xref: /openbmc/linux/net/sunrpc/xprtrdma/frwr_ops.c (revision 7663edc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015, 2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  */
6 
7 /* Lightweight memory registration using Fast Registration Work
8  * Requests (FRWR).
9  *
10  * FRWR features ordered asynchronous registration and invalidation
11  * of arbitrarily-sized memory regions. This is the fastest and safest
12  * but most complex memory registration mode.
13  */
14 
15 /* Normal operation
16  *
17  * A Memory Region is prepared for RDMA Read or Write using a FAST_REG
18  * Work Request (frwr_map). When the RDMA operation is finished, this
19  * Memory Region is invalidated using a LOCAL_INV Work Request
20  * (frwr_unmap_async and frwr_unmap_sync).
21  *
22  * Typically FAST_REG Work Requests are not signaled, and neither are
23  * RDMA Send Work Requests (with the exception of signaling occasionally
24  * to prevent provider work queue overflows). This greatly reduces HCA
25  * interrupt workload.
26  */
27 
28 /* Transport recovery
29  *
30  * frwr_map and frwr_unmap_* cannot run at the same time the transport
31  * connect worker is running. The connect worker holds the transport
32  * send lock, just as ->send_request does. This prevents frwr_map and
33  * the connect worker from running concurrently. When a connection is
34  * closed, the Receive completion queue is drained before the allowing
35  * the connect worker to get control. This prevents frwr_unmap and the
36  * connect worker from running concurrently.
37  *
38  * When the underlying transport disconnects, MRs that are in flight
39  * are flushed and are likely unusable. Thus all MRs are destroyed.
40  * New MRs are created on demand.
41  */
42 
43 #include <linux/sunrpc/svc_rdma.h>
44 
45 #include "xprt_rdma.h"
46 #include <trace/events/rpcrdma.h>
47 
48 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
49 # define RPCDBG_FACILITY	RPCDBG_TRANS
50 #endif
51 
52 /**
53  * frwr_release_mr - Destroy one MR
54  * @mr: MR allocated by frwr_mr_init
55  *
56  */
57 void frwr_release_mr(struct rpcrdma_mr *mr)
58 {
59 	int rc;
60 
61 	rc = ib_dereg_mr(mr->frwr.fr_mr);
62 	if (rc)
63 		trace_xprtrdma_frwr_dereg(mr, rc);
64 	kfree(mr->mr_sg);
65 	kfree(mr);
66 }
67 
68 static void frwr_mr_recycle(struct rpcrdma_mr *mr)
69 {
70 	struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
71 
72 	trace_xprtrdma_mr_recycle(mr);
73 
74 	if (mr->mr_dir != DMA_NONE) {
75 		trace_xprtrdma_mr_unmap(mr);
76 		ib_dma_unmap_sg(r_xprt->rx_ep->re_id->device,
77 				mr->mr_sg, mr->mr_nents, mr->mr_dir);
78 		mr->mr_dir = DMA_NONE;
79 	}
80 
81 	spin_lock(&r_xprt->rx_buf.rb_lock);
82 	list_del(&mr->mr_all);
83 	r_xprt->rx_stats.mrs_recycled++;
84 	spin_unlock(&r_xprt->rx_buf.rb_lock);
85 
86 	frwr_release_mr(mr);
87 }
88 
89 /* frwr_reset - Place MRs back on the free list
90  * @req: request to reset
91  *
92  * Used after a failed marshal. For FRWR, this means the MRs
93  * don't have to be fully released and recreated.
94  *
95  * NB: This is safe only as long as none of @req's MRs are
96  * involved with an ongoing asynchronous FAST_REG or LOCAL_INV
97  * Work Request.
98  */
99 void frwr_reset(struct rpcrdma_req *req)
100 {
101 	struct rpcrdma_mr *mr;
102 
103 	while ((mr = rpcrdma_mr_pop(&req->rl_registered)))
104 		rpcrdma_mr_put(mr);
105 }
106 
107 /**
108  * frwr_mr_init - Initialize one MR
109  * @r_xprt: controlling transport instance
110  * @mr: generic MR to prepare for FRWR
111  *
112  * Returns zero if successful. Otherwise a negative errno
113  * is returned.
