xref: /openbmc/linux/net/sunrpc/xprtrdma/rpc_rdma.c (revision 33ac9dba)
1 /*
2  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * rpc_rdma.c
42  *
43  * This file contains the guts of the RPC RDMA protocol, and
44  * does marshaling/unmarshaling, etc. It is also where interfacing
45  * to the Linux RPC framework lives.
46  */
47 
48 #include "xprt_rdma.h"
49 
50 #include <linux/highmem.h>
51 
52 #ifdef RPC_DEBUG
53 # define RPCDBG_FACILITY	RPCDBG_TRANS
54 #endif
55 
56 #ifdef RPC_DEBUG
57 static const char transfertypes[][12] = {
58 	"pure inline",	/* no chunks */
59 	" read chunk",	/* some argument via rdma read */
60 	"*read chunk",	/* entire request via rdma read */
61 	"write chunk",	/* some result via rdma write */
62 	"reply chunk"	/* entire reply via rdma write */
63 };
64 #endif
65 
66 /*
67  * Chunk assembly from upper layer xdr_buf.
68  *
69  * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
70  * elements. Segments are then coalesced when registered, if possible
71  * within the selected memreg mode.
72  *
73  * Returns positive number of segments converted, or a negative errno.
74  */
75 
76 static int
77 rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
78 	enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
79 {
80 	int len, n = 0, p;
81 	int page_base;
82 	struct page **ppages;
83 
84 	if (pos == 0 && xdrbuf->head[0].iov_len) {
85 		seg[n].mr_page = NULL;
86 		seg[n].mr_offset = xdrbuf->head[0].iov_base;
87 		seg[n].mr_len = xdrbuf->head[0].iov_len;
88 		++n;
89 	}
90 
91 	len = xdrbuf->page_len;
92 	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
93 	page_base = xdrbuf->page_base & ~PAGE_MASK;
94 	p = 0;
95 	while (len && n < nsegs) {
96 		if (!ppages[p]) {
97 			/* alloc the pagelist for receiving buffer */
98 			ppages[p] = alloc_page(GFP_ATOMIC);
99 			if (!ppages[p])
100 				return -ENOMEM;
101 		}
102 		seg[n].mr_page = ppages[p];
103 		seg[n].mr_offset = (void *)(unsigned long) page_base;
104 		seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
105 		if (seg[n].mr_len > PAGE_SIZE)
106 			return -EIO;
107 		len -= seg[n].mr_len;
108 		++n;
109 		++p;
110 		page_base = 0;	/* page offset only applies to first page */
111 	}
112 
113 	/* Message overflows the seg array */
114 	if (len && n == nsegs)
115 		return -EIO;
116 
117 	if (xdrbuf->tail[0].iov_len) {
118 		/* the rpcrdma protocol allows us to omit any trailing
119 		 * xdr pad bytes, saving the server an RDMA operation. */
120 		if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
121 			return n;
122 		if (n == nsegs)
123 			/* Tail remains, but we're out of segments */
124 			return -EIO;
125 		seg[n].mr_page = NULL;
126 		seg[n].mr_offset = xdrbuf->tail[0].iov_base;
127 		seg[n].mr_len = xdrbuf->tail[0].iov_len;
128 		++n;
129 	}
130 
131 	return n;
132 }
133 
134 /*
135  * Create read/write chunk lists, and reply chunks, for RDMA
136  *
137  *   Assume check against THRESHOLD has been done, and chunks are required.
138  *   Assume only encoding one list entry for read|write chunks. The NFSv3
139  *     protocol is simple enough to allow this as it only has a single "bulk
140  *     result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
141  *     RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
142  *
143  * When used for a single reply chunk (which is a special write
144  * chunk used for the entire reply, rather than just the data), it
145  * is used primarily for READDIR and READLINK which would otherwise
146  * be severely size-limited by a small rdma inline read max. The server
147  * response will come back as an RDMA Write, followed by a message
148  * of type RDMA_NOMSG carrying the xid and length. As a result, reply
149  * chunks do not provide data alignment, however they do not require
150  * "fixup" (moving the response to the upper layer buffer) either.
