xref: /openbmc/linux/net/sunrpc/xprtrdma/rpc_rdma.c (revision 293d5b43)
1 /*
2  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * rpc_rdma.c
42  *
43  * This file contains the guts of the RPC RDMA protocol, and
44  * does marshaling/unmarshaling, etc. It is also where interfacing
45  * to the Linux RPC framework lives.
46  */
47 
48 #include "xprt_rdma.h"
49 
50 #include <linux/highmem.h>
51 
52 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
53 # define RPCDBG_FACILITY	RPCDBG_TRANS
54 #endif
55 
56 enum rpcrdma_chunktype {
57 	rpcrdma_noch = 0,
58 	rpcrdma_readch,
59 	rpcrdma_areadch,
60 	rpcrdma_writech,
61 	rpcrdma_replych
62 };
63 
64 static const char transfertypes[][12] = {
65 	"inline",	/* no chunks */
66 	"read list",	/* some argument via rdma read */
67 	"*read list",	/* entire request via rdma read */
68 	"write list",	/* some result via rdma write */
69 	"reply chunk"	/* entire reply via rdma write */
70 };
71 
72 /* Returns size of largest RPC-over-RDMA header in a Call message
73  *
74  * The largest Call header contains a full-size Read list and a
75  * minimal Reply chunk.
76  */
77 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
78 {
79 	unsigned int size;
80 
81 	/* Fixed header fields and list discriminators */
82 	size = RPCRDMA_HDRLEN_MIN;
83 
84 	/* Maximum Read list size */
85 	maxsegs += 2;	/* segment for head and tail buffers */
86 	size = maxsegs * sizeof(struct rpcrdma_read_chunk);
87 
88 	/* Minimal Read chunk size */
89 	size += sizeof(__be32);	/* segment count */
90 	size += sizeof(struct rpcrdma_segment);
91 	size += sizeof(__be32);	/* list discriminator */
92 
93 	dprintk("RPC:       %s: max call header size = %u\n",
94 		__func__, size);
95 	return size;
96 }
97 
98 /* Returns size of largest RPC-over-RDMA header in a Reply message
99  *
100  * There is only one Write list or one Reply chunk per Reply
101  * message.  The larger list is the Write list.
102  */
103 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
104 {
105 	unsigned int size;
106 
107 	/* Fixed header fields and list discriminators */
108 	size = RPCRDMA_HDRLEN_MIN;
109 
110 	/* Maximum Write list size */
111 	maxsegs += 2;	/* segment for head and tail buffers */
112 	size = sizeof(__be32);		/* segment count */
113 	size += maxsegs * sizeof(struct rpcrdma_segment);
114 	size += sizeof(__be32);	/* list discriminator */
115 
116 	dprintk("RPC:       %s: max reply header size = %u\n",
117 		__func__, size);
118 	return size;
119 }
120 
121 void rpcrdma_set_max_header_sizes(struct rpcrdma_ia *ia,
122 				  struct rpcrdma_create_data_internal *cdata,
123 				  unsigned int maxsegs)
124 {
125 	ia->ri_max_inline_write = cdata->inline_wsize -
126 				  rpcrdma_max_call_header_size(maxsegs);
127 	ia->ri_max_inline_read = cdata->inline_rsize -
128 				 rpcrdma_max_reply_header_size(maxsegs);
129 }
130 
131 /* The client can send a request inline as long as the RPCRDMA header
132  * plus the RPC call fit under the transport's inline limit. If the
133  * combined call message size exceeds that limit, the client must use
134  * the read chunk list for this operation.
135  */
136 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
137 				struct rpc_rqst *rqst)
138 {
139 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
140 
141 	return rqst->rq_snd_buf.len <= ia->ri_max_inline_write;
142 }
143 
144 /* The client can't know how large the actual reply will be. Thus it
145  * plans for the largest possible reply for that particular ULP
146  * operation. If the maximum combined reply message size exceeds that
147  * limit, the client must provide a write list or a reply chunk for
148  * this request.
149  */
150 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
151 				   struct rpc_rqst *rqst)
152 {
153 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
154 
155 	return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read;
156 }
157 
158 static int
159 rpcrdma_tail_pullup(struct xdr_buf *buf)
160 {
161 	size_t tlen = buf->tail[0].iov_len;
162 	size_t skip = tlen & 3;
163 
164 	/* Do not include the tail if it is only an XDR pad */
165 	if (tlen < 4)
166 		return 0;
167 
168 	/* xdr_write_pages() adds a pad at the beginning of the tail
169 	 * if the content in "buf->pages" is unaligned. Force the
170 	 * tail's actual content to land at the next XDR position
171 	 * after the head instead.
172 	 */
173 	if (skip) {
174 		unsigned char *src, *dst;
175 		unsigned int count;
176 
177 		src = buf->tail[0].iov_base;
178 		dst = buf->head[0].iov_base;
179 		dst += buf->head[0].iov_len;
180 
181 		src += skip;
182 		tlen -= skip;
183 
184 		dprintk("RPC:       %s: skip=%zu, memmove(%p, %p, %zu)\n",
185 			__func__, skip, dst, src, tlen);
186 
187 		for (count = tlen; count; count--)
188 			*dst++ = *src++;
189 	}
190 
191 	return tlen;
192 }
193 
194 /* Split "vec" on page boundaries into segments. FMR registers pages,
195  * not a byte range. Other modes coalesce these segments into a single
196  * MR when they can.