114  */
115 int frwr_mr_init(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
116 {
117 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
118 	unsigned int depth = ep->re_max_fr_depth;
119 	struct scatterlist *sg;
120 	struct ib_mr *frmr;
121 	int rc;
122 
123 	frmr = ib_alloc_mr(ep->re_pd, ep->re_mrtype, depth);
124 	if (IS_ERR(frmr))
125 		goto out_mr_err;
126 
127 	sg = kcalloc(depth, sizeof(*sg), GFP_NOFS);
128 	if (!sg)
129 		goto out_list_err;
130 
131 	mr->mr_xprt = r_xprt;
132 	mr->frwr.fr_mr = frmr;
133 	mr->mr_dir = DMA_NONE;
134 	INIT_LIST_HEAD(&mr->mr_list);
135 	init_completion(&mr->frwr.fr_linv_done);
136 
137 	sg_init_table(sg, depth);
138 	mr->mr_sg = sg;
139 	return 0;
140 
141 out_mr_err:
142 	rc = PTR_ERR(frmr);
143 	trace_xprtrdma_frwr_alloc(mr, rc);
144 	return rc;
145 
146 out_list_err:
147 	ib_dereg_mr(frmr);
148 	return -ENOMEM;
149 }
150 
151 /**
152  * frwr_query_device - Prepare a transport for use with FRWR
153  * @ep: endpoint to fill in
154  * @device: RDMA device to query
155  *
156  * On success, sets:
157  *	ep->re_attr
158  *	ep->re_max_requests
159  *	ep->re_max_rdma_segs
160  *	ep->re_max_fr_depth
161  *	ep->re_mrtype
162  *
163  * Return values:
164  *   On success, returns zero.
165  *   %-EINVAL - the device does not support FRWR memory registration
166  *   %-ENOMEM - the device is not sufficiently capable for NFS/RDMA
167  */
168 int frwr_query_device(struct rpcrdma_ep *ep, const struct ib_device *device)
169 {
170 	const struct ib_device_attr *attrs = &device->attrs;
171 	int max_qp_wr, depth, delta;
172 	unsigned int max_sge;
173 
174 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) ||
175 	    attrs->max_fast_reg_page_list_len == 0) {
176 		pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n",
177 		       device->name);
178 		return -EINVAL;
179 	}
180 
181 	max_sge = min_t(unsigned int, attrs->max_send_sge,
182 			RPCRDMA_MAX_SEND_SGES);
183 	if (max_sge < RPCRDMA_MIN_SEND_SGES) {
184 		pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge);
185 		return -ENOMEM;
186 	}
187 	ep->re_attr.cap.max_send_sge = max_sge;
188 	ep->re_attr.cap.max_recv_sge = 1;
189 
190 	ep->re_mrtype = IB_MR_TYPE_MEM_REG;
191 	if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG)
192 		ep->re_mrtype = IB_MR_TYPE_SG_GAPS;
193 
194 	/* Quirk: Some devices advertise a large max_fast_reg_page_list_len
195 	 * capability, but perform optimally when the MRs are not larger
196 	 * than a page.
197 	 */
198 	if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS)
199 		ep->re_max_fr_depth = attrs->max_sge_rd;
200 	else
201 		ep->re_max_fr_depth = attrs->max_fast_reg_page_list_len;
202 	if (ep->re_max_fr_depth > RPCRDMA_MAX_DATA_SEGS)
203 		ep->re_max_fr_depth = RPCRDMA_MAX_DATA_SEGS;
204 
205 	/* Add room for frwr register and invalidate WRs.
206 	 * 1. FRWR reg WR for head
207 	 * 2. FRWR invalidate WR for head
208 	 * 3. N FRWR reg WRs for pagelist
209 	 * 4. N FRWR invalidate WRs for pagelist
210 	 * 5. FRWR reg WR for tail
211 	 * 6. FRWR invalidate WR for tail
212 	 * 7. The RDMA_SEND WR
213 	 */
214 	depth = 7;
215 
216 	/* Calculate N if the device max FRWR depth is smaller than
217 	 * RPCRDMA_MAX_DATA_SEGS.
