xref: /openbmc/linux/net/sunrpc/xprtrdma/frwr_ops.c (revision dd21bfa4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015, 2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  */
6 
7 /* Lightweight memory registration using Fast Registration Work
8  * Requests (FRWR).
9  *
10  * FRWR features ordered asynchronous registration and invalidation
11  * of arbitrarily-sized memory regions. This is the fastest and safest
12  * but most complex memory registration mode.
13  */
14 
15 /* Normal operation
16  *
17  * A Memory Region is prepared for RDMA Read or Write using a FAST_REG
18  * Work Request (frwr_map). When the RDMA operation is finished, this
19  * Memory Region is invalidated using a LOCAL_INV Work Request
20  * (frwr_unmap_async and frwr_unmap_sync).
21  *
22  * Typically FAST_REG Work Requests are not signaled, and neither are
23  * RDMA Send Work Requests (with the exception of signaling occasionally
24  * to prevent provider work queue overflows). This greatly reduces HCA
25  * interrupt workload.
26  */
27 
28 /* Transport recovery
29  *
30  * frwr_map and frwr_unmap_* cannot run at the same time the transport
31  * connect worker is running. The connect worker holds the transport
32  * send lock, just as ->send_request does. This prevents frwr_map and
33  * the connect worker from running concurrently. When a connection is
34  * closed, the Receive completion queue is drained before the allowing
35  * the connect worker to get control. This prevents frwr_unmap and the
36  * connect worker from running concurrently.
37  *
38  * When the underlying transport disconnects, MRs that are in flight
39  * are flushed and are likely unusable. Thus all MRs are destroyed.
40  * New MRs are created on demand.
41  */
42 
43 #include <linux/sunrpc/svc_rdma.h>
44 
45 #include "xprt_rdma.h"
46 #include <trace/events/rpcrdma.h>
47 
48 static void frwr_cid_init(struct rpcrdma_ep *ep,
49 			  struct rpcrdma_mr *mr)
50 {
51 	struct rpc_rdma_cid *cid = &mr->mr_cid;
52 
53 	cid->ci_queue_id = ep->re_attr.send_cq->res.id;
54 	cid->ci_completion_id = mr->mr_ibmr->res.id;
55 }
56 
57 static void frwr_mr_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
58 {
59 	if (mr->mr_device) {
60 		trace_xprtrdma_mr_unmap(mr);
61 		ib_dma_unmap_sg(mr->mr_device, mr->mr_sg, mr->mr_nents,
62 				mr->mr_dir);
63 		mr->mr_device = NULL;
64 	}
65 }
66 
67 /**
68  * frwr_mr_release - Destroy one MR
69  * @mr: MR allocated by frwr_mr_init
70  *
71  */
72 void frwr_mr_release(struct rpcrdma_mr *mr)
73 {
74 	int rc;
75 
76 	frwr_mr_unmap(mr->mr_xprt, mr);
77 
78 	rc = ib_dereg_mr(mr->mr_ibmr);
79 	if (rc)
80 		trace_xprtrdma_frwr_dereg(mr, rc);
81 	kfree(mr->mr_sg);
82 	kfree(mr);
83 }
84 
85 static void frwr_mr_put(struct rpcrdma_mr *mr)
86 {
87 	frwr_mr_unmap(mr->mr_xprt, mr);
88 
89 	/* The MR is returned to the req's MR free list instead
90 	 * of to the xprt's MR free list. No spinlock is needed.
91 	 */
92 	rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs);
93 }
94 
95 /* frwr_reset - Place MRs back on the free list
96  * @req: request to reset
97  *
98  * Used after a failed marshal. For FRWR, this means the MRs
99  * don't have to be fully released and recreated.
100  *
101  * NB: This is safe only as long as none of @req's MRs are
102  * involved with an ongoing asynchronous FAST_REG or LOCAL_INV
103  * Work Request.