151  *
152  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
153  *
154  *  Read chunklist (a linked list):
155  *   N elements, position P (same P for all chunks of same arg!):
156  *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
157  *
158  *  Write chunklist (a list of (one) counted array):
159  *   N elements:
160  *    1 - N - HLOO - HLOO - ... - HLOO - 0
161  *
162  *  Reply chunk (a counted array):
163  *   N elements:
164  *    1 - N - HLOO - HLOO - ... - HLOO
165  *
166  * Returns positive RPC/RDMA header size, or negative errno.
167  */
168 
169 static ssize_t
170 rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
171 		struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
172 {
173 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
174 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
175 	int n, nsegs, nchunks = 0;
176 	unsigned int pos;
177 	struct rpcrdma_mr_seg *seg = req->rl_segments;
178 	struct rpcrdma_read_chunk *cur_rchunk = NULL;
179 	struct rpcrdma_write_array *warray = NULL;
180 	struct rpcrdma_write_chunk *cur_wchunk = NULL;
181 	__be32 *iptr = headerp->rm_body.rm_chunks;
182 
183 	if (type == rpcrdma_readch || type == rpcrdma_areadch) {
184 		/* a read chunk - server will RDMA Read our memory */
185 		cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
186 	} else {
187 		/* a write or reply chunk - server will RDMA Write our memory */
188 		*iptr++ = xdr_zero;	/* encode a NULL read chunk list */
189 		if (type == rpcrdma_replych)
190 			*iptr++ = xdr_zero;	/* a NULL write chunk list */
191 		warray = (struct rpcrdma_write_array *) iptr;
192 		cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
193 	}
194 
195 	if (type == rpcrdma_replych || type == rpcrdma_areadch)
196 		pos = 0;
197 	else
198 		pos = target->head[0].iov_len;
199 
200 	nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
201 	if (nsegs < 0)
202 		return nsegs;
203 
204 	do {
205 		n = rpcrdma_register_external(seg, nsegs,
206 						cur_wchunk != NULL, r_xprt);
207 		if (n <= 0)
208 			goto out;
209 		if (cur_rchunk) {	/* read */
210 			cur_rchunk->rc_discrim = xdr_one;
211 			/* all read chunks have the same "position" */
212 			cur_rchunk->rc_position = htonl(pos);
213 			cur_rchunk->rc_target.rs_handle = htonl(seg->mr_rkey);
214 			cur_rchunk->rc_target.rs_length = htonl(seg->mr_len);
215 			xdr_encode_hyper(
216 					(__be32 *)&cur_rchunk->rc_target.rs_offset,
217 					seg->mr_base);
218 			dprintk("RPC:       %s: read chunk "
219 				"elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
220 				seg->mr_len, (unsigned long long)seg->mr_base,
221 				seg->mr_rkey, pos, n < nsegs ? "more" : "last");
222 			cur_rchunk++;
223 			r_xprt->rx_stats.read_chunk_count++;
224 		} else {		/* write/reply */
225 			cur_wchunk->wc_target.rs_handle = htonl(seg->mr_rkey);
226 			cur_wchunk->wc_target.rs_length = htonl(seg->mr_len);
227 			xdr_encode_hyper(
228 					(__be32 *)&cur_wchunk->wc_target.rs_offset,
229 					seg->mr_base);
230 			dprintk("RPC:       %s: %s chunk "
231 				"elem %d@0x%llx:0x%x (%s)\n", __func__,
232 				(type == rpcrdma_replych) ? "reply" : "write",
233 				seg->mr_len, (unsigned long long)seg->mr_base,
234 				seg->mr_rkey, n < nsegs ? "more" : "last");
235 			cur_wchunk++;
236 			if (type == rpcrdma_replych)
237 				r_xprt->rx_stats.reply_chunk_count++;
238 			else
239 				r_xprt->rx_stats.write_chunk_count++;
240 			r_xprt->rx_stats.total_rdma_request += seg->mr_len;
241 		}
242 		nchunks++;
243 		seg   += n;
244 		nsegs -= n;
245 	} while (nsegs);
246 
247 	/* success. all failures return above */
248 	req->rl_nchunks = nchunks;
249 
250 	/*
251 	 * finish off header. If write, marshal discrim and nchunks.
