1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015, 2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 */ 6 7 /* Lightweight memory registration using Fast Registration Work 8 * Requests (FRWR). 9 * 10 * FRWR features ordered asynchronous registration and invalidation 11 * of arbitrarily-sized memory regions. This is the fastest and safest 12 * but most complex memory registration mode. 13 */ 14 15 /* Normal operation 16 * 17 * A Memory Region is prepared for RDMA Read or Write using a FAST_REG 18 * Work Request (frwr_map). When the RDMA operation is finished, this 19 * Memory Region is invalidated using a LOCAL_INV Work Request 20 * (frwr_unmap_async and frwr_unmap_sync). 21 * 22 * Typically FAST_REG Work Requests are not signaled, and neither are 23 * RDMA Send Work Requests (with the exception of signaling occasionally 24 * to prevent provider work queue overflows). This greatly reduces HCA 25 * interrupt workload. 26 */ 27 28 /* Transport recovery 29 * 30 * frwr_map and frwr_unmap_* cannot run at the same time the transport 31 * connect worker is running. The connect worker holds the transport 32 * send lock, just as ->send_request does. This prevents frwr_map and 33 * the connect worker from running concurrently. When a connection is 34 * closed, the Receive completion queue is drained before the allowing 35 * the connect worker to get control. This prevents frwr_unmap and the 36 * connect worker from running concurrently. 37 * 38 * When the underlying transport disconnects, MRs that are in flight 39 * are flushed and are likely unusable. Thus all MRs are destroyed. 40 * New MRs are created on demand. 41 */ 42 43 #include <linux/sunrpc/svc_rdma.h> 44 45 #include "xprt_rdma.h" 46 #include <trace/events/rpcrdma.h> 47 48 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 49 # define RPCDBG_FACILITY RPCDBG_TRANS 50 #endif 51 52 /** 53 * frwr_release_mr - Destroy one MR 54 * @mr: MR allocated by frwr_mr_init 55 * 56 */ 57 void frwr_release_mr(struct rpcrdma_mr *mr) 58 { 59 int rc; 60 61 rc = ib_dereg_mr(mr->frwr.fr_mr); 62 if (rc) 63 trace_xprtrdma_frwr_dereg(mr, rc); 64 kfree(mr->mr_sg); 65 kfree(mr); 66 } 67 68 static void frwr_mr_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr) 69 { 70 if (mr->mr_device) { 71 trace_xprtrdma_mr_unmap(mr); 72 ib_dma_unmap_sg(mr->mr_device, mr->mr_sg, mr->mr_nents, 73 mr->mr_dir); 74 mr->mr_device = NULL; 75 } 76 } 77 78 static void frwr_mr_recycle(struct rpcrdma_mr *mr) 79 { 80 struct rpcrdma_xprt *r_xprt = mr->mr_xprt; 81 82 trace_xprtrdma_mr_recycle(mr); 83 84 frwr_mr_unmap(r_xprt, mr); 85 86 spin_lock(&r_xprt->rx_buf.rb_lock); 87 list_del(&mr->mr_all); 88 r_xprt->rx_stats.mrs_recycled++; 89 spin_unlock(&r_xprt->rx_buf.rb_lock); 90 91 frwr_release_mr(mr); 92 } 93 94 static void frwr_mr_put(struct rpcrdma_mr *mr) 95 { 96 frwr_mr_unmap(mr->mr_xprt, mr); 97 98 /* The MR is returned to the req's MR free list instead 99 * of to the xprt's MR free list. No spinlock is needed. 100 */ 101 rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs); 102 } 103 104 /* frwr_reset - Place MRs back on the free list 105 * @req: request to reset 106 * 107 * Used after a failed marshal. For FRWR, this means the MRs 108 * don't have to be fully released and recreated. 109 * 110 * NB: This is safe only as long as none of @req's MRs are 111 * involved with an ongoing asynchronous FAST_REG or LOCAL_INV 112 * Work Request. 