1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015, 2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 */ 6 7 /* Lightweight memory registration using Fast Registration Work 8 * Requests (FRWR). 9 * 10 * FRWR features ordered asynchronous registration and deregistration 11 * of arbitrarily sized memory regions. This is the fastest and safest 12 * but most complex memory registration mode. 13 */ 14 15 /* Normal operation 16 * 17 * A Memory Region is prepared for RDMA READ or WRITE using a FAST_REG 18 * Work Request (frwr_map). When the RDMA operation is finished, this 19 * Memory Region is invalidated using a LOCAL_INV Work Request 20 * (frwr_unmap_sync). 21 * 22 * Typically these Work Requests are not signaled, and neither are RDMA 23 * SEND Work Requests (with the exception of signaling occasionally to 24 * prevent provider work queue overflows). This greatly reduces HCA 25 * interrupt workload. 26 * 27 * As an optimization, frwr_unmap marks MRs INVALID before the 28 * LOCAL_INV WR is posted. If posting succeeds, the MR is placed on 29 * rb_mrs immediately so that no work (like managing a linked list 30 * under a spinlock) is needed in the completion upcall. 31 * 32 * But this means that frwr_map() can occasionally encounter an MR 33 * that is INVALID but the LOCAL_INV WR has not completed. Work Queue 34 * ordering prevents a subsequent FAST_REG WR from executing against 35 * that MR while it is still being invalidated. 36 */ 37 38 /* Transport recovery 39 * 40 * ->op_map and the transport connect worker cannot run at the same 41 * time, but ->op_unmap can fire while the transport connect worker 42 * is running. Thus MR recovery is handled in ->op_map, to guarantee 43 * that recovered MRs are owned by a sending RPC, and not one where 44 * ->op_unmap could fire at the same time transport reconnect is 45 * being done. 46 * 47 * When the underlying transport disconnects, MRs are left in one of 48 * four states: 49 * 50 * INVALID: The MR was not in use before the QP entered ERROR state. 51 * 52 * VALID: The MR was registered before the QP entered ERROR state. 53 * 54 * FLUSHED_FR: The MR was being registered when the QP entered ERROR 55 * state, and the pending WR was flushed. 56 * 57 * FLUSHED_LI: The MR was being invalidated when the QP entered ERROR 58 * state, and the pending WR was flushed. 59 * 60 * When frwr_map encounters FLUSHED and VALID MRs, they are recovered 61 * with ib_dereg_mr and then are re-initialized. Because MR recovery 62 * allocates fresh resources, it is deferred to a workqueue, and the 63 * recovered MRs are placed back on the rb_mrs list when recovery is 64 * complete. frwr_map allocates another MR for the current RPC while 65 * the broken MR is reset. 66 * 67 * To ensure that frwr_map doesn't encounter an MR that is marked 68 * INVALID but that is about to be flushed due to a previous transport 69 * disconnect, the transport connect worker attempts to drain all 70 * pending send queue WRs before the transport is reconnected. 