchunk;
598 	return total_len;
599 }
600 
601 /*
602  * Scatter inline received data back into provided iov's.
603  */
604 static void
605 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
606 {
607 	int i, npages, curlen, olen;
608 	char *destp;
609 
610 	curlen = rqst->rq_rcv_buf.head[0].iov_len;
611 	if (curlen > copy_len) {	/* write chunk header fixup */
612 		curlen = copy_len;
613 		rqst->rq_rcv_buf.head[0].iov_len = curlen;
614 	}
615 
616 	dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
617 		__func__, srcp, copy_len, curlen);
618 
619 	/* Shift pointer for first receive segment only */
620 	rqst->rq_rcv_buf.head[0].iov_base = srcp;
621 	srcp += curlen;
622 	copy_len -= curlen;
623 
624 	olen = copy_len;
625 	i = 0;
626 	rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
627 	if (copy_len && rqst->rq_rcv_buf.page_len) {
628 		npages = PAGE_ALIGN(rqst->rq_rcv_buf.page_base +
629 			rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
630 		for (; i < npages; i++) {
631 			if (i == 0)
632 				curlen = PAGE_SIZE - rqst->rq_rcv_buf.page_base;
633 			else
634 				curlen = PAGE_SIZE;
635 			if (curlen > copy_len)
636 				curlen = copy_len;
637 			dprintk("RPC:       %s: page %d"
638 				" srcp 0x%p len %d curlen %d\n",
639 				__func__, i, srcp, copy_len, curlen);
640 			destp = kmap_atomic(rqst->rq_rcv_buf.pages[i],
641 						KM_SKB_SUNRPC_DATA);
642 			if (i == 0)
643 				memcpy(destp + rqst->rq_rcv_buf.page_base,
644 						srcp, curlen);
645 			else
646 				memcpy(destp, srcp, curlen);
647 			flush_dcache_page(rqst->rq_rcv_buf.pages[i]);
648 			kunmap_atomic(destp, KM_SKB_SUNRPC_DATA);
649 			srcp += curlen;
650 			copy_len -= curlen;
651 			if (copy_len == 0)
652 				break;
653 		}
654 		rqst->rq_rcv_buf.page_len = olen - copy_len;
655 	} else
656 		rqst->rq_rcv_buf.page_len = 0;
657 
658 	if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
659 		curlen = copy_len;
660 		if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
661 			curlen = rqst->rq_rcv_buf.tail[0].iov_len;
662 		if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
663 			memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
664 		dprintk("RPC:       %s: tail srcp 0x%p len %d curlen %d\n",
665 			__func__, srcp, copy_len, curlen);
666 		rqst->rq_rcv_buf.tail[0].iov_len = curlen;
667 		copy_len -= curlen; ++i;
668 	} else
669 		rqst->rq_rcv_buf.tail[0].iov_len = 0;
670 
671 	if (pad) {
672 		/* implicit padding on terminal chunk */
673 		unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
674 		while (pad--)
675 			p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
676 	}
677 
678 	if (copy_len)
679 		dprintk("RPC:       %s: %d bytes in"
680 			" %d extra segments (%d lost)\n",
681 			__func__, olen, i, copy_len);
682 
683 	/* TBD avoid a warning from call_decode() */
684 	rqst->rq_private_buf = rqst->rq_rcv_buf;
685 }
686 
687 /*
688  * This function is called when an async event is posted to
689  * the connection which changes the connection state. All it
690  * does at this point is mark the connection up/down, the rpc
691  * timers do the rest.
