xref: /openbmc/linux/net/sunrpc/xprtrdma/frwr_ops.c (revision 6d425d7c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015, 2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  */
6 
7 /* Lightweight memory registration using Fast Registration Work
8  * Requests (FRWR).
9  *
10  * FRWR features ordered asynchronous registration and invalidation
11  * of arbitrarily-sized memory regions. This is the fastest and safest
12  * but most complex memory registration mode.
13  */
14 
15 /* Normal operation
16  *
17  * A Memory Region is prepared for RDMA Read or Write using a FAST_REG
18  * Work Request (frwr_map). When the RDMA operation is finished, this
19  * Memory Region is invalidated using a LOCAL_INV Work Request
20  * (frwr_unmap_async and frwr_unmap_sync).
21  *
22  * Typically FAST_REG Work Requests are not signaled, and neither are
23  * RDMA Send Work Requests (with the exception of signaling occasionally
24  * to prevent provider work queue overflows). This greatly reduces HCA
25  * interrupt workload.
26  */
27 
28 /* Transport recovery
29  *
30  * frwr_map and frwr_unmap_* cannot run at the same time the transport
31  * connect worker is running. The connect worker holds the transport
32  * send lock, just as ->send_request does. This prevents frwr_map and
33  * the connect worker from running concurrently. When a connection is
34  * closed, the Receive completion queue is drained before the allowing
35  * the connect worker to get control. This prevents frwr_unmap and the
36  * connect worker from running concurrently.
37  *
38  * When the underlying transport disconnects, MRs that are in flight
39  * are flushed and are likely unusable. Thus all MRs are destroyed.
40  * New MRs are created on demand.
41  */
42 
43 #include <linux/sunrpc/svc_rdma.h>
44 
45 #include "xprt_rdma.h"
46 #include <trace/events/rpcrdma.h>
47 
48 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
49 # define RPCDBG_FACILITY	RPCDBG_TRANS
50 #endif
51 
52 static void frwr_cid_init(struct rpcrdma_ep *ep,
53 			  struct rpcrdma_mr *mr)
54 {
55 	struct rpc_rdma_cid *cid = &mr->mr_cid;
56 
57 	cid->ci_queue_id = ep->re_attr.send_cq->res.id;
58 	cid->ci_completion_id = mr->mr_ibmr->res.id;
59 }
60 
61 static void frwr_mr_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
62 {
63 	if (mr->mr_device) {
64 		trace_xprtrdma_mr_unmap(mr);
65 		ib_dma_unmap_sg(mr->mr_device, mr->mr_sg, mr->mr_nents,
66 				mr->mr_dir);
67 		mr->mr_device = NULL;
68 	}
69 }
70 
71 /**
72  * frwr_mr_release - Destroy one MR
73  * @mr: MR allocated by frwr_mr_init
74  *
75  */
76 void frwr_mr_release(struct rpcrdma_mr *mr)
77 {
78 	int rc;
79 
80 	frwr_mr_unmap(mr->mr_xprt, mr);
81 
82 	rc = ib_dereg_mr(mr->mr_ibmr);
83 	if (rc)
84 		trace_xprtrdma_frwr_dereg(mr, rc);
85 	kfree(mr->mr_sg);
86 	kfree(mr);
87 }
88 
89 static void frwr_mr_put(struct rpcrdma_mr *mr)
90 {
91 	frwr_mr_unmap(mr->mr_xprt, mr);
92 
93 	/* The MR is returned to the req's MR free list instead
94 	 * of to the xprt's MR free list. No spinlock is needed.
95 	 */
96 	rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs);
97 }
98 
99 /* frwr_reset - Place MRs back on the free list
100  * @req: request to reset
101  *
102  * Used after a failed marshal. For FRWR, this means the MRs
103  * don't have to be fully released and recreated.
104  *
105  * NB: This is safe only as long as none of @req's MRs are
106  * involved with an ongoing asynchronous FAST_REG or LOCAL_INV
107  * Work Request.
