1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (c) 2014-2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the BSD-type 10 * license below: 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 19 * Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials provided 22 * with the distribution. 23 * 24 * Neither the name of the Network Appliance, Inc. nor the names of 25 * its contributors may be used to endorse or promote products 26 * derived from this software without specific prior written 27 * permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42 /* 43 * rpc_rdma.c 44 * 45 * This file contains the guts of the RPC RDMA protocol, and 46 * does marshaling/unmarshaling, etc. It is also where interfacing 47 * to the Linux RPC framework lives. 48 */ 49 50 #include <linux/highmem.h> 51 52 #include <linux/sunrpc/svc_rdma.h> 53 54 #include "xprt_rdma.h" 55 #include <trace/events/rpcrdma.h> 56 57 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 58 # define RPCDBG_FACILITY RPCDBG_TRANS 59 #endif 60 61 /* Returns size of largest RPC-over-RDMA header in a Call message 62 * 63 * The largest Call header contains a full-size Read list and a 64 * minimal Reply chunk. 65 */ 66 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs) 67 { 68 unsigned int size; 69 70 /* Fixed header fields and list discriminators */ 71 size = RPCRDMA_HDRLEN_MIN; 72 73 /* Maximum Read list size */ 74 size = maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32); 75 76 /* Minimal Read chunk size */ 77 size += sizeof(__be32); /* segment count */ 78 size += rpcrdma_segment_maxsz * sizeof(__be32); 79 size += sizeof(__be32); /* list discriminator */ 80 81 return size; 82 } 83 84 /* Returns size of largest RPC-over-RDMA header in a Reply message 85 * 86 * There is only one Write list or one Reply chunk per Reply 87 * message. The larger list is the Write list. 88 */ 89 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs) 90 { 91 unsigned int size; 92 93 /* Fixed header fields and list discriminators */ 94 size = RPCRDMA_HDRLEN_MIN; 95 96 /* Maximum Write list size */ 97 size = sizeof(__be32); /* segment count */ 98 size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32); 99 size += sizeof(__be32); /* list discriminator */ 100 101 return size; 102 } 103 104 /** 105 * rpcrdma_set_max_header_sizes - Initialize inline payload sizes 106 * @ep: endpoint to initialize 107 * 108 * The max_inline fields contain the maximum size of an RPC message 109 * so the marshaling code doesn't have to repeat this calculation 110 * for every RPC. 111 */ 112 void rpcrdma_set_max_header_sizes(struct rpcrdma_ep *ep) 113 { 114 unsigned int maxsegs = ep->re_max_rdma_segs; 115 116 ep->re_max_inline_send = 117 ep->re_inline_send - rpcrdma_max_call_header_size(maxsegs); 118 ep->re_max_inline_recv = 119 ep->re_inline_recv - rpcrdma_max_reply_header_size(maxsegs); 120 } 121 122 /* The client can send a request inline as long as the RPCRDMA header 123 * plus the RPC call fit under the transport's inline limit. If the 124 * combined call message size exceeds that limit, the client must use 125 * a Read chunk for this operation. 126 * 127 * A Read chunk is also required if sending the RPC call inline would 128 * exceed this device's max_sge limit. 129 */ 130 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt, 131 struct rpc_rqst *rqst) 132 { 133 struct xdr_buf *xdr = &rqst->rq_snd_buf; 134 struct rpcrdma_ep *ep = r_xprt->rx_ep; 135 unsigned int count, remaining, offset; 136 137 if (xdr->len > ep->re_max_inline_send) 138 return false; 139 140 if (xdr->page_len) { 141 remaining = xdr->page_len; 142 offset = offset_in_page(xdr->page_base); 143 count = RPCRDMA_MIN_SEND_SGES; 144 while (remaining) { 145 remaining -= min_t(unsigned int, 146 PAGE_SIZE - offset, remaining); 147 offset = 0; 148 if (++count > ep->re_attr.cap.max_send_sge) 149 return false; 150 } 151 } 152 153 return true; 154 } 155 156 /* The client can't know how large the actual reply will be. Thus it 157 * plans for the largest possible reply for that particular ULP 158 * operation. If the maximum combined reply message size exceeds that 159 * limit, the client must provide a write list or a reply chunk for 160 * this request. 161 */ 162 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt, 163 struct rpc_rqst *rqst) 164 { 165 return rqst->rq_rcv_buf.buflen <= r_xprt->rx_ep->re_max_inline_recv; 166 } 167 168 /* The client is required to provide a Reply chunk if the maximum 169 * size of the non-payload part of the RPC Reply is larger than 170 * the inline threshold. 171 */ 172 static bool 173 rpcrdma_nonpayload_inline(const struct rpcrdma_xprt *r_xprt, 174 const struct rpc_rqst *rqst) 175 { 176 const struct xdr_buf *buf = &rqst->rq_rcv_buf; 177 178 return (buf->head[0].iov_len + buf->tail[0].iov_len) < 179 r_xprt->rx_ep->re_max_inline_recv; 180 } 181 182 /* Split @vec on page boundaries into SGEs. FMR registers pages, not 183 * a byte range. Other modes coalesce these SGEs into a single MR 184 * when they can. 185 * 186 * Returns pointer to next available SGE, and bumps the total number 187 * of SGEs consumed. 