xref: /openbmc/linux/net/sunrpc/xprtrdma/frwr_ops.c (revision 59b4412f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015, 2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  */
6 
7 /* Lightweight memory registration using Fast Registration Work
8  * Requests (FRWR).
9  *
10  * FRWR features ordered asynchronous registration and invalidation
11  * of arbitrarily-sized memory regions. This is the fastest and safest
12  * but most complex memory registration mode.
13  */
14 
15 /* Normal operation
16  *
17  * A Memory Region is prepared for RDMA Read or Write using a FAST_REG
18  * Work Request (frwr_map). When the RDMA operation is finished, this
19  * Memory Region is invalidated using a LOCAL_INV Work Request
20  * (frwr_unmap_async and frwr_unmap_sync).
21  *
22  * Typically FAST_REG Work Requests are not signaled, and neither are
23  * RDMA Send Work Requests (with the exception of signaling occasionally
24  * to prevent provider work queue overflows). This greatly reduces HCA
25  * interrupt workload.
26  */
27 
28 /* Transport recovery
29  *
30  * frwr_map and frwr_unmap_* cannot run at the same time the transport
31  * connect worker is running. The connect worker holds the transport
32  * send lock, just as ->send_request does. This prevents frwr_map and
33  * the connect worker from running concurrently. When a connection is
34  * closed, the Receive completion queue is drained before the allowing
35  * the connect worker to get control. This prevents frwr_unmap and the
36  * connect worker from running concurrently.
37  *
38  * When the underlying transport disconnects, MRs that are in flight
39  * are flushed and are likely unusable. Thus all MRs are destroyed.
40  * New MRs are created on demand.
41  */
42 
43 #include <linux/sunrpc/rpc_rdma.h>
44 #include <linux/sunrpc/svc_rdma.h>
45 
46 #include "xprt_rdma.h"
47 #include <trace/events/rpcrdma.h>
48 
49 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
50 # define RPCDBG_FACILITY	RPCDBG_TRANS
51 #endif
52 
53 /**
54  * frwr_release_mr - Destroy one MR
55  * @mr: MR allocated by frwr_mr_init
56  *
57  */
58 void frwr_release_mr(struct rpcrdma_mr *mr)
59 {
60 	int rc;
61 
62 	rc = ib_dereg_mr(mr->frwr.fr_mr);
63 	if (rc)
64 		trace_xprtrdma_frwr_dereg(mr, rc);
65 	kfree(mr->mr_sg);
66 	kfree(mr);
67 }
68 
69 static void frwr_mr_recycle(struct rpcrdma_mr *mr)
70 {
71 	struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
72 
73 	trace_xprtrdma_mr_recycle(mr);
74 
75 	if (mr->mr_dir != DMA_NONE) {
76 		trace_xprtrdma_mr_unmap(mr);
77 		ib_dma_unmap_sg(r_xprt->rx_ep->re_id->device,
78 				mr->mr_sg, mr->mr_nents, mr->mr_dir);
79 		mr->mr_dir = DMA_NONE;
80 	}
81 
82 	spin_lock(&r_xprt->rx_buf.rb_lock);
83 	list_del(&mr->mr_all);
84 	r_xprt->rx_stats.mrs_recycled++;
85 	spin_unlock(&r_xprt->rx_buf.rb_lock);
86 
87 	frwr_release_mr(mr);
88 }
89 
90 /* frwr_reset - Place MRs back on the free list
91  * @req: request to reset
92  *
93  * Used after a failed marshal. For FRWR, this means the MRs
94  * don't have to be fully released and recreated.
95  *
96  * NB: This is safe only as long as none of @req's MRs are
97  * involved with an ongoing asynchronous FAST_REG or LOCAL_INV
98  * Work Request.
99  */
100 void frwr_reset(struct rpcrdma_req *req)
101 {
102 	struct rpcrdma_mr *mr;
103 
104 	while ((mr = rpcrdma_mr_pop(&req->rl_registered)))
105 		rpcrdma_mr_put(mr);
106 }
107 
108 /**
109  * frwr_mr_init - Initialize one MR
110  * @r_xprt: controlling transport instance
111  * @mr: generic MR to prepare for FRWR
112  *
113  * Returns zero if successful. Otherwise a negative errno
114  * is returned.