108  */
109 void frwr_reset(struct rpcrdma_req *req)
110 {
111 	struct rpcrdma_mr *mr;
112 
113 	while ((mr = rpcrdma_mr_pop(&req->rl_registered)))
114 		frwr_mr_put(mr);
115 }
116 
117 /**
118  * frwr_mr_init - Initialize one MR
119  * @r_xprt: controlling transport instance
120  * @mr: generic MR to prepare for FRWR
121  *
122  * Returns zero if successful. Otherwise a negative errno
123  * is returned.
124  */
125 int frwr_mr_init(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
126 {
127 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
128 	unsigned int depth = ep->re_max_fr_depth;
129 	struct scatterlist *sg;
130 	struct ib_mr *frmr;
131 	int rc;
132 
133 	frmr = ib_alloc_mr(ep->re_pd, ep->re_mrtype, depth);
134 	if (IS_ERR(frmr))
135 		goto out_mr_err;
136 
137 	sg = kmalloc_array(depth, sizeof(*sg), GFP_NOFS);
138 	if (!sg)
139 		goto out_list_err;
140 
141 	mr->mr_xprt = r_xprt;
142 	mr->mr_ibmr = frmr;
143 	mr->mr_device = NULL;
144 	INIT_LIST_HEAD(&mr->mr_list);
145 	init_completion(&mr->mr_linv_done);
146 	frwr_cid_init(ep, mr);
147 
148 	sg_init_table(sg, depth);
149 	mr->mr_sg = sg;
150 	return 0;
151 
152 out_mr_err:
153 	rc = PTR_ERR(frmr);
154 	trace_xprtrdma_frwr_alloc(mr, rc);
155 	return rc;
156 
157 out_list_err:
158 	ib_dereg_mr(frmr);
159 	return -ENOMEM;
160 }
161 
162 /**
163  * frwr_query_device - Prepare a transport for use with FRWR
164  * @ep: endpoint to fill in
165  * @device: RDMA device to query
166  *
167  * On success, sets:
168  *	ep->re_attr
169  *	ep->re_max_requests
170  *	ep->re_max_rdma_segs
171  *	ep->re_max_fr_depth
172  *	ep->re_mrtype
173  *
174  * Return values:
175  *   On success, returns zero.
176  *   %-EINVAL - the device does not support FRWR memory registration
177  *   %-ENOMEM - the device is not sufficiently capable for NFS/RDMA
178  */
179 int frwr_query_device(struct rpcrdma_ep *ep, const struct ib_device *device)
180 {
181 	const struct ib_device_attr *attrs = &device->attrs;
182 	int max_qp_wr, depth, delta;
183 	unsigned int max_sge;
184 
185 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) ||
186 	    attrs->max_fast_reg_page_list_len == 0) {
187 		pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n",
188 		       device->name);
189 		return -EINVAL;
190 	}
191 
192 	max_sge = min_t(unsigned int, attrs->max_send_sge,
193 			RPCRDMA_MAX_SEND_SGES);
194 	if (max_sge < RPCRDMA_MIN_SEND_SGES) {
195 		pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge);
196 		return -ENOMEM;
197 	}
198 	ep->re_attr.cap.max_send_sge = max_sge;
199 	ep->re_attr.cap.max_recv_sge = 1;
200 
201 	ep->re_mrtype = IB_MR_TYPE_MEM_REG;
202 	if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG)
203 		ep->re_mrtype = IB_MR_TYPE_SG_GAPS;
204 
205 	/* Quirk: Some devices advertise a large max_fast_reg_page_list_len
206 	 * capability, but perform optimally when the MRs are not larger
207 	 * than a page.
