xref: /openbmc/linux/net/sunrpc/xprtrdma/frwr_ops.c (revision d2574c33)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015, 2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  */
6 
7 /* Lightweight memory registration using Fast Registration Work
8  * Requests (FRWR).
9  *
10  * FRWR features ordered asynchronous registration and deregistration
11  * of arbitrarily sized memory regions. This is the fastest and safest
12  * but most complex memory registration mode.
13  */
14 
15 /* Normal operation
16  *
17  * A Memory Region is prepared for RDMA READ or WRITE using a FAST_REG
18  * Work Request (frwr_map). When the RDMA operation is finished, this
19  * Memory Region is invalidated using a LOCAL_INV Work Request
20  * (frwr_unmap_sync).
21  *
22  * Typically these Work Requests are not signaled, and neither are RDMA
23  * SEND Work Requests (with the exception of signaling occasionally to
24  * prevent provider work queue overflows). This greatly reduces HCA
25  * interrupt workload.
26  *
27  * As an optimization, frwr_unmap marks MRs INVALID before the
28  * LOCAL_INV WR is posted. If posting succeeds, the MR is placed on
29  * rb_mrs immediately so that no work (like managing a linked list
30  * under a spinlock) is needed in the completion upcall.
31  *
32  * But this means that frwr_map() can occasionally encounter an MR
33  * that is INVALID but the LOCAL_INV WR has not completed. Work Queue
34  * ordering prevents a subsequent FAST_REG WR from executing against
35  * that MR while it is still being invalidated.
36  */
37 
38 /* Transport recovery
39  *
40  * ->op_map and the transport connect worker cannot run at the same
41  * time, but ->op_unmap can fire while the transport connect worker
42  * is running. Thus MR recovery is handled in ->op_map, to guarantee
43  * that recovered MRs are owned by a sending RPC, and not one where
44  * ->op_unmap could fire at the same time transport reconnect is
45  * being done.
46  *
47  * When the underlying transport disconnects, MRs are left in one of
48  * four states:
49  *
50  * INVALID:	The MR was not in use before the QP entered ERROR state.
51  *
52  * VALID:	The MR was registered before the QP entered ERROR state.
53  *
54  * FLUSHED_FR:	The MR was being registered when the QP entered ERROR
55  *		state, and the pending WR was flushed.
56  *
57  * FLUSHED_LI:	The MR was being invalidated when the QP entered ERROR
58  *		state, and the pending WR was flushed.
59  *
60  * When frwr_map encounters FLUSHED and VALID MRs, they are recovered
61  * with ib_dereg_mr and then are re-initialized. Because MR recovery
62  * allocates fresh resources, it is deferred to a workqueue, and the
63  * recovered MRs are placed back on the rb_mrs list when recovery is
64  * complete. frwr_map allocates another MR for the current RPC while
65  * the broken MR is reset.
66  *
67  * To ensure that frwr_map doesn't encounter an MR that is marked
68  * INVALID but that is about to be flushed due to a previous transport
69  * disconnect, the transport connect worker attempts to drain all
70  * pending send queue WRs before the transport is reconnected.
71  */
72 
73 #include <linux/sunrpc/rpc_rdma.h>
74 #include <linux/sunrpc/svc_rdma.h>
75 
76 #include "xprt_rdma.h"
77 #include <trace/events/rpcrdma.h>
78 
79 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
80 # define RPCDBG_FACILITY	RPCDBG_TRANS
81 #endif
82 
83 /**
84  * frwr_is_supported - Check if device supports FRWR
85  * @ia: interface adapter to check
86  *
87  * Returns true if device supports FRWR, otherwise false
88  */
89 bool frwr_is_supported(struct rpcrdma_ia *ia)
90 {
91 	struct ib_device_attr *attrs = &ia->ri_device->attrs;
92 
93 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
94 		goto out_not_supported;
95 	if (attrs->max_fast_reg_page_list_len == 0)
96 		goto out_not_supported;
97 	return true;
98 
99 out_not_supported:
100 	pr_info("rpcrdma: 'frwr' mode is not supported by device %s\n",
101 		ia->ri_device->name);
102 	return false;
103 }
104 
105 /**
106  * frwr_release_mr - Destroy one MR
107  * @mr: MR allocated by frwr_init_mr
108  *
109  */
110 void frwr_release_mr(struct rpcrdma_mr *mr)
111 {
112 	int rc;
113 
114 	rc = ib_dereg_mr(mr->frwr.fr_mr);
115 	if (rc)
116 		trace_xprtrdma_frwr_dereg(mr, rc);
117 	kfree(mr->mr_sg);
118 	kfree(mr);
119 }
120 
121 /* MRs are dynamically allocated, so simply clean up and release the MR.
