1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015, 2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 */ 6 7 /* Lightweight memory registration using Fast Registration Work 8 * Requests (FRWR). 9 * 10 * FRWR features ordered asynchronous registration and invalidation 11 * of arbitrarily-sized memory regions. This is the fastest and safest 12 * but most complex memory registration mode. 13 */ 14 15 /* Normal operation 16 * 17 * A Memory Region is prepared for RDMA Read or Write using a FAST_REG 18 * Work Request (frwr_map). When the RDMA operation is finished, this 19 * Memory Region is invalidated using a LOCAL_INV Work Request 20 * (frwr_unmap_async and frwr_unmap_sync). 21 * 22 * Typically FAST_REG Work Requests are not signaled, and neither are 23 * RDMA Send Work Requests (with the exception of signaling occasionally 24 * to prevent provider work queue overflows). This greatly reduces HCA 25 * interrupt workload. 26 */ 27 28 /* Transport recovery 29 * 30 * frwr_map and frwr_unmap_* cannot run at the same time the transport 31 * connect worker is running. The connect worker holds the transport 32 * send lock, just as ->send_request does. This prevents frwr_map and 33 * the connect worker from running concurrently. When a connection is 34 * closed, the Receive completion queue is drained before the allowing 35 * the connect worker to get control. This prevents frwr_unmap and the 36 * connect worker from running concurrently. 37 * 38 * When the underlying transport disconnects, MRs that are in flight 39 * are flushed and are likely unusable. Thus all MRs are destroyed. 40 * New MRs are created on demand. 41 */ 42 43 #include <linux/sunrpc/svc_rdma.h> 44 45 #include "xprt_rdma.h" 46 #include <trace/events/rpcrdma.h> 47 48 static void frwr_cid_init(struct rpcrdma_ep *ep, 49 struct rpcrdma_mr *mr) 50 { 51 struct rpc_rdma_cid *cid = &mr->mr_cid; 52 53 cid->ci_queue_id = ep->re_attr.send_cq->res.id; 54 cid->ci_completion_id = mr->mr_ibmr->res.id; 55 } 56 57 static void frwr_mr_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr) 58 { 59 if (mr->mr_device) { 60 trace_xprtrdma_mr_unmap(mr); 61 ib_dma_unmap_sg(mr->mr_device, mr->mr_sg, mr->mr_nents, 62 mr->mr_dir); 63 mr->mr_device = NULL; 64 } 65 } 66 67 /** 68 * frwr_mr_release - Destroy one MR 69 * @mr: MR allocated by frwr_mr_init 70 * 71 */ 72 void frwr_mr_release(struct rpcrdma_mr *mr) 73 { 74 int rc; 75 76 frwr_mr_unmap(mr->mr_xprt, mr); 77 78 rc = ib_dereg_mr(mr->mr_ibmr); 79 if (rc) 80 trace_xprtrdma_frwr_dereg(mr, rc); 81 kfree(mr->mr_sg); 82 kfree(mr); 83 } 84 85 static void frwr_mr_put(struct rpcrdma_mr *mr) 86 { 87 frwr_mr_unmap(mr->mr_xprt, mr); 88 89 /* The MR is returned to the req's MR free list instead 90 * of to the xprt's MR free list. No spinlock is needed. 91 */ 92 rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs); 93 } 94 95 /* frwr_reset - Place MRs back on the free list 96 * @req: request to reset 97 * 98 * Used after a failed marshal. For FRWR, this means the MRs 99 * don't have to be fully released and recreated. 100 * 101 * NB: This is safe only as long as none of @req's MRs are 102 * involved with an ongoing asynchronous FAST_REG or LOCAL_INV 103 * Work Request. 104 */ 105 void frwr_reset(struct rpcrdma_req *req) 106 { 107 struct rpcrdma_mr *mr; 108 109 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) 110 frwr_mr_put(mr); 111 } 112 113 /** 114 * frwr_mr_init - Initialize one MR 115 * @r_xprt: controlling transport instance 116 * @mr: generic MR to prepare for FRWR 117 * 118 * Returns zero if successful. Otherwise a negative errno 119 * is returned. 