188 */ 189 static struct rpcrdma_mr_seg * 190 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg, 191 unsigned int *n) 192 { 193 u32 remaining, page_offset; 194 char *base; 195 196 base = vec->iov_base; 197 page_offset = offset_in_page(base); 198 remaining = vec->iov_len; 199 while (remaining) { 200 seg->mr_page = NULL; 201 seg->mr_offset = base; 202 seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining); 203 remaining -= seg->mr_len; 204 base += seg->mr_len; 205 ++seg; 206 ++(*n); 207 page_offset = 0; 208 } 209 return seg; 210 } 211 212 /* Convert @xdrbuf into SGEs no larger than a page each. As they 213 * are registered, these SGEs are then coalesced into RDMA segments 214 * when the selected memreg mode supports it. 215 * 216 * Returns positive number of SGEs consumed, or a negative errno. 217 */ 218 219 static int 220 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf, 221 unsigned int pos, enum rpcrdma_chunktype type, 222 struct rpcrdma_mr_seg *seg) 223 { 224 unsigned long page_base; 225 unsigned int len, n; 226 struct page **ppages; 227 228 n = 0; 229 if (pos == 0) 230 seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n); 231 232 len = xdrbuf->page_len; 233 ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT); 234 page_base = offset_in_page(xdrbuf->page_base); 235 while (len) { 236 /* ACL likes to be lazy in allocating pages - ACLs 237 * are small by default but can get huge. 238 */ 239 if (unlikely(xdrbuf->flags & XDRBUF_SPARSE_PAGES)) { 240 if (!*ppages) 241 *ppages = alloc_page(GFP_NOWAIT | __GFP_NOWARN); 242 if (!*ppages) 243 return -ENOBUFS; 244 } 245 seg->mr_page = *ppages; 246 seg->mr_offset = (char *)page_base; 247 seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len); 248 len -= seg->mr_len; 249 ++ppages; 250 ++seg; 251 ++n; 252 page_base = 0; 253 } 254 255 /* When encoding a Read chunk, the tail iovec contains an 256 * XDR pad and may be omitted. 257 */ 258 if (type == rpcrdma_readch && r_xprt->rx_ep->re_implicit_roundup) 259 goto out; 260 261 /* When encoding a Write chunk, some servers need to see an 262 * extra segment for non-XDR-aligned Write chunks. The upper 263 * layer provides space in the tail iovec that may be used 264 * for this purpose. 265 */ 266 if (type == rpcrdma_writech && r_xprt->rx_ep->re_implicit_roundup) 267 goto out; 268 269 if (xdrbuf->tail[0].iov_len) 270 seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n); 271 272 out: 273 if (unlikely(n > RPCRDMA_MAX_SEGS)) 274 return -EIO; 275 return n; 276 } 277 278 static void 279 xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mr *mr) 280 { 281 *iptr++ = cpu_to_be32(mr->mr_handle); 282 *iptr++ = cpu_to_be32(mr->mr_length); 283 xdr_encode_hyper(iptr, mr->mr_offset); 284 } 285 286 static int 287 encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr) 288 { 289 __be32 *p; 290 291 p = xdr_reserve_space(xdr, 4 * sizeof(*p)); 292 if (unlikely(!p)) 293 return -EMSGSIZE; 294 295 xdr_encode_rdma_segment(p, mr); 296 return 0; 297 } 298 299 static int 300 encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr, 301 u32 position) 302 { 303 __be32 *p; 304 305 p = xdr_reserve_space(xdr, 6 * sizeof(*p)); 306 if (unlikely(!p)) 307 return -EMSGSIZE; 308 309 *p++ = xdr_one; /* Item present */ 310 *p++ = cpu_to_be32(position); 311 xdr_encode_rdma_segment(p, mr); 312 return 0; 313 } 314 315 static struct rpcrdma_mr_seg *rpcrdma_mr_prepare(struct rpcrdma_xprt *r_xprt, 316 struct rpcrdma_req *req, 317 struct rpcrdma_mr_seg *seg, 318 int nsegs, bool writing, 319 struct rpcrdma_mr **mr) 320 { 321 *mr = rpcrdma_mr_pop(&req->rl_free_mrs); 322 if (!*mr) { 323 *mr = rpcrdma_mr_get(r_xprt); 324 if (!*mr) 325 goto out_getmr_err; 326 trace_xprtrdma_mr_get(req); 327 (*mr)->mr_req = req; 328 } 329 330 rpcrdma_mr_push(*mr, &req->rl_registered); 331 return frwr_map(r_xprt, seg, nsegs, writing, req->rl_slot.rq_xid, *mr); 332 333 out_getmr_err: 334 trace_xprtrdma_nomrs(req); 335 xprt_wait_for_buffer_space(&r_xprt->rx_xprt); 336 rpcrdma_mrs_refresh(r_xprt); 337 return ERR_PTR(-EAGAIN); 338 } 339 340 /* Register and XDR encode the Read list. Supports encoding a list of read 341 * segments that belong to a single read chunk. 342 * 343 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): 344 * 345 * Read chunklist (a linked list): 346 * N elements, position P (same P for all chunks of same arg!): 347 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0 348 * 349 * Returns zero on success, or a negative errno if a failure occurred. 350 * @xdr is advanced to the next position in the stream. 351 * 352 * Only a single @pos value is currently supported. 353 */ 354 static int rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, 355 struct rpcrdma_req *req, 356 struct rpc_rqst *rqst, 357 enum rpcrdma_chunktype rtype) 358 { 359 struct xdr_stream *xdr = &req->rl_stream; 360 struct rpcrdma_mr_seg *seg; 361 struct rpcrdma_mr *mr; 362 unsigned int pos; 363 int nsegs; 364 365 if (rtype == rpcrdma_noch_pullup || rtype == rpcrdma_noch_mapped) 366 goto done; 367 368 pos = rqst->rq_snd_buf.head[0].iov_len; 369 if (rtype == rpcrdma_areadch) 370 pos = 0; 371 seg = req->rl_segments; 372 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos, 373 rtype, seg); 374 if (nsegs < 0) 375 return nsegs; 376 377 do { 378 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, false, &mr); 379 if (IS_ERR(seg)) 380 return PTR_ERR(seg); 381 382 if (encode_read_segment(xdr, mr, pos) < 0) 383 return -EMSGSIZE; 384 385 trace_xprtrdma_chunk_read(rqst->rq_task, pos, mr, nsegs); 386 r_xprt->rx_stats.read_chunk_count++; 387 nsegs -= mr->mr_nents; 388 } while (nsegs); 389 390 done: 391 return xdr_stream_encode_item_absent(xdr); 392 } 393 394 /* Register and XDR encode the Write list. Supports encoding a list 395 * containing one array of plain segments that belong to a single 396 * write chunk. 