115  */
116 int frwr_mr_init(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
117 {
118 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
119 	unsigned int depth = ep->re_max_fr_depth;
120 	struct scatterlist *sg;
121 	struct ib_mr *frmr;
122 	int rc;
123 
124 	frmr = ib_alloc_mr(ep->re_pd, ep->re_mrtype, depth);
125 	if (IS_ERR(frmr))
126 		goto out_mr_err;
127 
128 	sg = kcalloc(depth, sizeof(*sg), GFP_NOFS);
129 	if (!sg)
130 		goto out_list_err;
131 
132 	mr->mr_xprt = r_xprt;
133 	mr->frwr.fr_mr = frmr;
134 	mr->mr_dir = DMA_NONE;
135 	INIT_LIST_HEAD(&mr->mr_list);
136 	init_completion(&mr->frwr.fr_linv_done);
137 
138 	sg_init_table(sg, depth);
139 	mr->mr_sg = sg;
140 	return 0;
141 
142 out_mr_err:
143 	rc = PTR_ERR(frmr);
144 	trace_xprtrdma_frwr_alloc(mr, rc);
145 	return rc;
146 
147 out_list_err:
148 	ib_dereg_mr(frmr);
149 	return -ENOMEM;
150 }
151 
152 /**
153  * frwr_query_device - Prepare a transport for use with FRWR
154  * @ep: endpoint to fill in
155  * @device: RDMA device to query
156  *
157  * On success, sets:
158  *	ep->re_attr
159  *	ep->re_max_requests
160  *	ep->re_max_rdma_segs
161  *	ep->re_max_fr_depth
162  *	ep->re_mrtype
163  *
164  * Return values:
165  *   On success, returns zero.
166  *   %-EINVAL - the device does not support FRWR memory registration
167  *   %-ENOMEM - the device is not sufficiently capable for NFS/RDMA
168  */
169 int frwr_query_device(struct rpcrdma_ep *ep, const struct ib_device *device)
170 {
171 	const struct ib_device_attr *attrs = &device->attrs;
172 	int max_qp_wr, depth, delta;
173 	unsigned int max_sge;
174 
175 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) ||
176 	    attrs->max_fast_reg_page_list_len == 0) {
177 		pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n",
178 		       device->name);
179 		return -EINVAL;
180 	}
181 
182 	max_sge = min_t(unsigned int, attrs->max_send_sge,
183 			RPCRDMA_MAX_SEND_SGES);
184 	if (max_sge < RPCRDMA_MIN_SEND_SGES) {
185 		pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge);
186 		return -ENOMEM;
187 	}
188 	ep->re_attr.cap.max_send_sge = max_sge;
189 	ep->re_attr.cap.max_recv_sge = 1;
190 
191 	ep->re_mrtype = IB_MR_TYPE_MEM_REG;
192 	if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG)
193 		ep->re_mrtype = IB_MR_TYPE_SG_GAPS;
194 
195 	/* Quirk: Some devices advertise a large max_fast_reg_page_list_len
196 	 * capability, but perform optimally when the MRs are not larger
197 	 * than a page.
198 	 */
199 	if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS)
200 		ep->re_max_fr_depth = attrs->max_sge_rd;
201 	else
202 		ep->re_max_fr_depth = attrs->max_fast_reg_page_list_len;
203 	if (ep->re_max_fr_depth > RPCRDMA_MAX_DATA_SEGS)
204 		ep->re_max_fr_depth = RPCRDMA_MAX_DATA_SEGS;
205 
206 	/* Add room for frwr register and invalidate WRs.
207 	 * 1. FRWR reg WR for head
208 	 * 2. FRWR invalidate WR for head
209 	 * 3. N FRWR reg WRs for pagelist
210 	 * 4. N FRWR invalidate WRs for pagelist
211 	 * 5. FRWR reg WR for tail
212 	 * 6. FRWR invalidate WR for tail
213 	 * 7. The RDMA_SEND WR
214 	 */
215 	depth = 7;
216 
217 	/* Calculate N if the device max FRWR depth is smaller than
218 	 * RPCRDMA_MAX_DATA_SEGS.