208 	 */
209 	if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS)
210 		ep->re_max_fr_depth = attrs->max_sge_rd;
211 	else
212 		ep->re_max_fr_depth = attrs->max_fast_reg_page_list_len;
213 	if (ep->re_max_fr_depth > RPCRDMA_MAX_DATA_SEGS)
214 		ep->re_max_fr_depth = RPCRDMA_MAX_DATA_SEGS;
215 
216 	/* Add room for frwr register and invalidate WRs.
217 	 * 1. FRWR reg WR for head
218 	 * 2. FRWR invalidate WR for head
219 	 * 3. N FRWR reg WRs for pagelist
220 	 * 4. N FRWR invalidate WRs for pagelist
221 	 * 5. FRWR reg WR for tail
222 	 * 6. FRWR invalidate WR for tail
223 	 * 7. The RDMA_SEND WR
224 	 */
225 	depth = 7;
226 
227 	/* Calculate N if the device max FRWR depth is smaller than
228 	 * RPCRDMA_MAX_DATA_SEGS.
229 	 */
230 	if (ep->re_max_fr_depth < RPCRDMA_MAX_DATA_SEGS) {
231 		delta = RPCRDMA_MAX_DATA_SEGS - ep->re_max_fr_depth;
232 		do {
233 			depth += 2; /* FRWR reg + invalidate */
234 			delta -= ep->re_max_fr_depth;
235 		} while (delta > 0);
236 	}
237 
238 	max_qp_wr = attrs->max_qp_wr;
239 	max_qp_wr -= RPCRDMA_BACKWARD_WRS;
240 	max_qp_wr -= 1;
241 	if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE)
242 		return -ENOMEM;
243 	if (ep->re_max_requests > max_qp_wr)
244 		ep->re_max_requests = max_qp_wr;
245 	ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
246 	if (ep->re_attr.cap.max_send_wr > max_qp_wr) {
247 		ep->re_max_requests = max_qp_wr / depth;
248 		if (!ep->re_max_requests)
249 			return -ENOMEM;
250 		ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
251 	}
252 	ep->re_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
253 	ep->re_attr.cap.max_send_wr += 1; /* for ib_drain_sq */
254 	ep->re_attr.cap.max_recv_wr = ep->re_max_requests;
255 	ep->re_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
256 	ep->re_attr.cap.max_recv_wr += RPCRDMA_MAX_RECV_BATCH;
257 	ep->re_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */
258 
259 	ep->re_max_rdma_segs =
260 		DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ep->re_max_fr_depth);
261 	/* Reply chunks require segments for head and tail buffers */
262 	ep->re_max_rdma_segs += 2;
263 	if (ep->re_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS)
264 		ep->re_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS;
265 
266 	/* Ensure the underlying device is capable of conveying the
267 	 * largest r/wsize NFS will ask for. This guarantees that
268 	 * failing over from one RDMA device to another will not
269 	 * break NFS I/O.
270 	 */
271 	if ((ep->re_max_rdma_segs * ep->re_max_fr_depth) < RPCRDMA_MAX_SEGS)
272 		return -ENOMEM;
273 
274 	return 0;
275 }
276 
277 /**
278  * frwr_map - Register a memory region
279  * @r_xprt: controlling transport
280  * @seg: memory region co-ordinates
281  * @nsegs: number of segments remaining
282  * @writing: true when RDMA Write will be used
283  * @xid: XID of RPC using the registered memory
284  * @mr: MR to fill in
285  *
286  * Prepare a REG_MR Work Request to register a memory region
287  * for remote access via RDMA READ or RDMA WRITE.
288  *
289  * Returns the next segment or a negative errno pointer.
290  * On success, @mr is filled in.