397 * 398 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): 399 * 400 * Write chunklist (a list of (one) counted array): 401 * N elements: 402 * 1 - N - HLOO - HLOO - ... - HLOO - 0 403 * 404 * Returns zero on success, or a negative errno if a failure occurred. 405 * @xdr is advanced to the next position in the stream. 406 * 407 * Only a single Write chunk is currently supported. 408 */ 409 static int rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, 410 struct rpcrdma_req *req, 411 struct rpc_rqst *rqst, 412 enum rpcrdma_chunktype wtype) 413 { 414 struct xdr_stream *xdr = &req->rl_stream; 415 struct rpcrdma_mr_seg *seg; 416 struct rpcrdma_mr *mr; 417 int nsegs, nchunks; 418 __be32 *segcount; 419 420 if (wtype != rpcrdma_writech) 421 goto done; 422 423 seg = req->rl_segments; 424 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 425 rqst->rq_rcv_buf.head[0].iov_len, 426 wtype, seg); 427 if (nsegs < 0) 428 return nsegs; 429 430 if (xdr_stream_encode_item_present(xdr) < 0) 431 return -EMSGSIZE; 432 segcount = xdr_reserve_space(xdr, sizeof(*segcount)); 433 if (unlikely(!segcount)) 434 return -EMSGSIZE; 435 /* Actual value encoded below */ 436 437 nchunks = 0; 438 do { 439 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr); 440 if (IS_ERR(seg)) 441 return PTR_ERR(seg); 442 443 if (encode_rdma_segment(xdr, mr) < 0) 444 return -EMSGSIZE; 445 446 trace_xprtrdma_chunk_write(rqst->rq_task, mr, nsegs); 447 r_xprt->rx_stats.write_chunk_count++; 448 r_xprt->rx_stats.total_rdma_request += mr->mr_length; 449 nchunks++; 450 nsegs -= mr->mr_nents; 451 } while (nsegs); 452 453 /* Update count of segments in this Write chunk */ 454 *segcount = cpu_to_be32(nchunks); 455 456 done: 457 return xdr_stream_encode_item_absent(xdr); 458 } 459 460 /* Register and XDR encode the Reply chunk. Supports encoding an array 461 * of plain segments that belong to a single write (reply) chunk. 462 * 463 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): 464 * 465 * Reply chunk (a counted array): 466 * N elements: 467 * 1 - N - HLOO - HLOO - ... - HLOO 468 * 469 * Returns zero on success, or a negative errno if a failure occurred. 470 * @xdr is advanced to the next position in the stream. 471 */ 472 static int rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, 473 struct rpcrdma_req *req, 474 struct rpc_rqst *rqst, 475 enum rpcrdma_chunktype wtype) 476 { 477 struct xdr_stream *xdr = &req->rl_stream; 478 struct rpcrdma_mr_seg *seg; 479 struct rpcrdma_mr *mr; 480 int nsegs, nchunks; 481 __be32 *segcount; 482 483 if (wtype != rpcrdma_replych) 484 return xdr_stream_encode_item_absent(xdr); 485 486 seg = req->rl_segments; 487 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg); 488 if (nsegs < 0) 489 return nsegs; 490 491 if (xdr_stream_encode_item_present(xdr) < 0) 492 return -EMSGSIZE; 493 segcount = xdr_reserve_space(xdr, sizeof(*segcount)); 494 if (unlikely(!segcount)) 495 return -EMSGSIZE; 496 /* Actual value encoded below */ 497 498 nchunks = 0; 499 do { 500 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr); 501 if (IS_ERR(seg)) 502 return PTR_ERR(seg); 503 504 if (encode_rdma_segment(xdr, mr) < 0) 505 return -EMSGSIZE; 506 507 trace_xprtrdma_chunk_reply(rqst->rq_task, mr, nsegs); 508 r_xprt->rx_stats.reply_chunk_count++; 509 r_xprt->rx_stats.total_rdma_request += mr->mr_length; 510 nchunks++; 511 nsegs -= mr->mr_nents; 512 } while (nsegs); 513 514 /* Update count of segments in the Reply chunk */ 515 *segcount = cpu_to_be32(nchunks); 516 517 return 0; 518 } 519 520 static void rpcrdma_sendctx_done(struct kref *kref) 521 { 522 struct rpcrdma_req *req = 523 container_of(kref, struct rpcrdma_req, rl_kref); 524 struct rpcrdma_rep *rep = req->rl_reply; 525 526 rpcrdma_complete_rqst(rep); 527 rep->rr_rxprt->rx_stats.reply_waits_for_send++; 528 } 529 530 /** 531 * rpcrdma_sendctx_unmap - DMA-unmap Send buffer 532 * @sc: sendctx containing SGEs to unmap 533 * 534 */ 535 void rpcrdma_sendctx_unmap(struct rpcrdma_sendctx *sc) 536 { 537 struct rpcrdma_regbuf *rb = sc->sc_req->rl_sendbuf; 538 struct ib_sge *sge; 539 540 if (!sc->sc_unmap_count) 541 return; 542 543 /* The first two SGEs contain the transport header and 544 * the inline buffer. These are always left mapped so 545 * they can be cheaply re-used. 546 */ 547 for (sge = &sc->sc_sges[2]; sc->sc_unmap_count; 548 ++sge, --sc->sc_unmap_count) 549 ib_dma_unmap_page(rdmab_device(rb), sge->addr, sge->length, 550 DMA_TO_DEVICE); 551 552 kref_put(&sc->sc_req->rl_kref, rpcrdma_sendctx_done); 553 } 554 555 /* Prepare an SGE for the RPC-over-RDMA transport header. 556 */ 557 static void rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt *r_xprt, 558 struct rpcrdma_req *req, u32 len) 559 { 560 struct rpcrdma_sendctx *sc = req->rl_sendctx; 561 struct rpcrdma_regbuf *rb = req->rl_rdmabuf; 562 struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++]; 563 564 sge->addr = rdmab_addr(rb); 565 sge->length = len; 566 sge->lkey = rdmab_lkey(rb); 567 568 ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length, 569 DMA_TO_DEVICE); 570 } 571 572 /* The head iovec is straightforward, as it is usually already 573 * DMA-mapped. Sync the content that has changed. 