1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015, 2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 */ 6 7 /* Lightweight memory registration using Fast Registration Work 8 * Requests (FRWR). 9 * 10 * FRWR features ordered asynchronous registration and invalidation 11 * of arbitrarily-sized memory regions. This is the fastest and safest 12 * but most complex memory registration mode. 13 */ 14 15 /* Normal operation 16 * 17 * A Memory Region is prepared for RDMA Read or Write using a FAST_REG 18 * Work Request (frwr_map). When the RDMA operation is finished, this 19 * Memory Region is invalidated using a LOCAL_INV Work Request 20 * (frwr_unmap_async and frwr_unmap_sync). 21 * 22 * Typically FAST_REG Work Requests are not signaled, and neither are 23 * RDMA Send Work Requests (with the exception of signaling occasionally 24 * to prevent provider work queue overflows). This greatly reduces HCA 25 * interrupt workload. 26 */ 27 28 /* Transport recovery 29 * 30 * frwr_map and frwr_unmap_* cannot run at the same time the transport 31 * connect worker is running. The connect worker holds the transport 32 * send lock, just as ->send_request does. This prevents frwr_map and 33 * the connect worker from running concurrently. When a connection is 34 * closed, the Receive completion queue is drained before the allowing 35 * the connect worker to get control. This prevents frwr_unmap and the 36 * connect worker from running concurrently. 37 * 38 * When the underlying transport disconnects, MRs that are in flight 39 * are flushed and are likely unusable. Thus all MRs are destroyed. 40 * New MRs are created on demand. 41 */ 42 43 #include <linux/sunrpc/svc_rdma.h> 44 45 #include "xprt_rdma.h" 46 #include <trace/events/rpcrdma.h> 47 48 static void frwr_cid_init(struct rpcrdma_ep *ep, 49 struct rpcrdma_mr *mr) 50 { 51 struct rpc_rdma_cid *cid = &mr->mr_cid; 52 53 cid->ci_queue_id = ep->re_attr.send_cq->res.id; 54 cid->ci_completion_id = mr->mr_ibmr->res.id; 55 } 56 57 static void frwr_mr_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr) 58 { 59 if (mr->mr_device) { 60 trace_xprtrdma_mr_unmap(mr); 61 ib_dma_unmap_sg(mr->mr_device, mr->mr_sg, mr->mr_nents, 62 mr->mr_dir); 63 mr->mr_device = NULL; 64 } 65 } 66 67 /** 68 * frwr_mr_release - Destroy one MR 69 * @mr: MR allocated by frwr_mr_init 70 * 71 */ 72 void frwr_mr_release(struct rpcrdma_mr *mr) 73 { 74 int rc; 75 76 frwr_mr_unmap(mr->mr_xprt, mr); 77 78 rc = ib_dereg_mr(mr->mr_ibmr); 79 if (rc) 80 trace_xprtrdma_frwr_dereg(mr, rc); 81 kfree(mr->mr_sg); 82 kfree(mr); 83 } 84 85 static void frwr_mr_put(struct rpcrdma_mr *mr) 86 { 87 frwr_mr_unmap(mr->mr_xprt, mr); 88 89 /* The MR is returned to the req's MR free list instead 90 * of to the xprt's MR free list. No spinlock is needed. 91 */ 92 rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs); 93 } 94 95 /** 96 * frwr_reset - Place MRs back on @req's free list 97 * @req: request to reset 98 * 99 * Used after a failed marshal. For FRWR, this means the MRs 100 * don't have to be fully released and recreated. 101 * 102 * NB: This is safe only as long as none of @req's MRs are 103 * involved with an ongoing asynchronous FAST_REG or LOCAL_INV 104 * Work Request. 105 */ 106 void frwr_reset(struct rpcrdma_req *req) 107 { 108 struct rpcrdma_mr *mr; 109 110 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) 111 frwr_mr_put(mr); 112 } 113 114 /** 115 * frwr_mr_init - Initialize one MR 116 * @r_xprt: controlling transport instance 117 * @mr: generic MR to prepare for FRWR 118 * 119 * Returns zero if successful. Otherwise a negative errno 120 * is returned. 