122  * A replacement MR will subsequently be allocated on demand.
123  */
124 static void
125 frwr_mr_recycle_worker(struct work_struct *work)
126 {
127 	struct rpcrdma_mr *mr = container_of(work, struct rpcrdma_mr, mr_recycle);
128 	struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
129 
130 	trace_xprtrdma_mr_recycle(mr);
131 
132 	if (mr->mr_dir != DMA_NONE) {
133 		trace_xprtrdma_mr_unmap(mr);
134 		ib_dma_unmap_sg(r_xprt->rx_ia.ri_device,
135 				mr->mr_sg, mr->mr_nents, mr->mr_dir);
136 		mr->mr_dir = DMA_NONE;
137 	}
138 
139 	spin_lock(&r_xprt->rx_buf.rb_mrlock);
140 	list_del(&mr->mr_all);
141 	r_xprt->rx_stats.mrs_recycled++;
142 	spin_unlock(&r_xprt->rx_buf.rb_mrlock);
143 
144 	frwr_release_mr(mr);
145 }
146 
147 /**
148  * frwr_init_mr - Initialize one MR
149  * @ia: interface adapter
150  * @mr: generic MR to prepare for FRWR
151  *
152  * Returns zero if successful. Otherwise a negative errno
153  * is returned.
154  */
155 int frwr_init_mr(struct rpcrdma_ia *ia, struct rpcrdma_mr *mr)
156 {
157 	unsigned int depth = ia->ri_max_frwr_depth;
158 	struct scatterlist *sg;
159 	struct ib_mr *frmr;
160 	int rc;
161 
162 	frmr = ib_alloc_mr(ia->ri_pd, ia->ri_mrtype, depth);
163 	if (IS_ERR(frmr))
164 		goto out_mr_err;
165 
166 	sg = kcalloc(depth, sizeof(*sg), GFP_KERNEL);
167 	if (!sg)
168 		goto out_list_err;
169 
170 	mr->frwr.fr_mr = frmr;
171 	mr->frwr.fr_state = FRWR_IS_INVALID;
172 	mr->mr_dir = DMA_NONE;
173 	INIT_LIST_HEAD(&mr->mr_list);
174 	INIT_WORK(&mr->mr_recycle, frwr_mr_recycle_worker);
175 	init_completion(&mr->frwr.fr_linv_done);
176 
177 	sg_init_table(sg, depth);
178 	mr->mr_sg = sg;
179 	return 0;
180 
181 out_mr_err:
182 	rc = PTR_ERR(frmr);
183 	trace_xprtrdma_frwr_alloc(mr, rc);
184 	return rc;
185 
186 out_list_err:
187 	dprintk("RPC:       %s: sg allocation failure\n",
188 		__func__);
189 	ib_dereg_mr(frmr);
190 	return -ENOMEM;
191 }
192 
193 /**
194  * frwr_open - Prepare an endpoint for use with FRWR
195  * @ia: interface adapter this endpoint will use
196  * @ep: endpoint to prepare
197  * @cdata: transport parameters
198  *
199  * On success, sets:
200  *	ep->rep_attr.cap.max_send_wr
201  *	ep->rep_attr.cap.max_recv_wr
202  *	cdata->max_requests
203  *	ia->ri_max_segs
204  *
205  * And these FRWR-related fields:
206  *	ia->ri_max_frwr_depth
207  *	ia->ri_mrtype
208  *
209  * On failure, a negative errno is returned.
210  */
211 int frwr_open(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep,
212 	      struct rpcrdma_create_data_internal *cdata)
213 {
214 	struct ib_device_attr *attrs = &ia->ri_device->attrs;
215 	int max_qp_wr, depth, delta;
216 
217 	ia->ri_mrtype = IB_MR_TYPE_MEM_REG;
218 	if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG)
219 		ia->ri_mrtype = IB_MR_TYPE_SG_GAPS;
220 
221 	/* Quirk: Some devices advertise a large max_fast_reg_page_list_len
222 	 * capability, but perform optimally when the MRs are not larger
223 	 * than a page.
