xref: /openbmc/linux/net/sunrpc/xprtrdma/frwr_ops.c (revision a8da474e)
1 /*
2  * Copyright (c) 2015 Oracle.  All rights reserved.
3  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
4  */
5 
6 /* Lightweight memory registration using Fast Registration Work
7  * Requests (FRWR). Also referred to sometimes as FRMR mode.
8  *
9  * FRWR features ordered asynchronous registration and deregistration
10  * of arbitrarily sized memory regions. This is the fastest and safest
11  * but most complex memory registration mode.
12  */
13 
14 /* Normal operation
15  *
16  * A Memory Region is prepared for RDMA READ or WRITE using a FAST_REG
17  * Work Request (frmr_op_map). When the RDMA operation is finished, this
18  * Memory Region is invalidated using a LOCAL_INV Work Request
19  * (frmr_op_unmap).
20  *
21  * Typically these Work Requests are not signaled, and neither are RDMA
22  * SEND Work Requests (with the exception of signaling occasionally to
23  * prevent provider work queue overflows). This greatly reduces HCA
24  * interrupt workload.
25  *
26  * As an optimization, frwr_op_unmap marks MRs INVALID before the
27  * LOCAL_INV WR is posted. If posting succeeds, the MR is placed on
28  * rb_mws immediately so that no work (like managing a linked list
29  * under a spinlock) is needed in the completion upcall.
30  *
31  * But this means that frwr_op_map() can occasionally encounter an MR
32  * that is INVALID but the LOCAL_INV WR has not completed. Work Queue
33  * ordering prevents a subsequent FAST_REG WR from executing against
34  * that MR while it is still being invalidated.
35  */
36 
37 /* Transport recovery
38  *
39  * ->op_map and the transport connect worker cannot run at the same
40  * time, but ->op_unmap can fire while the transport connect worker
41  * is running. Thus MR recovery is handled in ->op_map, to guarantee
42  * that recovered MRs are owned by a sending RPC, and not one where
43  * ->op_unmap could fire at the same time transport reconnect is
44  * being done.
45  *
46  * When the underlying transport disconnects, MRs are left in one of
47  * three states:
48  *
49  * INVALID:	The MR was not in use before the QP entered ERROR state.
50  *		(Or, the LOCAL_INV WR has not completed or flushed yet).
51  *
52  * STALE:	The MR was being registered or unregistered when the QP
53  *		entered ERROR state, and the pending WR was flushed.
54  *
55  * VALID:	The MR was registered before the QP entered ERROR state.
56  *
57  * When frwr_op_map encounters STALE and VALID MRs, they are recovered
58  * with ib_dereg_mr and then are re-initialized. Beause MR recovery
59  * allocates fresh resources, it is deferred to a workqueue, and the
60  * recovered MRs are placed back on the rb_mws list when recovery is
61  * complete. frwr_op_map allocates another MR for the current RPC while
62  * the broken MR is reset.
63  *
64  * To ensure that frwr_op_map doesn't encounter an MR that is marked
65  * INVALID but that is about to be flushed due to a previous transport
66  * disconnect, the transport connect worker attempts to drain all
67  * pending send queue WRs before the transport is reconnected.
68  */
69 
70 #include "xprt_rdma.h"
71 
72 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
73 # define RPCDBG_FACILITY	RPCDBG_TRANS
74 #endif
75 
76 static struct workqueue_struct *frwr_recovery_wq;
77 
78 #define FRWR_RECOVERY_WQ_FLAGS		(WQ_UNBOUND | WQ_MEM_RECLAIM)
79 
80 int
81 frwr_alloc_recovery_wq(void)
82 {
83 	frwr_recovery_wq = alloc_workqueue("frwr_recovery",
84 					   FRWR_RECOVERY_WQ_FLAGS, 0);
85 	return !frwr_recovery_wq ? -ENOMEM : 0;
86 }
87 
88 void
89 frwr_destroy_recovery_wq(void)
90 {
91 	struct workqueue_struct *wq;
92 
93 	if (!frwr_recovery_wq)
94 		return;
95 
96 	wq = frwr_recovery_wq;
97 	frwr_recovery_wq = NULL;
98 	destroy_workqueue(wq);
99 }
100 
101 /* Deferred reset of a single FRMR. Generate a fresh rkey by
102  * replacing the MR.