692  */
693 void
694 rpcrdma_conn_func(struct rpcrdma_ep *ep)
695 {
696 	struct rpc_xprt *xprt = ep->rep_xprt;
697 
698 	spin_lock_bh(&xprt->transport_lock);
699 	if (++xprt->connect_cookie == 0)	/* maintain a reserved value */
700 		++xprt->connect_cookie;
701 	if (ep->rep_connected > 0) {
702 		if (!xprt_test_and_set_connected(xprt))
703 			xprt_wake_pending_tasks(xprt, 0);
704 	} else {
705 		if (xprt_test_and_clear_connected(xprt))
706 			xprt_wake_pending_tasks(xprt, -ENOTCONN);
707 	}
708 	spin_unlock_bh(&xprt->transport_lock);
709 }
710 
711 /*
712  * This function is called when memory window unbind which we are waiting
713  * for completes. Just use rr_func (zeroed by upcall) to signal completion.
714  */
715 static void
716 rpcrdma_unbind_func(struct rpcrdma_rep *rep)
717 {
718 	wake_up(&rep->rr_unbind);
719 }
720 
721 /*
722  * Called as a tasklet to do req/reply match and complete a request
723  * Errors must result in the RPC task either being awakened, or
724  * allowed to timeout, to discover the errors at that time.
725  */
726 void
727 rpcrdma_reply_handler(struct rpcrdma_rep *rep)
728 {
729 	struct rpcrdma_msg *headerp;
730 	struct rpcrdma_req *req;
731 	struct rpc_rqst *rqst;
732 	struct rpc_xprt *xprt = rep->rr_xprt;
733 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
734 	__be32 *iptr;
735 	int i, rdmalen, status;
736 
737 	/* Check status. If bad, signal disconnect and return rep to pool */
738 	if (rep->rr_len == ~0U) {
739 		rpcrdma_recv_buffer_put(rep);
740 		if (r_xprt->rx_ep.rep_connected == 1) {
741 			r_xprt->rx_ep.rep_connected = -EIO;
742 			rpcrdma_conn_func(&r_xprt->rx_ep);
743 		}
744 		return;
745 	}
746 	if (rep->rr_len < 28) {
747 		dprintk("RPC:       %s: short/invalid reply\n", __func__);
748 		goto repost;
749 	}
750 	headerp = (struct rpcrdma_msg *) rep->rr_base;
751 	if (headerp->rm_vers != xdr_one) {
752 		dprintk("RPC:       %s: invalid version %d\n",
753 			__func__, ntohl(headerp->rm_vers));
754 		goto repost;
755 	}
756 
757 	/* Get XID and try for a match. */
758 	spin_lock(&xprt->transport_lock);
759 	rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
760 	if (rqst == NULL) {
761 		spin_unlock(&xprt->transport_lock);
762 		dprintk("RPC:       %s: reply 0x%p failed "
763 			"to match any request xid 0x%08x len %d\n",
764 			__func__, rep, headerp->rm_xid, rep->rr_len);
765 repost:
766 		r_xprt->rx_stats.bad_reply_count++;
767 		rep->rr_func = rpcrdma_reply_handler;
768 		if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
769 			rpcrdma_recv_buffer_put(rep);
770 
771 		return;
772 	}
773 
774 	/* get request object */
775 	req = rpcr_to_rdmar(rqst);
776 
777 	dprintk("RPC:       %s: reply 0x%p completes request 0x%p\n"
778 		"                   RPC request 0x%p xid 0x%08x\n",
779 			__func__, rep, req, rqst, headerp->rm_xid);
780 
781 	BUG_ON(!req || req->rl_reply);
782 
783 	/* from here on, the reply is no longer an orphan */
784 	req->rl_reply = rep;
785 
786 	/* check for expected message types */
787 	/* The order of some of these tests is important. */
788 	switch (headerp->rm_type) {
789 	case htonl(RDMA_MSG):
790 		/* never expect read chunks */
791 		/* never expect reply chunks (two ways to check) */
792 		/* never expect write chunks without having offered RDMA */
793 		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