252 	 */
253 	if (cur_rchunk) {
254 		iptr = (__be32 *) cur_rchunk;
255 		*iptr++ = xdr_zero;	/* finish the read chunk list */
256 		*iptr++ = xdr_zero;	/* encode a NULL write chunk list */
257 		*iptr++ = xdr_zero;	/* encode a NULL reply chunk */
258 	} else {
259 		warray->wc_discrim = xdr_one;
260 		warray->wc_nchunks = htonl(nchunks);
261 		iptr = (__be32 *) cur_wchunk;
262 		if (type == rpcrdma_writech) {
263 			*iptr++ = xdr_zero; /* finish the write chunk list */
264 			*iptr++ = xdr_zero; /* encode a NULL reply chunk */
265 		}
266 	}
267 
268 	/*
269 	 * Return header size.
270 	 */
271 	return (unsigned char *)iptr - (unsigned char *)headerp;
272 
273 out:
274 	if (r_xprt->rx_ia.ri_memreg_strategy != RPCRDMA_FRMR) {
275 		for (pos = 0; nchunks--;)
276 			pos += rpcrdma_deregister_external(
277 					&req->rl_segments[pos], r_xprt);
278 	}
279 	return n;
280 }
281 
282 /*
283  * Marshal chunks. This routine returns the header length
284  * consumed by marshaling.
285  *
286  * Returns positive RPC/RDMA header size, or negative errno.
287  */
288 
289 ssize_t
290 rpcrdma_marshal_chunks(struct rpc_rqst *rqst, ssize_t result)
291 {
292 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
293 	struct rpcrdma_msg *headerp = (struct rpcrdma_msg *)req->rl_base;
294 
295 	if (req->rl_rtype != rpcrdma_noch)
296 		result = rpcrdma_create_chunks(rqst, &rqst->rq_snd_buf,
297 					       headerp, req->rl_rtype);
298 	else if (req->rl_wtype != rpcrdma_noch)
299 		result = rpcrdma_create_chunks(rqst, &rqst->rq_rcv_buf,
300 					       headerp, req->rl_wtype);
301 	return result;
302 }
303 
304 /*
305  * Copy write data inline.
306  * This function is used for "small" requests. Data which is passed
307  * to RPC via iovecs (or page list) is copied directly into the
308  * pre-registered memory buffer for this request. For small amounts
309  * of data, this is efficient. The cutoff value is tunable.
310  */
311 static int
312 rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad)
313 {
314 	int i, npages, curlen;
315 	int copy_len;
316 	unsigned char *srcp, *destp;
317 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
318 	int page_base;
319 	struct page **ppages;
320 
321 	destp = rqst->rq_svec[0].iov_base;
322 	curlen = rqst->rq_svec[0].iov_len;
323 	destp += curlen;
324 	/*
325 	 * Do optional padding where it makes sense. Alignment of write
326 	 * payload can help the server, if our setting is accurate.
327 	 */
328 	pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/);
329 	if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH)
330 		pad = 0;	/* don't pad this request */
331 
332 	dprintk("RPC:       %s: pad %d destp 0x%p len %d hdrlen %d\n",
333 		__func__, pad, destp, rqst->rq_slen, curlen);
334 
335 	copy_len = rqst->rq_snd_buf.page_len;
336 
337 	if (rqst->rq_snd_buf.tail[0].iov_len) {
338 		curlen = rqst->rq_snd_buf.tail[0].iov_len;
339 		if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
340 			memmove(destp + copy_len,
341 				rqst->rq_snd_buf.tail[0].iov_base, curlen);
342 			r_xprt->rx_stats.pullup_copy_count += curlen;
343 		}
344 		dprintk("RPC:       %s: tail destp 0x%p len %d\n",
345 			__func__, destp + copy_len, curlen);
346 		rqst->rq_svec[0].iov_len += curlen;
347 	}
348 	r_xprt->rx_stats.pullup_copy_count += copy_len;
349 
350 	page_base = rqst->rq_snd_buf.page_base;
351 	ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT);
352 	page_base &= ~PAGE_MASK;
353 	npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT;
354 	for (i = 0; copy_len && i < npages; i++) {
355 		curlen = PAGE_SIZE - page_base;
356 		if (curlen > copy_len)
357 			curlen = copy_len;
358 		dprintk("RPC:       %s: page %d destp 0x%p len %d curlen %d\n",
359 			__func__, i, destp, copy_len, curlen);
360 		srcp = kmap_atomic(ppages[i]);
361 		memcpy(destp, srcp+page_base, curlen);
362 		kunmap_atomic(srcp);
363 		rqst->rq_svec[0].iov_len += curlen;
364 		destp += curlen;
365 		copy_len -= curlen;
366 		page_base = 0;
367 	}
368 	/* header now contains entire send message */
369 	return pad;
370 }
371 
372 /*
373  * Marshal a request: the primary job of this routine is to choose
374  * the transfer modes. See comments below.