291  */
292 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt,
293 				struct rpcrdma_mr_seg *seg,
294 				int nsegs, bool writing, __be32 xid,
295 				struct rpcrdma_mr *mr)
296 {
297 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
298 	struct ib_reg_wr *reg_wr;
299 	int i, n, dma_nents;
300 	struct ib_mr *ibmr;
301 	u8 key;
302 
303 	if (nsegs > ep->re_max_fr_depth)
304 		nsegs = ep->re_max_fr_depth;
305 	for (i = 0; i < nsegs;) {
306 		sg_set_page(&mr->mr_sg[i], seg->mr_page,
307 			    seg->mr_len, seg->mr_offset);
308 
309 		++seg;
310 		++i;
311 		if (ep->re_mrtype == IB_MR_TYPE_SG_GAPS)
312 			continue;
313 		if ((i < nsegs && seg->mr_offset) ||
314 		    offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
315 			break;
316 	}
317 	mr->mr_dir = rpcrdma_data_dir(writing);
318 	mr->mr_nents = i;
319 
320 	dma_nents = ib_dma_map_sg(ep->re_id->device, mr->mr_sg, mr->mr_nents,
321 				  mr->mr_dir);
322 	if (!dma_nents)
323 		goto out_dmamap_err;
324 	mr->mr_device = ep->re_id->device;
325 
326 	ibmr = mr->mr_ibmr;
327 	n = ib_map_mr_sg(ibmr, mr->mr_sg, dma_nents, NULL, PAGE_SIZE);
328 	if (n != dma_nents)
329 		goto out_mapmr_err;
330 
331 	ibmr->iova &= 0x00000000ffffffff;
332 	ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32;
333 	key = (u8)(ibmr->rkey & 0x000000FF);
334 	ib_update_fast_reg_key(ibmr, ++key);
335 
336 	reg_wr = &mr->mr_regwr;
337 	reg_wr->mr = ibmr;
338 	reg_wr->key = ibmr->rkey;
339 	reg_wr->access = writing ?
340 			 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
341 			 IB_ACCESS_REMOTE_READ;
342 
343 	mr->mr_handle = ibmr->rkey;
344 	mr->mr_length = ibmr->length;
345 	mr->mr_offset = ibmr->iova;
346 	trace_xprtrdma_mr_map(mr);
347 
348 	return seg;
349 
350 out_dmamap_err:
351 	trace_xprtrdma_frwr_sgerr(mr, i);
352 	return ERR_PTR(-EIO);
353 
354 out_mapmr_err:
355 	trace_xprtrdma_frwr_maperr(mr, n);
356 	return ERR_PTR(-EIO);
357 }
358 
359 /**
360  * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC
361  * @cq: completion queue
362  * @wc: WCE for a completed FastReg WR
363  *
364  * Each flushed MR gets destroyed after the QP has drained.
365  */
366 static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
367 {
368 	struct ib_cqe *cqe = wc->wr_cqe;
369 	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
370 
371 	/* WARNING: Only wr_cqe and status are reliable at this point */
372 	trace_xprtrdma_wc_fastreg(wc, &mr->mr_cid);
373 
374 	rpcrdma_flush_disconnect(cq->cq_context, wc);
375 }
376 
377 /**
378  * frwr_send - post Send WRs containing the RPC Call message
379  * @r_xprt: controlling transport instance
380  * @req: prepared RPC Call
381  *
382  * For FRWR, chain any FastReg WRs to the Send WR. Only a
383  * single ib_post_send call is needed to register memory
384  * and then post the Send WR.
385  *
386  * Returns the return code from ib_post_send.
387  *
388  * Caller must hold the transport send lock to ensure that the
389  * pointers to the transport's rdma_cm_id and QP are stable.