104  */
105 void frwr_reset(struct rpcrdma_req *req)
106 {
107 	struct rpcrdma_mr *mr;
108 
109 	while ((mr = rpcrdma_mr_pop(&req->rl_registered)))
110 		frwr_mr_put(mr);
111 }
112 
113 /**
114  * frwr_mr_init - Initialize one MR
115  * @r_xprt: controlling transport instance
116  * @mr: generic MR to prepare for FRWR
117  *
118  * Returns zero if successful. Otherwise a negative errno
119  * is returned.
120  */
121 int frwr_mr_init(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
122 {
123 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
124 	unsigned int depth = ep->re_max_fr_depth;
125 	struct scatterlist *sg;
126 	struct ib_mr *frmr;
127 	int rc;
128 
129 	frmr = ib_alloc_mr(ep->re_pd, ep->re_mrtype, depth);
130 	if (IS_ERR(frmr))
131 		goto out_mr_err;
132 
133 	sg = kmalloc_array(depth, sizeof(*sg), GFP_NOFS);
134 	if (!sg)
135 		goto out_list_err;
136 
137 	mr->mr_xprt = r_xprt;
138 	mr->mr_ibmr = frmr;
139 	mr->mr_device = NULL;
140 	INIT_LIST_HEAD(&mr->mr_list);
141 	init_completion(&mr->mr_linv_done);
142 	frwr_cid_init(ep, mr);
143 
144 	sg_init_table(sg, depth);
145 	mr->mr_sg = sg;
146 	return 0;
147 
148 out_mr_err:
149 	rc = PTR_ERR(frmr);
150 	trace_xprtrdma_frwr_alloc(mr, rc);
151 	return rc;
152 
153 out_list_err:
154 	ib_dereg_mr(frmr);
155 	return -ENOMEM;
156 }
157 
158 /**
159  * frwr_query_device - Prepare a transport for use with FRWR
160  * @ep: endpoint to fill in
161  * @device: RDMA device to query
162  *
163  * On success, sets:
164  *	ep->re_attr
165  *	ep->re_max_requests
166  *	ep->re_max_rdma_segs
167  *	ep->re_max_fr_depth
168  *	ep->re_mrtype
169  *
170  * Return values:
171  *   On success, returns zero.
172  *   %-EINVAL - the device does not support FRWR memory registration
173  *   %-ENOMEM - the device is not sufficiently capable for NFS/RDMA
174  */
175 int frwr_query_device(struct rpcrdma_ep *ep, const struct ib_device *device)
176 {
177 	const struct ib_device_attr *attrs = &device->attrs;
178 	int max_qp_wr, depth, delta;
179 	unsigned int max_sge;
180 
181 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) ||
182 	    attrs->max_fast_reg_page_list_len == 0) {
183 		pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n",
184 		       device->name);
185 		return -EINVAL;
186 	}
187 
188 	max_sge = min_t(unsigned int, attrs->max_send_sge,
189 			RPCRDMA_MAX_SEND_SGES);
190 	if (max_sge < RPCRDMA_MIN_SEND_SGES) {
191 		pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge);
192 		return -ENOMEM;
193 	}
194 	ep->re_attr.cap.max_send_sge = max_sge;
195 	ep->re_attr.cap.max_recv_sge = 1;
196 
197 	ep->re_mrtype = IB_MR_TYPE_MEM_REG;
198 	if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG)
199 		ep->re_mrtype = IB_MR_TYPE_SG_GAPS;
200 
201 	/* Quirk: Some devices advertise a large max_fast_reg_page_list_len
202 	 * capability, but perform optimally when the MRs are not larger
203 	 * than a page.
204 	 */
205 	if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS)
206 		ep->re_max_fr_depth = attrs->max_sge_rd;
207 	else
208 		ep->re_max_fr_depth = attrs->max_fast_reg_page_list_len;
209 	if (ep->re_max_fr_depth > RPCRDMA_MAX_DATA_SEGS)
210 		ep->re_max_fr_depth = RPCRDMA_MAX_DATA_SEGS;
211 
212 	/* Add room for frwr register and invalidate WRs.