113 */ 114 void frwr_reset(struct rpcrdma_req *req) 115 { 116 struct rpcrdma_mr *mr; 117 118 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) 119 frwr_mr_put(mr); 120 } 121 122 /** 123 * frwr_mr_init - Initialize one MR 124 * @r_xprt: controlling transport instance 125 * @mr: generic MR to prepare for FRWR 126 * 127 * Returns zero if successful. Otherwise a negative errno 128 * is returned. 129 */ 130 int frwr_mr_init(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr) 131 { 132 struct rpcrdma_ep *ep = r_xprt->rx_ep; 133 unsigned int depth = ep->re_max_fr_depth; 134 struct scatterlist *sg; 135 struct ib_mr *frmr; 136 int rc; 137 138 frmr = ib_alloc_mr(ep->re_pd, ep->re_mrtype, depth); 139 if (IS_ERR(frmr)) 140 goto out_mr_err; 141 142 sg = kmalloc_array(depth, sizeof(*sg), GFP_NOFS); 143 if (!sg) 144 goto out_list_err; 145 146 mr->mr_xprt = r_xprt; 147 mr->frwr.fr_mr = frmr; 148 mr->mr_device = NULL; 149 INIT_LIST_HEAD(&mr->mr_list); 150 init_completion(&mr->frwr.fr_linv_done); 151 152 sg_init_table(sg, depth); 153 mr->mr_sg = sg; 154 return 0; 155 156 out_mr_err: 157 rc = PTR_ERR(frmr); 158 trace_xprtrdma_frwr_alloc(mr, rc); 159 return rc; 160 161 out_list_err: 162 ib_dereg_mr(frmr); 163 return -ENOMEM; 164 } 165 166 /** 167 * frwr_query_device - Prepare a transport for use with FRWR 168 * @ep: endpoint to fill in 169 * @device: RDMA device to query 170 * 171 * On success, sets: 172 * ep->re_attr 173 * ep->re_max_requests 174 * ep->re_max_rdma_segs 175 * ep->re_max_fr_depth 176 * ep->re_mrtype 177 * 178 * Return values: 179 * On success, returns zero. 180 * %-EINVAL - the device does not support FRWR memory registration 181 * %-ENOMEM - the device is not sufficiently capable for NFS/RDMA 182 */ 183 int frwr_query_device(struct rpcrdma_ep *ep, const struct ib_device *device) 184 { 185 const struct ib_device_attr *attrs = &device->attrs; 186 int max_qp_wr, depth, delta; 187 unsigned int max_sge; 188 189 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) || 190 attrs->max_fast_reg_page_list_len == 0) { 191 pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n", 192 device->name); 193 return -EINVAL; 194 } 195 196 max_sge = min_t(unsigned int, attrs->max_send_sge, 197 RPCRDMA_MAX_SEND_SGES); 198 if (max_sge < RPCRDMA_MIN_SEND_SGES) { 199 pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge); 200 return -ENOMEM; 201 } 202 ep->re_attr.cap.max_send_sge = max_sge; 203 ep->re_attr.cap.max_recv_sge = 1; 204 205 ep->re_mrtype = IB_MR_TYPE_MEM_REG; 206 if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG) 207 ep->re_mrtype = IB_MR_TYPE_SG_GAPS; 208 209 /* Quirk: Some devices advertise a large max_fast_reg_page_list_len 210 * capability, but perform optimally when the MRs are not larger 211 * than a page. 212 */ 213 if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS) 214 ep->re_max_fr_depth = attrs->max_sge_rd; 215 else 216 ep->re_max_fr_depth = attrs->max_fast_reg_page_list_len; 217 if (ep->re_max_fr_depth > RPCRDMA_MAX_DATA_SEGS) 218 ep->re_max_fr_depth = RPCRDMA_MAX_DATA_SEGS; 219 220 /* Add room for frwr register and invalidate WRs. 221 * 1. FRWR reg WR for head 222 * 2. FRWR invalidate WR for head 223 * 3. N FRWR reg WRs for pagelist 224 * 4. N FRWR invalidate WRs for pagelist 225 * 5. FRWR reg WR for tail 226 * 6. FRWR invalidate WR for tail 227 * 7. The RDMA_SEND WR 228 */ 229 depth = 7; 230 231 /* Calculate N if the device max FRWR depth is smaller than 232 * RPCRDMA_MAX_DATA_SEGS. 233 */ 234 if (ep->re_max_fr_depth < RPCRDMA_MAX_DATA_SEGS) { 235 delta = RPCRDMA_MAX_DATA_SEGS - ep->re_max_fr_depth; 236 do { 237 depth += 2; /* FRWR reg + invalidate */ 238 