197  */
198 static int
199 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg, int n)
200 {
201 	size_t page_offset;
202 	u32 remaining;
203 	char *base;
204 
205 	base = vec->iov_base;
206 	page_offset = offset_in_page(base);
207 	remaining = vec->iov_len;
208 	while (remaining && n < RPCRDMA_MAX_SEGS) {
209 		seg[n].mr_page = NULL;
210 		seg[n].mr_offset = base;
211 		seg[n].mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
212 		remaining -= seg[n].mr_len;
213 		base += seg[n].mr_len;
214 		++n;
215 		page_offset = 0;
216 	}
217 	return n;
218 }
219 
220 /*
221  * Chunk assembly from upper layer xdr_buf.
222  *
223  * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
224  * elements. Segments are then coalesced when registered, if possible
225  * within the selected memreg mode.
226  *
227  * Returns positive number of segments converted, or a negative errno.
228  */
229 
230 static int
231 rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
232 	enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg)
233 {
234 	int len, n, p, page_base;
235 	struct page **ppages;
236 
237 	n = 0;
238 	if (pos == 0) {
239 		n = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, n);
240 		if (n == RPCRDMA_MAX_SEGS)
241 			goto out_overflow;
242 	}
243 
244 	len = xdrbuf->page_len;
245 	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
246 	page_base = xdrbuf->page_base & ~PAGE_MASK;
247 	p = 0;
248 	while (len && n < RPCRDMA_MAX_SEGS) {
249 		if (!ppages[p]) {
250 			/* alloc the pagelist for receiving buffer */
251 			ppages[p] = alloc_page(GFP_ATOMIC);
252 			if (!ppages[p])
253 				return -EAGAIN;
254 		}
255 		seg[n].mr_page = ppages[p];
256 		seg[n].mr_offset = (void *)(unsigned long) page_base;
257 		seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
258 		if (seg[n].mr_len > PAGE_SIZE)
259 			goto out_overflow;
260 		len -= seg[n].mr_len;
261 		++n;
262 		++p;
263 		page_base = 0;	/* page offset only applies to first page */
264 	}
265 
266 	/* Message overflows the seg array */
267 	if (len && n == RPCRDMA_MAX_SEGS)
268 		goto out_overflow;
269 
270 	/* When encoding the read list, the tail is always sent inline */
271 	if (type == rpcrdma_readch)
272 		return n;
273 
274 	if (xdrbuf->tail[0].iov_len) {
275 		/* the rpcrdma protocol allows us to omit any trailing
276 		 * xdr pad bytes, saving the server an RDMA operation. */
277 		if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
278 			return n;
279 		n = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, n);
280 		if (n == RPCRDMA_MAX_SEGS)
281 			goto out_overflow;
282 	}
283 
284 	return n;
285 
286 out_overflow:
287 	pr_err("rpcrdma: segment array overflow\n");
288 	return -EIO;
289 }
290 
291 static inline __be32 *
292 xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mw *mw)
293 {
294 	*iptr++ = cpu_to_be32(mw->mw_handle);
295 	*iptr++ = cpu_to_be32(mw->mw_length);
296 	return xdr_encode_hyper(iptr, mw->mw_offset);
297 }
298 
299 /* XDR-encode the Read list. Supports encoding a list of read
300  * segments that belong to a single read chunk.
301  *
302  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
303  *
304  *  Read chunklist (a linked list):
305  *   N elements, position P (same P for all chunks of same arg!):
306  *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
307  *
308  * Returns a pointer to the XDR word in the RDMA header following
309  * the end of the Read list, or an error pointer.
310  */
311 static __be32 *
312 rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
313 			 struct rpcrdma_req *req, struct rpc_rqst *rqst,
314 			 __be32 *iptr, enum rpcrdma_chunktype rtype)
315 {
316 	struct rpcrdma_mr_seg *seg;
317 	struct rpcrdma_mw *mw;
318 	unsigned int pos;
319 	int n, nsegs;
320 
321 	if (rtype == rpcrdma_noch) {
322 		*iptr++ = xdr_zero;	/* item not present */
323 		return iptr;
324 	}
325 
326 	pos = rqst->rq_snd_buf.head[0].iov_len;
327 	if (rtype == rpcrdma_areadch)
328 		pos = 0;
329 	seg = req->rl_segments;
330 	nsegs = rpcrdma_convert_iovs(&rqst->rq_snd_buf, pos, rtype, seg);
331 	if (nsegs < 0)
332 		return ERR_PTR(nsegs);
333 
334 	do {
335 		n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
336 						 false, &mw);
337 		if (n < 0)
338 			return ERR_PTR(n);
339 		list_add(&mw->mw_list, &req->rl_registered);
340 
341 		*iptr++ = xdr_one;	/* item present */
342 
343 		/* All read segments in this chunk
344 		 * have the same "position".