375  *
376  * Uses multiple RDMA IOVs for a request:
377  *  [0] -- RPC RDMA header, which uses memory from the *start* of the
378  *         preregistered buffer that already holds the RPC data in
379  *         its middle.
380  *  [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
381  *  [2] -- optional padding.
382  *  [3] -- if padded, header only in [1] and data here.
383  *
384  * Returns zero on success, otherwise a negative errno.
385  */
386 
387 int
388 rpcrdma_marshal_req(struct rpc_rqst *rqst)
389 {
390 	struct rpc_xprt *xprt = rqst->rq_xprt;
391 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
392 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
393 	char *base;
394 	size_t rpclen, padlen;
395 	ssize_t hdrlen;
396 	struct rpcrdma_msg *headerp;
397 
398 	/*
399 	 * rpclen gets amount of data in first buffer, which is the
400 	 * pre-registered buffer.
401 	 */
402 	base = rqst->rq_svec[0].iov_base;
403 	rpclen = rqst->rq_svec[0].iov_len;
404 
405 	/* build RDMA header in private area at front */
406 	headerp = (struct rpcrdma_msg *) req->rl_base;
407 	/* don't htonl XID, it's already done in request */
408 	headerp->rm_xid = rqst->rq_xid;
409 	headerp->rm_vers = xdr_one;
410 	headerp->rm_credit = htonl(r_xprt->rx_buf.rb_max_requests);
411 	headerp->rm_type = htonl(RDMA_MSG);
412 
413 	/*
414 	 * Chunks needed for results?
415 	 *
416 	 * o If the expected result is under the inline threshold, all ops
417 	 *   return as inline (but see later).
418 	 * o Large non-read ops return as a single reply chunk.
419 	 * o Large read ops return data as write chunk(s), header as inline.
420 	 *
421 	 * Note: the NFS code sending down multiple result segments implies
422 	 * the op is one of read, readdir[plus], readlink or NFSv4 getacl.
423 	 */
424 
425 	/*
426 	 * This code can handle read chunks, write chunks OR reply
427 	 * chunks -- only one type. If the request is too big to fit
428 	 * inline, then we will choose read chunks. If the request is
429 	 * a READ, then use write chunks to separate the file data
430 	 * into pages; otherwise use reply chunks.
431 	 */
432 	if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst))
433 		req->rl_wtype = rpcrdma_noch;
434 	else if (rqst->rq_rcv_buf.page_len == 0)
435 		req->rl_wtype = rpcrdma_replych;
436 	else if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
437 		req->rl_wtype = rpcrdma_writech;
438 	else
439 		req->rl_wtype = rpcrdma_replych;
440 
441 	/*
442 	 * Chunks needed for arguments?
443 	 *
444 	 * o If the total request is under the inline threshold, all ops
445 	 *   are sent as inline.
446 	 * o Large non-write ops are sent with the entire message as a
447 	 *   single read chunk (protocol 0-position special case).
448 	 * o Large write ops transmit data as read chunk(s), header as
449 	 *   inline.
450 	 *
451 	 * Note: the NFS code sending down multiple argument segments
452 	 * implies the op is a write.