574 */ 575 static bool rpcrdma_prepare_head_iov(struct rpcrdma_xprt *r_xprt, 576 struct rpcrdma_req *req, unsigned int len) 577 { 578 struct rpcrdma_sendctx *sc = req->rl_sendctx; 579 struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++]; 580 struct rpcrdma_regbuf *rb = req->rl_sendbuf; 581 582 if (!rpcrdma_regbuf_dma_map(r_xprt, rb)) 583 return false; 584 585 sge->addr = rdmab_addr(rb); 586 sge->length = len; 587 sge->lkey = rdmab_lkey(rb); 588 589 ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length, 590 DMA_TO_DEVICE); 591 return true; 592 } 593 594 /* If there is a page list present, DMA map and prepare an 595 * SGE for each page to be sent. 596 */ 597 static bool rpcrdma_prepare_pagelist(struct rpcrdma_req *req, 598 struct xdr_buf *xdr) 599 { 600 struct rpcrdma_sendctx *sc = req->rl_sendctx; 601 struct rpcrdma_regbuf *rb = req->rl_sendbuf; 602 unsigned int page_base, len, remaining; 603 struct page **ppages; 604 struct ib_sge *sge; 605 606 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT); 607 page_base = offset_in_page(xdr->page_base); 608 remaining = xdr->page_len; 609 while (remaining) { 610 sge = &sc->sc_sges[req->rl_wr.num_sge++]; 611 len = min_t(unsigned int, PAGE_SIZE - page_base, remaining); 612 sge->addr = ib_dma_map_page(rdmab_device(rb), *ppages, 613 page_base, len, DMA_TO_DEVICE); 614 if (ib_dma_mapping_error(rdmab_device(rb), sge->addr)) 615 goto out_mapping_err; 616 617 sge->length = len; 618 sge->lkey = rdmab_lkey(rb); 619 620 sc->sc_unmap_count++; 621 ppages++; 622 remaining -= len; 623 page_base = 0; 624 } 625 626 return true; 627 628 out_mapping_err: 629 trace_xprtrdma_dma_maperr(sge->addr); 630 return false; 631 } 632 633 /* The tail iovec may include an XDR pad for the page list, 634 * as well as additional content, and may not reside in the 635 * same page as the head iovec. 636 */ 637 static bool rpcrdma_prepare_tail_iov(struct rpcrdma_req *req, 638 struct xdr_buf *xdr, 639 unsigned int page_base, unsigned int len) 640 { 641 struct rpcrdma_sendctx *sc = req->rl_sendctx; 642 struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++]; 643 struct rpcrdma_regbuf *rb = req->rl_sendbuf; 644 struct page *page = virt_to_page(xdr->tail[0].iov_base); 645 646 sge->addr = ib_dma_map_page(rdmab_device(rb), page, page_base, len, 647 DMA_TO_DEVICE); 648 if (ib_dma_mapping_error(rdmab_device(rb), sge->addr)) 649 goto out_mapping_err; 650 651 sge->length = len; 652 sge->lkey = rdmab_lkey(rb); 653 ++sc->sc_unmap_count; 654 return true; 655 656 out_mapping_err: 657 trace_xprtrdma_dma_maperr(sge->addr); 658 return false; 659 } 660 661 /* Copy the tail to the end of the head buffer. 662 */ 663 static void rpcrdma_pullup_tail_iov(struct rpcrdma_xprt *r_xprt, 664 struct rpcrdma_req *req, 665 struct xdr_buf *xdr) 666 { 667 unsigned char *dst; 668 669 dst = (unsigned char *)xdr->head[0].iov_base; 670 dst += xdr->head[0].iov_len + xdr->page_len; 671 memmove(dst, xdr->tail[0].iov_base, xdr->tail[0].iov_len); 672 r_xprt->rx_stats.pullup_copy_count += xdr->tail[0].iov_len; 673 } 674 675 /* Copy pagelist content into the head buffer. 676 */ 677 static void rpcrdma_pullup_pagelist(struct rpcrdma_xprt *r_xprt, 678 struct rpcrdma_req *req, 679 struct xdr_buf *xdr) 680 { 681 unsigned int len, page_base, remaining; 682 struct page **ppages; 683 unsigned char *src, *dst; 684 685 dst = (unsigned char *)xdr->head[0].iov_base; 686 dst += xdr->head[0].iov_len; 687 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT); 688 page_base = offset_in_page(xdr->page_base); 689 remaining = xdr->page_len; 690 while (remaining) { 691 src = page_address(*ppages); 692 src += page_base; 693 len = min_t(unsigned int, PAGE_SIZE - page_base, remaining); 694 memcpy(dst, src, len); 695 r_xprt->rx_stats.pullup_copy_count += len; 696 697 ppages++; 698 dst += len; 699 remaining -= len; 700 page_base = 0; 701 } 702 } 703 704 /* Copy the contents of @xdr into @rl_sendbuf and DMA sync it. 705 * When the head, pagelist, and tail are small, a pull-up copy 706 * is considerably less costly than DMA mapping the components 707 * of @xdr. 708 * 709 * Assumptions: 710 * - the caller has already verified that the total length 711 * of the RPC Call body will fit into @rl_sendbuf. 712 */ 713 static bool rpcrdma_prepare_noch_pullup(struct rpcrdma_xprt *r_xprt, 714 struct rpcrdma_req *req, 715 struct xdr_buf *xdr) 716 { 717 if (unlikely(xdr->tail[0].iov_len)) 718 rpcrdma_pullup_tail_iov(r_xprt, req, xdr); 719 720 if (unlikely(xdr->page_len)) 721 rpcrdma_pullup_pagelist(r_xprt, req, xdr); 722 723 /* The whole RPC message resides in the head iovec now */ 724 return rpcrdma_prepare_head_iov(r_xprt, req, xdr->len); 725 } 726 727 static bool rpcrdma_prepare_noch_mapped(struct rpcrdma_xprt *r_xprt, 728 struct rpcrdma_req *req, 729 struct xdr_buf *xdr) 730 { 731 struct kvec *tail = &xdr->tail[0]; 732 733 if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len)) 734 return false; 735 if (xdr->page_len) 736 if (!rpcrdma_prepare_pagelist(req, xdr)) 737 return false; 738 if (tail->iov_len) 739 if (!rpcrdma_prepare_tail_iov(req, xdr, 740 offset_in_page(tail->iov_base), 741 tail->iov_len)) 742 return false; 743 744 if (req->rl_sendctx->sc_unmap_count) 745 kref_get(&req->rl_kref); 746 return true; 747 } 748 749 static bool rpcrdma_prepare_readch(struct rpcrdma_xprt *r_xprt, 750 struct rpcrdma_req *req, 751 struct xdr_buf *xdr) 752 { 753 if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len)) 754 return false; 755 756 /* If there is a Read chunk, the page list is being handled 757 * via explicit RDMA, and thus is skipped here. 758 */ 759 760 /* Do not include the tail if it is only an XDR pad */ 761 if (xdr->tail[0].iov_len > 3) { 762 unsigned int page_base, len; 763 764 /* If the content in the page list is an odd length, 765 * xdr_write_pages() adds a pad at the beginning of 766 * the tail iovec. Force the tail's non-pad content to 767 * land at the next XDR position in the Send message. 