213 	 * 1. FRWR reg WR for head
214 	 * 2. FRWR invalidate WR for head
215 	 * 3. N FRWR reg WRs for pagelist
216 	 * 4. N FRWR invalidate WRs for pagelist
217 	 * 5. FRWR reg WR for tail
218 	 * 6. FRWR invalidate WR for tail
219 	 * 7. The RDMA_SEND WR
220 	 */
221 	depth = 7;
222 
223 	/* Calculate N if the device max FRWR depth is smaller than
224 	 * RPCRDMA_MAX_DATA_SEGS.
225 	 */
226 	if (ep->re_max_fr_depth < RPCRDMA_MAX_DATA_SEGS) {
227 		delta = RPCRDMA_MAX_DATA_SEGS - ep->re_max_fr_depth;
228 		do {
229 			depth += 2; /* FRWR reg + invalidate */
230 			delta -= ep->re_max_fr_depth;
231 		} while (delta > 0);
232 	}
233 
234 	max_qp_wr = attrs->max_qp_wr;
235 	max_qp_wr -= RPCRDMA_BACKWARD_WRS;
236 	max_qp_wr -= 1;
237 	if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE)
238 		return -ENOMEM;
239 	if (ep->re_max_requests > max_qp_wr)
240 		ep->re_max_requests = max_qp_wr;
241 	ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
242 	if (ep->re_attr.cap.max_send_wr > max_qp_wr) {
243 		ep->re_max_requests = max_qp_wr / depth;
244 		if (!ep->re_max_requests)
245 			return -ENOMEM;
246 		ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
247 	}
248 	ep->re_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
249 	ep->re_attr.cap.max_send_wr += 1; /* for ib_drain_sq */
250 	ep->re_attr.cap.max_recv_wr = ep->re_max_requests;
251 	ep->re_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
252 	ep->re_attr.cap.max_recv_wr += RPCRDMA_MAX_RECV_BATCH;
253 	ep->re_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */
254 
255 	ep->re_max_rdma_segs =
256 		DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ep->re_max_fr_depth);
257 	/* Reply chunks require segments for head and tail buffers */
258 	ep->re_max_rdma_segs += 2;
259 	if (ep->re_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS)
260 		ep->re_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS;
261 
262 	/* Ensure the underlying device is capable of conveying the
263 	 * largest r/wsize NFS will ask for. This guarantees that
264 	 * failing over from one RDMA device to another will not
265 	 * break NFS I/O.
266 	 */
267 	if ((ep->re_max_rdma_segs * ep->re_max_fr_depth) < RPCRDMA_MAX_SEGS)
268 		return -ENOMEM;
269 
270 	return 0;
271 }
272 
273 /**
274  * frwr_map - Register a memory region
275  * @r_xprt: controlling transport
276  * @seg: memory region co-ordinates
277  * @nsegs: number of segments remaining
278  * @writing: true when RDMA Write will be used
279  * @xid: XID of RPC using the registered memory
280  * @mr: MR to fill in
281  *
282  * Prepare a REG_MR Work Request to register a memory region
283  * for remote access via RDMA READ or RDMA WRITE.
284  *
285  * Returns the next segment or a negative errno pointer.
286  * On success, @mr is filled in.