345 		 */
346 		*iptr++ = cpu_to_be32(pos);
347 		iptr = xdr_encode_rdma_segment(iptr, mw);
348 
349 		dprintk("RPC: %5u %s: pos %u %u@0x%016llx:0x%08x (%s)\n",
350 			rqst->rq_task->tk_pid, __func__, pos,
351 			mw->mw_length, (unsigned long long)mw->mw_offset,
352 			mw->mw_handle, n < nsegs ? "more" : "last");
353 
354 		r_xprt->rx_stats.read_chunk_count++;
355 		seg += n;
356 		nsegs -= n;
357 	} while (nsegs);
358 
359 	/* Finish Read list */
360 	*iptr++ = xdr_zero;	/* Next item not present */
361 	return iptr;
362 }
363 
364 /* XDR-encode the Write list. Supports encoding a list containing
365  * one array of plain segments that belong to a single write chunk.
366  *
367  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
368  *
369  *  Write chunklist (a list of (one) counted array):
370  *   N elements:
371  *    1 - N - HLOO - HLOO - ... - HLOO - 0
372  *
373  * Returns a pointer to the XDR word in the RDMA header following
374  * the end of the Write list, or an error pointer.
375  */
376 static __be32 *
377 rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
378 			  struct rpc_rqst *rqst, __be32 *iptr,
379 			  enum rpcrdma_chunktype wtype)
380 {
381 	struct rpcrdma_mr_seg *seg;
382 	struct rpcrdma_mw *mw;
383 	int n, nsegs, nchunks;
384 	__be32 *segcount;
385 
386 	if (wtype != rpcrdma_writech) {
387 		*iptr++ = xdr_zero;	/* no Write list present */
388 		return iptr;
389 	}
390 
391 	seg = req->rl_segments;
392 	nsegs = rpcrdma_convert_iovs(&rqst->rq_rcv_buf,
393 				     rqst->rq_rcv_buf.head[0].iov_len,
394 				     wtype, seg);
395 	if (nsegs < 0)
396 		return ERR_PTR(nsegs);
397 
398 	*iptr++ = xdr_one;	/* Write list present */
399 	segcount = iptr++;	/* save location of segment count */
400 
401 	nchunks = 0;
402 	do {
403 		n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
404 						 true, &mw);
405 		if (n < 0)
406 			return ERR_PTR(n);
407 		list_add(&mw->mw_list, &req->rl_registered);
408 
409 		iptr = xdr_encode_rdma_segment(iptr, mw);
410 
411 		dprintk("RPC: %5u %s: %u@0x016%llx:0x%08x (%s)\n",
412 			rqst->rq_task->tk_pid, __func__,
413 			mw->mw_length, (unsigned long long)mw->mw_offset,
414 			mw->mw_handle, n < nsegs ? "more" : "last");
415 
416 		r_xprt->rx_stats.write_chunk_count++;
417 		r_xprt->rx_stats.total_rdma_request += seg->mr_len;
418 		nchunks++;
419 		seg   += n;
420 		nsegs -= n;
421 	} while (nsegs);
422 
423 	/* Update count of segments in this Write chunk */
424 	*segcount = cpu_to_be32(nchunks);
425 
426 	/* Finish Write list */
427 	*iptr++ = xdr_zero;	/* Next item not present */
428 	return iptr;
429 }
430 
431 /* XDR-encode the Reply chunk. Supports encoding an array of plain
432  * segments that belong to a single write (reply) chunk.
433  *
434  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
435  *
436  *  Reply chunk (a counted array):
437  *   N elements:
438  *    1 - N - HLOO - HLOO - ... - HLOO
439  *
440  * Returns a pointer to the XDR word in the RDMA header following
441  * the end of the Reply chunk, or an error pointer.
442  */
443 static __be32 *
444 rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
445 			   struct rpcrdma_req *req, struct rpc_rqst *rqst,
446 			   __be32 *iptr, enum rpcrdma_chunktype wtype)
447 {
448 	struct rpcrdma_mr_seg *seg;
449 	struct rpcrdma_mw *mw;
450 	int n, nsegs, nchunks;
451 	__be32 *segcount;
452 
453 	if (wtype != rpcrdma_replych) {
454 		*iptr++ = xdr_zero;	/* no Reply chunk present */
455 		return iptr;
456 	}
457 
458 	seg = req->rl_segments;
459 	nsegs = rpcrdma_convert_iovs(&rqst->rq_rcv_buf, 0, wtype, seg);
460 	if (nsegs < 0)
461 		return ERR_PTR(nsegs);
462 
463 	*iptr++ = xdr_one;	/* Reply chunk present */
464 	segcount = iptr++;	/* save location of segment count */
465 
466 	nchunks = 0;
467 	do {
468 		n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
469 						 true, &mw);
470 		if (n < 0)
471 			return ERR_PTR(n);
472 		list_add(&mw->mw_list, &req->rl_registered);
473 
474 		iptr = xdr_encode_rdma_segment(iptr, mw);
475 
476 		dprintk("RPC: %5u %s: %u@0x%016llx:0x%08x (%s)\n",
477 			rqst->rq_task->tk_pid, __func__,
478 			mw->mw_length, (unsigned long long)mw->mw_offset,
479 			mw->mw_handle, n < nsegs ? "more" : "last");
480 
481 		r_xprt->rx_stats.reply_chunk_count++;
482 		r_xprt->rx_stats.total_rdma_request += seg->mr_len;
483 		nchunks++;
484 		seg   += n;
485 		nsegs -= n;
486 	} while (nsegs);
487 
488 	/* Update count of segments in the Reply chunk */
489 	*segcount = cpu_to_be32(nchunks);
490 
491 	return iptr;
492 }
493 
494 /*
495  * Copy write data inline.