768 */ 769 page_base = offset_in_page(xdr->tail[0].iov_base); 770 len = xdr->tail[0].iov_len; 771 page_base += len & 3; 772 len -= len & 3; 773 if (!rpcrdma_prepare_tail_iov(req, xdr, page_base, len)) 774 return false; 775 kref_get(&req->rl_kref); 776 } 777 778 return true; 779 } 780 781 /** 782 * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR 783 * @r_xprt: controlling transport 784 * @req: context of RPC Call being marshalled 785 * @hdrlen: size of transport header, in bytes 786 * @xdr: xdr_buf containing RPC Call 787 * @rtype: chunk type being encoded 788 * 789 * Returns 0 on success; otherwise a negative errno is returned. 790 */ 791 inline int rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt, 792 struct rpcrdma_req *req, u32 hdrlen, 793 struct xdr_buf *xdr, 794 enum rpcrdma_chunktype rtype) 795 { 796 int ret; 797 798 ret = -EAGAIN; 799 req->rl_sendctx = rpcrdma_sendctx_get_locked(r_xprt); 800 if (!req->rl_sendctx) 801 goto out_nosc; 802 req->rl_sendctx->sc_unmap_count = 0; 803 req->rl_sendctx->sc_req = req; 804 kref_init(&req->rl_kref); 805 req->rl_wr.wr_cqe = &req->rl_sendctx->sc_cqe; 806 req->rl_wr.sg_list = req->rl_sendctx->sc_sges; 807 req->rl_wr.num_sge = 0; 808 req->rl_wr.opcode = IB_WR_SEND; 809 810 rpcrdma_prepare_hdr_sge(r_xprt, req, hdrlen); 811 812 ret = -EIO; 813 switch (rtype) { 814 case rpcrdma_noch_pullup: 815 if (!rpcrdma_prepare_noch_pullup(r_xprt, req, xdr)) 816 goto out_unmap; 817 break; 818 case rpcrdma_noch_mapped: 819 if (!rpcrdma_prepare_noch_mapped(r_xprt, req, xdr)) 820 goto out_unmap; 821 break; 822 case rpcrdma_readch: 823 if (!rpcrdma_prepare_readch(r_xprt, req, xdr)) 824 goto out_unmap; 825 break; 826 case rpcrdma_areadch: 827 break; 828 default: 829 goto out_unmap; 830 } 831 832 return 0; 833 834 out_unmap: 835 rpcrdma_sendctx_unmap(req->rl_sendctx); 836 out_nosc: 837 trace_xprtrdma_prepsend_failed(&req->rl_slot, ret); 838 return ret; 839 } 840 841 /** 842 * rpcrdma_marshal_req - Marshal and send one RPC request 843 * @r_xprt: controlling transport 844 * @rqst: RPC request to be marshaled 845 * 846 * For the RPC in "rqst", this function: 847 * - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG) 848 * - Registers Read, Write, and Reply chunks 849 * - Constructs the transport header 850 * - Posts a Send WR to send the transport header and request 851 * 852 * Returns: 853 * %0 if the RPC was sent successfully, 854 * %-ENOTCONN if the connection was lost, 855 * %-EAGAIN if the caller should call again with the same arguments, 856 * %-ENOBUFS if the caller should call again after a delay, 857 * %-EMSGSIZE if the transport header is too small, 858 * %-EIO if a permanent problem occurred while marshaling. 859 */ 860 int 861 rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst) 862 { 863 struct rpcrdma_req *req = rpcr_to_rdmar(rqst); 864 struct xdr_stream *xdr = &req->rl_stream; 865 enum rpcrdma_chunktype rtype, wtype; 866 struct xdr_buf *buf = &rqst->rq_snd_buf; 867 bool ddp_allowed; 868 __be32 *p; 869 int ret; 870 871 rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0); 872 xdr_init_encode(xdr, &req->rl_hdrbuf, rdmab_data(req->rl_rdmabuf), 873 rqst); 874 875 /* Fixed header fields */ 876 ret = -EMSGSIZE; 877 p = xdr_reserve_space(xdr, 4 * sizeof(*p)); 878 if (!p) 879 goto out_err; 880 *p++ = rqst->rq_xid; 881 *p++ = rpcrdma_version; 882 *p++ = r_xprt->rx_buf.rb_max_requests; 883 884 /* When the ULP employs a GSS flavor that guarantees integrity 885 * or privacy, direct data placement of individual data items 886 * is not allowed. 887 */ 888 ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags & 889 RPCAUTH_AUTH_DATATOUCH); 890 891 /* 892 * Chunks needed for results? 893 * 894 * o If the expected result is under the inline threshold, all ops 895 * return as inline. 896 * o Large read ops return data as write chunk(s), header as 897 * inline. 898 * o Large non-read ops return as a single reply chunk. 899 */ 900 if (rpcrdma_results_inline(r_xprt, rqst)) 901 wtype = rpcrdma_noch; 902 else if ((ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) && 903 rpcrdma_nonpayload_inline(r_xprt, rqst)) 904 wtype = rpcrdma_writech; 905 else 906 wtype = rpcrdma_replych; 907 908 /* 909 * Chunks needed for arguments? 910 * 911 * o If the total request is under the inline threshold, all ops 912 * are sent as inline. 913 * o Large write ops transmit data as read chunk(s), header as 914 * inline. 915 * o Large non-write ops are sent with the entire message as a 916 * single read chunk (protocol 0-position special case). 917 * 918 * This assumes that the upper layer does not present a request 919 * that both has a data payload, and whose non-data arguments 920 * by themselves are larger than the inline threshold. 921 */ 922 if (rpcrdma_args_inline(r_xprt, rqst)) { 923 *p++ = rdma_msg; 924 rtype = buf->len < rdmab_length(req->rl_sendbuf) ? 