224 	 */
225 	if (attrs->max_sge_rd > 1)
226 		ia->ri_max_frwr_depth = attrs->max_sge_rd;
227 	else
228 		ia->ri_max_frwr_depth = attrs->max_fast_reg_page_list_len;
229 	if (ia->ri_max_frwr_depth > RPCRDMA_MAX_DATA_SEGS)
230 		ia->ri_max_frwr_depth = RPCRDMA_MAX_DATA_SEGS;
231 	dprintk("RPC:       %s: max FR page list depth = %u\n",
232 		__func__, ia->ri_max_frwr_depth);
233 
234 	/* Add room for frwr register and invalidate WRs.
235 	 * 1. FRWR reg WR for head
236 	 * 2. FRWR invalidate WR for head
237 	 * 3. N FRWR reg WRs for pagelist
238 	 * 4. N FRWR invalidate WRs for pagelist
239 	 * 5. FRWR reg WR for tail
240 	 * 6. FRWR invalidate WR for tail
241 	 * 7. The RDMA_SEND WR
242 	 */
243 	depth = 7;
244 
245 	/* Calculate N if the device max FRWR depth is smaller than
246 	 * RPCRDMA_MAX_DATA_SEGS.
247 	 */
248 	if (ia->ri_max_frwr_depth < RPCRDMA_MAX_DATA_SEGS) {
249 		delta = RPCRDMA_MAX_DATA_SEGS - ia->ri_max_frwr_depth;
250 		do {
251 			depth += 2; /* FRWR reg + invalidate */
252 			delta -= ia->ri_max_frwr_depth;
253 		} while (delta > 0);
254 	}
255 
256 	max_qp_wr = ia->ri_device->attrs.max_qp_wr;
257 	max_qp_wr -= RPCRDMA_BACKWARD_WRS;
258 	max_qp_wr -= 1;
259 	if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE)
260 		return -ENOMEM;
261 	if (cdata->max_requests > max_qp_wr)
262 		cdata->max_requests = max_qp_wr;
263 	ep->rep_attr.cap.max_send_wr = cdata->max_requests * depth;
264 	if (ep->rep_attr.cap.max_send_wr > max_qp_wr) {
265 		cdata->max_requests = max_qp_wr / depth;
266 		if (!cdata->max_requests)
267 			return -EINVAL;
268 		ep->rep_attr.cap.max_send_wr = cdata->max_requests *
269 					       depth;
270 	}
271 	ep->rep_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
272 	ep->rep_attr.cap.max_send_wr += 1; /* for ib_drain_sq */
273 	ep->rep_attr.cap.max_recv_wr = cdata->max_requests;
274 	ep->rep_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
275 	ep->rep_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */
276 
277 	ia->ri_max_segs = max_t(unsigned int, 1, RPCRDMA_MAX_DATA_SEGS /
278 				ia->ri_max_frwr_depth);
279 	/* Reply chunks require segments for head and tail buffers */
280 	ia->ri_max_segs += 2;
281 	if (ia->ri_max_segs > RPCRDMA_MAX_HDR_SEGS)
282 		ia->ri_max_segs = RPCRDMA_MAX_HDR_SEGS;
283 	return 0;
284 }
285 
286 /**
287  * frwr_maxpages - Compute size of largest payload
288  * @r_xprt: transport
289  *
290  * Returns maximum size of an RPC message, in pages.
291  *
292  * FRWR mode conveys a list of pages per chunk segment. The
293  * maximum length of that list is the FRWR page list depth.