103  *
104  * There's no recovery if this fails. The FRMR is abandoned, but
105  * remains in rb_all. It will be cleaned up when the transport is
106  * destroyed.
107  */
108 static void
109 __frwr_recovery_worker(struct work_struct *work)
110 {
111 	struct rpcrdma_mw *r = container_of(work, struct rpcrdma_mw,
112 					    r.frmr.fr_work);
113 	struct rpcrdma_xprt *r_xprt = r->r.frmr.fr_xprt;
114 	unsigned int depth = r_xprt->rx_ia.ri_max_frmr_depth;
115 	struct ib_pd *pd = r_xprt->rx_ia.ri_pd;
116 
117 	if (ib_dereg_mr(r->r.frmr.fr_mr))
118 		goto out_fail;
119 
120 	r->r.frmr.fr_mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, depth);
121 	if (IS_ERR(r->r.frmr.fr_mr))
122 		goto out_fail;
123 
124 	dprintk("RPC:       %s: recovered FRMR %p\n", __func__, r);
125 	r->r.frmr.fr_state = FRMR_IS_INVALID;
126 	rpcrdma_put_mw(r_xprt, r);
127 	return;
128 
129 out_fail:
130 	pr_warn("RPC:       %s: FRMR %p unrecovered\n",
131 		__func__, r);
132 }
133 
134 /* A broken MR was discovered in a context that can't sleep.
135  * Defer recovery to the recovery worker.
136  */
137 static void
138 __frwr_queue_recovery(struct rpcrdma_mw *r)
139 {
140 	INIT_WORK(&r->r.frmr.fr_work, __frwr_recovery_worker);
141 	queue_work(frwr_recovery_wq, &r->r.frmr.fr_work);
142 }
143 
144 static int
145 __frwr_init(struct rpcrdma_mw *r, struct ib_pd *pd, struct ib_device *device,
146 	    unsigned int depth)
147 {
148 	struct rpcrdma_frmr *f = &r->r.frmr;
149 	int rc;
150 
151 	f->fr_mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, depth);
152 	if (IS_ERR(f->fr_mr))
153 		goto out_mr_err;
154 
155 	f->sg = kcalloc(depth, sizeof(*f->sg), GFP_KERNEL);
156 	if (!f->sg)
157 		goto out_list_err;
158 
159 	sg_init_table(f->sg, depth);
160 
161 	return 0;
162 
163 out_mr_err:
164 	rc = PTR_ERR(f->fr_mr);
165 	dprintk("RPC:       %s: ib_alloc_mr status %i\n",
166 		__func__, rc);
167 	return rc;
168 
169 out_list_err:
170 	rc = -ENOMEM;
171 	dprintk("RPC:       %s: sg allocation failure\n",
172 		__func__);
173 	ib_dereg_mr(f->fr_mr);
174 	return rc;
175 }
176 
177 static void
178 __frwr_release(struct rpcrdma_mw *r)
179 {
180 	int rc;
181 
182 	rc = ib_dereg_mr(r->r.frmr.fr_mr);
183 	if (rc)
184 		dprintk("RPC:       %s: ib_dereg_mr status %i\n",
185 			__func__, rc);
186 	kfree(r->r.frmr.sg);
187 }
188 
189 static int
190 frwr_op_open(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep,
191 	     struct rpcrdma_create_data_internal *cdata)
192 {
193 	struct ib_device_attr *devattr = &ia->ri_devattr;
194 	int depth, delta;
195 
196 	ia->ri_max_frmr_depth =
197 			min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS,
198 			      devattr->max_fast_reg_page_list_len);
199 	dprintk("RPC:       %s: device's max FR page list len = %u\n",
200 		__func__, ia->ri_max_frmr_depth);
201 
202 	/* Add room for frmr register and invalidate WRs.