925 rpcrdma_noch_pullup : rpcrdma_noch_mapped; 926 } else if (ddp_allowed && buf->flags & XDRBUF_WRITE) { 927 *p++ = rdma_msg; 928 rtype = rpcrdma_readch; 929 } else { 930 r_xprt->rx_stats.nomsg_call_count++; 931 *p++ = rdma_nomsg; 932 rtype = rpcrdma_areadch; 933 } 934 935 /* This implementation supports the following combinations 936 * of chunk lists in one RPC-over-RDMA Call message: 937 * 938 * - Read list 939 * - Write list 940 * - Reply chunk 941 * - Read list + Reply chunk 942 * 943 * It might not yet support the following combinations: 944 * 945 * - Read list + Write list 946 * 947 * It does not support the following combinations: 948 * 949 * - Write list + Reply chunk 950 * - Read list + Write list + Reply chunk 951 * 952 * This implementation supports only a single chunk in each 953 * Read or Write list. Thus for example the client cannot 954 * send a Call message with a Position Zero Read chunk and a 955 * regular Read chunk at the same time. 956 */ 957 ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype); 958 if (ret) 959 goto out_err; 960 ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype); 961 if (ret) 962 goto out_err; 963 ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype); 964 if (ret) 965 goto out_err; 966 967 ret = rpcrdma_prepare_send_sges(r_xprt, req, req->rl_hdrbuf.len, 968 buf, rtype); 969 if (ret) 970 goto out_err; 971 972 trace_xprtrdma_marshal(req, rtype, wtype); 973 return 0; 974 975 out_err: 976 trace_xprtrdma_marshal_failed(rqst, ret); 977 r_xprt->rx_stats.failed_marshal_count++; 978 frwr_reset(req); 979 return ret; 980 } 981 982 static void __rpcrdma_update_cwnd_locked(struct rpc_xprt *xprt, 983 struct rpcrdma_buffer *buf, 984 u32 grant) 985 { 986 buf->rb_credits = grant; 987 xprt->cwnd = grant << RPC_CWNDSHIFT; 988 } 989 990 static void rpcrdma_update_cwnd(struct rpcrdma_xprt *r_xprt, u32 grant) 991 { 992 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 993 994 spin_lock(&xprt->transport_lock); 995 __rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, grant); 996 spin_unlock(&xprt->transport_lock); 997 } 998 999 /** 1000 * rpcrdma_reset_cwnd - Reset the xprt's congestion window 1001 * @r_xprt: controlling transport instance 1002 * 1003 * Prepare @r_xprt for the next connection by reinitializing 1004 * its credit grant to one (see RFC 8166, Section 3.3.3). 1005 */ 1006 void rpcrdma_reset_cwnd(struct rpcrdma_xprt *r_xprt) 1007 { 1008 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 1009 1010 spin_lock(&xprt->transport_lock); 1011 xprt->cong = 0; 1012 __rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, 1); 1013 spin_unlock(&xprt->transport_lock); 1014 } 1015 1016 /** 1017 * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs 1018 * @rqst: controlling RPC request 1019 * @srcp: points to RPC message payload in receive buffer 1020 * @copy_len: remaining length of receive buffer content 1021 * @pad: Write chunk pad bytes needed (zero for pure inline) 1022 * 1023 * The upper layer has set the maximum number of bytes it can 1024 * receive in each component of rq_rcv_buf. These values are set in 1025 * the head.iov_len, page_len, tail.iov_len, and buflen fields. 1026 * 1027 * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in 1028 * many cases this function simply updates iov_base pointers in 1029 * rq_rcv_buf to point directly to the received reply data, to 1030 * avoid copying reply data. 1031 * 1032 * Returns the count of bytes which had to be memcopied. 1033 */ 1034 static unsigned long 1035 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad) 1036 { 1037 unsigned long fixup_copy_count; 1038 int i, npages, curlen; 1039 char *destp; 1040 struct page **ppages; 1041 int page_base; 1042 1043 /* The head iovec is redirected to the RPC reply message 1044 * in the receive buffer, to avoid a memcopy. 1045 */ 1046 rqst->rq_rcv_buf.head[0].iov_base = srcp; 1047 rqst->rq_private_buf.head[0].iov_base = srcp; 1048 1049 /* The contents of the receive buffer that follow 1050 * head.iov_len bytes are copied into the page list. 1051 */ 1052 curlen = rqst->rq_rcv_buf.head[0].iov_len; 1053 if (curlen > copy_len) 1054 curlen = copy_len; 1055 srcp += curlen; 1056 copy_len -= curlen; 1057 1058 ppages = rqst->rq_rcv_buf.pages + 1059 (rqst->rq_rcv_buf.page_base >> PAGE_SHIFT); 1060 page_base = offset_in_page(rqst->rq_rcv_buf.page_base); 1061 fixup_copy_count = 0; 1062 if (copy_len && rqst->rq_rcv_buf.page_len) { 1063 int pagelist_len; 1064 1065 pagelist_len = rqst->rq_rcv_buf.page_len; 1066 if (pagelist_len > copy_len) 1067 pagelist_len = copy_len; 1068 npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT; 1069 for (i = 0; i < npages; i++) { 1070 curlen = PAGE_SIZE - page_base; 1071 if (curlen > pagelist_len) 1072 curlen = pagelist_len; 1073 1074 destp = kmap_atomic(ppages[i]); 1075 memcpy(destp + page_base, srcp, curlen); 1076 flush_dcache_page(ppages[i]); 1077 kunmap_atomic(destp); 1078 srcp += curlen; 1079 copy_len -= curlen; 1080 fixup_copy_count += curlen; 1081 pagelist_len -= curlen; 1082 if (!pagelist_len) 1083 break; 1084 page_base = 0; 1085 } 1086 1087 /* Implicit padding for the last segment in a Write 1088 * chunk is inserted inline at the front of the tail 1089 * iovec. The upper layer ignores the content of 1090 * the pad. Simply ensure inline content in the tail 1091 * that follows the Write chunk is properly aligned. 