120 */ 121 int frwr_mr_init(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr) 122 { 123 struct rpcrdma_ep *ep = r_xprt->rx_ep; 124 unsigned int depth = ep->re_max_fr_depth; 125 struct scatterlist *sg; 126 struct ib_mr *frmr; 127 int rc; 128 129 frmr = ib_alloc_mr(ep->re_pd, ep->re_mrtype, depth); 130 if (IS_ERR(frmr)) 131 goto out_mr_err; 132 133 sg = kmalloc_array(depth, sizeof(*sg), GFP_NOFS); 134 if (!sg) 135 goto out_list_err; 136 137 mr->mr_xprt = r_xprt; 138 mr->mr_ibmr = frmr; 139 mr->mr_device = NULL; 140 INIT_LIST_HEAD(&mr->mr_list); 141 init_completion(&mr->mr_linv_done); 142 frwr_cid_init(ep, mr); 143 144 sg_init_table(sg, depth); 145 mr->mr_sg = sg; 146 return 0; 147 148 out_mr_err: 149 rc = PTR_ERR(frmr); 150 trace_xprtrdma_frwr_alloc(mr, rc); 151 return rc; 152 153 out_list_err: 154 ib_dereg_mr(frmr); 155 return -ENOMEM; 156 } 157 158 /** 159 * frwr_query_device - Prepare a transport for use with FRWR 160 * @ep: endpoint to fill in 161 * @device: RDMA device to query 162 * 163 * On success, sets: 164 * ep->re_attr 165 * ep->re_max_requests 166 * ep->re_max_rdma_segs 167 * ep->re_max_fr_depth 168 * ep->re_mrtype 169 * 170 * Return values: 171 * On success, returns zero. 172 * %-EINVAL - the device does not support FRWR memory registration 173 * %-ENOMEM - the device is not sufficiently capable for NFS/RDMA 174 */ 175 int frwr_query_device(struct rpcrdma_ep *ep, const struct ib_device *device) 176 { 177 const struct ib_device_attr *attrs = &device->attrs; 178 int max_qp_wr, depth, delta; 179 unsigned int max_sge; 180 181 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) || 182 attrs->max_fast_reg_page_list_len == 0) { 183 pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n", 184 device->name); 185 return -EINVAL; 186 } 187 188 max_sge = min_t(unsigned int, attrs->max_send_sge, 189 RPCRDMA_MAX_SEND_SGES); 190 if (max_sge < RPCRDMA_MIN_SEND_SGES) { 191 pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge); 192 return -ENOMEM; 193 } 194 ep->re_attr.cap.max_send_sge = max_sge; 195 ep->re_attr.cap.max_recv_sge = 1; 196 197 ep->re_mrtype = IB_MR_TYPE_MEM_REG; 198 if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG) 199 ep->re_mrtype = IB_MR_TYPE_SG_GAPS; 200 201 /* Quirk: Some devices advertise a large max_fast_reg_page_list_len 202 * capability, but perform optimally when the MRs are not larger 203 * than a page. 204 */ 205 if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS) 206 ep->re_max_fr_depth = attrs->max_sge_rd; 207 else 208 ep->re_max_fr_depth = attrs->max_fast_reg_page_list_len; 209 if (ep->re_max_fr_depth > RPCRDMA_MAX_DATA_SEGS) 210 ep->re_max_fr_depth = RPCRDMA_MAX_DATA_SEGS; 211 212 /* Add room for frwr register and invalidate WRs. 213 * 1. FRWR reg WR for head 214 * 2. FRWR invalidate WR for head 215 * 3. N FRWR reg WRs for pagelist 216 * 4. N FRWR invalidate WRs for pagelist 217 * 5. FRWR reg WR for tail 218 * 6. FRWR invalidate WR for tail 219 * 7. The RDMA_SEND WR 220 */ 221 depth = 7; 222 223 /* Calculate N if the device max FRWR depth is smaller than 224 * RPCRDMA_MAX_DATA_SEGS. 225 */ 226 if (ep->re_max_fr_depth < RPCRDMA_MAX_DATA_SEGS) { 227 delta = RPCRDMA_MAX_DATA_SEGS - ep->re_max_fr_depth; 228 do { 229 depth += 2; /* FRWR reg + invalidate */ 230 delta -= ep->re_max_fr_depth; 231 } while (delta > 0); 232 } 233 234 max_qp_wr = attrs->max_qp_wr; 235 max_qp_wr -= RPCRDMA_BACKWARD_WRS; 236 max_qp_wr -= 1; 237 if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE) 238 return -ENOMEM; 239 if (ep->re_max_requests > max_qp_wr) 240 ep->re_max_requests = max_qp_wr; 241 ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth; 242 if (ep->re_attr.cap.max_send_wr > max_qp_wr) { 243 ep->re_max_requests = max_qp_wr / depth; 244 if (!ep->re_max_requests) 245 return -ENOMEM; 246 ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth; 247 } 248 ep->re_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS; 249 ep->re_attr.cap.max_send_wr += 1; /* for ib_drain_sq */ 250 ep->re_attr.cap.max_recv_wr = ep->re_max_requests; 251 ep->re_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS; 252 ep->re_attr.cap.max_recv_wr += RPCRDMA_MAX_RECV_BATCH; 253 ep->re_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */ 254 255 ep->re_max_rdma_segs = 256 DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ep->re_max_fr_depth); 257 /* Reply chunks require segments for head and tail buffers */ 258 ep->re_max_rdma_segs += 2; 259 if (ep->re_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS) 260 ep->re_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS; 261 262 /* Ensure the underlying device is capable of conveying the 263 * largest r/wsize NFS will ask for. This guarantees that 264 * failing over from one RDMA device to another will not 265 * break NFS I/O. 266 */ 267 if ((ep->re_max_rdma_segs * ep->re_max_fr_depth) < RPCRDMA_MAX_SEGS) 268 return -ENOMEM; 269 270 return 0; 271 } 272 273 /** 274 * frwr_map - Register a memory region 275 * @r_xprt: controlling transport 276 * @seg: memory region co-ordinates 277 * @nsegs: number of segments remaining 278 * @writing: true when RDMA Write will be used 279 * @xid: XID of RPC using the registered memory 280 * @mr: MR to fill in 281 * 282 * Prepare a REG_MR Work Request to register a memory region 283 * for remote access via RDMA READ or RDMA WRITE. 284 * 285 * Returns the next segment or a negative errno pointer. 286 * On success, @mr is filled in. 287 */ 288 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt, 289 struct rpcrdma_mr_seg *seg, 290 int nsegs, bool writing, __be32 xid, 291 struct rpcrdma_mr *mr) 292 { 293 struct rpcrdma_ep *ep = r_xprt->rx_ep; 294 struct ib_reg_wr *reg_wr; 295 int i, n, dma_nents; 296 struct ib_mr *ibmr; 297 u8 key; 298 299 if (nsegs > ep->re_max_fr_depth) 300 nsegs = ep->re_max_fr_depth; 301 for (i = 0; i < nsegs;) { 302 sg_set_page(&mr->mr_sg[i], seg->mr_page, 303 seg->mr_len, seg->mr_offset); 304 305 ++seg; 306 ++i; 307 if (ep->re_mrtype == IB_MR_TYPE_SG_GAPS) 308 continue; 309 if ((i < nsegs && seg->mr_offset) || 310 offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) 311 break; 312 } 313 mr->mr_dir = rpcrdma_data_dir(writing); 314 mr->mr_nents = i; 315 316 dma_nents = ib_dma_map_sg(ep->re_id->device, mr->mr_sg, mr->mr_nents, 317 mr->mr_dir); 318 if (!dma_nents) 319 goto out_dmamap_err; 320 mr->mr_device = ep->re_id->device; 321 322 ibmr = mr->mr_ibmr; 323 n = ib_map_mr_sg(ibmr, mr->mr_sg, dma_nents, NULL, PAGE_SIZE); 324 if (n != dma_nents) 325 goto out_mapmr_err; 326 327 ibmr->iova &= 0x00000000ffffffff; 328 ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32; 329 key = (u8)(ibmr->rkey & 0x000000FF); 330 ib_update_fast_reg_key(ibmr, ++key); 331 332 reg_wr = &mr->mr_regwr; 333 reg_wr->mr = ibmr; 334 reg_wr->key = ibmr->rkey; 335 reg_wr->access = writing ? 336 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE : 337 IB_ACCESS_REMOTE_READ; 338 339 mr->mr_handle = ibmr->rkey; 340 mr->mr_length = ibmr->length; 341 mr->mr_offset = ibmr->iova; 342 trace_xprtrdma_mr_map(mr); 343 344 return seg; 345 346 out_dmamap_err: 347 trace_xprtrdma_frwr_sgerr(mr, i); 348 return ERR_PTR(-EIO); 349 350 out_mapmr_err: 351 trace_xprtrdma_frwr_maperr(mr, n); 352 return ERR_PTR(-EIO); 353 } 354 355 /** 356 * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC 357 * @cq: completion queue 358 * @wc: WCE for a completed FastReg WR 359 * 360 * Each flushed MR gets destroyed after the QP has drained. 