71 */ 72 73 #include <linux/sunrpc/rpc_rdma.h> 74 #include <linux/sunrpc/svc_rdma.h> 75 76 #include "xprt_rdma.h" 77 #include <trace/events/rpcrdma.h> 78 79 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 80 # define RPCDBG_FACILITY RPCDBG_TRANS 81 #endif 82 83 /** 84 * frwr_is_supported - Check if device supports FRWR 85 * @device: interface adapter to check 86 * 87 * Returns true if device supports FRWR, otherwise false 88 */ 89 bool frwr_is_supported(struct ib_device *device) 90 { 91 struct ib_device_attr *attrs = &device->attrs; 92 93 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS)) 94 goto out_not_supported; 95 if (attrs->max_fast_reg_page_list_len == 0) 96 goto out_not_supported; 97 return true; 98 99 out_not_supported: 100 pr_info("rpcrdma: 'frwr' mode is not supported by device %s\n", 101 device->name); 102 return false; 103 } 104 105 /** 106 * frwr_release_mr - Destroy one MR 107 * @mr: MR allocated by frwr_init_mr 108 * 109 */ 110 void frwr_release_mr(struct rpcrdma_mr *mr) 111 { 112 int rc; 113 114 rc = ib_dereg_mr(mr->frwr.fr_mr); 115 if (rc) 116 trace_xprtrdma_frwr_dereg(mr, rc); 117 kfree(mr->mr_sg); 118 kfree(mr); 119 } 120 121 /* MRs are dynamically allocated, so simply clean up and release the MR. 122 * A replacement MR will subsequently be allocated on demand. 123 */ 124 static void 125 frwr_mr_recycle_worker(struct work_struct *work) 126 { 127 struct rpcrdma_mr *mr = container_of(work, struct rpcrdma_mr, mr_recycle); 128 struct rpcrdma_xprt *r_xprt = mr->mr_xprt; 129 130 trace_xprtrdma_mr_recycle(mr); 131 132 if (mr->mr_dir != DMA_NONE) { 133 trace_xprtrdma_mr_unmap(mr); 134 ib_dma_unmap_sg(r_xprt->rx_ia.ri_id->device, 135 mr->mr_sg, mr->mr_nents, mr->mr_dir); 136 mr->mr_dir = DMA_NONE; 137 } 138 139 spin_lock(&r_xprt->rx_buf.rb_mrlock); 140 list_del(&mr->mr_all); 141 r_xprt->rx_stats.mrs_recycled++; 142 spin_unlock(&r_xprt->rx_buf.rb_mrlock); 143 144 frwr_release_mr(mr); 145 } 146 147 /* frwr_reset - Place MRs back on the free list 148 * @req: request to reset 149 * 150 * Used after a failed marshal. For FRWR, this means the MRs 151 * don't have to be fully released and recreated. 152 * 153 * NB: This is safe only as long as none of @req's MRs are 154 * involved with an ongoing asynchronous FAST_REG or LOCAL_INV 155 * Work Request. 156 */ 157 void frwr_reset(struct rpcrdma_req *req) 158 { 159 while (!list_empty(&req->rl_registered)) { 160 struct rpcrdma_mr *mr; 161 162 mr = rpcrdma_mr_pop(&req->rl_registered); 163 rpcrdma_mr_unmap_and_put(mr); 164 } 165 } 166 167 /** 168 * frwr_init_mr - Initialize one MR 169 * @ia: interface adapter 170 * @mr: generic MR to prepare for FRWR 171 * 172 * Returns zero if successful. Otherwise a negative errno 173 * is returned. 174 */ 175 int frwr_init_mr(struct rpcrdma_ia *ia, struct rpcrdma_mr *mr) 176 { 177 unsigned int depth = ia->ri_max_frwr_depth; 178 struct scatterlist *sg; 179 struct ib_mr *frmr; 180 int rc; 181 182 frmr = ib_alloc_mr(ia->ri_pd, ia->ri_mrtype, depth); 183 if (IS_ERR(frmr)) 184 goto out_mr_err; 185 186 sg = kcalloc(depth, sizeof(*sg), GFP_KERNEL); 187 if (!sg) 188 goto out_list_err; 189 190 mr->frwr.fr_mr = frmr; 191 mr->mr_dir = DMA_NONE; 192 INIT_LIST_HEAD(&mr->mr_list); 193 INIT_WORK(&mr->mr_recycle, frwr_mr_recycle_worker); 194 init_completion(&mr->frwr.fr_linv_done); 195 196 sg_init_table(sg, depth); 197 mr->mr_sg = sg; 198 