390  */
391 int frwr_send(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
392 {
393 	struct ib_send_wr *post_wr, *send_wr = &req->rl_wr;
394 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
395 	struct rpcrdma_mr *mr;
396 	unsigned int num_wrs;
397 	int ret;
398 
399 	num_wrs = 1;
400 	post_wr = send_wr;
401 	list_for_each_entry(mr, &req->rl_registered, mr_list) {
402 		trace_xprtrdma_mr_fastreg(mr);
403 
404 		mr->mr_cqe.done = frwr_wc_fastreg;
405 		mr->mr_regwr.wr.next = post_wr;
406 		mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe;
407 		mr->mr_regwr.wr.num_sge = 0;
408 		mr->mr_regwr.wr.opcode = IB_WR_REG_MR;
409 		mr->mr_regwr.wr.send_flags = 0;
410 		post_wr = &mr->mr_regwr.wr;
411 		++num_wrs;
412 	}
413 
414 	if ((kref_read(&req->rl_kref) > 1) || num_wrs > ep->re_send_count) {
415 		send_wr->send_flags |= IB_SEND_SIGNALED;
416 		ep->re_send_count = min_t(unsigned int, ep->re_send_batch,
417 					  num_wrs - ep->re_send_count);
418 	} else {
419 		send_wr->send_flags &= ~IB_SEND_SIGNALED;
420 		ep->re_send_count -= num_wrs;
421 	}
422 
423 	trace_xprtrdma_post_send(req);
424 	ret = ib_post_send(ep->re_id->qp, post_wr, NULL);
425 	if (ret)
426 		trace_xprtrdma_post_send_err(r_xprt, req, ret);
427 	return ret;
428 }
429 
430 /**
431  * frwr_reminv - handle a remotely invalidated mr on the @mrs list
432  * @rep: Received reply
433  * @mrs: list of MRs to check
434  *
435  */
436 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs)
437 {
438 	struct rpcrdma_mr *mr;
439 
440 	list_for_each_entry(mr, mrs, mr_list)
441 		if (mr->mr_handle == rep->rr_inv_rkey) {
442 			list_del_init(&mr->mr_list);
443 			trace_xprtrdma_mr_reminv(mr);
444 			frwr_mr_put(mr);
445 			break;	/* only one invalidated MR per RPC */
446 		}
447 }
448 
449 static void frwr_mr_done(struct ib_wc *wc, struct rpcrdma_mr *mr)
450 {
451 	if (likely(wc->status == IB_WC_SUCCESS))
452 		frwr_mr_put(mr);
453 }
454 
455 /**
456  * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC
457  * @cq: completion queue
458  * @wc: WCE for a completed LocalInv WR
459  *
460  */
461 static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
462 {
463 	struct ib_cqe *cqe = wc->wr_cqe;
464 	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
465 
466 	/* WARNING: Only wr_cqe and status are reliable at this point */
467 	trace_xprtrdma_wc_li(wc, &mr->mr_cid);
468 	frwr_mr_done(wc, mr);
469 
470 	rpcrdma_flush_disconnect(cq->cq_context, wc);
471 }
472 
473 /**
474  * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC
475  * @cq: completion queue
476  * @wc: WCE for a completed LocalInv WR
477  *
478  * Awaken anyone waiting for an MR to finish being fenced.
479  */
480 static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
481 {
482 	struct ib_cqe *cqe = wc->wr_cqe;
483 	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
484 
485 	/* WARNING: Only wr_cqe and status are reliable at this point */
486 	trace_xprtrdma_wc_li_wake(wc, &mr->mr_cid);
487 	frwr_mr_done(wc, mr);
488 	complete(&mr->mr_linv_done);
489 
490 	rpcrdma_flush_disconnect(cq->cq_context, wc);
491 }
492 
493 /**
494  * frwr_unmap_sync - invalidate memory regions that were registered for @req
495  * @r_xprt: controlling transport instance
496  * @req: rpcrdma_req with a non-empty list of MRs to process
497  *
498  * Sleeps until it is safe for the host CPU to access the previously mapped
499  * memory regions. This guarantees that registered MRs are properly fenced
500  * from the server before the RPC consumer accesses the data in them. It
501  * also ensures proper Send flow control: waking the next RPC waits until
502  * this RPC has relinquished all its Send Queue entries.