203 	 * 1. FRMR reg WR for head
204 	 * 2. FRMR invalidate WR for head
205 	 * 3. N FRMR reg WRs for pagelist
206 	 * 4. N FRMR invalidate WRs for pagelist
207 	 * 5. FRMR reg WR for tail
208 	 * 6. FRMR invalidate WR for tail
209 	 * 7. The RDMA_SEND WR
210 	 */
211 	depth = 7;
212 
213 	/* Calculate N if the device max FRMR depth is smaller than
214 	 * RPCRDMA_MAX_DATA_SEGS.
215 	 */
216 	if (ia->ri_max_frmr_depth < RPCRDMA_MAX_DATA_SEGS) {
217 		delta = RPCRDMA_MAX_DATA_SEGS - ia->ri_max_frmr_depth;
218 		do {
219 			depth += 2; /* FRMR reg + invalidate */
220 			delta -= ia->ri_max_frmr_depth;
221 		} while (delta > 0);
222 	}
223 
224 	ep->rep_attr.cap.max_send_wr *= depth;
225 	if (ep->rep_attr.cap.max_send_wr > devattr->max_qp_wr) {
226 		cdata->max_requests = devattr->max_qp_wr / depth;
227 		if (!cdata->max_requests)
228 			return -EINVAL;
229 		ep->rep_attr.cap.max_send_wr = cdata->max_requests *
230 					       depth;
231 	}
232 
233 	return 0;
234 }
235 
236 /* FRWR mode conveys a list of pages per chunk segment. The
237  * maximum length of that list is the FRWR page list depth.
238  */
239 static size_t
240 frwr_op_maxpages(struct rpcrdma_xprt *r_xprt)
241 {
242 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
243 
244 	return min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS,
245 		     rpcrdma_max_segments(r_xprt) * ia->ri_max_frmr_depth);
246 }
247 
248 /* If FAST_REG or LOCAL_INV failed, indicate the frmr needs to be reset. */
249 static void
250 frwr_sendcompletion(struct ib_wc *wc)
251 {
252 	struct rpcrdma_mw *r;
253 
254 	if (likely(wc->status == IB_WC_SUCCESS))
255 		return;
256 
257 	/* WARNING: Only wr_id and status are reliable at this point */
258 	r = (struct rpcrdma_mw *)(unsigned long)wc->wr_id;
259 	if (wc->status == IB_WC_WR_FLUSH_ERR)
260 		dprintk("RPC:       %s: frmr %p flushed\n", __func__, r);
261 	else
262 		pr_warn("RPC:       %s: frmr %p error, status %s (%d)\n",
263 			__func__, r, ib_wc_status_msg(wc->status), wc->status);
264 	r->r.frmr.fr_state = FRMR_IS_STALE;
265 }
266 
267 static int
268 frwr_op_init(struct rpcrdma_xprt *r_xprt)
269 {
270 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
271 	struct ib_device *device = r_xprt->rx_ia.ri_device;
272 	unsigned int depth = r_xprt->rx_ia.ri_max_frmr_depth;
273 	struct ib_pd *pd = r_xprt->rx_ia.ri_pd;
274 	int i;
275 
276 	spin_lock_init(&buf->rb_mwlock);
277 	INIT_LIST_HEAD(&buf->rb_mws);
278 	INIT_LIST_HEAD(&buf->rb_all);
279 
280 	i = max_t(int, RPCRDMA_MAX_DATA_SEGS / depth, 1);
281 	i += 2;				/* head + tail */
282 	i *= buf->rb_max_requests;	/* one set for each RPC slot */
283 	dprintk("RPC:       %s: initalizing %d FRMRs\n", __func__, i);
284 
285 	while (i--) {
286 		struct rpcrdma_mw *r;
287 		int rc;
288 
289 		r = kzalloc(sizeof(*r), GFP_KERNEL);
290 		if (!r)
291 			return -ENOMEM;
292 
293 		rc = __frwr_init(r, pd, device, depth);
294 		if (rc) {
295 			kfree(r);
296 			return rc;
297 		}
298 
299 		list_add(&r->mw_list, &buf->rb_mws);
300 		list_add(&r->mw_all, &buf->rb_all);
301 		r->mw_sendcompletion = frwr_sendcompletion;
302 		r->r.frmr.fr_xprt = r_xprt;
303 	}
304 
305 	return 0;
306 }
307 
308 /* Post a FAST_REG Work Request to register a memory region
309  * for remote access via RDMA READ or RDMA WRITE.