219 	 */
220 	if (ep->re_max_fr_depth < RPCRDMA_MAX_DATA_SEGS) {
221 		delta = RPCRDMA_MAX_DATA_SEGS - ep->re_max_fr_depth;
222 		do {
223 			depth += 2; /* FRWR reg + invalidate */
224 			delta -= ep->re_max_fr_depth;
225 		} while (delta > 0);
226 	}
227 
228 	max_qp_wr = attrs->max_qp_wr;
229 	max_qp_wr -= RPCRDMA_BACKWARD_WRS;
230 	max_qp_wr -= 1;
231 	if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE)
232 		return -ENOMEM;
233 	if (ep->re_max_requests > max_qp_wr)
234 		ep->re_max_requests = max_qp_wr;
235 	ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
236 	if (ep->re_attr.cap.max_send_wr > max_qp_wr) {
237 		ep->re_max_requests = max_qp_wr / depth;
238 		if (!ep->re_max_requests)
239 			return -ENOMEM;
240 		ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
241 	}
242 	ep->re_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
243 	ep->re_attr.cap.max_send_wr += 1; /* for ib_drain_sq */
244 	ep->re_attr.cap.max_recv_wr = ep->re_max_requests;
245 	ep->re_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
246 	ep->re_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */
247 
248 	ep->re_max_rdma_segs =
249 		DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ep->re_max_fr_depth);
250 	/* Reply chunks require segments for head and tail buffers */
251 	ep->re_max_rdma_segs += 2;
252 	if (ep->re_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS)
253 		ep->re_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS;
254 
255 	/* Ensure the underlying device is capable of conveying the
256 	 * largest r/wsize NFS will ask for. This guarantees that
257 	 * failing over from one RDMA device to another will not
258 	 * break NFS I/O.
259 	 */
260 	if ((ep->re_max_rdma_segs * ep->re_max_fr_depth) < RPCRDMA_MAX_SEGS)
261 		return -ENOMEM;
262 
263 	return 0;
264 }
265 
266 /**
267  * frwr_map - Register a memory region
268  * @r_xprt: controlling transport
269  * @seg: memory region co-ordinates
270  * @nsegs: number of segments remaining
271  * @writing: true when RDMA Write will be used
272  * @xid: XID of RPC using the registered memory
273  * @mr: MR to fill in
274  *
275  * Prepare a REG_MR Work Request to register a memory region
276  * for remote access via RDMA READ or RDMA WRITE.
277  *
278  * Returns the next segment or a negative errno pointer.
279  * On success, @mr is filled in.
280  */
281 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt,
282 				struct rpcrdma_mr_seg *seg,
283 				int nsegs, bool writing, __be32 xid,
284 				struct rpcrdma_mr *mr)
285 {
286 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
287 	struct ib_reg_wr *reg_wr;
288 	int i, n, dma_nents;
289 	struct ib_mr *ibmr;
290 	u8 key;
291 
292 	if (nsegs > ep->re_max_fr_depth)
293 		nsegs = ep->re_max_fr_depth;
294 	for (i = 0; i < nsegs;) {
295 		if (seg->mr_page)
296 			sg_set_page(&mr->mr_sg[i],
297 				    seg->mr_page,
298 				    seg->mr_len,
299 				    offset_in_page(seg->mr_offset));
300 		else
301 			sg_set_buf(&mr->mr_sg[i], seg->mr_offset,
302 				   seg->mr_len);
303 
304 		++seg;
305 		++i;
306 		if (ep->re_mrtype == IB_MR_TYPE_SG_GAPS)
307 			continue;
308 		if ((i < nsegs && offset_in_page(seg->mr_offset)) ||
309 		    offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
310 			break;
311 	}
312 	mr->mr_dir = rpcrdma_data_dir(writing);
313 	mr->mr_nents = i;
314 
315 	dma_nents = ib_dma_map_sg(ep->re_id->device, mr->mr_sg, mr->mr_nents,
316 				  mr->mr_dir);
317 	if (!dma_nents)
318 		goto out_dmamap_err;
319 
320 	ibmr = mr->frwr.fr_mr;
321 	n = ib_map_mr_sg(ibmr, mr->mr_sg, dma_nents, NULL, PAGE_SIZE);
322 	if (n != dma_nents)
323 		goto out_mapmr_err;
324 
325 	ibmr->iova &= 0x00000000ffffffff;
326 	ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32;
327 	key = (u8)(ibmr->rkey & 0x000000FF);
328 	ib_update_fast_reg_key(ibmr, ++key);
329 
330 	reg_wr = &mr->frwr.fr_regwr;
331 	reg_wr->mr = ibmr;
332 	reg_wr->key = ibmr->rkey;
333 	reg_wr->access = writing ?