294  */
295 size_t frwr_maxpages(struct rpcrdma_xprt *r_xprt)
296 {
297 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
298 
299 	return min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS,
300 		     (ia->ri_max_segs - 2) * ia->ri_max_frwr_depth);
301 }
302 
303 static void
304 __frwr_sendcompletion_flush(struct ib_wc *wc, const char *wr)
305 {
306 	if (wc->status != IB_WC_WR_FLUSH_ERR)
307 		pr_err("rpcrdma: %s: %s (%u/0x%x)\n",
308 		       wr, ib_wc_status_msg(wc->status),
309 		       wc->status, wc->vendor_err);
310 }
311 
312 /**
313  * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC
314  * @cq:	completion queue (ignored)
315  * @wc:	completed WR
316  *
317  */
318 static void
319 frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
320 {
321 	struct ib_cqe *cqe = wc->wr_cqe;
322 	struct rpcrdma_frwr *frwr =
323 			container_of(cqe, struct rpcrdma_frwr, fr_cqe);
324 
325 	/* WARNING: Only wr_cqe and status are reliable at this point */
326 	if (wc->status != IB_WC_SUCCESS) {
327 		frwr->fr_state = FRWR_FLUSHED_FR;
328 		__frwr_sendcompletion_flush(wc, "fastreg");
329 	}
330 	trace_xprtrdma_wc_fastreg(wc, frwr);
331 }
332 
333 /**
334  * frwr_wc_localinv - Invoked by RDMA provider for a flushed LocalInv WC
335  * @cq:	completion queue (ignored)
336  * @wc:	completed WR
337  *
338  */
339 static void
340 frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
341 {
342 	struct ib_cqe *cqe = wc->wr_cqe;
343 	struct rpcrdma_frwr *frwr = container_of(cqe, struct rpcrdma_frwr,
344 						 fr_cqe);
345 
346 	/* WARNING: Only wr_cqe and status are reliable at this point */
347 	if (wc->status != IB_WC_SUCCESS) {
348 		frwr->fr_state = FRWR_FLUSHED_LI;
349 		__frwr_sendcompletion_flush(wc, "localinv");
350 	}
351 	trace_xprtrdma_wc_li(wc, frwr);
352 }
353 
354 /**
355  * frwr_wc_localinv_wake - Invoked by RDMA provider for a signaled LocalInv WC
356  * @cq:	completion queue (ignored)
357  * @wc:	completed WR
358  *
359  * Awaken anyone waiting for an MR to finish being fenced.
360  */
361 static void
362 frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
363 {
364 	struct ib_cqe *cqe = wc->wr_cqe;
365 	struct rpcrdma_frwr *frwr = container_of(cqe, struct rpcrdma_frwr,
366 						 fr_cqe);
367 
368 	/* WARNING: Only wr_cqe and status are reliable at this point */
369 	if (wc->status != IB_WC_SUCCESS) {
370 		frwr->fr_state = FRWR_FLUSHED_LI;
371 		__frwr_sendcompletion_flush(wc, "localinv");
372 	}
373 	complete(&frwr->fr_linv_done);
374 	trace_xprtrdma_wc_li_wake(wc, frwr);
375 }
376 
377 /**
378  * frwr_map - Register a memory region
379  * @r_xprt: controlling transport
380  * @seg: memory region co-ordinates
381  * @nsegs: number of segments remaining
382  * @writing: true when RDMA Write will be used
383  * @xid: XID of RPC using the registered memory
384  * @out: initialized MR
385  *
386  * Prepare a REG_MR Work Request to register a memory region
387  * for remote access via RDMA READ or RDMA WRITE.
388  *
389  * Returns the next segment or a negative errno pointer.
390  * On success, the prepared MR is planted in @out.