287  */
288 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt,
289 				struct rpcrdma_mr_seg *seg,
290 				int nsegs, bool writing, __be32 xid,
291 				struct rpcrdma_mr *mr)
292 {
293 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
294 	struct ib_reg_wr *reg_wr;
295 	int i, n, dma_nents;
296 	struct ib_mr *ibmr;
297 	u8 key;
298 
299 	if (nsegs > ep->re_max_fr_depth)
300 		nsegs = ep->re_max_fr_depth;
301 	for (i = 0; i < nsegs;) {
302 		sg_set_page(&mr->mr_sg[i], seg->mr_page,
303 			    seg->mr_len, seg->mr_offset);
304 
305 		++seg;
306 		++i;
307 		if (ep->re_mrtype == IB_MR_TYPE_SG_GAPS)
308 			continue;
309 		if ((i < nsegs && seg->mr_offset) ||
310 		    offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
311 			break;
312 	}
313 	mr->mr_dir = rpcrdma_data_dir(writing);
314 	mr->mr_nents = i;
315 
316 	dma_nents = ib_dma_map_sg(ep->re_id->device, mr->mr_sg, mr->mr_nents,
317 				  mr->mr_dir);
318 	if (!dma_nents)
319 		goto out_dmamap_err;
320 	mr->mr_device = ep->re_id->device;
321 
322 	ibmr = mr->mr_ibmr;
323 	n = ib_map_mr_sg(ibmr, mr->mr_sg, dma_nents, NULL, PAGE_SIZE);
324 	if (n != dma_nents)
325 		goto out_mapmr_err;
326 
327 	ibmr->iova &= 0x00000000ffffffff;
328 	ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32;
329 	key = (u8)(ibmr->rkey & 0x000000FF);
330 	ib_update_fast_reg_key(ibmr, ++key);
331 
332 	reg_wr = &mr->mr_regwr;
333 	reg_wr->mr = ibmr;
334 	reg_wr->key = ibmr->rkey;
335 	reg_wr->access = writing ?
336 			 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
337 			 IB_ACCESS_REMOTE_READ;
338 
339 	mr->mr_handle = ibmr->rkey;
340 	mr->mr_length = ibmr->length;
341 	mr->mr_offset = ibmr->iova;
342 	trace_xprtrdma_mr_map(mr);
343 
344 	return seg;
345 
346 out_dmamap_err:
347 	trace_xprtrdma_frwr_sgerr(mr, i);
348 	return ERR_PTR(-EIO);
349 
350 out_mapmr_err:
351 	trace_xprtrdma_frwr_maperr(mr, n);
352 	return ERR_PTR(-EIO);
353 }
354 
355 /**
356  * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC
357  * @cq: completion queue
358  * @wc: WCE for a completed FastReg WR
359  *
360  * Each flushed MR gets destroyed after the QP has drained.
361  */
362 static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
363 {
364 	struct ib_cqe *cqe = wc->wr_cqe;
365 	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
366 
367 	/* WARNING: Only wr_cqe and status are reliable at this point */
368 	trace_xprtrdma_wc_fastreg(wc, &mr->mr_cid);
369 
370 	rpcrdma_flush_disconnect(cq->cq_context, wc);
371 }
372 
373 /**
374  * frwr_send - post Send WRs containing the RPC Call message
375  * @r_xprt: controlling transport instance
376  * @req: prepared RPC Call
377  *
378  * For FRWR, chain any FastReg WRs to the Send WR. Only a
379  * single ib_post_send call is needed to register memory
380  * and then post the Send WR.
381  *
382  * Returns the return code from ib_post_send.
383  *
384  * Caller must hold the transport send lock to ensure that the
385  * pointers to the transport's rdma_cm_id and QP are stable.