return 0; 199 200 out_mr_err: 201 rc = PTR_ERR(frmr); 202 trace_xprtrdma_frwr_alloc(mr, rc); 203 return rc; 204 205 out_list_err: 206 dprintk("RPC: %s: sg allocation failure\n", 207 __func__); 208 ib_dereg_mr(frmr); 209 return -ENOMEM; 210 } 211 212 /** 213 * frwr_open - Prepare an endpoint for use with FRWR 214 * @ia: interface adapter this endpoint will use 215 * @ep: endpoint to prepare 216 * 217 * On success, sets: 218 * ep->rep_attr.cap.max_send_wr 219 * ep->rep_attr.cap.max_recv_wr 220 * ep->rep_max_requests 221 * ia->ri_max_segs 222 * 223 * And these FRWR-related fields: 224 * ia->ri_max_frwr_depth 225 * ia->ri_mrtype 226 * 227 * On failure, a negative errno is returned. 228 */ 229 int frwr_open(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep) 230 { 231 struct ib_device_attr *attrs = &ia->ri_id->device->attrs; 232 int max_qp_wr, depth, delta; 233 234 ia->ri_mrtype = IB_MR_TYPE_MEM_REG; 235 if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG) 236 ia->ri_mrtype = IB_MR_TYPE_SG_GAPS; 237 238 /* Quirk: Some devices advertise a large max_fast_reg_page_list_len 239 * capability, but perform optimally when the MRs are not larger 240 * than a page. 241 */ 242 if (attrs->max_sge_rd > 1) 243 ia->ri_max_frwr_depth = attrs->max_sge_rd; 244 else 245 ia->ri_max_frwr_depth = attrs->max_fast_reg_page_list_len; 246 if (ia->ri_max_frwr_depth > RPCRDMA_MAX_DATA_SEGS) 247 ia->ri_max_frwr_depth = RPCRDMA_MAX_DATA_SEGS; 248 dprintk("RPC: %s: max FR page list depth = %u\n", 249 __func__, ia->ri_max_frwr_depth); 250 251 /* Add room for frwr register and invalidate WRs. 252 * 1. FRWR reg WR for head 253 * 2. FRWR invalidate WR for head 254 * 3. N FRWR reg WRs for pagelist 255 * 4. N FRWR invalidate WRs for pagelist 256 * 5. FRWR reg WR for tail 257 * 6. FRWR invalidate WR for tail 258 * 7. The RDMA_SEND WR 259 */ 260 depth = 7; 261 262 /* Calculate N if the device max FRWR depth is smaller than 263 * RPCRDMA_MAX_DATA_SEGS. 264 */ 265 if (ia->ri_max_frwr_depth < RPCRDMA_MAX_DATA_SEGS) { 266 delta = RPCRDMA_MAX_DATA_SEGS - ia->ri_max_frwr_depth; 267 do { 268 depth += 2; /* FRWR reg + invalidate */ 269 delta -= ia->ri_max_frwr_depth; 270 } while (delta > 0); 271 } 272 273 max_qp_wr = ia->ri_id->device->attrs.max_qp_wr; 274 max_qp_wr -= RPCRDMA_BACKWARD_WRS; 275 max_qp_wr -= 1; 276 if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE) 277 return -ENOMEM; 278 if (ep->rep_max_requests > max_qp_wr) 279 ep->rep_max_requests = max_qp_wr; 280 ep->rep_attr.cap.max_send_wr = ep->rep_max_requests * depth; 281 if (ep->rep_attr.cap.max_send_wr > max_qp_wr) { 282 ep->rep_max_requests = max_qp_wr / depth; 283 if (!ep->rep_max_requests) 284 return -EINVAL; 285 ep->rep_attr.cap.max_send_wr = ep->rep_max_requests * depth; 286 } 287 ep->rep_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS; 288 ep->rep_attr.cap.max_send_wr += 1; /* for ib_drain_sq */ 289 ep->rep_attr.cap.max_recv_wr = ep->rep_max_requests; 290 ep->rep_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS; 291 ep->rep_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */ 292 293 ia->ri_max_segs = max_t(unsigned int, 1, RPCRDMA_MAX_DATA_SEGS / 294 ia->ri_max_frwr_depth); 295 /* Reply chunks require segments for head and tail buffers */ 296 ia->ri_max_segs += 2; 297 if (ia->ri_max_segs > RPCRDMA_MAX_HDR_SEGS) 298 ia->ri_max_segs = RPCRDMA_MAX_HDR_SEGS; 299 return 0; 300 } 301 302 /** 303 * frwr_maxpages - Compute size of largest payload 304 * @r_xprt: transport 305 * 306 * Returns maximum size of an RPC message, in pages. 