334 			 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
335 			 IB_ACCESS_REMOTE_READ;
336 
337 	mr->mr_handle = ibmr->rkey;
338 	mr->mr_length = ibmr->length;
339 	mr->mr_offset = ibmr->iova;
340 	trace_xprtrdma_mr_map(mr);
341 
342 	return seg;
343 
344 out_dmamap_err:
345 	mr->mr_dir = DMA_NONE;
346 	trace_xprtrdma_frwr_sgerr(mr, i);
347 	return ERR_PTR(-EIO);
348 
349 out_mapmr_err:
350 	trace_xprtrdma_frwr_maperr(mr, n);
351 	return ERR_PTR(-EIO);
352 }
353 
354 /**
355  * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC
356  * @cq: completion queue
357  * @wc: WCE for a completed FastReg WR
358  *
359  */
360 static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
361 {
362 	struct ib_cqe *cqe = wc->wr_cqe;
363 	struct rpcrdma_frwr *frwr =
364 		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
365 
366 	/* WARNING: Only wr_cqe and status are reliable at this point */
367 	trace_xprtrdma_wc_fastreg(wc, frwr);
368 	/* The MR will get recycled when the associated req is retransmitted */
369 
370 	rpcrdma_flush_disconnect(cq->cq_context, wc);
371 }
372 
373 /**
374  * frwr_send - post Send WRs containing the RPC Call message
375  * @r_xprt: controlling transport instance
376  * @req: prepared RPC Call
377  *
378  * For FRWR, chain any FastReg WRs to the Send WR. Only a
379  * single ib_post_send call is needed to register memory
380  * and then post the Send WR.
381  *
382  * Returns the return code from ib_post_send.
383  *
384  * Caller must hold the transport send lock to ensure that the
385  * pointers to the transport's rdma_cm_id and QP are stable.
386  */
387 int frwr_send(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
388 {
389 	struct ib_send_wr *post_wr;
390 	struct rpcrdma_mr *mr;
391 
392 	post_wr = &req->rl_wr;
393 	list_for_each_entry(mr, &req->rl_registered, mr_list) {
394 		struct rpcrdma_frwr *frwr;
395 
396 		frwr = &mr->frwr;
397 
398 		frwr->fr_cqe.done = frwr_wc_fastreg;
399 		frwr->fr_regwr.wr.next = post_wr;
400 		frwr->fr_regwr.wr.wr_cqe = &frwr->fr_cqe;
401 		frwr->fr_regwr.wr.num_sge = 0;
402 		frwr->fr_regwr.wr.opcode = IB_WR_REG_MR;
403 		frwr->fr_regwr.wr.send_flags = 0;
404 
405 		post_wr = &frwr->fr_regwr.wr;
406 	}
407 
408 	return ib_post_send(r_xprt->rx_ep->re_id->qp, post_wr, NULL);
409 }
410 
411 /**
412  * frwr_reminv - handle a remotely invalidated mr on the @mrs list
413  * @rep: Received reply
414  * @mrs: list of MRs to check
415  *
416  */
417 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs)
418 {
419 	struct rpcrdma_mr *mr;
420 
421 	list_for_each_entry(mr, mrs, mr_list)
422 		if (mr->mr_handle == rep->rr_inv_rkey) {
423 			list_del_init(&mr->mr_list);
424 			trace_xprtrdma_mr_reminv(mr);
425 			rpcrdma_mr_put(mr);
426 			break;	/* only one invalidated MR per RPC */
427 		}
428 }
429 
430 static void __frwr_release_mr(struct ib_wc *wc, struct rpcrdma_mr *mr)
431 {
432 	if (wc->status != IB_WC_SUCCESS)
433 		frwr_mr_recycle(mr);
434 	else
435 		rpcrdma_mr_put(mr);
436 }
437 
438 /**
439  * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC
440  * @cq: completion queue
441  * @wc: WCE for a completed LocalInv WR
442  *
443  */
444 static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
445 {
446 	struct ib_cqe *cqe = wc->wr_cqe;
447 	struct rpcrdma_frwr *frwr =
448 		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
449 	struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr);
450 
451 	/* WARNING: Only wr_cqe and status are reliable at this point */
452 	trace_xprtrdma_wc_li(wc, frwr);
453 	__frwr_release_mr(wc, mr);
454 
455 	rpcrdma_flush_disconnect(cq->cq_context, wc);
456 }
457 
458 /**
459  * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC
460  * @cq: completion queue
461  * @wc: WCE for a completed LocalInv WR
462  *
463  * Awaken anyone waiting for an MR to finish being fenced.