386  */
387 int frwr_send(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
388 {
389 	struct ib_send_wr *post_wr, *send_wr = &req->rl_wr;
390 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
391 	struct rpcrdma_mr *mr;
392 	unsigned int num_wrs;
393 	int ret;
394 
395 	num_wrs = 1;
396 	post_wr = send_wr;
397 	list_for_each_entry(mr, &req->rl_registered, mr_list) {
398 		trace_xprtrdma_mr_fastreg(mr);
399 
400 		mr->mr_cqe.done = frwr_wc_fastreg;
401 		mr->mr_regwr.wr.next = post_wr;
402 		mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe;
403 		mr->mr_regwr.wr.num_sge = 0;
404 		mr->mr_regwr.wr.opcode = IB_WR_REG_MR;
405 		mr->mr_regwr.wr.send_flags = 0;
406 		post_wr = &mr->mr_regwr.wr;
407 		++num_wrs;
408 	}
409 
410 	if ((kref_read(&req->rl_kref) > 1) || num_wrs > ep->re_send_count) {
411 		send_wr->send_flags |= IB_SEND_SIGNALED;
412 		ep->re_send_count = min_t(unsigned int, ep->re_send_batch,
413 					  num_wrs - ep->re_send_count);
414 	} else {
415 		send_wr->send_flags &= ~IB_SEND_SIGNALED;
416 		ep->re_send_count -= num_wrs;
417 	}
418 
419 	trace_xprtrdma_post_send(req);
420 	ret = ib_post_send(ep->re_id->qp, post_wr, NULL);
421 	if (ret)
422 		trace_xprtrdma_post_send_err(r_xprt, req, ret);
423 	return ret;
424 }
425 
426 /**
427  * frwr_reminv - handle a remotely invalidated mr on the @mrs list
428  * @rep: Received reply
429  * @mrs: list of MRs to check
430  *
431  */
432 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs)
433 {
434 	struct rpcrdma_mr *mr;
435 
436 	list_for_each_entry(mr, mrs, mr_list)
437 		if (mr->mr_handle == rep->rr_inv_rkey) {
438 			list_del_init(&mr->mr_list);
439 			trace_xprtrdma_mr_reminv(mr);
440 			frwr_mr_put(mr);
441 			break;	/* only one invalidated MR per RPC */
442 		}
443 }
444 
445 static void frwr_mr_done(struct ib_wc *wc, struct rpcrdma_mr *mr)
446 {
447 	if (likely(wc->status == IB_WC_SUCCESS))
448 		frwr_mr_put(mr);
449 }
450 
451 /**
452  * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC
453  * @cq: completion queue
454  * @wc: WCE for a completed LocalInv WR
455  *
456  */
457 static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
458 {
459 	struct ib_cqe *cqe = wc->wr_cqe;
460 	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
461 
462 	/* WARNING: Only wr_cqe and status are reliable at this point */
463 	trace_xprtrdma_wc_li(wc, &mr->mr_cid);
464 	frwr_mr_done(wc, mr);
465 
466 	rpcrdma_flush_disconnect(cq->cq_context, wc);
467 }
468 
469 /**
470  * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC
471  * @cq: completion queue
472  * @wc: WCE for a completed LocalInv WR
473  *
474  * Awaken anyone waiting for an MR to finish being fenced.
475  */
476 static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
477 {
478 	struct ib_cqe *cqe = wc->wr_cqe;
479 	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
480 
481 	/* WARNING: Only wr_cqe and status are reliable at this point */
482 	trace_xprtrdma_wc_li_wake(wc, &mr->mr_cid);
483 	frwr_mr_done(wc, mr);
484 	complete(&mr->mr_linv_done);
485 
486 	rpcrdma_flush_disconnect(cq->cq_context, wc);
487 }
488 
489 /**
490  * frwr_unmap_sync - invalidate memory regions that were registered for @req
491  * @r_xprt: controlling transport instance
492  * @req: rpcrdma_req with a non-empty list of MRs to process
493  *
494  * Sleeps until it is safe for the host CPU to access the previously mapped
495  * memory regions. This guarantees that registered MRs are properly fenced
496  * from the server before the RPC consumer accesses the data in them. It
497  * also ensures proper Send flow control: waking the next RPC waits until
498  * this RPC has relinquished all its Send Queue entries.