794 		    (headerp->rm_body.rm_chunks[1] == xdr_zero &&
795 		     headerp->rm_body.rm_chunks[2] != xdr_zero) ||
796 		    (headerp->rm_body.rm_chunks[1] != xdr_zero &&
797 		     req->rl_nchunks == 0))
798 			goto badheader;
799 		if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
800 			/* count any expected write chunks in read reply */
801 			/* start at write chunk array count */
802 			iptr = &headerp->rm_body.rm_chunks[2];
803 			rdmalen = rpcrdma_count_chunks(rep,
804 						req->rl_nchunks, 1, &iptr);
805 			/* check for validity, and no reply chunk after */
806 			if (rdmalen < 0 || *iptr++ != xdr_zero)
807 				goto badheader;
808 			rep->rr_len -=
809 			    ((unsigned char *)iptr - (unsigned char *)headerp);
810 			status = rep->rr_len + rdmalen;
811 			r_xprt->rx_stats.total_rdma_reply += rdmalen;
812 			/* special case - last chunk may omit padding */
813 			if (rdmalen &= 3) {
814 				rdmalen = 4 - rdmalen;
815 				status += rdmalen;
816 			}
817 		} else {
818 			/* else ordinary inline */
819 			rdmalen = 0;
820 			iptr = (__be32 *)((unsigned char *)headerp + 28);
821 			rep->rr_len -= 28; /*sizeof *headerp;*/
822 			status = rep->rr_len;
823 		}
824 		/* Fix up the rpc results for upper layer */
825 		rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
826 		break;
827 
828 	case htonl(RDMA_NOMSG):
829 		/* never expect read or write chunks, always reply chunks */
830 		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
831 		    headerp->rm_body.rm_chunks[1] != xdr_zero ||
832 		    headerp->rm_body.rm_chunks[2] != xdr_one ||
833 		    req->rl_nchunks == 0)
834 			goto badheader;
835 		iptr = (__be32 *)((unsigned char *)headerp + 28);
836 		rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
837 		if (rdmalen < 0)
838 			goto badheader;
839 		r_xprt->rx_stats.total_rdma_reply += rdmalen;
840 		/* Reply chunk buffer already is the reply vector - no fixup. */
841 		status = rdmalen;
842 		break;
843 
844 badheader:
845 	default:
846 		dprintk("%s: invalid rpcrdma reply header (type %d):"
847 				" chunks[012] == %d %d %d"
848 				" expected chunks <= %d\n",
849 				__func__, ntohl(headerp->rm_type),
850 				headerp->rm_body.rm_chunks[0],
851 				headerp->rm_body.rm_chunks[1],
852 				headerp->rm_body.rm_chunks[2],
853 				req->rl_nchunks);
854 		status = -EIO;
855 		r_xprt->rx_stats.bad_reply_count++;
856 		break;
857 	}
858 
859 	/* If using mw bind, start the deregister process now. */
860 	/* (Note: if mr_free(), cannot perform it here, in tasklet context) */
861 	if (req->rl_nchunks) switch (r_xprt->rx_ia.ri_memreg_strategy) {
862 	case RPCRDMA_MEMWINDOWS:
863 		for (i = 0; req->rl_nchunks-- > 1;)
864 			i += rpcrdma_deregister_external(
865 				&req->rl_segments[i], r_xprt, NULL);
866 		/* Optionally wait (not here) for unbinds to complete */
867 		rep->rr_func = rpcrdma_unbind_func;
868 		(void) rpcrdma_deregister_external(&req->rl_segments[i],
869 						   r_xprt, rep);
870 		break;
871 	case RPCRDMA_MEMWINDOWS_ASYNC:
872 		for (i = 0; req->rl_nchunks--;)
873 			i += rpcrdma_deregister_external(&req->rl_segments[i],
874 							 r_xprt, NULL);
875 		break;
876 	default:
877 		break;
878 	}
879 
880 	dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
881 			__func__, xprt, rqst, status);
882 	xprt_complete_rqst(rqst->rq_task, status);
883 	spin_unlock(&xprt->transport_lock);
884 }
885