453 	 * TBD check NFSv4 setacl
454 	 */
455 	if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
456 		req->rl_rtype = rpcrdma_noch;
457 	else if (rqst->rq_snd_buf.page_len == 0)
458 		req->rl_rtype = rpcrdma_areadch;
459 	else
460 		req->rl_rtype = rpcrdma_readch;
461 
462 	/* The following simplification is not true forever */
463 	if (req->rl_rtype != rpcrdma_noch && req->rl_wtype == rpcrdma_replych)
464 		req->rl_wtype = rpcrdma_noch;
465 	if (req->rl_rtype != rpcrdma_noch && req->rl_wtype != rpcrdma_noch) {
466 		dprintk("RPC:       %s: cannot marshal multiple chunk lists\n",
467 			__func__);
468 		return -EIO;
469 	}
470 
471 	hdrlen = 28; /*sizeof *headerp;*/
472 	padlen = 0;
473 
474 	/*
475 	 * Pull up any extra send data into the preregistered buffer.
476 	 * When padding is in use and applies to the transfer, insert
477 	 * it and change the message type.
478 	 */
479 	if (req->rl_rtype == rpcrdma_noch) {
480 
481 		padlen = rpcrdma_inline_pullup(rqst,
482 						RPCRDMA_INLINE_PAD_VALUE(rqst));
483 
484 		if (padlen) {
485 			headerp->rm_type = htonl(RDMA_MSGP);
486 			headerp->rm_body.rm_padded.rm_align =
487 				htonl(RPCRDMA_INLINE_PAD_VALUE(rqst));
488 			headerp->rm_body.rm_padded.rm_thresh =
489 				htonl(RPCRDMA_INLINE_PAD_THRESH);
490 			headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero;
491 			headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero;
492 			headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero;
493 			hdrlen += 2 * sizeof(u32); /* extra words in padhdr */
494 			if (req->rl_wtype != rpcrdma_noch) {
495 				dprintk("RPC:       %s: invalid chunk list\n",
496 					__func__);
497 				return -EIO;
498 			}
499 		} else {
500 			headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
501 			headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
502 			headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
503 			/* new length after pullup */
504 			rpclen = rqst->rq_svec[0].iov_len;
505 			/*
506 			 * Currently we try to not actually use read inline.
507 			 * Reply chunks have the desirable property that
508 			 * they land, packed, directly in the target buffers
509 			 * without headers, so they require no fixup. The
510 			 * additional RDMA Write op sends the same amount
511 			 * of data, streams on-the-wire and adds no overhead
512 			 * on receive. Therefore, we request a reply chunk
513 			 * for non-writes wherever feasible and efficient.
514 			 */
515 			if (req->rl_wtype == rpcrdma_noch)
516 				req->rl_wtype = rpcrdma_replych;
517 		}
518 	}
519 
520 	hdrlen = rpcrdma_marshal_chunks(rqst, hdrlen);
521 	if (hdrlen < 0)
522 		return hdrlen;
523 
524 	dprintk("RPC:       %s: %s: hdrlen %zd rpclen %zd padlen %zd"
525 		" headerp 0x%p base 0x%p lkey 0x%x\n",
526 		__func__, transfertypes[req->rl_wtype], hdrlen, rpclen, padlen,
527 		headerp, base, req->rl_iov.lkey);
528 
529 	/*
530 	 * initialize send_iov's - normally only two: rdma chunk header and
531 	 * single preregistered RPC header buffer, but if padding is present,
532 	 * then use a preregistered (and zeroed) pad buffer between the RPC
533 	 * header and any write data. In all non-rdma cases, any following
534 	 * data has been copied into the RPC header buffer.