503  */
504 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
505 {
506 	struct ib_send_wr *first, **prev, *last;
507 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
508 	const struct ib_send_wr *bad_wr;
509 	struct rpcrdma_mr *mr;
510 	int rc;
511 
512 	/* ORDER: Invalidate all of the MRs first
513 	 *
514 	 * Chain the LOCAL_INV Work Requests and post them with
515 	 * a single ib_post_send() call.
516 	 */
517 	prev = &first;
518 	mr = rpcrdma_mr_pop(&req->rl_registered);
519 	do {
520 		trace_xprtrdma_mr_localinv(mr);
521 		r_xprt->rx_stats.local_inv_needed++;
522 
523 		last = &mr->mr_invwr;
524 		last->next = NULL;
525 		last->wr_cqe = &mr->mr_cqe;
526 		last->sg_list = NULL;
527 		last->num_sge = 0;
528 		last->opcode = IB_WR_LOCAL_INV;
529 		last->send_flags = IB_SEND_SIGNALED;
530 		last->ex.invalidate_rkey = mr->mr_handle;
531 
532 		last->wr_cqe->done = frwr_wc_localinv;
533 
534 		*prev = last;
535 		prev = &last->next;
536 	} while ((mr = rpcrdma_mr_pop(&req->rl_registered)));
537 
538 	mr = container_of(last, struct rpcrdma_mr, mr_invwr);
539 
540 	/* Strong send queue ordering guarantees that when the
541 	 * last WR in the chain completes, all WRs in the chain
542 	 * are complete.
543 	 */
544 	last->wr_cqe->done = frwr_wc_localinv_wake;
545 	reinit_completion(&mr->mr_linv_done);
546 
547 	/* Transport disconnect drains the receive CQ before it
548 	 * replaces the QP. The RPC reply handler won't call us
549 	 * unless re_id->qp is a valid pointer.
550 	 */
551 	bad_wr = NULL;
552 	rc = ib_post_send(ep->re_id->qp, first, &bad_wr);
553 
554 	/* The final LOCAL_INV WR in the chain is supposed to
555 	 * do the wake. If it was never posted, the wake will
556 	 * not happen, so don't wait in that case.
557 	 */
558 	if (bad_wr != first)
559 		wait_for_completion(&mr->mr_linv_done);
560 	if (!rc)
561 		return;
562 
563 	/* On error, the MRs get destroyed once the QP has drained. */
564 	trace_xprtrdma_post_linv_err(req, rc);
565 
566 	/* Force a connection loss to ensure complete recovery.
567 	 */
568 	rpcrdma_force_disconnect(ep);
569 }
570 
571 /**
572  * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC
573  * @cq:	completion queue
574  * @wc:	WCE for a completed LocalInv WR
575  *
576  */
577 static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc)
578 {
579 	struct ib_cqe *cqe = wc->wr_cqe;
580 	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
581 	struct rpcrdma_rep *rep;
582 
583 	/* WARNING: Only wr_cqe and status are reliable at this point */
584 	trace_xprtrdma_wc_li_done(wc, &mr->mr_cid);
585 
586 	/* Ensure that @rep is generated before the MR is released */
587 	rep = mr->mr_req->rl_reply;
588 	smp_rmb();
589 
590 	if (wc->status != IB_WC_SUCCESS) {
591 		if (rep)
592 			rpcrdma_unpin_rqst(rep);
593 		rpcrdma_flush_disconnect(cq->cq_context, wc);
594 		return;
595 	}
596 	frwr_mr_put(mr);
597 	rpcrdma_complete_rqst(rep);
598 }
599 
600 /**
601  * frwr_unmap_async - invalidate memory regions that were registered for @req
602  * @r_xprt: controlling transport instance
603  * @req: rpcrdma_req with a non-empty list of MRs to process
604  *
605  * This guarantees that registered MRs are properly fenced from the
606  * server before the RPC consumer accesses the data in them. It also
607  * ensures proper Send flow control: waking the next RPC waits until
608  * this RPC has relinquished all its Send Queue entries.