121 */ 122 int frwr_mr_init(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr) 123 { 124 struct rpcrdma_ep *ep = r_xprt->rx_ep; 125 unsigned int depth = ep->re_max_fr_depth; 126 struct scatterlist *sg; 127 struct ib_mr *frmr; 128 129 sg = kcalloc_node(depth, sizeof(*sg), XPRTRDMA_GFP_FLAGS, 130 ibdev_to_node(ep->re_id->device)); 131 if (!sg) 132 return -ENOMEM; 133 134 frmr = ib_alloc_mr(ep->re_pd, ep->re_mrtype, depth); 135 if (IS_ERR(frmr)) 136 goto out_mr_err; 137 138 mr->mr_xprt = r_xprt; 139 mr->mr_ibmr = frmr; 140 mr->mr_device = NULL; 141 INIT_LIST_HEAD(&mr->mr_list); 142 init_completion(&mr->mr_linv_done); 143 frwr_cid_init(ep, mr); 144 145 sg_init_table(sg, depth); 146 mr->mr_sg = sg; 147 return 0; 148 149 out_mr_err: 150 kfree(sg); 151 trace_xprtrdma_frwr_alloc(mr, PTR_ERR(frmr)); 152 return PTR_ERR(frmr); 153 } 154 155 /** 156 * frwr_query_device - Prepare a transport for use with FRWR 157 * @ep: endpoint to fill in 158 * @device: RDMA device to query 159 * 160 * On success, sets: 161 * ep->re_attr 162 * ep->re_max_requests 163 * ep->re_max_rdma_segs 164 * ep->re_max_fr_depth 165 * ep->re_mrtype 166 * 167 * Return values: 168 * On success, returns zero. 169 * %-EINVAL - the device does not support FRWR memory registration 170 * %-ENOMEM - the device is not sufficiently capable for NFS/RDMA 171 */ 172 int frwr_query_device(struct rpcrdma_ep *ep, const struct ib_device *device) 173 { 174 const struct ib_device_attr *attrs = &device->attrs; 175 int max_qp_wr, depth, delta; 176 unsigned int max_sge; 177 178 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) || 179 attrs->max_fast_reg_page_list_len == 0) { 180 pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n", 181 device->name); 182 return -EINVAL; 183 } 184 185 max_sge = min_t(unsigned int, attrs->max_send_sge, 186 RPCRDMA_MAX_SEND_SGES); 187 if (max_sge < RPCRDMA_MIN_SEND_SGES) { 188 pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge); 189 return -ENOMEM; 190 } 191 ep->re_attr.cap.max_send_sge = max_sge; 192 ep->re_attr.cap.max_recv_sge = 1; 193 194 ep->re_mrtype = IB_MR_TYPE_MEM_REG; 195 if (attrs->kernel_cap_flags & IBK_SG_GAPS_REG) 196 ep->re_mrtype = IB_MR_TYPE_SG_GAPS; 197 198 /* Quirk: Some devices advertise a large max_fast_reg_page_list_len 199 * capability, but perform optimally when the MRs are not larger 200 * than a page. 201 */ 202 if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS) 203 ep->re_max_fr_depth = attrs->max_sge_rd; 204 else 205 ep->re_max_fr_depth = attrs->max_fast_reg_page_list_len; 206 if (ep->re_max_fr_depth > RPCRDMA_MAX_DATA_SEGS) 207 ep->re_max_fr_depth = RPCRDMA_MAX_DATA_SEGS; 208 209 /* Add room for frwr register and invalidate WRs. 210 * 1. FRWR reg WR for head 211 * 2. FRWR invalidate WR for head 212 * 3. N FRWR reg WRs for pagelist 213 * 4. N FRWR invalidate WRs for pagelist 214 * 5. FRWR reg WR for tail 215 * 6. FRWR invalidate WR for tail 216 * 7. The RDMA_SEND WR 217 */ 218 depth = 7; 219 220 /* Calculate N if the device max FRWR depth is smaller than 221 * RPCRDMA_MAX_DATA_SEGS. 222 */ 223 if (ep->re_max_fr_depth < RPCRDMA_MAX_DATA_SEGS) { 224 delta = RPCRDMA_MAX_DATA_SEGS - ep->re_max_fr_depth; 225 do { 226 depth += 2; /* FRWR reg + invalidate */ 227 delta -= ep->re_max_fr_depth; 228 } while (delta > 0); 229 } 230 231 max_qp_wr = attrs->max_qp_wr; 232 max_qp_wr -= RPCRDMA_BACKWARD_WRS; 233 max_qp_wr -= 1; 234 if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE) 235 return -ENOMEM; 236 if (ep->re_max_requests > max_qp_wr) 237 ep->re_max_requests = max_qp_wr; 238 ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth; 