535 	 */
536 	req->rl_send_iov[0].addr = req->rl_iov.addr;
537 	req->rl_send_iov[0].length = hdrlen;
538 	req->rl_send_iov[0].lkey = req->rl_iov.lkey;
539 
540 	req->rl_send_iov[1].addr = req->rl_iov.addr + (base - req->rl_base);
541 	req->rl_send_iov[1].length = rpclen;
542 	req->rl_send_iov[1].lkey = req->rl_iov.lkey;
543 
544 	req->rl_niovs = 2;
545 
546 	if (padlen) {
547 		struct rpcrdma_ep *ep = &r_xprt->rx_ep;
548 
549 		req->rl_send_iov[2].addr = ep->rep_pad.addr;
550 		req->rl_send_iov[2].length = padlen;
551 		req->rl_send_iov[2].lkey = ep->rep_pad.lkey;
552 
553 		req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen;
554 		req->rl_send_iov[3].length = rqst->rq_slen - rpclen;
555 		req->rl_send_iov[3].lkey = req->rl_iov.lkey;
556 
557 		req->rl_niovs = 4;
558 	}
559 
560 	return 0;
561 }
562 
563 /*
564  * Chase down a received write or reply chunklist to get length
565  * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
566  */
567 static int
568 rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
569 {
570 	unsigned int i, total_len;
571 	struct rpcrdma_write_chunk *cur_wchunk;
572 
573 	i = ntohl(**iptrp);	/* get array count */
574 	if (i > max)
575 		return -1;
576 	cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
577 	total_len = 0;
578 	while (i--) {
579 		struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
580 		ifdebug(FACILITY) {
581 			u64 off;
582 			xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
583 			dprintk("RPC:       %s: chunk %d@0x%llx:0x%x\n",
584 				__func__,
585 				ntohl(seg->rs_length),
586 				(unsigned long long)off,
587 				ntohl(seg->rs_handle));
588 		}
589 		total_len += ntohl(seg->rs_length);
590 		++cur_wchunk;
591 	}
592 	/* check and adjust for properly terminated write chunk */
593 	if (wrchunk) {
594 		__be32 *w = (__be32 *) cur_wchunk;
595 		if (*w++ != xdr_zero)
596 			return -1;
597 		cur_wchunk = (struct rpcrdma_write_chunk *) w;
598 	}
599 	if ((char *) cur_wchunk > rep->rr_base + rep->rr_len)
600 		return -1;
601 
602 	*iptrp = (__be32 *) cur_wchunk;
603 	return total_len;
604 }
605 
606 /*
607  * Scatter inline received data back into provided iov's.
608  */
609 static void
610 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
611 {
612 	int i, npages, curlen, olen;
613 	char *destp;
614 	struct page **ppages;
615 	int page_base;
616 
617 	curlen = rqst->rq_rcv_buf.head[0].iov_len;
618 	if (curlen > copy_len) {	/* write chunk header fixup */
619 		curlen = copy_len;
620 		rqst->rq_rcv_buf.head[0].iov_len = curlen;
621 	}
622 
623 	dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
624 		__func__, srcp, copy_len, curlen);
625 
626 	/* Shift pointer for first receive segment only */
627 	rqst->rq_rcv_buf.head[0].iov_base = srcp;
628 	srcp += curlen;
629 	copy_len -= curlen;
630 
631 	olen = copy_len;
632 	i = 0;
633 	rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
634 	page_base = rqst->rq_rcv_buf.page_base;
635 	ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
636 	page_base &= ~PAGE_MASK;
637 
638 	if (copy_len && rqst->rq_rcv_buf.page_len) {
639 		npages = PAGE_ALIGN(page_base +
640 			rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
641 		for (; i < npages; i++) {
642 			curlen = PAGE_SIZE - page_base;
643 			if (curlen > copy_len)
644 				curlen = copy_len;
645 			dprintk("RPC:       %s: page %d"
646 				" srcp 0x%p len %d curlen %d\n",
647 				__func__, i, srcp, copy_len, curlen);
648 			destp = kmap_atomic(ppages[i]);
649 			memcpy(destp + page_base, srcp, curlen);
650 			flush_dcache_page(ppages[i]);
651 			kunmap_atomic(destp);
652 			srcp += curlen;
653 			copy_len -= curlen;
654 			if (copy_len == 0)
655 				break;
656 			page_base = 0;
657 		}
658 	}
659 
660 	if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