496  * This function is used for "small" requests. Data which is passed
497  * to RPC via iovecs (or page list) is copied directly into the
498  * pre-registered memory buffer for this request. For small amounts
499  * of data, this is efficient. The cutoff value is tunable.
500  */
501 static void rpcrdma_inline_pullup(struct rpc_rqst *rqst)
502 {
503 	int i, npages, curlen;
504 	int copy_len;
505 	unsigned char *srcp, *destp;
506 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
507 	int page_base;
508 	struct page **ppages;
509 
510 	destp = rqst->rq_svec[0].iov_base;
511 	curlen = rqst->rq_svec[0].iov_len;
512 	destp += curlen;
513 
514 	dprintk("RPC:       %s: destp 0x%p len %d hdrlen %d\n",
515 		__func__, destp, rqst->rq_slen, curlen);
516 
517 	copy_len = rqst->rq_snd_buf.page_len;
518 
519 	if (rqst->rq_snd_buf.tail[0].iov_len) {
520 		curlen = rqst->rq_snd_buf.tail[0].iov_len;
521 		if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
522 			memmove(destp + copy_len,
523 				rqst->rq_snd_buf.tail[0].iov_base, curlen);
524 			r_xprt->rx_stats.pullup_copy_count += curlen;
525 		}
526 		dprintk("RPC:       %s: tail destp 0x%p len %d\n",
527 			__func__, destp + copy_len, curlen);
528 		rqst->rq_svec[0].iov_len += curlen;
529 	}
530 	r_xprt->rx_stats.pullup_copy_count += copy_len;
531 
532 	page_base = rqst->rq_snd_buf.page_base;
533 	ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT);
534 	page_base &= ~PAGE_MASK;
535 	npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT;
536 	for (i = 0; copy_len && i < npages; i++) {
537 		curlen = PAGE_SIZE - page_base;
538 		if (curlen > copy_len)
539 			curlen = copy_len;
540 		dprintk("RPC:       %s: page %d destp 0x%p len %d curlen %d\n",
541 			__func__, i, destp, copy_len, curlen);
542 		srcp = kmap_atomic(ppages[i]);
543 		memcpy(destp, srcp+page_base, curlen);
544 		kunmap_atomic(srcp);
545 		rqst->rq_svec[0].iov_len += curlen;
546 		destp += curlen;
547 		copy_len -= curlen;
548 		page_base = 0;
549 	}
550 	/* header now contains entire send message */
551 }
552 
553 /*
554  * Marshal a request: the primary job of this routine is to choose
555  * the transfer modes. See comments below.
556  *
557  * Prepares up to two IOVs per Call message:
558  *
559  *  [0] -- RPC RDMA header
560  *  [1] -- the RPC header/data
561  *
562  * Returns zero on success, otherwise a negative errno.
563  */
564 
565 int
566 rpcrdma_marshal_req(struct rpc_rqst *rqst)
567 {
568 	struct rpc_xprt *xprt = rqst->rq_xprt;
569 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
570 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
571 	enum rpcrdma_chunktype rtype, wtype;
572 	struct rpcrdma_msg *headerp;
573 	bool ddp_allowed;
574 	ssize_t hdrlen;
575 	size_t rpclen;
576 	__be32 *iptr;
577 
578 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
579 	if (test_bit(RPC_BC_PA_IN_USE, &rqst->rq_bc_pa_state))
580 		return rpcrdma_bc_marshal_reply(rqst);
581 #endif
582 
583 	headerp = rdmab_to_msg(req->rl_rdmabuf);
584 	/* don't byte-swap XID, it's already done in request */
585 	headerp->rm_xid = rqst->rq_xid;
586 	headerp->rm_vers = rpcrdma_version;
587 	headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
588 	headerp->rm_type = rdma_msg;
589 
590 	/* When the ULP employs a GSS flavor that guarantees integrity
591 	 * or privacy, direct data placement of individual data items
592 	 * is not allowed.
593 	 */
594 	ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
595 						RPCAUTH_AUTH_DATATOUCH);
596 
597 	/*
598 	 * Chunks needed for results?
599 	 *
600 	 * o If the expected result is under the inline threshold, all ops
601 	 *   return as inline.
602 	 * o Large read ops return data as write chunk(s), header as
603 	 *   inline.
604 	 * o Large non-read ops return as a single reply chunk.
605 	 */
606 	if (rpcrdma_results_inline(r_xprt, rqst))
607 		wtype = rpcrdma_noch;
608 	else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ)
609 		wtype = rpcrdma_writech;
610 	else
611 		wtype = rpcrdma_replych;
612 
613 	/*
614 	 * Chunks needed for arguments?
615 	 *
616 	 * o If the total request is under the inline threshold, all ops
617 	 *   are sent as inline.
618 	 * o Large write ops transmit data as read chunk(s), header as
619 	 *   inline.
620 	 * o Large non-write ops are sent with the entire message as a
621 	 *   single read chunk (protocol 0-position special case).