307 * 308 * FRWR mode conveys a list of pages per chunk segment. The 309 * maximum length of that list is the FRWR page list depth. 310 */ 311 size_t frwr_maxpages(struct rpcrdma_xprt *r_xprt) 312 { 313 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 314 315 return min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS, 316 (ia->ri_max_segs - 2) * ia->ri_max_frwr_depth); 317 } 318 319 /** 320 * frwr_map - Register a memory region 321 * @r_xprt: controlling transport 322 * @seg: memory region co-ordinates 323 * @nsegs: number of segments remaining 324 * @writing: true when RDMA Write will be used 325 * @xid: XID of RPC using the registered memory 326 * @out: initialized MR 327 * 328 * Prepare a REG_MR Work Request to register a memory region 329 * for remote access via RDMA READ or RDMA WRITE. 330 * 331 * Returns the next segment or a negative errno pointer. 332 * On success, the prepared MR is planted in @out. 333 */ 334 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt, 335 struct rpcrdma_mr_seg *seg, 336 int nsegs, bool writing, __be32 xid, 337 struct rpcrdma_mr **out) 338 { 339 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 340 bool holes_ok = ia->ri_mrtype == IB_MR_TYPE_SG_GAPS; 341 struct rpcrdma_mr *mr; 342 struct ib_mr *ibmr; 343 struct ib_reg_wr *reg_wr; 344 int i, n; 345 u8 key; 346 347 mr = rpcrdma_mr_get(r_xprt); 348 if (!mr) 349 goto out_getmr_err; 350 351 if (nsegs > ia->ri_max_frwr_depth) 352 nsegs = ia->ri_max_frwr_depth; 353 for (i = 0; i < nsegs;) { 354 if (seg->mr_page) 355 sg_set_page(&mr->mr_sg[i], 356 seg->mr_page, 357 seg->mr_len, 358 offset_in_page(seg->mr_offset)); 359 else 360 sg_set_buf(&mr->mr_sg[i], seg->mr_offset, 361 seg->mr_len); 362 363 ++seg; 364 ++i; 365 if (holes_ok) 366 continue; 367 if ((i < nsegs && offset_in_page(seg->mr_offset)) || 368 offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) 369 break; 370 } 371 mr->mr_dir = rpcrdma_data_dir(writing); 372 373 mr->mr_nents = 374 ib_dma_map_sg(ia->ri_id->device, mr->mr_sg, i, mr->mr_dir); 375 if (!mr->mr_nents) 376 goto out_dmamap_err; 377 378 ibmr = mr->frwr.fr_mr; 379 n = ib_map_mr_sg(ibmr, mr->mr_sg, mr->mr_nents, NULL, PAGE_SIZE); 380 if (unlikely(n != mr->mr_nents)) 381 goto out_mapmr_err; 382 383 ibmr->iova &= 0x00000000ffffffff; 384 ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32; 385 key = (u8)(ibmr->rkey & 0x000000FF); 386 ib_update_fast_reg_key(ibmr, ++key); 387 388 reg_wr = &mr->frwr.fr_regwr; 389 reg_wr->mr = ibmr; 390 reg_wr->key = ibmr->rkey; 391 reg_wr->access = writing ? 