239 if (ep->re_attr.cap.max_send_wr > max_qp_wr) { 240 ep->re_max_requests = max_qp_wr / depth; 241 if (!ep->re_max_requests) 242 return -ENOMEM; 243 ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth; 244 } 245 ep->re_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS; 246 ep->re_attr.cap.max_send_wr += 1; /* for ib_drain_sq */ 247 ep->re_attr.cap.max_recv_wr = ep->re_max_requests; 248 ep->re_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS; 249 ep->re_attr.cap.max_recv_wr += RPCRDMA_MAX_RECV_BATCH; 250 ep->re_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */ 251 252 ep->re_max_rdma_segs = 253 DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ep->re_max_fr_depth); 254 /* Reply chunks require segments for head and tail buffers */ 255 ep->re_max_rdma_segs += 2; 256 if (ep->re_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS) 257 ep->re_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS; 258 259 /* Ensure the underlying device is capable of conveying the 260 * largest r/wsize NFS will ask for. This guarantees that 261 * failing over from one RDMA device to another will not 262 * break NFS I/O. 263 */ 264 if ((ep->re_max_rdma_segs * ep->re_max_fr_depth) < RPCRDMA_MAX_SEGS) 265 return -ENOMEM; 266 267 return 0; 268 } 269 270 /** 271 * frwr_map - Register a memory region 272 * @r_xprt: controlling transport 273 * @seg: memory region co-ordinates 274 * @nsegs: number of segments remaining 275 * @writing: true when RDMA Write will be used 276 * @xid: XID of RPC using the registered memory 277 * @mr: MR to fill in 278 * 279 * Prepare a REG_MR Work Request to register a memory region 280 * for remote access via RDMA READ or RDMA WRITE. 281 * 282 * Returns the next segment or a negative errno pointer. 283 * On success, @mr is filled in. 284 */ 285 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt, 286 struct rpcrdma_mr_seg *seg, 287 int nsegs, bool writing, __be32 xid, 288 struct rpcrdma_mr *mr) 289 { 290 struct rpcrdma_ep *ep = r_xprt->rx_ep; 291 struct ib_reg_wr *reg_wr; 292 int i, n, dma_nents; 293 struct ib_mr *ibmr; 294 u8 key; 295 296 if (nsegs > ep->re_max_fr_depth) 297 nsegs = ep->re_max_fr_depth; 298 for (i = 0; i < nsegs;) { 299 sg_set_page(&mr->mr_sg[i], seg->mr_page, 300 seg->mr_len, seg->mr_offset); 301 302 ++seg; 303 ++i; 304 if (ep->re_mrtype == IB_MR_TYPE_SG_GAPS) 305 continue; 306 if ((i < nsegs && seg->mr_offset) || 307 offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) 308 break; 309 } 310 mr->mr_dir = rpcrdma_data_dir(writing); 311 mr->mr_nents = i; 312 313 dma_nents = ib_dma_map_sg(ep->re_id->device, mr->mr_sg, mr->mr_nents, 314 mr->mr_dir); 315 if (!dma_nents) 316 goto out_dmamap_err; 317 mr->mr_device = ep->re_id->device; 318 319 ibmr = mr->mr_ibmr; 320 n = ib_map_mr_sg(ibmr, mr->mr_sg, dma_nents, NULL, PAGE_SIZE); 321 if (n != dma_nents) 322 goto out_mapmr_err; 323 324 ibmr->iova &= 0x00000000ffffffff; 325 ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32; 326 key = (u8)(ibmr->rkey & 0x000000FF); 327 ib_update_fast_reg_key(ibmr, ++key); 328 329 reg_wr = &mr->mr_regwr; 330 reg_wr->mr = ibmr; 331 reg_wr->key = ibmr->rkey; 332 reg_wr->access = writing ? 333 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE : 334 IB_ACCESS_REMOTE_READ; 335 336 mr->mr_handle = ibmr->rkey; 337 mr->mr_length = ibmr->length; 338 mr->mr_offset = ibmr->iova; 339 trace_xprtrdma_mr_map(mr); 340 341 return seg; 342 343 out_dmamap_err: 344 trace_xprtrdma_frwr_sgerr(mr, i); 345 return ERR_PTR(-EIO); 346 347 out_mapmr_err: 348 trace_xprtrdma_frwr_maperr(mr, n); 349 return ERR_PTR(-EIO); 350 } 351 352 /** 353 * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC 354 * @cq: completion queue 355 * @wc: WCE for a completed FastReg WR 356 * 357 * Each flushed MR gets destroyed after the QP has drained. 