622 	 *
623 	 * This assumes that the upper layer does not present a request
624 	 * that both has a data payload, and whose non-data arguments
625 	 * by themselves are larger than the inline threshold.
626 	 */
627 	if (rpcrdma_args_inline(r_xprt, rqst)) {
628 		rtype = rpcrdma_noch;
629 		rpcrdma_inline_pullup(rqst);
630 		rpclen = rqst->rq_svec[0].iov_len;
631 	} else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
632 		rtype = rpcrdma_readch;
633 		rpclen = rqst->rq_svec[0].iov_len;
634 		rpclen += rpcrdma_tail_pullup(&rqst->rq_snd_buf);
635 	} else {
636 		r_xprt->rx_stats.nomsg_call_count++;
637 		headerp->rm_type = htonl(RDMA_NOMSG);
638 		rtype = rpcrdma_areadch;
639 		rpclen = 0;
640 	}
641 
642 	/* This implementation supports the following combinations
643 	 * of chunk lists in one RPC-over-RDMA Call message:
644 	 *
645 	 *   - Read list
646 	 *   - Write list
647 	 *   - Reply chunk
648 	 *   - Read list + Reply chunk
649 	 *
650 	 * It might not yet support the following combinations:
651 	 *
652 	 *   - Read list + Write list
653 	 *
654 	 * It does not support the following combinations:
655 	 *
656 	 *   - Write list + Reply chunk
657 	 *   - Read list + Write list + Reply chunk
658 	 *
659 	 * This implementation supports only a single chunk in each
660 	 * Read or Write list. Thus for example the client cannot
661 	 * send a Call message with a Position Zero Read chunk and a
662 	 * regular Read chunk at the same time.
663 	 */
664 	iptr = headerp->rm_body.rm_chunks;
665 	iptr = rpcrdma_encode_read_list(r_xprt, req, rqst, iptr, rtype);
666 	if (IS_ERR(iptr))
667 		goto out_unmap;
668 	iptr = rpcrdma_encode_write_list(r_xprt, req, rqst, iptr, wtype);
669 	if (IS_ERR(iptr))
670 		goto out_unmap;
671 	iptr = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, iptr, wtype);
672 	if (IS_ERR(iptr))
673 		goto out_unmap;
674 	hdrlen = (unsigned char *)iptr - (unsigned char *)headerp;
675 
676 	if (hdrlen + rpclen > RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
677 		goto out_overflow;
678 
679 	dprintk("RPC: %5u %s: %s/%s: hdrlen %zd rpclen %zd\n",
680 		rqst->rq_task->tk_pid, __func__,
681 		transfertypes[rtype], transfertypes[wtype],
682 		hdrlen, rpclen);
683 
684 	req->rl_send_iov[0].addr = rdmab_addr(req->rl_rdmabuf);
685 	req->rl_send_iov[0].length = hdrlen;
686 	req->rl_send_iov[0].lkey = rdmab_lkey(req->rl_rdmabuf);
687 
688 	req->rl_niovs = 1;
689 	if (rtype == rpcrdma_areadch)
690 		return 0;
691 
692 	req->rl_send_iov[1].addr = rdmab_addr(req->rl_sendbuf);
693 	req->rl_send_iov[1].length = rpclen;
694 	req->rl_send_iov[1].lkey = rdmab_lkey(req->rl_sendbuf);
695 
696 	req->rl_niovs = 2;
697 	return 0;
698 
699 out_overflow:
700 	pr_err("rpcrdma: send overflow: hdrlen %zd rpclen %zu %s/%s\n",
701 		hdrlen, rpclen, transfertypes[rtype], transfertypes[wtype]);
702 	iptr = ERR_PTR(-EIO);
703 
704 out_unmap:
705 	r_xprt->rx_ia.ri_ops->ro_unmap_safe(r_xprt, req, false);
706 	return PTR_ERR(iptr);
707 }
708 
709 /*
710  * Chase down a received write or reply chunklist to get length
711  * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
712  */
713 static int
714 rpcrdma_count_chunks(struct rpcrdma_rep *rep, int wrchunk, __be32 **iptrp)
715 {
716 	unsigned int i, total_len;
717 	struct rpcrdma_write_chunk *cur_wchunk;
718 	char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf);
719 
720 	i = be32_to_cpu(**iptrp);
721 	cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
722 	total_len = 0;
723 	while (i--) {
724 		struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
725 		ifdebug(FACILITY) {
726 			u64 off;
727 			xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
728 			dprintk("RPC:       %s: chunk %d@0x%llx:0x%x\n",
729 				__func__,
730 				be32_to_cpu(seg->rs_length),
731 				(unsigned long long)off,
732 				be32_to_cpu(seg->rs_handle));
733 		}
734 		total_len += be32_to_cpu(seg->rs_length);
735 		++cur_wchunk;
736 	}
737 	/* check and adjust for properly terminated write chunk */
738 	if (wrchunk) {
739 		__be32 *w = (__be32 *) cur_wchunk;
740 		if (*w++ != xdr_zero)
741 			return -1;
742 		cur_wchunk = (struct rpcrdma_write_chunk *) w;
743 	}
744 	if ((char *)cur_wchunk > base + rep->rr_len)
745 		return -1;
746 
747 	*iptrp = (__be32 *) cur_wchunk;
748 	return total_len;
749 }
750 
751 /**
752  * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
753  * @rqst: controlling RPC request
754  * @srcp: points to RPC message payload in receive buffer
755  * @copy_len: remaining length of receive buffer content
756  * @pad: Write chunk pad bytes needed (zero for pure inline)
757  *
758  * The upper layer has set the maximum number of bytes it can
759  * receive in each component of rq_rcv_buf. These values are set in
760  * the head.iov_len, page_len, tail.iov_len, and buflen fields.