310  */
311 static int
312 frwr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg,
313 	    int nsegs, bool writing)
314 {
315 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
316 	struct ib_device *device = ia->ri_device;
317 	enum dma_data_direction direction = rpcrdma_data_dir(writing);
318 	struct rpcrdma_mr_seg *seg1 = seg;
319 	struct rpcrdma_mw *mw;
320 	struct rpcrdma_frmr *frmr;
321 	struct ib_mr *mr;
322 	struct ib_reg_wr reg_wr;
323 	struct ib_send_wr *bad_wr;
324 	int rc, i, n, dma_nents;
325 	u8 key;
326 
327 	mw = seg1->rl_mw;
328 	seg1->rl_mw = NULL;
329 	do {
330 		if (mw)
331 			__frwr_queue_recovery(mw);
332 		mw = rpcrdma_get_mw(r_xprt);
333 		if (!mw)
334 			return -ENOMEM;
335 	} while (mw->r.frmr.fr_state != FRMR_IS_INVALID);
336 	frmr = &mw->r.frmr;
337 	frmr->fr_state = FRMR_IS_VALID;
338 	mr = frmr->fr_mr;
339 
340 	if (nsegs > ia->ri_max_frmr_depth)
341 		nsegs = ia->ri_max_frmr_depth;
342 
343 	for (i = 0; i < nsegs;) {
344 		if (seg->mr_page)
345 			sg_set_page(&frmr->sg[i],
346 				    seg->mr_page,
347 				    seg->mr_len,
348 				    offset_in_page(seg->mr_offset));
349 		else
350 			sg_set_buf(&frmr->sg[i], seg->mr_offset,
351 				   seg->mr_len);
352 
353 		++seg;
354 		++i;
355 
356 		/* Check for holes */
357 		if ((i < nsegs && offset_in_page(seg->mr_offset)) ||
358 		    offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
359 			break;
360 	}
361 	frmr->sg_nents = i;
362 
363 	dma_nents = ib_dma_map_sg(device, frmr->sg, frmr->sg_nents, direction);
364 	if (!dma_nents) {
365 		pr_err("RPC:       %s: failed to dma map sg %p sg_nents %u\n",
366 		       __func__, frmr->sg, frmr->sg_nents);
367 		return -ENOMEM;
368 	}
369 
370 	n = ib_map_mr_sg(mr, frmr->sg, frmr->sg_nents, PAGE_SIZE);
371 	if (unlikely(n != frmr->sg_nents)) {
372 		pr_err("RPC:       %s: failed to map mr %p (%u/%u)\n",
373 		       __func__, frmr->fr_mr, n, frmr->sg_nents);
374 		rc = n < 0 ? n : -EINVAL;
375 		goto out_senderr;
376 	}
377 
378 	dprintk("RPC:       %s: Using frmr %p to map %u segments (%u bytes)\n",
379 		__func__, mw, frmr->sg_nents, mr->length);
380 
381 	key = (u8)(mr->rkey & 0x000000FF);
382 	ib_update_fast_reg_key(mr, ++key);
383 
384 	reg_wr.wr.next = NULL;
385 	reg_wr.wr.opcode = IB_WR_REG_MR;
386 	reg_wr.wr.wr_id = (uintptr_t)mw;
387 	reg_wr.wr.num_sge = 0;
388 	reg_wr.wr.send_flags = 0;
389 	reg_wr.mr = mr;
390 	reg_wr.key = mr->rkey;
391 	reg_wr.access = writing ?