392 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE : 393 IB_ACCESS_REMOTE_READ; 394 395 mr->mr_handle = ibmr->rkey; 396 mr->mr_length = ibmr->length; 397 mr->mr_offset = ibmr->iova; 398 trace_xprtrdma_mr_map(mr); 399 400 *out = mr; 401 return seg; 402 403 out_getmr_err: 404 xprt_wait_for_buffer_space(&r_xprt->rx_xprt); 405 return ERR_PTR(-EAGAIN); 406 407 out_dmamap_err: 408 mr->mr_dir = DMA_NONE; 409 trace_xprtrdma_frwr_sgerr(mr, i); 410 rpcrdma_mr_put(mr); 411 return ERR_PTR(-EIO); 412 413 out_mapmr_err: 414 trace_xprtrdma_frwr_maperr(mr, n); 415 rpcrdma_mr_recycle(mr); 416 return ERR_PTR(-EIO); 417 } 418 419 /** 420 * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC 421 * @cq: completion queue (ignored) 422 * @wc: completed WR 423 * 424 */ 425 static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc) 426 { 427 struct ib_cqe *cqe = wc->wr_cqe; 428 struct rpcrdma_frwr *frwr = 429 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 430 431 /* WARNING: Only wr_cqe and status are reliable at this point */ 432 trace_xprtrdma_wc_fastreg(wc, frwr); 433 /* The MR will get recycled when the associated req is retransmitted */ 434 } 435 436 /** 437 * frwr_send - post Send WR containing the RPC Call message 438 * @ia: interface adapter 439 * @req: Prepared RPC Call 440 * 441 * For FRWR, chain any FastReg WRs to the Send WR. Only a 442 * single ib_post_send call is needed to register memory 443 * and then post the Send WR. 444 * 445 * Returns the result of ib_post_send. 446 */ 447 int frwr_send(struct rpcrdma_ia *ia, struct rpcrdma_req *req) 448 { 449 struct ib_send_wr *post_wr; 450 struct rpcrdma_mr *mr; 451 452 post_wr = &req->rl_sendctx->sc_wr; 453 list_for_each_entry(mr, &req->rl_registered, mr_list) { 454 struct rpcrdma_frwr *frwr; 455 456 frwr = &mr->frwr; 457 458 frwr->fr_cqe.done = frwr_wc_fastreg; 459 frwr->fr_regwr.wr.next = post_wr; 460 frwr->fr_regwr.wr.wr_cqe = &frwr->fr_cqe; 461 frwr->fr_regwr.wr.num_sge = 0; 462 frwr->fr_regwr.wr.opcode = IB_WR_REG_MR; 463 frwr->fr_regwr.wr.send_flags = 0; 464 465 post_wr = &frwr->fr_regwr.wr; 466 } 467 468 /* If ib_post_send fails, the next ->send_request for 469 * @req will queue these MRs for recovery. 470 */ 471 return ib_post_send(ia->ri_id->qp, post_wr, NULL); 472 } 473 474 /** 475 * frwr_reminv - handle a remotely invalidated mr on the @mrs list 476 * @rep: Received reply 477 * @mrs: list of MRs to check 478 * 479 */ 480 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs) 481 { 482 struct rpcrdma_mr *mr; 483 484 list_for_each_entry(mr, mrs, mr_list) 485 if (mr->mr_handle == rep->rr_inv_rkey) { 486 list_del_init(&mr->mr_list); 487 trace_xprtrdma_mr_remoteinv(mr); 488 rpcrdma_mr_unmap_and_put(mr); 489 break; /* only one invalidated MR per RPC */ 490 } 491 } 492 493 static void __frwr_release_mr(struct ib_wc *wc, struct rpcrdma_mr *mr) 494 { 495 if (wc->status != IB_WC_SUCCESS) 496 rpcrdma_mr_recycle(mr); 497 else 498 rpcrdma_mr_unmap_and_put(mr); 499 } 500 501 /** 502 * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC 503 * @cq: completion queue (ignored) 504 * @wc: completed WR 505 * 506 */ 507 static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc) 508 { 509 struct ib_cqe *cqe = wc->wr_cqe; 510 struct rpcrdma_frwr *frwr = 511 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 512 struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr); 513 514 /* WARNING: Only wr_cqe and status are reliable at this point */ 515 trace_xprtrdma_wc_li(wc, frwr); 516 __frwr_release_mr(wc, mr); 517 } 518 519 /** 520 * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC 521 * @cq: completion queue (ignored) 522 * @wc: completed WR 523 * 524 * Awaken anyone waiting for an MR to finish being fenced. 