661 		curlen = copy_len;
662 		if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
663 			curlen = rqst->rq_rcv_buf.tail[0].iov_len;
664 		if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
665 			memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
666 		dprintk("RPC:       %s: tail srcp 0x%p len %d curlen %d\n",
667 			__func__, srcp, copy_len, curlen);
668 		rqst->rq_rcv_buf.tail[0].iov_len = curlen;
669 		copy_len -= curlen; ++i;
670 	} else
671 		rqst->rq_rcv_buf.tail[0].iov_len = 0;
672 
673 	if (pad) {
674 		/* implicit padding on terminal chunk */
675 		unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
676 		while (pad--)
677 			p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
678 	}
679 
680 	if (copy_len)
681 		dprintk("RPC:       %s: %d bytes in"
682 			" %d extra segments (%d lost)\n",
683 			__func__, olen, i, copy_len);
684 
685 	/* TBD avoid a warning from call_decode() */
686 	rqst->rq_private_buf = rqst->rq_rcv_buf;
687 }
688 
689 void
690 rpcrdma_connect_worker(struct work_struct *work)
691 {
692 	struct rpcrdma_ep *ep =
693 		container_of(work, struct rpcrdma_ep, rep_connect_worker.work);
694 	struct rpc_xprt *xprt = ep->rep_xprt;
695 
696 	spin_lock_bh(&xprt->transport_lock);
697 	if (++xprt->connect_cookie == 0)	/* maintain a reserved value */
698 		++xprt->connect_cookie;
699 	if (ep->rep_connected > 0) {
700 		if (!xprt_test_and_set_connected(xprt))
701 			xprt_wake_pending_tasks(xprt, 0);
702 	} else {
703 		if (xprt_test_and_clear_connected(xprt))
704 			xprt_wake_pending_tasks(xprt, -ENOTCONN);
705 	}
706 	spin_unlock_bh(&xprt->transport_lock);
707 }
708 
709 /*
710  * This function is called when an async event is posted to
711  * the connection which changes the connection state. All it
712  * does at this point is mark the connection up/down, the rpc
713  * timers do the rest.
714  */
715 void
716 rpcrdma_conn_func(struct rpcrdma_ep *ep)
717 {
718 	schedule_delayed_work(&ep->rep_connect_worker, 0);
719 }
720 
721 /*
722  * Called as a tasklet to do req/reply match and complete a request
723  * Errors must result in the RPC task either being awakened, or
724  * allowed to timeout, to discover the errors at that time.
725  */
726 void
727 rpcrdma_reply_handler(struct rpcrdma_rep *rep)
728 {
729 	struct rpcrdma_msg *headerp;
730 	struct rpcrdma_req *req;
731 	struct rpc_rqst *rqst;
732 	struct rpc_xprt *xprt = rep->rr_xprt;
733 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
734 	__be32 *iptr;
735 	int rdmalen, status;
736 	unsigned long cwnd;
737 
738 	/* Check status. If bad, signal disconnect and return rep to pool */
739 	if (rep->rr_len == ~0U) {
740 		rpcrdma_recv_buffer_put(rep);
741 		if (r_xprt->rx_ep.rep_connected == 1) {
742 			r_xprt->rx_ep.rep_connected = -EIO;
743 			rpcrdma_conn_func(&r_xprt->rx_ep);
744 		}
745 		return;
746 	}
747 	if (rep->rr_len < 28) {
748 		dprintk("RPC:       %s: short/invalid reply\n", __func__);
749 		goto repost;
750 	}
751 	headerp = (struct rpcrdma_msg *) rep->rr_base;
752 	if (headerp->rm_vers != xdr_one) {
753 		dprintk("RPC:       %s: invalid version %d\n",
754 			__func__, ntohl(headerp->rm_vers));
755 		goto repost;
756 	}
757 
758 	/* Get XID and try for a match. */
759 	spin_lock(&xprt->transport_lock);
760 	rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
761 	if (rqst == NULL) {
762 		spin_unlock(&xprt->transport_lock);
763 		dprintk("RPC:       %s: reply 0x%p failed "
764 			"to match any request xid 0x%08x len %d\n",
765 			__func__, rep, headerp->rm_xid, rep->rr_len);
766 repost:
767 		r_xprt->rx_stats.bad_reply_count++;
768 		rep->rr_func = rpcrdma_reply_handler;
769 		if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
770 			rpcrdma_recv_buffer_put(rep);
771 