761  *
762  * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
763  * many cases this function simply updates iov_base pointers in
764  * rq_rcv_buf to point directly to the received reply data, to
765  * avoid copying reply data.
766  *
767  * Returns the count of bytes which had to be memcopied.
768  */
769 static unsigned long
770 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
771 {
772 	unsigned long fixup_copy_count;
773 	int i, npages, curlen;
774 	char *destp;
775 	struct page **ppages;
776 	int page_base;
777 
778 	/* The head iovec is redirected to the RPC reply message
779 	 * in the receive buffer, to avoid a memcopy.
780 	 */
781 	rqst->rq_rcv_buf.head[0].iov_base = srcp;
782 	rqst->rq_private_buf.head[0].iov_base = srcp;
783 
784 	/* The contents of the receive buffer that follow
785 	 * head.iov_len bytes are copied into the page list.
786 	 */
787 	curlen = rqst->rq_rcv_buf.head[0].iov_len;
788 	if (curlen > copy_len)
789 		curlen = copy_len;
790 	dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
791 		__func__, srcp, copy_len, curlen);
792 	srcp += curlen;
793 	copy_len -= curlen;
794 
795 	page_base = rqst->rq_rcv_buf.page_base;
796 	ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
797 	page_base &= ~PAGE_MASK;
798 	fixup_copy_count = 0;
799 	if (copy_len && rqst->rq_rcv_buf.page_len) {
800 		int pagelist_len;
801 
802 		pagelist_len = rqst->rq_rcv_buf.page_len;
803 		if (pagelist_len > copy_len)
804 			pagelist_len = copy_len;
805 		npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
806 		for (i = 0; i < npages; i++) {
807 			curlen = PAGE_SIZE - page_base;
808 			if (curlen > pagelist_len)
809 				curlen = pagelist_len;
810 
811 			dprintk("RPC:       %s: page %d"
812 				" srcp 0x%p len %d curlen %d\n",
813 				__func__, i, srcp, copy_len, curlen);
814 			destp = kmap_atomic(ppages[i]);
815 			memcpy(destp + page_base, srcp, curlen);
816 			flush_dcache_page(ppages[i]);
817 			kunmap_atomic(destp);
818 			srcp += curlen;
819 			copy_len -= curlen;
820 			fixup_copy_count += curlen;
821 			pagelist_len -= curlen;
822 			if (!pagelist_len)
823 				break;
824 			page_base = 0;
825 		}
826 
827 		/* Implicit padding for the last segment in a Write
828 		 * chunk is inserted inline at the front of the tail
829 		 * iovec. The upper layer ignores the content of
830 		 * the pad. Simply ensure inline content in the tail
831 		 * that follows the Write chunk is properly aligned.
832 		 */
833 		if (pad)
834 			srcp -= pad;
835 	}
836 
837 	/* The tail iovec is redirected to the remaining data
838 	 * in the receive buffer, to avoid a memcopy.
839 	 */
840 	if (copy_len || pad) {
841 		rqst->rq_rcv_buf.tail[0].iov_base = srcp;
842 		rqst->rq_private_buf.tail[0].iov_base = srcp;
843 	}
844 
845 	return fixup_copy_count;
846 }
847 
848 void
849 rpcrdma_connect_worker(struct work_struct *work)
850 {
851 	struct rpcrdma_ep *ep =
852 		container_of(work, struct rpcrdma_ep, rep_connect_worker.work);
853 	struct rpcrdma_xprt *r_xprt =
854 		container_of(ep, struct rpcrdma_xprt, rx_ep);
855 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
856 
857 	spin_lock_bh(&xprt->transport_lock);
858 	if (++xprt->connect_cookie == 0)	/* maintain a reserved value */
859 		++xprt->connect_cookie;
860 	if (ep->rep_connected > 0) {
861 		if (!xprt_test_and_set_connected(xprt))
862 			xprt_wake_pending_tasks(xprt, 0);
863 	} else {
864 		if (xprt_test_and_clear_connected(xprt))
865 			xprt_wake_pending_tasks(xprt, -ENOTCONN);
866 	}
867 	spin_unlock_bh(&xprt->transport_lock);
868 }
869 
870 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
871 /* By convention, backchannel calls arrive via rdma_msg type
872  * messages, and never populate the chunk lists. This makes
873  * the RPC/RDMA header small and fixed in size, so it is
874  * straightforward to check the RPC header's direction field.