361 */ 362 static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc) 363 { 364 struct ib_cqe *cqe = wc->wr_cqe; 365 struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe); 366 367 /* WARNING: Only wr_cqe and status are reliable at this point */ 368 trace_xprtrdma_wc_fastreg(wc, &mr->mr_cid); 369 370 rpcrdma_flush_disconnect(cq->cq_context, wc); 371 } 372 373 /** 374 * frwr_send - post Send WRs containing the RPC Call message 375 * @r_xprt: controlling transport instance 376 * @req: prepared RPC Call 377 * 378 * For FRWR, chain any FastReg WRs to the Send WR. Only a 379 * single ib_post_send call is needed to register memory 380 * and then post the Send WR. 381 * 382 * Returns the return code from ib_post_send. 383 * 384 * Caller must hold the transport send lock to ensure that the 385 * pointers to the transport's rdma_cm_id and QP are stable. 386 */ 387 int frwr_send(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 388 { 389 struct ib_send_wr *post_wr, *send_wr = &req->rl_wr; 390 struct rpcrdma_ep *ep = r_xprt->rx_ep; 391 struct rpcrdma_mr *mr; 392 unsigned int num_wrs; 393 int ret; 394 395 num_wrs = 1; 396 post_wr = send_wr; 397 list_for_each_entry(mr, &req->rl_registered, mr_list) { 398 trace_xprtrdma_mr_fastreg(mr); 399 400 mr->mr_cqe.done = frwr_wc_fastreg; 401 mr->mr_regwr.wr.next = post_wr; 402 mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe; 403 mr->mr_regwr.wr.num_sge = 0; 404 mr->mr_regwr.wr.opcode = IB_WR_REG_MR; 405 mr->mr_regwr.wr.send_flags = 0; 406 post_wr = &mr->mr_regwr.wr; 407 ++num_wrs; 408 } 409 410 if ((kref_read(&req->rl_kref) > 1) || num_wrs > ep->re_send_count) { 411 send_wr->send_flags |= IB_SEND_SIGNALED; 412 ep->re_send_count = min_t(unsigned int, ep->re_send_batch, 413 num_wrs - ep->re_send_count); 414 } else { 415 send_wr->send_flags &= ~IB_SEND_SIGNALED; 416 ep->re_send_count -= num_wrs; 417 } 418 419 trace_xprtrdma_post_send(req); 420 ret = ib_post_send(ep->re_id->qp, post_wr, NULL); 421 if (ret) 422 trace_xprtrdma_post_send_err(r_xprt, req, ret); 423 return ret; 424 } 425 426 /** 427 * frwr_reminv - handle a remotely invalidated mr on the @mrs list 428 * @rep: Received reply 429 * @mrs: list of MRs to check 430 * 431 */ 432 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs) 433 { 434 struct rpcrdma_mr *mr; 435 436 list_for_each_entry(mr, mrs, mr_list) 437 if (mr->mr_handle == rep->rr_inv_rkey) { 438 list_del_init(&mr->mr_list); 439 trace_xprtrdma_mr_reminv(mr); 440 frwr_mr_put(mr); 441 break; /* only one invalidated MR per RPC */ 442 } 443 } 444 445 static void frwr_mr_done(struct ib_wc *wc, struct rpcrdma_mr *mr) 446 { 447 if (likely(wc->status == IB_WC_SUCCESS)) 448 frwr_mr_put(mr); 449 } 450 451 /** 452 * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC 453 * @cq: completion queue 454 * @wc: WCE for a completed LocalInv WR 455 * 456 */ 457 static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc) 458 { 459 struct ib_cqe *cqe = wc->wr_cqe; 460 struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe); 461 462 /* WARNING: Only wr_cqe and status are reliable at this point */ 463 trace_xprtrdma_wc_li(wc, &mr->mr_cid); 464 frwr_mr_done(wc, mr); 465 466 rpcrdma_flush_disconnect(cq->cq_context, wc); 467 } 468 469 /** 470 * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC 471 * @cq: completion queue 472 * @wc: WCE for a completed LocalInv WR 473 * 474 * Awaken anyone waiting for an MR to finish being fenced. 