218 	 */
219 	if (ep->re_max_fr_depth < RPCRDMA_MAX_DATA_SEGS) {
220 		delta = RPCRDMA_MAX_DATA_SEGS - ep->re_max_fr_depth;
221 		do {
222 			depth += 2; /* FRWR reg + invalidate */
223 			delta -= ep->re_max_fr_depth;
224 		} while (delta > 0);
225 	}
226 
227 	max_qp_wr = attrs->max_qp_wr;
228 	max_qp_wr -= RPCRDMA_BACKWARD_WRS;
229 	max_qp_wr -= 1;
230 	if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE)
231 		return -ENOMEM;
232 	if (ep->re_max_requests > max_qp_wr)
233 		ep->re_max_requests = max_qp_wr;
234 	ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
235 	if (ep->re_attr.cap.max_send_wr > max_qp_wr) {
236 		ep->re_max_requests = max_qp_wr / depth;
237 		if (!ep->re_max_requests)
238 			return -ENOMEM;
239 		ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
240 	}
241 	ep->re_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
242 	ep->re_attr.cap.max_send_wr += 1; /* for ib_drain_sq */
243 	ep->re_attr.cap.max_recv_wr = ep->re_max_requests;
244 	ep->re_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
245 	ep->re_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */
246 
247 	ep->re_max_rdma_segs =
248 		DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ep->re_max_fr_depth);
249 	/* Reply chunks require segments for head and tail buffers */
250 	ep->re_max_rdma_segs += 2;
251 	if (ep->re_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS)
252 		ep->re_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS;
253 
254 	/* Ensure the underlying device is capable of conveying the
255 	 * largest r/wsize NFS will ask for. This guarantees that
256 	 * failing over from one RDMA device to another will not
257 	 * break NFS I/O.
258 	 */
259 	if ((ep->re_max_rdma_segs * ep->re_max_fr_depth) < RPCRDMA_MAX_SEGS)
260 		return -ENOMEM;
261 
262 	return 0;
263 }
264 
265 /**
266  * frwr_map - Register a memory region
267  * @r_xprt: controlling transport
268  * @seg: memory region co-ordinates
269  * @nsegs: number of segments remaining
270  * @writing: true when RDMA Write will be used
271  * @xid: XID of RPC using the registered memory
272  * @mr: MR to fill in
273  *
274  * Prepare a REG_MR Work Request to register a memory region
275  * for remote access via RDMA READ or RDMA WRITE.
276  *
277  * Returns the next segment or a negative errno pointer.
278  * On success, @mr is filled in.
279  */
280 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt,
281 				struct rpcrdma_mr_seg *seg,
282 				int nsegs, bool writing, __be32 xid,
283 				struct rpcrdma_mr *mr)
284 {
285 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
286 	struct ib_reg_wr *reg_wr;
287 	int i, n, dma_nents;
288 	struct ib_mr *ibmr;
289 	u8 key;
290 
291 	if (nsegs > ep->re_max_fr_depth)
292 		nsegs = ep->re_max_fr_depth;
293 	for (i = 0; i < nsegs;) {
294 		if (seg->mr_page)
295 			sg_set_page(&mr->mr_sg[i],
296 				    seg->mr_page,
297 				    seg->mr_len,
298 				    offset_in_page(seg->mr_offset));
299 		else
300 			sg_set_buf(&mr->mr_sg[i], seg->mr_offset,
301 				   seg->mr_len);
302 
303 		++seg;
304 		++i;
305 		if (ep->re_mrtype == IB_MR_TYPE_SG_GAPS)
306 			continue;
307 		if ((i < nsegs && offset_in_page(seg->mr_offset)) ||
308 		    offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
309 			break;
310 	}
311 	mr->mr_dir = rpcrdma_data_dir(writing);
312 	mr->mr_nents = i;
313 
314 	dma_nents = ib_dma_map_sg(ep->re_id->device, mr->mr_sg, mr->mr_nents,
315 				  mr->mr_dir);
316 	if (!dma_nents)
317 		goto out_dmamap_err;
318 
319 	ibmr = mr->frwr.fr_mr;
320 	n = ib_map_mr_sg(ibmr, mr->mr_sg, dma_nents, NULL, PAGE_SIZE);
321 	if (n != dma_nents)
322 		goto out_mapmr_err;
323 
324 	ibmr->iova &= 0x00000000ffffffff;
325 	ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32;
326 	key = (u8)(ibmr->rkey & 0x000000FF);
327 	ib_update_fast_reg_key(ibmr, ++key);
328 
329 	reg_wr = &mr->frwr.fr_regwr;
330 	reg_wr->mr = ibmr;
331 	reg_wr->key = ibmr->rkey;
332 	reg_wr->access = writing ?