391  */
392 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt,
393 				struct rpcrdma_mr_seg *seg,
394 				int nsegs, bool writing, __be32 xid,
395 				struct rpcrdma_mr **out)
396 {
397 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
398 	bool holes_ok = ia->ri_mrtype == IB_MR_TYPE_SG_GAPS;
399 	struct rpcrdma_frwr *frwr;
400 	struct rpcrdma_mr *mr;
401 	struct ib_mr *ibmr;
402 	struct ib_reg_wr *reg_wr;
403 	int i, n;
404 	u8 key;
405 
406 	mr = NULL;
407 	do {
408 		if (mr)
409 			rpcrdma_mr_recycle(mr);
410 		mr = rpcrdma_mr_get(r_xprt);
411 		if (!mr)
412 			return ERR_PTR(-EAGAIN);
413 	} while (mr->frwr.fr_state != FRWR_IS_INVALID);
414 	frwr = &mr->frwr;
415 	frwr->fr_state = FRWR_IS_VALID;
416 
417 	if (nsegs > ia->ri_max_frwr_depth)
418 		nsegs = ia->ri_max_frwr_depth;
419 	for (i = 0; i < nsegs;) {
420 		if (seg->mr_page)
421 			sg_set_page(&mr->mr_sg[i],
422 				    seg->mr_page,
423 				    seg->mr_len,
424 				    offset_in_page(seg->mr_offset));
425 		else
426 			sg_set_buf(&mr->mr_sg[i], seg->mr_offset,
427 				   seg->mr_len);
428 
429 		++seg;
430 		++i;
431 		if (holes_ok)
432 			continue;
433 		if ((i < nsegs && offset_in_page(seg->mr_offset)) ||
434 		    offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
435 			break;
436 	}
437 	mr->mr_dir = rpcrdma_data_dir(writing);
438 
439 	mr->mr_nents = ib_dma_map_sg(ia->ri_device, mr->mr_sg, i, mr->mr_dir);
440 	if (!mr->mr_nents)
441 		goto out_dmamap_err;
442 
443 	ibmr = frwr->fr_mr;
444 	n = ib_map_mr_sg(ibmr, mr->mr_sg, mr->mr_nents, NULL, PAGE_SIZE);
445 	if (unlikely(n != mr->mr_nents))
446 		goto out_mapmr_err;
447 
448 	ibmr->iova &= 0x00000000ffffffff;
449 	ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32;
450 	key = (u8)(ibmr->rkey & 0x000000FF);
451 	ib_update_fast_reg_key(ibmr, ++key);
452 
453 	reg_wr = &frwr->fr_regwr;
454 	reg_wr->mr = ibmr;
455 	reg_wr->key = ibmr->rkey;
456 	reg_wr->access = writing ?
457 			 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
458 			 IB_ACCESS_REMOTE_READ;
459 
460 	mr->mr_handle = ibmr->rkey;
461 	mr->mr_length = ibmr->length;
462 	mr->mr_offset = ibmr->iova;
463 	trace_xprtrdma_mr_map(mr);
464 
465 	*out = mr;
466 	return seg;
467 
468 out_dmamap_err:
469 	frwr->fr_state = FRWR_IS_INVALID;
470 	trace_xprtrdma_frwr_sgerr(mr, i);
471 	rpcrdma_mr_put(mr);
472 	return ERR_PTR(-EIO);
473 
474 out_mapmr_err:
475 	trace_xprtrdma_frwr_maperr(mr, n);
476 	rpcrdma_mr_recycle(mr);
477 	return ERR_PTR(-EIO);
478 }
479 
480 /**
481  * frwr_send - post Send WR containing the RPC Call message
482  * @ia: interface adapter
483  * @req: Prepared RPC Call
484  *
485  * For FRWR, chain any FastReg WRs to the Send WR. Only a
486  * single ib_post_send call is needed to register memory
487  * and then post the Send WR.
488  *
489  * Returns the result of ib_post_send.
490  */
491 int frwr_send(struct rpcrdma_ia *ia, struct rpcrdma_req *req)
492 {
493 	struct ib_send_wr *post_wr;
494 	struct rpcrdma_mr *mr;
495 
496 	post_wr = &req->rl_sendctx->sc_wr;
497 	list_for_each_entry(mr, &req->rl_registered, mr_list) {
498 		struct rpcrdma_frwr *frwr;
499 
500 		frwr = &mr->frwr;
501 
502 		frwr->fr_cqe.done = frwr_wc_fastreg;
503 		frwr->fr_regwr.wr.next = post_wr;
504 		frwr->fr_regwr.wr.wr_cqe = &frwr->fr_cqe;
505 		frwr->fr_regwr.wr.num_sge = 0;
506 		frwr->fr_regwr.wr.opcode = IB_WR_REG_MR;
507 		frwr->fr_regwr.wr.send_flags = 0;
508 
509 		post_wr = &frwr->fr_regwr.wr;
510 	}
511 
512 	/* If ib_post_send fails, the next ->send_request for
513 	 * @req will queue these MRs for recovery.