475 */ 476 static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc) 477 { 478 struct ib_cqe *cqe = wc->wr_cqe; 479 struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe); 480 481 /* WARNING: Only wr_cqe and status are reliable at this point */ 482 trace_xprtrdma_wc_li_wake(wc, &mr->mr_cid); 483 frwr_mr_done(wc, mr); 484 complete(&mr->mr_linv_done); 485 486 rpcrdma_flush_disconnect(cq->cq_context, wc); 487 } 488 489 /** 490 * frwr_unmap_sync - invalidate memory regions that were registered for @req 491 * @r_xprt: controlling transport instance 492 * @req: rpcrdma_req with a non-empty list of MRs to process 493 * 494 * Sleeps until it is safe for the host CPU to access the previously mapped 495 * memory regions. This guarantees that registered MRs are properly fenced 496 * from the server before the RPC consumer accesses the data in them. It 497 * also ensures proper Send flow control: waking the next RPC waits until 498 * this RPC has relinquished all its Send Queue entries. 499 */ 500 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 501 { 502 struct ib_send_wr *first, **prev, *last; 503 struct rpcrdma_ep *ep = r_xprt->rx_ep; 504 const struct ib_send_wr *bad_wr; 505 struct rpcrdma_mr *mr; 506 int rc; 507 508 /* ORDER: Invalidate all of the MRs first 509 * 510 * Chain the LOCAL_INV Work Requests and post them with 511 * a single ib_post_send() call. 512 */ 513 prev = &first; 514 mr = rpcrdma_mr_pop(&req->rl_registered); 515 do { 516 trace_xprtrdma_mr_localinv(mr); 517 r_xprt->rx_stats.local_inv_needed++; 518 519 last = &mr->mr_invwr; 520 last->next = NULL; 521 last->wr_cqe = &mr->mr_cqe; 522 last->sg_list = NULL; 523 last->num_sge = 0; 524 last->opcode = IB_WR_LOCAL_INV; 525 last->send_flags = IB_SEND_SIGNALED; 526 last->ex.invalidate_rkey = mr->mr_handle; 527 528 last->wr_cqe->done = frwr_wc_localinv; 529 530 *prev = last; 531 prev = &last->next; 532 } while ((mr = rpcrdma_mr_pop(&req->rl_registered))); 533 534 mr = container_of(last, struct rpcrdma_mr, mr_invwr); 535 536 /* Strong send queue ordering guarantees that when the 537 * last WR in the chain completes, all WRs in the chain 538 * are complete. 539 */ 540 last->wr_cqe->done = frwr_wc_localinv_wake; 541 reinit_completion(&mr->mr_linv_done); 542 543 /* Transport disconnect drains the receive CQ before it 544 * replaces the QP. The RPC reply handler won't call us 545 * unless re_id->qp is a valid pointer. 546 */ 547 bad_wr = NULL; 548 rc = ib_post_send(ep->re_id->qp, first, &bad_wr); 549 550 /* The final LOCAL_INV WR in the chain is supposed to 551 * do the wake. If it was never posted, the wake will 552 * not happen, so don't wait in that case. 553 */ 554 if (bad_wr != first) 555 wait_for_completion(&mr->mr_linv_done); 556 if (!rc) 557 return; 558 559 /* On error, the MRs get destroyed once the QP has drained. */ 560 trace_xprtrdma_post_linv_err(req, rc); 561 562 /* Force a connection loss to ensure complete recovery. 563 */ 564 rpcrdma_force_disconnect(ep); 565 } 566 567 /** 568 * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC 569 * @cq: completion queue 570 * @wc: WCE for a completed LocalInv WR 571 * 572 */ 573 static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc) 574 { 575 struct ib_cqe *cqe = wc->wr_cqe; 576 struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe); 577 struct rpcrdma_rep *rep; 578 579 /* WARNING: Only wr_cqe and status are reliable at this point */ 580 trace_xprtrdma_wc_li_done(wc, &mr->mr_cid); 581 582 /* Ensure that @rep is generated before the MR is released */ 583 rep = mr->mr_req->rl_reply; 584 smp_rmb(); 585 586 if (wc->status != IB_WC_SUCCESS) { 587 if (rep) 588 rpcrdma_unpin_rqst(rep); 589 rpcrdma_flush_disconnect(cq->cq_context, wc); 590 return; 591 } 592 frwr_mr_put(mr); 593 rpcrdma_complete_rqst(rep); 594 } 595 596 /** 597 * frwr_unmap_async - invalidate memory regions that were registered for @req 598 * @r_xprt: controlling transport instance 599 * @req: rpcrdma_req with a non-empty list of MRs to process 600 * 601 * This guarantees that registered MRs are properly fenced from the 602 * server before the RPC consumer accesses the data in them. It also 603 * ensures proper Send flow control: waking the next RPC waits until 604 * this RPC has relinquished all its Send Queue entries. 605 */ 606 void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 607 { 608 struct ib_send_wr *first, *last, **prev; 609 struct rpcrdma_ep *ep = r_xprt->rx_ep; 610 struct rpcrdma_mr *mr; 611 int rc; 612 613 /* Chain the LOCAL_INV Work Requests and post them with 614 * a single ib_post_send() call. 615 */ 616 prev = &first; 617 mr = rpcrdma_mr_pop(&req->rl_registered); 618 do { 619 trace_xprtrdma_mr_localinv(mr); 620 r_xprt->rx_stats.local_inv_needed++; 621 622 last = &mr->mr_invwr; 623 last->next = NULL; 624 last->wr_cqe = &mr->mr_cqe; 625 last->sg_list = NULL; 626 last->num_sge = 0; 627 last->opcode = IB_WR_LOCAL_INV; 628 last->send_flags = IB_SEND_SIGNALED; 629 last->ex.invalidate_rkey = mr->mr_handle; 630 631 last->wr_cqe->done = frwr_wc_localinv; 632 633 *prev = last; 634 prev = &last->next; 635 } while ((mr = rpcrdma_mr_pop(&req->rl_registered))); 636 637 /* Strong send queue ordering guarantees that when the 638 * last WR in the chain completes, all WRs in the chain 639 * are complete. The last completion will wake up the 640 * RPC waiter. 641 */ 642 last->wr_cqe->done = frwr_wc_localinv_done; 643 644 /* Transport disconnect drains the receive CQ before it 645 * replaces the QP. The RPC reply handler won't call us 646 * unless re_id->qp is a valid pointer. 647 */ 648 rc = ib_post_send(ep->re_id->qp, first, NULL); 649 if (!rc) 650 return; 651 652 /* On error, the MRs get destroyed once the QP has drained. */ 653 trace_xprtrdma_post_linv_err(req, rc); 654 655 /* The final LOCAL_INV WR in the chain is supposed to 656 * do the wake. If it was never posted, the wake does 657 * not happen. Unpin the rqst in preparation for its 658 * retransmission. 659 */ 660 rpcrdma_unpin_rqst(req->rl_reply); 661 662 /* Force a connection loss to ensure complete recovery. 663 */ 664 rpcrdma_force_disconnect(ep); 665 } 666 667 /** 668 * frwr_wp_create - Create an MR for padding Write chunks 669 * @r_xprt: transport resources to use 670 * 671 * Return 0 on success, negative errno on failure. 672 */ 673 int frwr_wp_create(struct rpcrdma_xprt *r_xprt) 674 { 675 struct rpcrdma_ep *ep = r_xprt->rx_ep; 676 struct rpcrdma_mr_seg seg; 677 struct rpcrdma_mr *mr; 678 679 mr = rpcrdma_mr_get(r_xprt); 680 if (!mr) 681 return -EAGAIN; 682 mr->mr_req = NULL; 683 ep->re_write_pad_mr = mr; 684 685 seg.mr_len = XDR_UNIT; 686 seg.mr_page = virt_to_page(ep->re_write_pad); 687 seg.mr_offset = offset_in_page(ep->re_write_pad); 688 if (IS_ERR(frwr_map(r_xprt, &seg, 1, true, xdr_zero, mr))) 689 return -EIO; 690 trace_xprtrdma_mr_fastreg(mr); 691 692 mr->mr_cqe.done = frwr_wc_fastreg; 693 mr->mr_regwr.wr.next = NULL; 694 mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe; 695 mr->mr_regwr.wr.num_sge = 0; 696 mr->mr_regwr.wr.opcode = IB_WR_REG_MR; 697 mr->mr_regwr.wr.send_flags = 0; 698 699 return ib_post_send(ep->re_id->qp, &mr->mr_regwr.wr, NULL); 700 } 701