464  */
465 static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
466 {
467 	struct ib_cqe *cqe = wc->wr_cqe;
468 	struct rpcrdma_frwr *frwr =
469 		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
470 	struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr);
471 
472 	/* WARNING: Only wr_cqe and status are reliable at this point */
473 	trace_xprtrdma_wc_li_wake(wc, frwr);
474 	__frwr_release_mr(wc, mr);
475 	complete(&frwr->fr_linv_done);
476 
477 	rpcrdma_flush_disconnect(cq->cq_context, wc);
478 }
479 
480 /**
481  * frwr_unmap_sync - invalidate memory regions that were registered for @req
482  * @r_xprt: controlling transport instance
483  * @req: rpcrdma_req with a non-empty list of MRs to process
484  *
485  * Sleeps until it is safe for the host CPU to access the previously mapped
486  * memory regions. This guarantees that registered MRs are properly fenced
487  * from the server before the RPC consumer accesses the data in them. It
488  * also ensures proper Send flow control: waking the next RPC waits until
489  * this RPC has relinquished all its Send Queue entries.
490  */
491 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
492 {
493 	struct ib_send_wr *first, **prev, *last;
494 	const struct ib_send_wr *bad_wr;
495 	struct rpcrdma_frwr *frwr;
496 	struct rpcrdma_mr *mr;
497 	int rc;
498 
499 	/* ORDER: Invalidate all of the MRs first
500 	 *
501 	 * Chain the LOCAL_INV Work Requests and post them with
502 	 * a single ib_post_send() call.
503 	 */
504 	frwr = NULL;
505 	prev = &first;
506 	while ((mr = rpcrdma_mr_pop(&req->rl_registered))) {
507 
508 		trace_xprtrdma_mr_localinv(mr);
509 		r_xprt->rx_stats.local_inv_needed++;
510 
511 		frwr = &mr->frwr;
512 		frwr->fr_cqe.done = frwr_wc_localinv;
513 		last = &frwr->fr_invwr;
514 		last->next = NULL;
515 		last->wr_cqe = &frwr->fr_cqe;
516 		last->sg_list = NULL;
517 		last->num_sge = 0;
518 		last->opcode = IB_WR_LOCAL_INV;
519 		last->send_flags = IB_SEND_SIGNALED;
520 		last->ex.invalidate_rkey = mr->mr_handle;
521 
522 		*prev = last;
523 		prev = &last->next;
524 	}
525 
526 	/* Strong send queue ordering guarantees that when the
527 	 * last WR in the chain completes, all WRs in the chain
528 	 * are complete.
529 	 */
530 	frwr->fr_cqe.done = frwr_wc_localinv_wake;
531 	reinit_completion(&frwr->fr_linv_done);
532 
533 	/* Transport disconnect drains the receive CQ before it
534 	 * replaces the QP. The RPC reply handler won't call us
535 	 * unless re_id->qp is a valid pointer.
536 	 */
537 	bad_wr = NULL;
538 	rc = ib_post_send(r_xprt->rx_ep->re_id->qp, first, &bad_wr);
539 
540 	/* The final LOCAL_INV WR in the chain is supposed to
541 	 * do the wake. If it was never posted, the wake will
542 	 * not happen, so don't wait in that case.
543 	 */
544 	if (bad_wr != first)
545 		wait_for_completion(&frwr->fr_linv_done);
546 	if (!rc)
547 		return;
548 
549 	/* Recycle MRs in the LOCAL_INV chain that did not get posted.