875  */
876 static bool
877 rpcrdma_is_bcall(struct rpcrdma_msg *headerp)
878 {
879 	__be32 *p = (__be32 *)headerp;
880 
881 	if (headerp->rm_type != rdma_msg)
882 		return false;
883 	if (headerp->rm_body.rm_chunks[0] != xdr_zero)
884 		return false;
885 	if (headerp->rm_body.rm_chunks[1] != xdr_zero)
886 		return false;
887 	if (headerp->rm_body.rm_chunks[2] != xdr_zero)
888 		return false;
889 
890 	/* sanity */
891 	if (p[7] != headerp->rm_xid)
892 		return false;
893 	/* call direction */
894 	if (p[8] != cpu_to_be32(RPC_CALL))
895 		return false;
896 
897 	return true;
898 }
899 #endif	/* CONFIG_SUNRPC_BACKCHANNEL */
900 
901 /*
902  * This function is called when an async event is posted to
903  * the connection which changes the connection state. All it
904  * does at this point is mark the connection up/down, the rpc
905  * timers do the rest.
906  */
907 void
908 rpcrdma_conn_func(struct rpcrdma_ep *ep)
909 {
910 	schedule_delayed_work(&ep->rep_connect_worker, 0);
911 }
912 
913 /* Process received RPC/RDMA messages.
914  *
915  * Errors must result in the RPC task either being awakened, or
916  * allowed to timeout, to discover the errors at that time.
917  */
918 void
919 rpcrdma_reply_handler(struct rpcrdma_rep *rep)
920 {
921 	struct rpcrdma_msg *headerp;
922 	struct rpcrdma_req *req;
923 	struct rpc_rqst *rqst;
924 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
925 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
926 	__be32 *iptr;
927 	int rdmalen, status, rmerr;
928 	unsigned long cwnd;
929 
930 	dprintk("RPC:       %s: incoming rep %p\n", __func__, rep);
931 
932 	if (rep->rr_len == RPCRDMA_BAD_LEN)
933 		goto out_badstatus;
934 	if (rep->rr_len < RPCRDMA_HDRLEN_ERR)
935 		goto out_shortreply;
936 
937 	headerp = rdmab_to_msg(rep->rr_rdmabuf);
938 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
939 	if (rpcrdma_is_bcall(headerp))
940 		goto out_bcall;
941 #endif
942 
943 	/* Match incoming rpcrdma_rep to an rpcrdma_req to
944 	 * get context for handling any incoming chunks.
945 	 */
946 	spin_lock_bh(&xprt->transport_lock);
947 	rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
948 	if (!rqst)
949 		goto out_nomatch;
950 
951 	req = rpcr_to_rdmar(rqst);
952 	if (req->rl_reply)
953 		goto out_duplicate;
954 
955 	/* Sanity checking has passed. We are now committed
956 	 * to complete this transaction.
957 	 */
958 	list_del_init(&rqst->rq_list);
959 	spin_unlock_bh(&xprt->transport_lock);
960 	dprintk("RPC:       %s: reply %p completes request %p (xid 0x%08x)\n",
961 		__func__, rep, req, be32_to_cpu(headerp->rm_xid));
962 
963 	/* from here on, the reply is no longer an orphan */
964 	req->rl_reply = rep;
965 	xprt->reestablish_timeout = 0;
966 
967 	if (headerp->rm_vers != rpcrdma_version)
968 		goto out_badversion;
969 
970 	/* check for expected message types */
971 	/* The order of some of these tests is important. */
972 	switch (headerp->rm_type) {
973 	case rdma_msg:
974 		/* never expect read chunks */
975 		/* never expect reply chunks (two ways to check) */
976 		/* never expect write chunks without having offered RDMA */
977 		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
978 		    (headerp->rm_body.rm_chunks[1] == xdr_zero &&
979 		     headerp->rm_body.rm_chunks[2] != xdr_zero) ||
980 		    (headerp->rm_body.rm_chunks[1] != xdr_zero &&
981 		     list_empty(&req->rl_registered)))
982 			goto badheader;
983 		if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
984 			/* count any expected write chunks in read reply */
985 			/* start at write chunk array count */
986 			iptr = &headerp->rm_body.rm_chunks[2];
987 			rdmalen = rpcrdma_count_chunks(rep, 1, &iptr);
988 			/* check for validity, and no reply chunk after */
989 			if (rdmalen < 0 || *iptr++ != xdr_zero)
990 				goto badheader;
991 			rep->rr_len -=
992 			    ((unsigned char *)iptr - (unsigned char *)headerp);
993 			status = rep->rr_len + rdmalen;
994 			r_xprt->rx_stats.total_rdma_reply += rdmalen;
995 			/* special case - last chunk may omit padding */
996 			if (rdmalen &= 3) {
997 				rdmalen = 4 - rdmalen;
998 				status += rdmalen;
999 			}
1000 		} else {
1001 			/* else ordinary inline */
1002 			rdmalen = 0;
1003 			iptr = (__be32 *)((unsigned char *)headerp +
1004 							RPCRDMA_HDRLEN_MIN);
1005 			rep->rr_len -= RPCRDMA_HDRLEN_MIN;
1006 			status = rep->rr_len;
1007 		}