1092 */ 1093 if (pad) 1094 srcp -= pad; 1095 } 1096 1097 /* The tail iovec is redirected to the remaining data 1098 * in the receive buffer, to avoid a memcopy. 1099 */ 1100 if (copy_len || pad) { 1101 rqst->rq_rcv_buf.tail[0].iov_base = srcp; 1102 rqst->rq_private_buf.tail[0].iov_base = srcp; 1103 } 1104 1105 if (fixup_copy_count) 1106 trace_xprtrdma_fixup(rqst, fixup_copy_count); 1107 return fixup_copy_count; 1108 } 1109 1110 /* By convention, backchannel calls arrive via rdma_msg type 1111 * messages, and never populate the chunk lists. This makes 1112 * the RPC/RDMA header small and fixed in size, so it is 1113 * straightforward to check the RPC header's direction field. 1114 */ 1115 static bool 1116 rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep) 1117 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1118 { 1119 struct xdr_stream *xdr = &rep->rr_stream; 1120 __be32 *p; 1121 1122 if (rep->rr_proc != rdma_msg) 1123 return false; 1124 1125 /* Peek at stream contents without advancing. */ 1126 p = xdr_inline_decode(xdr, 0); 1127 1128 /* Chunk lists */ 1129 if (*p++ != xdr_zero) 1130 return false; 1131 if (*p++ != xdr_zero) 1132 return false; 1133 if (*p++ != xdr_zero) 1134 return false; 1135 1136 /* RPC header */ 1137 if (*p++ != rep->rr_xid) 1138 return false; 1139 if (*p != cpu_to_be32(RPC_CALL)) 1140 return false; 1141 1142 /* Now that we are sure this is a backchannel call, 1143 * advance to the RPC header. 1144 */ 1145 p = xdr_inline_decode(xdr, 3 * sizeof(*p)); 1146 if (unlikely(!p)) 1147 goto out_short; 1148 1149 rpcrdma_bc_receive_call(r_xprt, rep); 1150 return true; 1151 1152 out_short: 1153 pr_warn("RPC/RDMA short backward direction call\n"); 1154 return true; 1155 } 1156 #else /* CONFIG_SUNRPC_BACKCHANNEL */ 1157 { 1158 return false; 1159 } 1160 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1161 1162 static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length) 1163 { 1164 u32 handle; 1165 u64 offset; 1166 __be32 *p; 1167 1168 p = xdr_inline_decode(xdr, 4 * sizeof(*p)); 1169 if (unlikely(!p)) 1170 return -EIO; 1171 1172 handle = be32_to_cpup(p++); 1173 *length = be32_to_cpup(p++); 1174 xdr_decode_hyper(p, &offset); 1175 1176 trace_xprtrdma_decode_seg(handle, *length, offset); 1177 return 0; 1178 } 1179 1180 static int decode_write_chunk(struct xdr_stream *xdr, u32 *length) 1181 { 1182 u32 segcount, seglength; 1183 __be32 *p; 1184 1185 p = xdr_inline_decode(xdr, sizeof(*p)); 1186 if (unlikely(!p)) 1187 return -EIO; 1188 1189 *length = 0; 1190 segcount = be32_to_cpup(p); 1191 while (segcount--) { 1192 if (decode_rdma_segment(xdr, &seglength)) 1193 return -EIO; 1194 *length += seglength; 1195 } 1196 1197 return 0; 1198 } 1199 1200 /* In RPC-over-RDMA Version One replies, a Read list is never 1201 * expected. This decoder is a stub that returns an error if 1202 * a Read list is present. 1203 */ 1204 static int decode_read_list(struct xdr_stream *xdr) 1205 { 1206 __be32 *p; 1207 1208 p = xdr_inline_decode(xdr, sizeof(*p)); 1209 if (unlikely(!p)) 1210 return -EIO; 1211 if (unlikely(*p != xdr_zero)) 1212 return -EIO; 1213 return 0; 1214 } 1215 1216 /* Supports only one Write chunk in the Write list 1217 */ 1218 static int decode_write_list(struct xdr_stream *xdr, u32 *length) 1219 { 1220 u32 chunklen; 1221 bool first; 1222 __be32 *p; 1223 1224 *length = 0; 1225 first = true; 1226 do { 1227 p = xdr_inline_decode(xdr, sizeof(*p)); 1228 if (unlikely(!p)) 1229 return -EIO; 1230 if (*p == xdr_zero) 1231 break; 1232 if (!first) 1233 return -EIO; 1234 1235 if (decode_write_chunk(xdr, &chunklen)) 1236 return -EIO; 1237 *length += chunklen; 1238 first = false; 1239 } while (true); 1240 return 0; 1241 } 1242 1243 static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length) 1244 { 1245 __be32 *p; 1246 1247 p = xdr_inline_decode(xdr, sizeof(*p)); 1248 if (unlikely(!p)) 1249 return -EIO; 1250 1251 *length = 0; 1252 if (*p != xdr_zero) 1253 if (decode_write_chunk(xdr, length)) 1254 return -EIO; 1255 return 0; 1256 } 1257 1258 static int 1259 rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep, 1260 struct rpc_rqst *rqst) 1261 { 1262 struct xdr_stream *xdr = &rep->rr_stream; 1263 u32 writelist, replychunk, rpclen; 1264 char *base; 1265 1266 /* Decode the chunk lists */ 1267 if (decode_read_list(xdr)) 1268 return -EIO; 1269 if (decode_write_list(xdr, &writelist)) 1270 return -EIO; 1271 if (decode_reply_chunk(xdr, &replychunk)) 1272 return -EIO; 1273 1274 /* RDMA_MSG sanity checks */ 1275 if (unlikely(replychunk)) 1276 return -EIO; 1277 1278 /* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */ 1279 base = (char *)xdr_inline_decode(xdr, 0); 1280 rpclen = xdr_stream_remaining(xdr); 1281 r_xprt->rx_stats.fixup_copy_count += 1282 rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3); 1283 1284 r_xprt->rx_stats.total_rdma_reply += writelist; 1285 return rpclen + xdr_align_size(writelist); 1286 } 1287 1288 static noinline int 1289 rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep) 1290 { 1291 struct xdr_stream *xdr = &rep->rr_stream; 1292 u32 writelist, replychunk; 1293 1294 /* Decode the chunk lists */ 1295 if (decode_read_list(xdr)) 1296 return -EIO; 1297 if (decode_write_list(xdr, &writelist)) 1298 return -EIO; 1299 if (decode_reply_chunk(xdr, &replychunk)) 1300 return -EIO; 1301 1302 /* RDMA_NOMSG sanity checks */ 1303 if (unlikely(writelist)) 1304 return -EIO; 1305 if (unlikely(!replychunk)) 1306 return -EIO; 1307 1308 /* Reply chunk buffer