609  */
610 void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
611 {
612 	struct ib_send_wr *first, *last, **prev;
613 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
614 	struct rpcrdma_mr *mr;
615 	int rc;
616 
617 	/* Chain the LOCAL_INV Work Requests and post them with
618 	 * a single ib_post_send() call.
619 	 */
620 	prev = &first;
621 	mr = rpcrdma_mr_pop(&req->rl_registered);
622 	do {
623 		trace_xprtrdma_mr_localinv(mr);
624 		r_xprt->rx_stats.local_inv_needed++;
625 
626 		last = &mr->mr_invwr;
627 		last->next = NULL;
628 		last->wr_cqe = &mr->mr_cqe;
629 		last->sg_list = NULL;
630 		last->num_sge = 0;
631 		last->opcode = IB_WR_LOCAL_INV;
632 		last->send_flags = IB_SEND_SIGNALED;
633 		last->ex.invalidate_rkey = mr->mr_handle;
634 
635 		last->wr_cqe->done = frwr_wc_localinv;
636 
637 		*prev = last;
638 		prev = &last->next;
639 	} while ((mr = rpcrdma_mr_pop(&req->rl_registered)));
640 
641 	/* Strong send queue ordering guarantees that when the
642 	 * last WR in the chain completes, all WRs in the chain
643 	 * are complete. The last completion will wake up the
644 	 * RPC waiter.
645 	 */
646 	last->wr_cqe->done = frwr_wc_localinv_done;
647 
648 	/* Transport disconnect drains the receive CQ before it
649 	 * replaces the QP. The RPC reply handler won't call us
650 	 * unless re_id->qp is a valid pointer.
651 	 */
652 	rc = ib_post_send(ep->re_id->qp, first, NULL);
653 	if (!rc)
654 		return;
655 
656 	/* On error, the MRs get destroyed once the QP has drained. */
657 	trace_xprtrdma_post_linv_err(req, rc);
658 
659 	/* The final LOCAL_INV WR in the chain is supposed to
660 	 * do the wake. If it was never posted, the wake does
661 	 * not happen. Unpin the rqst in preparation for its
662 	 * retransmission.
663 	 */
664 	rpcrdma_unpin_rqst(req->rl_reply);
665 
666 	/* Force a connection loss to ensure complete recovery.
667 	 */
668 	rpcrdma_force_disconnect(ep);
669 }
670 
671 /**
672  * frwr_wp_create - Create an MR for padding Write chunks
673  * @r_xprt: transport resources to use
674  *
675  * Return 0 on success, negative errno on failure.
676  */
677 int frwr_wp_create(struct rpcrdma_xprt *r_xprt)
678 {
679 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
680 	struct rpcrdma_mr_seg seg;
681 	struct rpcrdma_mr *mr;
682 
683 	mr = rpcrdma_mr_get(r_xprt);
684 	if (!mr)
685 		return -EAGAIN;
686 	mr->mr_req = NULL;
687 	ep->re_write_pad_mr = mr;
688 
689 	seg.mr_len = XDR_UNIT;
690 	seg.mr_page = virt_to_page(ep->re_write_pad);
691 	seg.mr_offset = offset_in_page(ep->re_write_pad);
692 	if (IS_ERR(frwr_map(r_xprt, &seg, 1, true, xdr_zero, mr)))
693 		return -EIO;
694 	trace_xprtrdma_mr_fastreg(mr);
695 
696 	mr->mr_cqe.done = frwr_wc_fastreg;
697 	mr->mr_regwr.wr.next = NULL;
698 	mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe;
699 	mr->mr_regwr.wr.num_sge = 0;
700 	mr->mr_regwr.wr.opcode = IB_WR_REG_MR;
701 	mr->mr_regwr.wr.send_flags = 0;
702 
703 	return ib_post_send(ep->re_id->qp, &mr->mr_regwr.wr, NULL);
704 }
705