525 */ 526 static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc) 527 { 528 struct ib_cqe *cqe = wc->wr_cqe; 529 struct rpcrdma_frwr *frwr = 530 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 531 struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr); 532 533 /* WARNING: Only wr_cqe and status are reliable at this point */ 534 trace_xprtrdma_wc_li_wake(wc, frwr); 535 complete(&frwr->fr_linv_done); 536 __frwr_release_mr(wc, mr); 537 } 538 539 /** 540 * frwr_unmap_sync - invalidate memory regions that were registered for @req 541 * @r_xprt: controlling transport instance 542 * @req: rpcrdma_req with a non-empty list of MRs to process 543 * 544 * Sleeps until it is safe for the host CPU to access the previously mapped 545 * memory regions. This guarantees that registered MRs are properly fenced 546 * from the server before the RPC consumer accesses the data in them. It 547 * also ensures proper Send flow control: waking the next RPC waits until 548 * this RPC has relinquished all its Send Queue entries. 549 */ 550 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 551 { 552 struct ib_send_wr *first, **prev, *last; 553 const struct ib_send_wr *bad_wr; 554 struct rpcrdma_frwr *frwr; 555 struct rpcrdma_mr *mr; 556 int rc; 557 558 /* ORDER: Invalidate all of the MRs first 559 * 560 * Chain the LOCAL_INV Work Requests and post them with 561 * a single ib_post_send() call. 562 */ 563 frwr = NULL; 564 prev = &first; 565 while (!list_empty(&req->rl_registered)) { 566 mr = rpcrdma_mr_pop(&req->rl_registered); 567 568 trace_xprtrdma_mr_localinv(mr); 569 r_xprt->rx_stats.local_inv_needed++; 570 571 frwr = &mr->frwr; 572 frwr->fr_cqe.done = frwr_wc_localinv; 573 last = &frwr->fr_invwr; 574 last->next = NULL; 575 last->wr_cqe = &frwr->fr_cqe; 576 last->sg_list = NULL; 577 last->num_sge = 0; 578 last->opcode = IB_WR_LOCAL_INV; 579 last->send_flags = IB_SEND_SIGNALED; 580 last->ex.invalidate_rkey = mr->mr_handle; 581 582 *prev = last; 583 prev = &last->next; 584 } 585 586 /* Strong send queue ordering guarantees that when the 587 * last WR in the chain completes, all WRs in the chain 588 * are complete. 589 */ 590 frwr->fr_cqe.done = frwr_wc_localinv_wake; 591 reinit_completion(&frwr->fr_linv_done); 592 593 /* Transport disconnect drains the receive CQ before it 594 * replaces the QP. The RPC reply handler won't call us 595 * unless ri_id->qp is a valid pointer. 596 */ 597 bad_wr = NULL; 598 rc = ib_post_send(r_xprt->rx_ia.ri_id->qp, first, &bad_wr); 599 trace_xprtrdma_post_send(req, rc); 600 601 /* The final LOCAL_INV WR in the chain is supposed to 602 * do the wake. If it was never posted, the wake will 603 * not happen, so don't wait in that case. 604 */ 605 if (bad_wr != first) 606 wait_for_completion(&frwr->fr_linv_done); 607 if (!rc) 608 return; 609 610 /* Recycle MRs in the LOCAL_INV chain that did not get posted. 