delta -= ep->re_max_fr_depth; 239 } while (delta > 0); 240 } 241 242 max_qp_wr = attrs->max_qp_wr; 243 max_qp_wr -= RPCRDMA_BACKWARD_WRS; 244 max_qp_wr -= 1; 245 if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE) 246 return -ENOMEM; 247 if (ep->re_max_requests > max_qp_wr) 248 ep->re_max_requests = max_qp_wr; 249 ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth; 250 if (ep->re_attr.cap.max_send_wr > max_qp_wr) { 251 ep->re_max_requests = max_qp_wr / depth; 252 if (!ep->re_max_requests) 253 return -ENOMEM; 254 ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth; 255 } 256 ep->re_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS; 257 ep->re_attr.cap.max_send_wr += 1; /* for ib_drain_sq */ 258 ep->re_attr.cap.max_recv_wr = ep->re_max_requests; 259 ep->re_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS; 260 ep->re_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */ 261 262 ep->re_max_rdma_segs = 263 DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ep->re_max_fr_depth); 264 /* Reply chunks require segments for head and tail buffers */ 265 ep->re_max_rdma_segs += 2; 266 if (ep->re_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS) 267 ep->re_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS; 268 269 /* Ensure the underlying device is capable of conveying the 270 * largest r/wsize NFS will ask for. This guarantees that 271 * failing over from one RDMA device to another will not 272 * break NFS I/O. 273 */ 274 if ((ep->re_max_rdma_segs * ep->re_max_fr_depth) < RPCRDMA_MAX_SEGS) 275 return -ENOMEM; 276 277 return 0; 278 } 279 280 /** 281 * frwr_map - Register a memory region 282 * @r_xprt: controlling transport 283 * @seg: memory region co-ordinates 284 * @nsegs: number of segments remaining 285 * @writing: true when RDMA Write will be used 286 * @xid: XID of RPC using the registered memory 287 * @mr: MR to fill in 288 * 289 * Prepare a REG_MR Work Request to register a memory region 290 * for remote access via RDMA READ or RDMA WRITE. 291 * 292 * Returns the next segment or a negative errno pointer. 293 * On success, @mr is filled in. 294 */ 295 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt, 296 struct rpcrdma_mr_seg *seg, 297 int nsegs, bool writing, __be32 xid, 298 struct rpcrdma_mr *mr) 299 { 300 struct rpcrdma_ep *ep = r_xprt->rx_ep; 301 struct ib_reg_wr *reg_wr; 302 int i, n, dma_nents; 303 struct ib_mr *ibmr; 304 u8 key; 305 306 if (nsegs > ep->re_max_fr_depth) 307 nsegs = ep->re_max_fr_depth; 308 for (i = 0; i < nsegs;) { 309 if (seg->mr_page) 310 sg_set_page(&mr->mr_sg[i], 311 seg->mr_page, 312 seg->mr_len, 313 offset_in_page(seg->mr_offset)); 314 else 315 sg_set_buf(&mr->mr_sg[i], seg->mr_offset, 316 seg->mr_len); 317 318 ++seg; 319 ++i; 320 if (ep->re_mrtype == IB_MR_TYPE_SG_GAPS) 321 continue; 322 if ((i < nsegs && offset_in_page(seg->mr_offset)) || 323 offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) 324 break; 325 } 326 mr->mr_dir = rpcrdma_data_dir(writing); 327 mr->mr_nents = i; 328 329 dma_nents = ib_dma_map_sg(ep->re_id->device, mr->mr_sg, mr->mr_nents, 330 mr->mr_dir); 331 if (!dma_nents) 332 goto out_dmamap_err; 333 mr->mr_device = ep->re_id->device; 334 335 ibmr = mr->frwr.fr_mr; 336 n = ib_map_mr_sg(ibmr, mr->mr_sg, dma_nents, NULL, PAGE_SIZE); 337 if (n != dma_nents) 338 goto out_mapmr_err; 339 340 ibmr->iova &= 0x00000000ffffffff; 341 ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32; 342 key = (u8)(ibmr->rkey & 0x000000FF); 343 ib_update_fast_reg_key(ibmr, ++key); 344 345 reg_wr = &mr->frwr.fr_regwr; 346 reg_wr->mr = ibmr; 347 reg_wr->key = ibmr->rkey; 348 reg_wr->access = writing ? 