772 		return;
773 	}
774 
775 	/* get request object */
776 	req = rpcr_to_rdmar(rqst);
777 	if (req->rl_reply) {
778 		spin_unlock(&xprt->transport_lock);
779 		dprintk("RPC:       %s: duplicate reply 0x%p to RPC "
780 			"request 0x%p: xid 0x%08x\n", __func__, rep, req,
781 			headerp->rm_xid);
782 		goto repost;
783 	}
784 
785 	dprintk("RPC:       %s: reply 0x%p completes request 0x%p\n"
786 		"                   RPC request 0x%p xid 0x%08x\n",
787 			__func__, rep, req, rqst, headerp->rm_xid);
788 
789 	/* from here on, the reply is no longer an orphan */
790 	req->rl_reply = rep;
791 	xprt->reestablish_timeout = 0;
792 
793 	/* check for expected message types */
794 	/* The order of some of these tests is important. */
795 	switch (headerp->rm_type) {
796 	case htonl(RDMA_MSG):
797 		/* never expect read chunks */
798 		/* never expect reply chunks (two ways to check) */
799 		/* never expect write chunks without having offered RDMA */
800 		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
801 		    (headerp->rm_body.rm_chunks[1] == xdr_zero &&
802 		     headerp->rm_body.rm_chunks[2] != xdr_zero) ||
803 		    (headerp->rm_body.rm_chunks[1] != xdr_zero &&
804 		     req->rl_nchunks == 0))
805 			goto badheader;
806 		if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
807 			/* count any expected write chunks in read reply */
808 			/* start at write chunk array count */
809 			iptr = &headerp->rm_body.rm_chunks[2];
810 			rdmalen = rpcrdma_count_chunks(rep,
811 						req->rl_nchunks, 1, &iptr);
812 			/* check for validity, and no reply chunk after */
813 			if (rdmalen < 0 || *iptr++ != xdr_zero)
814 				goto badheader;
815 			rep->rr_len -=
816 			    ((unsigned char *)iptr - (unsigned char *)headerp);
817 			status = rep->rr_len + rdmalen;
818 			r_xprt->rx_stats.total_rdma_reply += rdmalen;
819 			/* special case - last chunk may omit padding */
820 			if (rdmalen &= 3) {
821 				rdmalen = 4 - rdmalen;
822 				status += rdmalen;
823 			}
824 		} else {
825 			/* else ordinary inline */
826 			rdmalen = 0;
827 			iptr = (__be32 *)((unsigned char *)headerp + 28);
828 			rep->rr_len -= 28; /*sizeof *headerp;*/
829 			status = rep->rr_len;
830 		}
831 		/* Fix up the rpc results for upper layer */
832 		rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
833 		break;
834 
835 	case htonl(RDMA_NOMSG):
836 		/* never expect read or write chunks, always reply chunks */
837 		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
838 		    headerp->rm_body.rm_chunks[1] != xdr_zero ||
839 		    headerp->rm_body.rm_chunks[2] != xdr_one ||
840 		    req->rl_nchunks == 0)
841 			goto badheader;
842 		iptr = (__be32 *)((unsigned char *)headerp + 28);
843 		rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
844 		if (rdmalen < 0)
845 			goto badheader;
846 		r_xprt->rx_stats.total_rdma_reply += rdmalen;
847 		/* Reply chunk buffer already is the reply vector - no fixup. */
848 		status = rdmalen;
849 		break;
850 
851 badheader:
852 	default:
853 		dprintk("%s: invalid rpcrdma reply header (type %d):"
854 				" chunks[012] == %d %d %d"
855 				" expected chunks <= %d\n",
856 				__func__, ntohl(headerp->rm_type),
857 				headerp->rm_body.rm_chunks[0],
858 				headerp->rm_body.rm_chunks[1],
859 				headerp->rm_body.rm_chunks[2],
860 				req->rl_nchunks);
861 		status = -EIO;
862 		r_xprt->rx_stats.bad_reply_count++;
863 		break;
864 	}
865 
866 	cwnd = xprt->cwnd;
867 	xprt->cwnd = atomic_read(&r_xprt->rx_buf.rb_credits) << RPC_CWNDSHIFT;
868 	if (xprt->cwnd > cwnd)
869 		xprt_release_rqst_cong(rqst->rq_task);
870 
871 	dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
872 			__func__, xprt, rqst, status);
873 	xprt_complete_rqst(rqst->rq_task, status);
874 	spin_unlock(&xprt->transport_lock);
875 }
876