499  */
500 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
501 {
502 	struct ib_send_wr *first, **prev, *last;
503 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
504 	const struct ib_send_wr *bad_wr;
505 	struct rpcrdma_mr *mr;
506 	int rc;
507 
508 	/* ORDER: Invalidate all of the MRs first
509 	 *
510 	 * Chain the LOCAL_INV Work Requests and post them with
511 	 * a single ib_post_send() call.
512 	 */
513 	prev = &first;
514 	mr = rpcrdma_mr_pop(&req->rl_registered);
515 	do {
516 		trace_xprtrdma_mr_localinv(mr);
517 		r_xprt->rx_stats.local_inv_needed++;
518 
519 		last = &mr->mr_invwr;
520 		last->next = NULL;
521 		last->wr_cqe = &mr->mr_cqe;
522 		last->sg_list = NULL;
523 		last->num_sge = 0;
524 		last->opcode = IB_WR_LOCAL_INV;
525 		last->send_flags = IB_SEND_SIGNALED;
526 		last->ex.invalidate_rkey = mr->mr_handle;
527 
528 		last->wr_cqe->done = frwr_wc_localinv;
529 
530 		*prev = last;
531 		prev = &last->next;
532 	} while ((mr = rpcrdma_mr_pop(&req->rl_registered)));
533 
534 	mr = container_of(last, struct rpcrdma_mr, mr_invwr);
535 
536 	/* Strong send queue ordering guarantees that when the
537 	 * last WR in the chain completes, all WRs in the chain
538 	 * are complete.
539 	 */
540 	last->wr_cqe->done = frwr_wc_localinv_wake;
541 	reinit_completion(&mr->mr_linv_done);
542 
543 	/* Transport disconnect drains the receive CQ before it
544 	 * replaces the QP. The RPC reply handler won't call us
545 	 * unless re_id->qp is a valid pointer.
546 	 */
547 	bad_wr = NULL;
548 	rc = ib_post_send(ep->re_id->qp, first, &bad_wr);
549 
550 	/* The final LOCAL_INV WR in the chain is supposed to
551 	 * do the wake. If it was never posted, the wake will
552 	 * not happen, so don't wait in that case.
553 	 */
554 	if (bad_wr != first)
555 		wait_for_completion(&mr->mr_linv_done);
556 	if (!rc)
557 		return;
558 
559 	/* On error, the MRs get destroyed once the QP has drained. */
560 	trace_xprtrdma_post_linv_err(req, rc);
561 
562 	/* Force a connection loss to ensure complete recovery.
563 	 */
564 	rpcrdma_force_disconnect(ep);
565 }
566 
567 /**
568  * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC
569  * @cq:	completion queue
570  * @wc:	WCE for a completed LocalInv WR
571  *
572  */
573 static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc)
574 {
575 	struct ib_cqe *cqe = wc->wr_cqe;
576 	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
577 	struct rpcrdma_rep *rep;
578 
579 	/* WARNING: Only wr_cqe and status are reliable at this point */
580 	trace_xprtrdma_wc_li_done(wc, &mr->mr_cid);
581 
582 	/* Ensure that @rep is generated before the MR is released */
583 	rep = mr->mr_req->rl_reply;
584 	smp_rmb();
585 
586 	if (wc->status != IB_WC_SUCCESS) {
587 		if (rep)
588 			rpcrdma_unpin_rqst(rep);
589 		rpcrdma_flush_disconnect(cq->cq_context, wc);
590 		return;
591 	}
592 	frwr_mr_put(mr);
593 	rpcrdma_complete_rqst(rep);
594 }
595 
596 /**
597  * frwr_unmap_async - invalidate memory regions that were registered for @req
598  * @r_xprt: controlling transport instance
599  * @req: rpcrdma_req with a non-empty list of MRs to process
600  *
601  * This guarantees that registered MRs are properly fenced from the
602  * server before the RPC consumer accesses the data in them. It also
603  * ensures proper Send flow control: waking the next RPC waits until
604  * this RPC has relinquished all its Send Queue entries.