358 */ 359 static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc) 360 { 361 struct ib_cqe *cqe = wc->wr_cqe; 362 struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe); 363 364 /* WARNING: Only wr_cqe and status are reliable at this point */ 365 trace_xprtrdma_wc_fastreg(wc, &mr->mr_cid); 366 367 rpcrdma_flush_disconnect(cq->cq_context, wc); 368 } 369 370 /** 371 * frwr_send - post Send WRs containing the RPC Call message 372 * @r_xprt: controlling transport instance 373 * @req: prepared RPC Call 374 * 375 * For FRWR, chain any FastReg WRs to the Send WR. Only a 376 * single ib_post_send call is needed to register memory 377 * and then post the Send WR. 378 * 379 * Returns the return code from ib_post_send. 380 * 381 * Caller must hold the transport send lock to ensure that the 382 * pointers to the transport's rdma_cm_id and QP are stable. 383 */ 384 int frwr_send(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 385 { 386 struct ib_send_wr *post_wr, *send_wr = &req->rl_wr; 387 struct rpcrdma_ep *ep = r_xprt->rx_ep; 388 struct rpcrdma_mr *mr; 389 unsigned int num_wrs; 390 int ret; 391 392 num_wrs = 1; 393 post_wr = send_wr; 394 list_for_each_entry(mr, &req->rl_registered, mr_list) { 395 trace_xprtrdma_mr_fastreg(mr); 396 397 mr->mr_cqe.done = frwr_wc_fastreg; 398 mr->mr_regwr.wr.next = post_wr; 399 mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe; 400 mr->mr_regwr.wr.num_sge = 0; 401 mr->mr_regwr.wr.opcode = IB_WR_REG_MR; 402 mr->mr_regwr.wr.send_flags = 0; 403 post_wr = &mr->mr_regwr.wr; 404 ++num_wrs; 405 } 406 407 if ((kref_read(&req->rl_kref) > 1) || num_wrs > ep->re_send_count) { 408 send_wr->send_flags |= IB_SEND_SIGNALED; 409 ep->re_send_count = min_t(unsigned int, ep->re_send_batch, 410 num_wrs - ep->re_send_count); 411 } else { 412 send_wr->send_flags &= ~IB_SEND_SIGNALED; 413 ep->re_send_count -= num_wrs; 414 } 415 416 trace_xprtrdma_post_send(req); 417 ret = ib_post_send(ep->re_id->qp, post_wr, NULL); 418 if (ret) 419 trace_xprtrdma_post_send_err(r_xprt, req, ret); 420 return ret; 421 } 422 423 /** 424 * frwr_reminv - handle a remotely invalidated mr on the @mrs list 425 * @rep: Received reply 426 * @mrs: list of MRs to check 427 * 428 */ 429 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs) 430 { 431 struct rpcrdma_mr *mr; 432 433 list_for_each_entry(mr, mrs, mr_list) 434 if (mr->mr_handle == rep->rr_inv_rkey) { 435 list_del_init(&mr->mr_list); 436 trace_xprtrdma_mr_reminv(mr); 437 frwr_mr_put(mr); 438 break; /* only one invalidated MR per RPC */ 439 } 440 } 441 442 static void frwr_mr_done(struct ib_wc *wc, struct rpcrdma_mr *mr) 443 { 444 if (likely(wc->status == IB_WC_SUCCESS)) 445 frwr_mr_put(mr); 446 } 447 448 /** 449 * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC 450 * @cq: completion queue 451 * @wc: WCE for a completed LocalInv WR 452 * 453 */ 454 static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc) 455 { 456 struct ib_cqe *cqe = wc->wr_cqe; 457 struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe); 458 459 /* WARNING: Only wr_cqe and status are reliable at this point */ 460 trace_xprtrdma_wc_li(wc, &mr->mr_cid); 461 frwr_mr_done(wc, mr); 462 463 rpcrdma_flush_disconnect(cq->cq_context, wc); 464 } 465 466 /** 467 * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC 468 * @cq: completion queue 469 * @wc: WCE for a completed LocalInv WR 470 * 471 * Awaken anyone waiting for an MR to finish being fenced. 