333 			 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
334 			 IB_ACCESS_REMOTE_READ;
335 
336 	mr->mr_handle = ibmr->rkey;
337 	mr->mr_length = ibmr->length;
338 	mr->mr_offset = ibmr->iova;
339 	trace_xprtrdma_mr_map(mr);
340 
341 	return seg;
342 
343 out_dmamap_err:
344 	mr->mr_dir = DMA_NONE;
345 	trace_xprtrdma_frwr_sgerr(mr, i);
346 	return ERR_PTR(-EIO);
347 
348 out_mapmr_err:
349 	trace_xprtrdma_frwr_maperr(mr, n);
350 	return ERR_PTR(-EIO);
351 }
352 
353 /**
354  * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC
355  * @cq: completion queue
356  * @wc: WCE for a completed FastReg WR
357  *
358  */
359 static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
360 {
361 	struct ib_cqe *cqe = wc->wr_cqe;
362 	struct rpcrdma_frwr *frwr =
363 		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
364 
365 	/* WARNING: Only wr_cqe and status are reliable at this point */
366 	trace_xprtrdma_wc_fastreg(wc, frwr);
367 	/* The MR will get recycled when the associated req is retransmitted */
368 
369 	rpcrdma_flush_disconnect(cq->cq_context, wc);
370 }
371 
372 /**
373  * frwr_send - post Send WRs containing the RPC Call message
374  * @r_xprt: controlling transport instance
375  * @req: prepared RPC Call
376  *
377  * For FRWR, chain any FastReg WRs to the Send WR. Only a
378  * single ib_post_send call is needed to register memory
379  * and then post the Send WR.
380  *
381  * Returns the return code from ib_post_send.
382  *
383  * Caller must hold the transport send lock to ensure that the
384  * pointers to the transport's rdma_cm_id and QP are stable.
385  */
386 int frwr_send(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
387 {
388 	struct ib_send_wr *post_wr;
389 	struct rpcrdma_mr *mr;
390 
391 	post_wr = &req->rl_wr;
392 	list_for_each_entry(mr, &req->rl_registered, mr_list) {
393 		struct rpcrdma_frwr *frwr;
394 
395 		frwr = &mr->frwr;
396 
397 		frwr->fr_cqe.done = frwr_wc_fastreg;
398 		frwr->fr_regwr.wr.next = post_wr;
399 		frwr->fr_regwr.wr.wr_cqe = &frwr->fr_cqe;
400 		frwr->fr_regwr.wr.num_sge = 0;
401 		frwr->fr_regwr.wr.opcode = IB_WR_REG_MR;
402 		frwr->fr_regwr.wr.send_flags = 0;
403 
404 		post_wr = &frwr->fr_regwr.wr;
405 	}
406 
407 	return ib_post_send(r_xprt->rx_ep->re_id->qp, post_wr, NULL);
408 }
409 
410 /**
411  * frwr_reminv - handle a remotely invalidated mr on the @mrs list
412  * @rep: Received reply
413  * @mrs: list of MRs to check
414  *
415  */
416 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs)
417 {
418 	struct rpcrdma_mr *mr;
419 
420 	list_for_each_entry(mr, mrs, mr_list)
421 		if (mr->mr_handle == rep->rr_inv_rkey) {
422 			list_del_init(&mr->mr_list);
423 			trace_xprtrdma_mr_reminv(mr);
424 			rpcrdma_mr_put(mr);
425 			break;	/* only one invalidated MR per RPC */
426 		}
427 }
428 
429 static void __frwr_release_mr(struct ib_wc *wc, struct rpcrdma_mr *mr)
430 {
431 	if (wc->status != IB_WC_SUCCESS)
432 		frwr_mr_recycle(mr);
433 	else
434 		rpcrdma_mr_put(mr);
435 }
436 
437 /**
438  * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC
439  * @cq: completion queue
440  * @wc: WCE for a completed LocalInv WR
441  *
442  */
443 static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
444 {
445 	struct ib_cqe *cqe = wc->wr_cqe;
446 	struct rpcrdma_frwr *frwr =
447 		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
448 	struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr);
449 
450 	/* WARNING: Only wr_cqe and status are reliable at this point */
451 	trace_xprtrdma_wc_li(wc, frwr);
452 	__frwr_release_mr(wc, mr);
453 
454 	rpcrdma_flush_disconnect(cq->cq_context, wc);
455 }
456 
457 /**
458  * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC
459  * @cq: completion queue
460  * @wc: WCE for a completed LocalInv WR
461  *
462  * Awaken anyone waiting for an MR to finish being fenced.