605  */
606 void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
607 {
608 	struct ib_send_wr *first, *last, **prev;
609 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
610 	struct rpcrdma_mr *mr;
611 	int rc;
612 
613 	/* Chain the LOCAL_INV Work Requests and post them with
614 	 * a single ib_post_send() call.
615 	 */
616 	prev = &first;
617 	mr = rpcrdma_mr_pop(&req->rl_registered);
618 	do {
619 		trace_xprtrdma_mr_localinv(mr);
620 		r_xprt->rx_stats.local_inv_needed++;
621 
622 		last = &mr->mr_invwr;
623 		last->next = NULL;
624 		last->wr_cqe = &mr->mr_cqe;
625 		last->sg_list = NULL;
626 		last->num_sge = 0;
627 		last->opcode = IB_WR_LOCAL_INV;
628 		last->send_flags = IB_SEND_SIGNALED;
629 		last->ex.invalidate_rkey = mr->mr_handle;
630 
631 		last->wr_cqe->done = frwr_wc_localinv;
632 
633 		*prev = last;
634 		prev = &last->next;
635 	} while ((mr = rpcrdma_mr_pop(&req->rl_registered)));
636 
637 	/* Strong send queue ordering guarantees that when the
638 	 * last WR in the chain completes, all WRs in the chain
639 	 * are complete. The last completion will wake up the
640 	 * RPC waiter.
641 	 */
642 	last->wr_cqe->done = frwr_wc_localinv_done;
643 
644 	/* Transport disconnect drains the receive CQ before it
645 	 * replaces the QP. The RPC reply handler won't call us
646 	 * unless re_id->qp is a valid pointer.
647 	 */
648 	rc = ib_post_send(ep->re_id->qp, first, NULL);
649 	if (!rc)
650 		return;
651 
652 	/* On error, the MRs get destroyed once the QP has drained. */
653 	trace_xprtrdma_post_linv_err(req, rc);
654 
655 	/* The final LOCAL_INV WR in the chain is supposed to
656 	 * do the wake. If it was never posted, the wake does
657 	 * not happen. Unpin the rqst in preparation for its
658 	 * retransmission.
659 	 */
660 	rpcrdma_unpin_rqst(req->rl_reply);
661 
662 	/* Force a connection loss to ensure complete recovery.
663 	 */
664 	rpcrdma_force_disconnect(ep);
665 }
666 
667 /**
668  * frwr_wp_create - Create an MR for padding Write chunks
669  * @r_xprt: transport resources to use
670  *
671  * Return 0 on success, negative errno on failure.
672  */
673 int frwr_wp_create(struct rpcrdma_xprt *r_xprt)
674 {
675 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
676 	struct rpcrdma_mr_seg seg;
677 	struct rpcrdma_mr *mr;
678 
679 	mr = rpcrdma_mr_get(r_xprt);
680 	if (!mr)
681 		return -EAGAIN;
682 	mr->mr_req = NULL;
683 	ep->re_write_pad_mr = mr;
684 
685 	seg.mr_len = XDR_UNIT;
686 	seg.mr_page = virt_to_page(ep->re_write_pad);
687 	seg.mr_offset = offset_in_page(ep->re_write_pad);
688 	if (IS_ERR(frwr_map(r_xprt, &seg, 1, true, xdr_zero, mr)))
689 		return -EIO;
690 	trace_xprtrdma_mr_fastreg(mr);
691 
692 	mr->mr_cqe.done = frwr_wc_fastreg;
693 	mr->mr_regwr.wr.next = NULL;
694 	mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe;
695 	mr->mr_regwr.wr.num_sge = 0;
696 	mr->mr_regwr.wr.opcode = IB_WR_REG_MR;
697 	mr->mr_regwr.wr.send_flags = 0;
698 
699 	return ib_post_send(ep->re_id->qp, &mr->mr_regwr.wr, NULL);
700 }
701