472 */ 473 static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc) 474 { 475 struct ib_cqe *cqe = wc->wr_cqe; 476 struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe); 477 478 /* WARNING: Only wr_cqe and status are reliable at this point */ 479 trace_xprtrdma_wc_li_wake(wc, &mr->mr_cid); 480 frwr_mr_done(wc, mr); 481 complete(&mr->mr_linv_done); 482 483 rpcrdma_flush_disconnect(cq->cq_context, wc); 484 } 485 486 /** 487 * frwr_unmap_sync - invalidate memory regions that were registered for @req 488 * @r_xprt: controlling transport instance 489 * @req: rpcrdma_req with a non-empty list of MRs to process 490 * 491 * Sleeps until it is safe for the host CPU to access the previously mapped 492 * memory regions. This guarantees that registered MRs are properly fenced 493 * from the server before the RPC consumer accesses the data in them. It 494 * also ensures proper Send flow control: waking the next RPC waits until 495 * this RPC has relinquished all its Send Queue entries. 496 */ 497 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 498 { 499 struct ib_send_wr *first, **prev, *last; 500 struct rpcrdma_ep *ep = r_xprt->rx_ep; 501 const struct ib_send_wr *bad_wr; 502 struct rpcrdma_mr *mr; 503 int rc; 504 505 /* ORDER: Invalidate all of the MRs first 506 * 507 * Chain the LOCAL_INV Work Requests and post them with 508 * a single ib_post_send() call. 509 */ 510 prev = &first; 511 mr = rpcrdma_mr_pop(&req->rl_registered); 512 do { 513 trace_xprtrdma_mr_localinv(mr); 514 r_xprt->rx_stats.local_inv_needed++; 515 516 last = &mr->mr_invwr; 517 last->next = NULL; 518 last->wr_cqe = &mr->mr_cqe; 519 last->sg_list = NULL; 520 last->num_sge = 0; 521 last->opcode = IB_WR_LOCAL_INV; 522 last->send_flags = IB_SEND_SIGNALED; 523 last->ex.invalidate_rkey = mr->mr_handle; 524 525 last->wr_cqe->done = frwr_wc_localinv; 526 527 *prev = last; 528 prev = &last->next; 529 } while ((mr = rpcrdma_mr_pop(&req->rl_registered))); 530 531 mr = container_of(last, struct rpcrdma_mr, mr_invwr); 532 533 /* Strong send queue ordering guarantees that when the 534 * last WR in the chain completes, all WRs in the chain 535 * are complete. 536 */ 537 last->wr_cqe->done = frwr_wc_localinv_wake; 538 reinit_completion(&mr->mr_linv_done); 539 540 /* Transport disconnect drains the receive CQ before it 541 * replaces the QP. The RPC reply handler won't call us 542 * unless re_id->qp is a valid pointer. 543 */ 544 bad_wr = NULL; 545 rc = ib_post_send(ep->re_id->qp, first, &bad_wr); 546 547 /* The final LOCAL_INV WR in the chain is supposed to 548 * do the wake. If it was never posted, the wake will 549 * not happen, so don't wait in that case. 550 */ 551 if (bad_wr != first) 552 wait_for_completion(&mr->mr_linv_done); 553 if (!rc) 554 return; 555 556 /* On error, the MRs get destroyed once the QP has drained. */ 557 trace_xprtrdma_post_linv_err(req, rc); 558 559 /* Force a connection loss to ensure complete recovery. 560 */ 561 rpcrdma_force_disconnect(ep); 562 } 563 564 /** 565 * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC 566 * @cq: completion queue 567 * @wc: WCE for a completed LocalInv WR 568 * 569 */ 570 static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc) 571 { 572 struct ib_cqe *cqe = wc->wr_cqe; 573 struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe); 574 struct rpcrdma_rep *rep; 575 576 /* WARNING: Only wr_cqe and status are reliable at this point */ 577 trace_xprtrdma_wc_li_done(wc, &mr->mr_cid); 578 579 /* Ensure that @rep is generated before the MR is released */ 580 rep = mr->mr_req->rl_reply; 581 smp_rmb(); 582 583 if (wc->status != IB_WC_SUCCESS) { 584 if (rep) 585 rpcrdma_unpin_rqst(rep); 586 rpcrdma_flush_disconnect(cq->cq_context, wc); 587 return; 588 } 589 frwr_mr_put(mr); 590 rpcrdma_complete_rqst(rep); 591 } 592 593 /** 594 * frwr_unmap_async - invalidate memory regions that were registered for @req 595 * @r_xprt: controlling transport instance 596 * @req: rpcrdma_req with a non-empty list of MRs to process 597 * 598 * This guarantees that registered MRs are properly fenced from the 599 * server before the RPC consumer accesses the data in them. It also 600 * ensures proper Send flow control: waking the next RPC waits until 601 * this RPC has relinquished all its Send Queue entries. 602 */ 603 void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 604 { 605 struct ib_send_wr *first, *last, **prev; 606 struct rpcrdma_ep *ep = r_xprt->rx_ep; 607 struct rpcrdma_mr *mr; 608 int rc; 609 610 /* Chain the LOCAL_INV Work Requests and post them with 611 * a single ib_post_send() call. 612 */ 613 prev = &first; 614 mr = rpcrdma_mr_pop(&req->rl_registered); 615 do { 616 trace_xprtrdma_mr_localinv(mr); 617 r_xprt->rx_stats.local_inv_needed++; 618 619 last = &mr->mr_invwr; 620 last->next = NULL; 621 last->wr_cqe = &mr->mr_cqe; 622 last->sg_list = NULL; 623 last->num_sge = 0; 624 last->opcode = IB_WR_LOCAL_INV; 625 last->send_flags = IB_SEND_SIGNALED; 626 last->ex.invalidate_rkey = mr->mr_handle; 627 628 last->wr_cqe->done = frwr_wc_localinv; 629 630 *prev = last; 631 prev = &last->next; 632 } while ((mr = rpcrdma_mr_pop(&req->rl_registered))); 633 634 /* Strong send queue ordering guarantees that when the 635 * last WR in the chain completes, all WRs in the chain 636 * are complete. The last completion will wake up the 637 * RPC waiter. 638 */ 639 last->wr_cqe->done = frwr_wc_localinv_done; 640 641 /* Transport disconnect drains the receive CQ before it 642 * replaces the QP. The RPC reply handler won't call us 643 * unless re_id->qp is a valid pointer. 644 */ 645 rc = ib_post_send(ep->re_id->qp, first, NULL); 646 if (!rc) 647 return; 648 649 /* On error, the MRs get destroyed once the QP has drained. */ 650 trace_xprtrdma_post_linv_err(req, rc); 651 652 /* The final LOCAL_INV WR in the chain is supposed to 653 * do the wake. If it was never posted, the wake does 654 * not happen. Unpin the rqst in preparation for its 655 * retransmission. 656 */ 657 rpcrdma_unpin_rqst(req->rl_reply); 658 659 /* Force a connection loss to ensure complete recovery. 660 */ 661 rpcrdma_force_disconnect(ep); 662 } 663 664 /** 665 * frwr_wp_create - Create an MR for padding Write chunks 666 * @r_xprt: transport resources to use 667 * 668 * Return 0 on success, negative errno on failure. 669 */ 670 int frwr_wp_create(struct rpcrdma_xprt *r_xprt) 671 { 672 struct rpcrdma_ep *ep = r_xprt->rx_ep; 673 struct rpcrdma_mr_seg seg; 674 struct rpcrdma_mr *mr; 675 676 mr = rpcrdma_mr_get(r_xprt); 677 if (!mr) 678 return -EAGAIN; 679 mr->mr_req = NULL; 680 ep->re_write_pad_mr = mr; 681 682 seg.mr_len = XDR_UNIT; 683 seg.mr_page = virt_to_page(ep->re_write_pad); 684 seg.mr_offset = offset_in_page(ep->re_write_pad); 685 if (IS_ERR(frwr_map(r_xprt, &seg, 1, true, xdr_zero, mr))) 686 return -EIO; 687 trace_xprtrdma_mr_fastreg(mr); 688 689 mr->mr_cqe.done = frwr_wc_fastreg; 690 mr->mr_regwr.wr.next = NULL; 691 mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe; 692 mr->mr_regwr.wr.num_sge = 0; 693 mr->mr_regwr.wr.opcode = IB_WR_REG_MR; 694 mr->mr_regwr.wr.send_flags = 0; 695 696 return ib_post_send(ep->re_id->qp, &mr->mr_regwr.wr, NULL); 697 } 698