514 	 */
515 	return ib_post_send(ia->ri_id->qp, post_wr, NULL);
516 }
517 
518 /**
519  * frwr_reminv - handle a remotely invalidated mr on the @mrs list
520  * @rep: Received reply
521  * @mrs: list of MRs to check
522  *
523  */
524 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs)
525 {
526 	struct rpcrdma_mr *mr;
527 
528 	list_for_each_entry(mr, mrs, mr_list)
529 		if (mr->mr_handle == rep->rr_inv_rkey) {
530 			list_del_init(&mr->mr_list);
531 			trace_xprtrdma_mr_remoteinv(mr);
532 			mr->frwr.fr_state = FRWR_IS_INVALID;
533 			rpcrdma_mr_unmap_and_put(mr);
534 			break;	/* only one invalidated MR per RPC */
535 		}
536 }
537 
538 /**
539  * frwr_unmap_sync - invalidate memory regions that were registered for @req
540  * @r_xprt: controlling transport
541  * @mrs: list of MRs to process
542  *
543  * Sleeps until it is safe for the host CPU to access the
544  * previously mapped memory regions.
545  *
546  * Caller ensures that @mrs is not empty before the call. This
547  * function empties the list.
548  */
549 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct list_head *mrs)
550 {
551 	struct ib_send_wr *first, **prev, *last;
552 	const struct ib_send_wr *bad_wr;
553 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
554 	struct rpcrdma_frwr *frwr;
555 	struct rpcrdma_mr *mr;
556 	int count, rc;
557 
558 	/* ORDER: Invalidate all of the MRs first
559 	 *
560 	 * Chain the LOCAL_INV Work Requests and post them with
561 	 * a single ib_post_send() call.
562 	 */
563 	frwr = NULL;
564 	count = 0;
565 	prev = &first;
566 	list_for_each_entry(mr, mrs, mr_list) {
567 		mr->frwr.fr_state = FRWR_IS_INVALID;
568 
569 		frwr = &mr->frwr;
570 		trace_xprtrdma_mr_localinv(mr);
571 
572 		frwr->fr_cqe.done = frwr_wc_localinv;
573 		last = &frwr->fr_invwr;
574 		memset(last, 0, sizeof(*last));
575 		last->wr_cqe = &frwr->fr_cqe;
576 		last->opcode = IB_WR_LOCAL_INV;
577 		last->ex.invalidate_rkey = mr->mr_handle;
578 		count++;
579 
580 		*prev = last;
581 		prev = &last->next;
582 	}
583 	if (!frwr)
584 		goto unmap;
585 
586 	/* Strong send queue ordering guarantees that when the
587 	 * last WR in the chain completes, all WRs in the chain
588 	 * are complete.
589 	 */
590 	last->send_flags = IB_SEND_SIGNALED;
591 	frwr->fr_cqe.done = frwr_wc_localinv_wake;
592 	reinit_completion(&frwr->fr_linv_done);
593 
594 	/* Transport disconnect drains the receive CQ before it
595 	 * replaces the QP. The RPC reply handler won't call us
596 	 * unless ri_id->qp is a valid pointer.
597 	 */
598 	r_xprt->rx_stats.local_inv_needed++;
599 	bad_wr = NULL;
600 	rc = ib_post_send(ia->ri_id->qp, first, &bad_wr);
601 	if (bad_wr != first)
602 		wait_for_completion(&frwr->fr_linv_done);
603 	if (rc)
604 		goto out_release;
605 
606 	/* ORDER: Now DMA unmap all of the MRs, and return
607 	 * them to the free MR list.
608 	 */
609 unmap:
610 	while (!list_empty(mrs)) {
611 		mr = rpcrdma_mr_pop(mrs);
612 		rpcrdma_mr_unmap_and_put(mr);
613 	}
614 	return;
615 
616 out_release:
617 	pr_err("rpcrdma: FRWR invalidate ib_post_send returned %i\n", rc);
618 
619 	/* Unmap and release the MRs in the LOCAL_INV WRs that did not
620 	 * get posted.
621 	 */
622 	while (bad_wr) {
623 		frwr = container_of(bad_wr, struct rpcrdma_frwr,
624 				    fr_invwr);
625 		mr = container_of(frwr, struct rpcrdma_mr, frwr);
626 		bad_wr = bad_wr->next;
627 
628 		list_del_init(&mr->mr_list);
629 		rpcrdma_mr_recycle(mr);
630 	}
631 }
632