349 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE : 350 IB_ACCESS_REMOTE_READ; 351 352 mr->mr_handle = ibmr->rkey; 353 mr->mr_length = ibmr->length; 354 mr->mr_offset = ibmr->iova; 355 trace_xprtrdma_mr_map(mr); 356 357 return seg; 358 359 out_dmamap_err: 360 trace_xprtrdma_frwr_sgerr(mr, i); 361 return ERR_PTR(-EIO); 362 363 out_mapmr_err: 364 trace_xprtrdma_frwr_maperr(mr, n); 365 return ERR_PTR(-EIO); 366 } 367 368 /** 369 * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC 370 * @cq: completion queue 371 * @wc: WCE for a completed FastReg WR 372 * 373 */ 374 static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc) 375 { 376 struct ib_cqe *cqe = wc->wr_cqe; 377 struct rpcrdma_frwr *frwr = 378 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 379 380 /* WARNING: Only wr_cqe and status are reliable at this point */ 381 trace_xprtrdma_wc_fastreg(wc, &frwr->fr_cid); 382 /* The MR will get recycled when the associated req is retransmitted */ 383 384 rpcrdma_flush_disconnect(cq->cq_context, wc); 385 } 386 387 static void frwr_cid_init(struct rpcrdma_ep *ep, 388 struct rpcrdma_frwr *frwr) 389 { 390 struct rpc_rdma_cid *cid = &frwr->fr_cid; 391 392 cid->ci_queue_id = ep->re_attr.send_cq->res.id; 393 cid->ci_completion_id = frwr->fr_mr->res.id; 394 } 395 396 /** 397 * frwr_send - post Send WRs containing the RPC Call message 398 * @r_xprt: controlling transport instance 399 * @req: prepared RPC Call 400 * 401 * For FRWR, chain any FastReg WRs to the Send WR. Only a 402 * single ib_post_send call is needed to register memory 403 * and then post the Send WR. 404 * 405 * Returns the return code from ib_post_send. 406 * 407 * Caller must hold the transport send lock to ensure that the 408 * pointers to the transport's rdma_cm_id and QP are stable. 409 */ 410 int frwr_send(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 411 { 412 struct rpcrdma_ep *ep = r_xprt->rx_ep; 413 struct ib_send_wr *post_wr; 414 struct rpcrdma_mr *mr; 415 416 post_wr = &req->rl_wr; 417 list_for_each_entry(mr, &req->rl_registered, mr_list) { 418 struct rpcrdma_frwr *frwr; 419 420 frwr = &mr->frwr; 421 422 frwr->fr_cqe.done = frwr_wc_fastreg; 423 frwr_cid_init(ep, frwr); 424 frwr->fr_regwr.wr.next = post_wr; 425 frwr->fr_regwr.wr.wr_cqe = &frwr->fr_cqe; 426 frwr->fr_regwr.wr.num_sge = 0; 427 frwr->fr_regwr.wr.opcode = IB_WR_REG_MR; 428 frwr->fr_regwr.wr.send_flags = 0; 429 430 post_wr = &frwr->fr_regwr.wr; 431 } 432 433 return ib_post_send(ep->re_id->qp, post_wr, NULL); 434 } 435 436 /** 437 * frwr_reminv - handle a remotely invalidated mr on the @mrs list 438 * @rep: Received reply 439 * @mrs: list of MRs to check 440 * 441 */ 442 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs) 443 { 444 struct rpcrdma_mr *mr; 445 446 list_for_each_entry(mr, mrs, mr_list) 447 if (mr->mr_handle == rep->rr_inv_rkey) { 448 list_del_init(&mr->mr_list); 449 frwr_mr_put(mr); 450 break; /* only one invalidated MR per RPC */ 451 } 452 } 453 454 static void frwr_mr_done(struct ib_wc *wc, struct rpcrdma_mr *mr) 455 { 456 if (wc->status != IB_WC_SUCCESS) 457 frwr_mr_recycle(mr); 458 else 459 frwr_mr_put(mr); 460 } 461 462 /** 463 * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC 464 * @cq: completion queue 465 * @wc: WCE for a completed LocalInv WR 466 * 467 */ 468 static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc) 469 { 470 struct ib_cqe *cqe = wc->wr_cqe; 471 struct rpcrdma_frwr *frwr = 472 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 473 struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr); 474 475 /* WARNING: Only wr_cqe and status are reliable at this point */ 476 trace_xprtrdma_wc_li(wc, &frwr->fr_cid); 477 frwr_mr_done(wc, mr); 478 479 rpcrdma_flush_disconnect(cq->cq_context, wc); 480 } 481 482 /** 483 * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC 484 * @cq: completion queue 485 * @wc: WCE for a completed LocalInv WR 486 * 487 * Awaken anyone waiting for an MR to finish being fenced. 488 */ 489 static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc) 490 { 491 struct ib_cqe *cqe = wc->wr_cqe; 492 struct rpcrdma_frwr *frwr = 493 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 494 struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr); 495 496 /* WARNING: Only wr_cqe and status are reliable at this point */ 497 trace_xprtrdma_wc_li_wake(wc, &frwr->fr_cid); 498 frwr_mr_done(wc, mr); 499 complete(&frwr->fr_linv_done); 500 501 rpcrdma_flush_disconnect(cq->cq_context, wc); 502 } 503 504 /** 505 * frwr_unmap_sync - invalidate memory regions that were registered for @req 506 * @r_xprt: controlling transport instance 507 * @req: rpcrdma_req with a non-empty list of MRs to process 508 * 509 * Sleeps until it is safe for the host CPU to access the previously mapped 510 * memory regions. This guarantees that registered MRs are properly fenced 511 * from the server before the RPC consumer accesses the data in them. It 512 * also ensures proper Send flow control: waking the next RPC waits until 513 * this RPC has relinquished all its Send Queue entries. 514 */ 515 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 516 { 517 struct ib_send_wr *first, **prev, *last; 518 struct rpcrdma_ep *ep = r_xprt->rx_ep; 519 const struct ib_send_wr *bad_wr; 520 struct rpcrdma_frwr *frwr; 521 struct rpcrdma_mr *mr; 522 int rc; 523 524 /* ORDER: Invalidate all of the MRs first 525 * 526 * Chain the LOCAL_INV Work Requests and post them with 527 * a single ib_post_send() call. 528 */ 529 frwr = NULL; 530 prev = &first; 531 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) { 532 533 trace_xprtrdma_mr_localinv(mr); 534 r_xprt->rx_stats.local_inv_needed++; 535 536 frwr = &mr->frwr; 537 frwr->fr_cqe.done = frwr_wc_localinv; 538 frwr_cid_init(ep, frwr); 539 last = &frwr->fr_invwr; 540 last->next = NULL; 541 last->wr_cqe = &frwr->fr_cqe; 542 last->sg_list = NULL; 543 last->num_sge = 0; 544 last->opcode = IB_WR_LOCAL_INV; 545 last->send_flags = IB_SEND_SIGNALED; 546 last->ex.invalidate_rkey = mr->mr_handle; 547 548 *prev = last; 549 prev = &last->next; 550 } 551 552 /* Strong send queue ordering guarantees that when the 553 * last WR in the chain completes, all WRs in the chain 554 * are complete. 555 */ 556 frwr->fr_cqe.done = frwr_wc_localinv_wake; 557 reinit_completion(&frwr->fr_linv_done); 558 559 /* Transport disconnect drains the receive CQ before it 560 * replaces the QP. The RPC reply handler won't call us 561 * unless re_id->qp is a valid pointer. 562 */ 563 bad_wr = NULL; 564 rc = ib_post_send(ep->re_id->qp, first, &bad_wr); 565 566 /* The final LOCAL_INV WR in the chain is supposed to 567 * do the wake. If it was never posted, the wake will 568 * not happen, so don't wait in that case. 569 */ 570 if (bad_wr != first) 571 wait_for_completion(&frwr->fr_linv_done); 572 if (!rc) 573 return; 574 575 /* Recycle MRs in the LOCAL_INV chain that did not get posted. 