463  */
464 static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
465 {
466 	struct ib_cqe *cqe = wc->wr_cqe;
467 	struct rpcrdma_frwr *frwr =
468 		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
469 	struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr);
470 
471 	/* WARNING: Only wr_cqe and status are reliable at this point */
472 	trace_xprtrdma_wc_li_wake(wc, frwr);
473 	__frwr_release_mr(wc, mr);
474 	complete(&frwr->fr_linv_done);
475 
476 	rpcrdma_flush_disconnect(cq->cq_context, wc);
477 }
478 
479 /**
480  * frwr_unmap_sync - invalidate memory regions that were registered for @req
481  * @r_xprt: controlling transport instance
482  * @req: rpcrdma_req with a non-empty list of MRs to process
483  *
484  * Sleeps until it is safe for the host CPU to access the previously mapped
485  * memory regions. This guarantees that registered MRs are properly fenced
486  * from the server before the RPC consumer accesses the data in them. It
487  * also ensures proper Send flow control: waking the next RPC waits until
488  * this RPC has relinquished all its Send Queue entries.
489  */
490 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
491 {
492 	struct ib_send_wr *first, **prev, *last;
493 	const struct ib_send_wr *bad_wr;
494 	struct rpcrdma_frwr *frwr;
495 	struct rpcrdma_mr *mr;
496 	int rc;
497 
498 	/* ORDER: Invalidate all of the MRs first
499 	 *
500 	 * Chain the LOCAL_INV Work Requests and post them with
501 	 * a single ib_post_send() call.
502 	 */
503 	frwr = NULL;
504 	prev = &first;
505 	while ((mr = rpcrdma_mr_pop(&req->rl_registered))) {
506 
507 		trace_xprtrdma_mr_localinv(mr);
508 		r_xprt->rx_stats.local_inv_needed++;
509 
510 		frwr = &mr->frwr;
511 		frwr->fr_cqe.done = frwr_wc_localinv;
512 		last = &frwr->fr_invwr;
513 		last->next = NULL;
514 		last->wr_cqe = &frwr->fr_cqe;
515 		last->sg_list = NULL;
516 		last->num_sge = 0;
517 		last->opcode = IB_WR_LOCAL_INV;
518 		last->send_flags = IB_SEND_SIGNALED;
519 		last->ex.invalidate_rkey = mr->mr_handle;
520 
521 		*prev = last;
522 		prev = &last->next;
523 	}
524 
525 	/* Strong send queue ordering guarantees that when the
526 	 * last WR in the chain completes, all WRs in the chain
527 	 * are complete.
528 	 */
529 	frwr->fr_cqe.done = frwr_wc_localinv_wake;
530 	reinit_completion(&frwr->fr_linv_done);
531 
532 	/* Transport disconnect drains the receive CQ before it
533 	 * replaces the QP. The RPC reply handler won't call us
534 	 * unless re_id->qp is a valid pointer.
535 	 */
536 	bad_wr = NULL;
537 	rc = ib_post_send(r_xprt->rx_ep->re_id->qp, first, &bad_wr);
538 
539 	/* The final LOCAL_INV WR in the chain is supposed to
540 	 * do the wake. If it was never posted, the wake will
541 	 * not happen, so don't wait in that case.
542 	 */
543 	if (bad_wr != first)
544 		wait_for_completion(&frwr->fr_linv_done);
545 	if (!rc)
546 		return;
547 
548 	/* Recycle MRs in the LOCAL_INV chain that did not get posted.