already is the reply vector */ 1309 r_xprt->rx_stats.total_rdma_reply += replychunk; 1310 return replychunk; 1311 } 1312 1313 static noinline int 1314 rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep, 1315 struct rpc_rqst *rqst) 1316 { 1317 struct xdr_stream *xdr = &rep->rr_stream; 1318 __be32 *p; 1319 1320 p = xdr_inline_decode(xdr, sizeof(*p)); 1321 if (unlikely(!p)) 1322 return -EIO; 1323 1324 switch (*p) { 1325 case err_vers: 1326 p = xdr_inline_decode(xdr, 2 * sizeof(*p)); 1327 if (!p) 1328 break; 1329 dprintk("RPC: %s: server reports " 1330 "version error (%u-%u), xid %08x\n", __func__, 1331 be32_to_cpup(p), be32_to_cpu(*(p + 1)), 1332 be32_to_cpu(rep->rr_xid)); 1333 break; 1334 case err_chunk: 1335 dprintk("RPC: %s: server reports " 1336 "header decoding error, xid %08x\n", __func__, 1337 be32_to_cpu(rep->rr_xid)); 1338 break; 1339 default: 1340 dprintk("RPC: %s: server reports " 1341 "unrecognized error %d, xid %08x\n", __func__, 1342 be32_to_cpup(p), be32_to_cpu(rep->rr_xid)); 1343 } 1344 1345 r_xprt->rx_stats.bad_reply_count++; 1346 return -EREMOTEIO; 1347 } 1348 1349 /* Perform XID lookup, reconstruction of the RPC reply, and 1350 * RPC completion while holding the transport lock to ensure 1351 * the rep, rqst, and rq_task pointers remain stable. 1352 */ 1353 void rpcrdma_complete_rqst(struct rpcrdma_rep *rep) 1354 { 1355 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; 1356 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 1357 struct rpc_rqst *rqst = rep->rr_rqst; 1358 int status; 1359 1360 switch (rep->rr_proc) { 1361 case rdma_msg: 1362 status = rpcrdma_decode_msg(r_xprt, rep, rqst); 1363 break; 1364 case rdma_nomsg: 1365 status = rpcrdma_decode_nomsg(r_xprt, rep); 1366 break; 1367 case rdma_error: 1368 status = rpcrdma_decode_error(r_xprt, rep, rqst); 1369 break; 1370 default: 1371 status = -EIO; 1372 } 1373 if (status < 0) 1374 goto out_badheader; 1375 1376 out: 1377 spin_lock(&xprt->queue_lock); 1378 xprt_complete_rqst(rqst->rq_task, status); 1379 xprt_unpin_rqst(rqst); 1380 spin_unlock(&xprt->queue_lock); 1381 return; 1382 1383 /* If the incoming reply terminated a pending RPC, the next 1384 * RPC call will post a replacement receive buffer as it is 1385 * being marshaled. 1386 */ 1387 out_badheader: 1388 trace_xprtrdma_reply_hdr(rep); 1389 r_xprt->rx_stats.bad_reply_count++; 1390 goto out; 1391 } 1392 1393 static void rpcrdma_reply_done(struct kref *kref) 1394 { 1395 struct rpcrdma_req *req = 1396 container_of(kref, struct rpcrdma_req, rl_kref); 1397 1398 rpcrdma_complete_rqst(req->rl_reply); 1399 } 1400 1401 /** 1402 * rpcrdma_reply_handler - Process received RPC/RDMA messages 1403 * @rep: Incoming rpcrdma_rep object to process 1404 * 1405 * Errors must result in the RPC task either being awakened, or 1406 * allowed to timeout, to discover the errors at that time. 1407 */ 1408 void rpcrdma_reply_handler(struct rpcrdma_rep *rep) 1409 { 1410 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; 1411 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 1412 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1413 struct rpcrdma_req *req; 1414 struct rpc_rqst *rqst; 1415 u32 credits; 1416 __be32 *p; 1417 1418 /* Any data means we had a useful conversation, so 1419 * then we don't need to delay the next reconnect. 1420 */ 1421 if (xprt->reestablish_timeout) 1422 xprt->reestablish_timeout = 0; 1423 1424 /* Fixed transport header fields */ 1425 xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf, 1426 rep->rr_hdrbuf.head[0].iov_base, NULL); 1427 p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p)); 1428 if (unlikely(!p)) 1429 goto out_shortreply; 1430 rep->rr_xid = *p++; 1431 rep->rr_vers = *p++; 1432 credits = be32_to_cpu(*p++); 1433 rep->rr_proc = *p++; 1434 1435 if (rep->rr_vers != rpcrdma_version) 1436 goto out_badversion; 1437 1438 if (rpcrdma_is_bcall(r_xprt, rep)) 1439 return; 1440 1441 /* Match incoming rpcrdma_rep to an rpcrdma_req to 1442 * get context for handling any incoming chunks. 1443 */ 1444 spin_lock(&xprt->queue_lock); 1445 rqst = xprt_lookup_rqst(xprt, rep->rr_xid); 1446 if (!rqst) 1447 goto out_norqst; 1448 xprt_pin_rqst(rqst); 1449 spin_unlock(&xprt->queue_lock); 1450 1451 if (credits == 0) 1452 credits = 1; /* don't deadlock */ 1453 else if (credits > r_xprt->rx_ep->re_max_requests) 1454 credits = r_xprt->rx_ep->re_max_requests; 1455 if (buf->rb_credits != credits) 1456 rpcrdma_update_cwnd(r_xprt, credits); 1457 rpcrdma_post_recvs(r_xprt, false); 1458 1459 req = rpcr_to_rdmar(rqst); 1460 if (req->rl_reply) { 1461 trace_xprtrdma_leaked_rep(rqst, req->rl_reply); 1462 rpcrdma_recv_buffer_put(req->rl_reply); 1463 } 1464 req->rl_reply = rep; 1465 rep->rr_rqst = rqst; 1466 1467 trace_xprtrdma_reply(rqst->rq_task, rep, req, credits); 1468 1469 if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE) 1470 frwr_reminv(rep, &req->rl_registered); 1471 if (!list_empty(&req->rl_registered)) 1472 frwr_unmap_async(r_xprt, req); 1473 /* LocalInv completion will complete the RPC */ 1474 else 1475 kref_put(&req->rl_kref, rpcrdma_reply_done); 1476 return; 1477 1478 out_badversion: 1479 trace_xprtrdma_reply_vers(rep); 1480 goto out; 1481 1482 out_norqst: 1483 spin_unlock(&xprt->queue_lock); 1484 trace_xprtrdma_reply_rqst(rep); 1485 goto out; 1486 1487 out_shortreply: 1488 trace_xprtrdma_reply_short(rep); 1489 1490 out: 1491 rpcrdma_recv_buffer_put(rep); 1492 } 1493