576 */ 577 trace_xprtrdma_post_linv_err(req, rc); 578 while (bad_wr) { 579 frwr = container_of(bad_wr, struct rpcrdma_frwr, 580 fr_invwr); 581 mr = container_of(frwr, struct rpcrdma_mr, frwr); 582 bad_wr = bad_wr->next; 583 584 list_del_init(&mr->mr_list); 585 frwr_mr_recycle(mr); 586 } 587 } 588 589 /** 590 * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC 591 * @cq: completion queue 592 * @wc: WCE for a completed LocalInv WR 593 * 594 */ 595 static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc) 596 { 597 struct ib_cqe *cqe = wc->wr_cqe; 598 struct rpcrdma_frwr *frwr = 599 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 600 struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr); 601 struct rpcrdma_rep *rep = mr->mr_req->rl_reply; 602 603 /* WARNING: Only wr_cqe and status are reliable at this point */ 604 trace_xprtrdma_wc_li_done(wc, &frwr->fr_cid); 605 frwr_mr_done(wc, mr); 606 607 /* Ensure @rep is generated before frwr_mr_done */ 608 smp_rmb(); 609 rpcrdma_complete_rqst(rep); 610 611 rpcrdma_flush_disconnect(cq->cq_context, wc); 612 } 613 614 /** 615 * frwr_unmap_async - invalidate memory regions that were registered for @req 616 * @r_xprt: controlling transport instance 617 * @req: rpcrdma_req with a non-empty list of MRs to process 618 * 619 * This guarantees that registered MRs are properly fenced from the 620 * server before the RPC consumer accesses the data in them. It also 621 * ensures proper Send flow control: waking the next RPC waits until 622 * this RPC has relinquished all its Send Queue entries. 623 */ 624 void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 625 { 626 struct ib_send_wr *first, *last, **prev; 627 struct rpcrdma_ep *ep = r_xprt->rx_ep; 628 const struct ib_send_wr *bad_wr; 629 struct rpcrdma_frwr *frwr; 630 struct rpcrdma_mr *mr; 631 int rc; 632 633 /* Chain the LOCAL_INV Work Requests and post them with 634 * a single ib_post_send() call. 635 */ 636 frwr = NULL; 637 prev = &first; 638 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) { 639 640 trace_xprtrdma_mr_localinv(mr); 641 r_xprt->rx_stats.local_inv_needed++; 642 643 frwr = &mr->frwr; 644 frwr->fr_cqe.done = frwr_wc_localinv; 645 frwr_cid_init(ep, frwr); 646 last = &frwr->fr_invwr; 647 last->next = NULL; 648 last->wr_cqe = &frwr->fr_cqe; 649 last->sg_list = NULL; 650 last->num_sge = 0; 651 last->opcode = IB_WR_LOCAL_INV; 652 last->send_flags = IB_SEND_SIGNALED; 653 last->ex.invalidate_rkey = mr->mr_handle; 654 655 *prev = last; 656 prev = &last->next; 657 } 658 659 /* Strong send queue ordering guarantees that when the 660 * last WR in the chain completes, all WRs in the chain 661 * are complete. The last completion will wake up the 662 * RPC waiter. 663 */ 664 frwr->fr_cqe.done = frwr_wc_localinv_done; 665 666 /* Transport disconnect drains the receive CQ before it 667 * replaces the QP. The RPC reply handler won't call us 668 * unless re_id->qp is a valid pointer. 669 */ 670 bad_wr = NULL; 671 rc = ib_post_send(ep->re_id->qp, first, &bad_wr); 672 if (!rc) 673 return; 674 675 /* Recycle MRs in the LOCAL_INV chain that did not get posted. 676 */ 677 trace_xprtrdma_post_linv_err(req, rc); 678 while (bad_wr) { 679 frwr = container_of(bad_wr, struct rpcrdma_frwr, fr_invwr); 680 mr = container_of(frwr, struct rpcrdma_mr, frwr); 681 bad_wr = bad_wr->next; 682 683 frwr_mr_recycle(mr); 684 } 685 686 /* The final LOCAL_INV WR in the chain is supposed to 687 * do the wake. If it was never posted, the wake will 688 * not happen, so wake here in that case. 689 */ 690 rpcrdma_complete_rqst(req->rl_reply); 691 } 692