549 	 */
550 	trace_xprtrdma_post_linv(req, rc);
551 	while (bad_wr) {
552 		frwr = container_of(bad_wr, struct rpcrdma_frwr,
553 				    fr_invwr);
554 		mr = container_of(frwr, struct rpcrdma_mr, frwr);
555 		bad_wr = bad_wr->next;
556 
557 		list_del_init(&mr->mr_list);
558 		frwr_mr_recycle(mr);
559 	}
560 }
561 
562 /**
563  * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC
564  * @cq:	completion queue
565  * @wc:	WCE for a completed LocalInv WR
566  *
567  */
568 static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc)
569 {
570 	struct ib_cqe *cqe = wc->wr_cqe;
571 	struct rpcrdma_frwr *frwr =
572 		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
573 	struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr);
574 	struct rpcrdma_rep *rep = mr->mr_req->rl_reply;
575 
576 	/* WARNING: Only wr_cqe and status are reliable at this point */
577 	trace_xprtrdma_wc_li_done(wc, frwr);
578 	__frwr_release_mr(wc, mr);
579 
580 	/* Ensure @rep is generated before __frwr_release_mr */
581 	smp_rmb();
582 	rpcrdma_complete_rqst(rep);
583 
584 	rpcrdma_flush_disconnect(cq->cq_context, wc);
585 }
586 
587 /**
588  * frwr_unmap_async - invalidate memory regions that were registered for @req
589  * @r_xprt: controlling transport instance
590  * @req: rpcrdma_req with a non-empty list of MRs to process
591  *
592  * This guarantees that registered MRs are properly fenced from the
593  * server before the RPC consumer accesses the data in them. It also
594  * ensures proper Send flow control: waking the next RPC waits until
595  * this RPC has relinquished all its Send Queue entries.
596  */
597 void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
598 {
599 	struct ib_send_wr *first, *last, **prev;
600 	const struct ib_send_wr *bad_wr;
601 	struct rpcrdma_frwr *frwr;
602 	struct rpcrdma_mr *mr;
603 	int rc;
604 
605 	/* Chain the LOCAL_INV Work Requests and post them with
606 	 * a single ib_post_send() call.
607 	 */
608 	frwr = NULL;
609 	prev = &first;
610 	while ((mr = rpcrdma_mr_pop(&req->rl_registered))) {
611 
612 		trace_xprtrdma_mr_localinv(mr);
613 		r_xprt->rx_stats.local_inv_needed++;
614 
615 		frwr = &mr->frwr;
616 		frwr->fr_cqe.done = frwr_wc_localinv;
617 		last = &frwr->fr_invwr;
618 		last->next = NULL;
619 		last->wr_cqe = &frwr->fr_cqe;
620 		last->sg_list = NULL;
621 		last->num_sge = 0;
622 		last->opcode = IB_WR_LOCAL_INV;
623 		last->send_flags = IB_SEND_SIGNALED;
624 		last->ex.invalidate_rkey = mr->mr_handle;
625 
626 		*prev = last;
627 		prev = &last->next;
628 	}
629 
630 	/* Strong send queue ordering guarantees that when the
631 	 * last WR in the chain completes, all WRs in the chain
632 	 * are complete. The last completion will wake up the
633 	 * RPC waiter.
634 	 */
635 	frwr->fr_cqe.done = frwr_wc_localinv_done;
636 
637 	/* Transport disconnect drains the receive CQ before it
638 	 * replaces the QP. The RPC reply handler won't call us
639 	 * unless re_id->qp is a valid pointer.
640 	 */
641 	bad_wr = NULL;
642 	rc = ib_post_send(r_xprt->rx_ep->re_id->qp, first, &bad_wr);
643 	if (!rc)
644 		return;
645 
646 	/* Recycle MRs in the LOCAL_INV chain that did not get posted.
647 	 */
648 	trace_xprtrdma_post_linv(req, rc);
649 	while (bad_wr) {
650 		frwr = container_of(bad_wr, struct rpcrdma_frwr, fr_invwr);
651 		mr = container_of(frwr, struct rpcrdma_mr, frwr);
652 		bad_wr = bad_wr->next;
653 
654 		frwr_mr_recycle(mr);
655 	}
656 
657 	/* The final LOCAL_INV WR in the chain is supposed to
658 	 * do the wake. If it was never posted, the wake will
659 	 * not happen, so wake here in that case.
660 	 */
661 	rpcrdma_complete_rqst(req->rl_reply);
662 }
663