550 	 */
551 	trace_xprtrdma_post_linv(req, rc);
552 	while (bad_wr) {
553 		frwr = container_of(bad_wr, struct rpcrdma_frwr,
554 				    fr_invwr);
555 		mr = container_of(frwr, struct rpcrdma_mr, frwr);
556 		bad_wr = bad_wr->next;
557 
558 		list_del_init(&mr->mr_list);
559 		frwr_mr_recycle(mr);
560 	}
561 }
562 
563 /**
564  * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC
565  * @cq:	completion queue
566  * @wc:	WCE for a completed LocalInv WR
567  *
568  */
569 static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc)
570 {
571 	struct ib_cqe *cqe = wc->wr_cqe;
572 	struct rpcrdma_frwr *frwr =
573 		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
574 	struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr);
575 	struct rpcrdma_rep *rep = mr->mr_req->rl_reply;
576 
577 	/* WARNING: Only wr_cqe and status are reliable at this point */
578 	trace_xprtrdma_wc_li_done(wc, frwr);
579 	__frwr_release_mr(wc, mr);
580 
581 	/* Ensure @rep is generated before __frwr_release_mr */
582 	smp_rmb();
583 	rpcrdma_complete_rqst(rep);
584 
585 	rpcrdma_flush_disconnect(cq->cq_context, wc);
586 }
587 
588 /**
589  * frwr_unmap_async - invalidate memory regions that were registered for @req
590  * @r_xprt: controlling transport instance
591  * @req: rpcrdma_req with a non-empty list of MRs to process
592  *
593  * This guarantees that registered MRs are properly fenced from the
594  * server before the RPC consumer accesses the data in them. It also
595  * ensures proper Send flow control: waking the next RPC waits until
596  * this RPC has relinquished all its Send Queue entries.
597  */
598 void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
599 {
600 	struct ib_send_wr *first, *last, **prev;
601 	const struct ib_send_wr *bad_wr;
602 	struct rpcrdma_frwr *frwr;
603 	struct rpcrdma_mr *mr;
604 	int rc;
605 
606 	/* Chain the LOCAL_INV Work Requests and post them with
607 	 * a single ib_post_send() call.
608 	 */
609 	frwr = NULL;
610 	prev = &first;
611 	while ((mr = rpcrdma_mr_pop(&req->rl_registered))) {
612 
613 		trace_xprtrdma_mr_localinv(mr);
614 		r_xprt->rx_stats.local_inv_needed++;
615 
616 		frwr = &mr->frwr;
617 		frwr->fr_cqe.done = frwr_wc_localinv;
618 		last = &frwr->fr_invwr;
619 		last->next = NULL;
620 		last->wr_cqe = &frwr->fr_cqe;
621 		last->sg_list = NULL;
622 		last->num_sge = 0;
623 		last->opcode = IB_WR_LOCAL_INV;
624 		last->send_flags = IB_SEND_SIGNALED;
625 		last->ex.invalidate_rkey = mr->mr_handle;
626 
627 		*prev = last;
628 		prev = &last->next;
629 	}
630 
631 	/* Strong send queue ordering guarantees that when the
632 	 * last WR in the chain completes, all WRs in the chain
633 	 * are complete. The last completion will wake up the
634 	 * RPC waiter.
635 	 */
636 	frwr->fr_cqe.done = frwr_wc_localinv_done;
637 
638 	/* Transport disconnect drains the receive CQ before it
639 	 * replaces the QP. The RPC reply handler won't call us
640 	 * unless re_id->qp is a valid pointer.
641 	 */
642 	bad_wr = NULL;
643 	rc = ib_post_send(r_xprt->rx_ep->re_id->qp, first, &bad_wr);
644 	if (!rc)
645 		return;
646 
647 	/* Recycle MRs in the LOCAL_INV chain that did not get posted.
648 	 */
649 	trace_xprtrdma_post_linv(req, rc);
650 	while (bad_wr) {
651 		frwr = container_of(bad_wr, struct rpcrdma_frwr, fr_invwr);
652 		mr = container_of(frwr, struct rpcrdma_mr, frwr);
653 		bad_wr = bad_wr->next;
654 
655 		frwr_mr_recycle(mr);
656 	}
657 
658 	/* The final LOCAL_INV WR in the chain is supposed to
659 	 * do the wake. If it was never posted, the wake will
660 	 * not happen, so wake here in that case.
661 	 */
662 	rpcrdma_complete_rqst(req->rl_reply);
663 }
664