1008 
1009 		r_xprt->rx_stats.fixup_copy_count +=
1010 			rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len,
1011 					     rdmalen);
1012 		break;
1013 
1014 	case rdma_nomsg:
1015 		/* never expect read or write chunks, always reply chunks */
1016 		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
1017 		    headerp->rm_body.rm_chunks[1] != xdr_zero ||
1018 		    headerp->rm_body.rm_chunks[2] != xdr_one ||
1019 		    list_empty(&req->rl_registered))
1020 			goto badheader;
1021 		iptr = (__be32 *)((unsigned char *)headerp +
1022 							RPCRDMA_HDRLEN_MIN);
1023 		rdmalen = rpcrdma_count_chunks(rep, 0, &iptr);
1024 		if (rdmalen < 0)
1025 			goto badheader;
1026 		r_xprt->rx_stats.total_rdma_reply += rdmalen;
1027 		/* Reply chunk buffer already is the reply vector - no fixup. */
1028 		status = rdmalen;
1029 		break;
1030 
1031 	case rdma_error:
1032 		goto out_rdmaerr;
1033 
1034 badheader:
1035 	default:
1036 		dprintk("RPC: %5u %s: invalid rpcrdma reply (type %u)\n",
1037 			rqst->rq_task->tk_pid, __func__,
1038 			be32_to_cpu(headerp->rm_type));
1039 		status = -EIO;
1040 		r_xprt->rx_stats.bad_reply_count++;
1041 		break;
1042 	}
1043 
1044 out:
1045 	/* Invalidate and flush the data payloads before waking the
1046 	 * waiting application. This guarantees the memory region is
1047 	 * properly fenced from the server before the application
1048 	 * accesses the data. It also ensures proper send flow
1049 	 * control: waking the next RPC waits until this RPC has
1050 	 * relinquished all its Send Queue entries.
1051 	 */
1052 	if (!list_empty(&req->rl_registered))
1053 		r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt, req);
1054 
1055 	spin_lock_bh(&xprt->transport_lock);
1056 	cwnd = xprt->cwnd;
1057 	xprt->cwnd = atomic_read(&r_xprt->rx_buf.rb_credits) << RPC_CWNDSHIFT;
1058 	if (xprt->cwnd > cwnd)
1059 		xprt_release_rqst_cong(rqst->rq_task);
1060 
1061 	xprt_complete_rqst(rqst->rq_task, status);
1062 	spin_unlock_bh(&xprt->transport_lock);
1063 	dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
1064 			__func__, xprt, rqst, status);
1065 	return;
1066 
1067 out_badstatus:
1068 	rpcrdma_recv_buffer_put(rep);
1069 	if (r_xprt->rx_ep.rep_connected == 1) {
1070 		r_xprt->rx_ep.rep_connected = -EIO;
1071 		rpcrdma_conn_func(&r_xprt->rx_ep);
1072 	}
1073 	return;
1074 
1075 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1076 out_bcall:
1077 	rpcrdma_bc_receive_call(r_xprt, rep);
1078 	return;
1079 #endif
1080 
1081 /* If the incoming reply terminated a pending RPC, the next
1082  * RPC call will post a replacement receive buffer as it is
1083  * being marshaled.
1084  */
1085 out_badversion:
1086 	dprintk("RPC:       %s: invalid version %d\n",
1087 		__func__, be32_to_cpu(headerp->rm_vers));
1088 	status = -EIO;
1089 	r_xprt->rx_stats.bad_reply_count++;
1090 	goto out;
1091 
1092 out_rdmaerr:
1093 	rmerr = be32_to_cpu(headerp->rm_body.rm_error.rm_err);
1094 	switch (rmerr) {
1095 	case ERR_VERS:
1096 		pr_err("%s: server reports header version error (%u-%u)\n",
1097 		       __func__,
1098 		       be32_to_cpu(headerp->rm_body.rm_error.rm_vers_low),
1099 		       be32_to_cpu(headerp->rm_body.rm_error.rm_vers_high));
1100 		break;
1101 	case ERR_CHUNK:
1102 		pr_err("%s: server reports header decoding error\n",
1103 		       __func__);
1104 		break;
1105 	default:
1106 		pr_err("%s: server reports unknown error %d\n",
1107 		       __func__, rmerr);
1108 	}
1109 	status = -EREMOTEIO;
1110 	r_xprt->rx_stats.bad_reply_count++;
1111 	goto out;
1112 
1113 /* If no pending RPC transaction was matched, post a replacement
1114  * receive buffer before returning.
1115  */
1116 out_shortreply:
1117 	dprintk("RPC:       %s: short/invalid reply\n", __func__);
1118 	goto repost;
1119 
1120 out_nomatch:
1121 	spin_unlock_bh(&xprt->transport_lock);
1122 	dprintk("RPC:       %s: no match for incoming xid 0x%08x len %d\n",
1123 		__func__, be32_to_cpu(headerp->rm_xid),
1124 		rep->rr_len);
1125 	goto repost;
1126 
1127 out_duplicate:
1128 	spin_unlock_bh(&xprt->transport_lock);
1129 	dprintk("RPC:       %s: "
1130 		"duplicate reply %p to RPC request %p: xid 0x%08x\n",
1131 		__func__, rep, req, be32_to_cpu(headerp->rm_xid));
1132 
1133 repost:
1134 	r_xprt->rx_stats.bad_reply_count++;
1135 	if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
1136 		rpcrdma_recv_buffer_put(rep);
1137 }
1138