392 			IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
393 			IB_ACCESS_REMOTE_READ;
394 
395 	DECR_CQCOUNT(&r_xprt->rx_ep);
396 	rc = ib_post_send(ia->ri_id->qp, &reg_wr.wr, &bad_wr);
397 	if (rc)
398 		goto out_senderr;
399 
400 	seg1->mr_dir = direction;
401 	seg1->rl_mw = mw;
402 	seg1->mr_rkey = mr->rkey;
403 	seg1->mr_base = mr->iova;
404 	seg1->mr_nsegs = frmr->sg_nents;
405 	seg1->mr_len = mr->length;
406 
407 	return frmr->sg_nents;
408 
409 out_senderr:
410 	dprintk("RPC:       %s: ib_post_send status %i\n", __func__, rc);
411 	ib_dma_unmap_sg(device, frmr->sg, dma_nents, direction);
412 	__frwr_queue_recovery(mw);
413 	return rc;
414 }
415 
416 /* Post a LOCAL_INV Work Request to prevent further remote access
417  * via RDMA READ or RDMA WRITE.
418  */
419 static int
420 frwr_op_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg)
421 {
422 	struct rpcrdma_mr_seg *seg1 = seg;
423 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
424 	struct rpcrdma_mw *mw = seg1->rl_mw;
425 	struct rpcrdma_frmr *frmr = &mw->r.frmr;
426 	struct ib_send_wr invalidate_wr, *bad_wr;
427 	int rc, nsegs = seg->mr_nsegs;
428 
429 	dprintk("RPC:       %s: FRMR %p\n", __func__, mw);
430 
431 	seg1->rl_mw = NULL;
432 	frmr->fr_state = FRMR_IS_INVALID;
433 
434 	memset(&invalidate_wr, 0, sizeof(invalidate_wr));
435 	invalidate_wr.wr_id = (unsigned long)(void *)mw;
436 	invalidate_wr.opcode = IB_WR_LOCAL_INV;
437 	invalidate_wr.ex.invalidate_rkey = frmr->fr_mr->rkey;
438 	DECR_CQCOUNT(&r_xprt->rx_ep);
439 
440 	ib_dma_unmap_sg(ia->ri_device, frmr->sg, frmr->sg_nents, seg1->mr_dir);
441 	read_lock(&ia->ri_qplock);
442 	rc = ib_post_send(ia->ri_id->qp, &invalidate_wr, &bad_wr);
443 	read_unlock(&ia->ri_qplock);
444 	if (rc)
445 		goto out_err;
446 
447 	rpcrdma_put_mw(r_xprt, mw);
448 	return nsegs;
449 
450 out_err:
451 	dprintk("RPC:       %s: ib_post_send status %i\n", __func__, rc);
452 	__frwr_queue_recovery(mw);
453 	return nsegs;
454 }
455 
456 static void
457 frwr_op_destroy(struct rpcrdma_buffer *buf)
458 {
459 	struct rpcrdma_mw *r;
460 
461 	/* Ensure stale MWs for "buf" are no longer in flight */
462 	flush_workqueue(frwr_recovery_wq);
463 
464 	while (!list_empty(&buf->rb_all)) {
465 		r = list_entry(buf->rb_all.next, struct rpcrdma_mw, mw_all);
466 		list_del(&r->mw_all);
467 		__frwr_release(r);
468 		kfree(r);
469 	}
470 }
471 
472 const struct rpcrdma_memreg_ops rpcrdma_frwr_memreg_ops = {
473 	.ro_map				= frwr_op_map,
474 	.ro_unmap			= frwr_op_unmap,
475 	.ro_open			= frwr_op_open,
476 	.ro_maxpages			= frwr_op_maxpages,
477 	.ro_init			= frwr_op_init,
478 	.ro_destroy			= frwr_op_destroy,
479 	.ro_displayname			= "frwr",
480 };
481