611 */ 612 while (bad_wr) { 613 frwr = container_of(bad_wr, struct rpcrdma_frwr, 614 fr_invwr); 615 mr = container_of(frwr, struct rpcrdma_mr, frwr); 616 bad_wr = bad_wr->next; 617 618 list_del_init(&mr->mr_list); 619 rpcrdma_mr_recycle(mr); 620 } 621 } 622 623 /** 624 * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC 625 * @cq: completion queue (ignored) 626 * @wc: completed WR 627 * 628 */ 629 static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc) 630 { 631 struct ib_cqe *cqe = wc->wr_cqe; 632 struct rpcrdma_frwr *frwr = 633 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 634 struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr); 635 636 /* WARNING: Only wr_cqe and status are reliable at this point */ 637 trace_xprtrdma_wc_li_done(wc, frwr); 638 rpcrdma_complete_rqst(frwr->fr_req->rl_reply); 639 __frwr_release_mr(wc, mr); 640 } 641 642 /** 643 * frwr_unmap_async - invalidate memory regions that were registered for @req 644 * @r_xprt: controlling transport instance 645 * @req: rpcrdma_req with a non-empty list of MRs to process 646 * 647 * This guarantees that registered MRs are properly fenced from the 648 * server before the RPC consumer accesses the data in them. It also 649 * ensures proper Send flow control: waking the next RPC waits until 650 * this RPC has relinquished all its Send Queue entries. 651 */ 652 void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 653 { 654 struct ib_send_wr *first, *last, **prev; 655 const struct ib_send_wr *bad_wr; 656 struct rpcrdma_frwr *frwr; 657 struct rpcrdma_mr *mr; 658 int rc; 659 660 /* Chain the LOCAL_INV Work Requests and post them with 661 * a single ib_post_send() call. 662 */ 663 frwr = NULL; 664 prev = &first; 665 while (!list_empty(&req->rl_registered)) { 666 mr = rpcrdma_mr_pop(&req->rl_registered); 667 668 trace_xprtrdma_mr_localinv(mr); 669 r_xprt->rx_stats.local_inv_needed++; 670 671 frwr = &mr->frwr; 672 frwr->fr_cqe.done = frwr_wc_localinv; 673 frwr->fr_req = req; 674 last = &frwr->fr_invwr; 675 last->next = NULL; 676 last->wr_cqe = &frwr->fr_cqe; 677 last->sg_list = NULL; 678 last->num_sge = 0; 679 last->opcode = IB_WR_LOCAL_INV; 680 last->send_flags = IB_SEND_SIGNALED; 681 last->ex.invalidate_rkey = mr->mr_handle; 682 683 *prev = last; 684 prev = &last->next; 685 } 686 687 /* Strong send queue ordering guarantees that when the 688 * last WR in the chain completes, all WRs in the chain 689 * are complete. The last completion will wake up the 690 * RPC waiter. 691 */ 692 frwr->fr_cqe.done = frwr_wc_localinv_done; 693 694 /* Transport disconnect drains the receive CQ before it 695 * replaces the QP. The RPC reply handler won't call us 696 * unless ri_id->qp is a valid pointer. 697 */ 698 bad_wr = NULL; 699 rc = ib_post_send(r_xprt->rx_ia.ri_id->qp, first, &bad_wr); 700 trace_xprtrdma_post_send(req, rc); 701 if (!rc) 702 return; 703 704 /* Recycle MRs in the LOCAL_INV chain that did not get posted. 705 */ 706 while (bad_wr) { 707 frwr = container_of(bad_wr, struct rpcrdma_frwr, fr_invwr); 708 mr = container_of(frwr, struct rpcrdma_mr, frwr); 709 bad_wr = bad_wr->next; 710 711 rpcrdma_mr_recycle(mr); 712 } 713 714 /* The final LOCAL_INV WR in the chain is supposed to 715 * do the wake. If it was never posted, the wake will 716 * not happen, so wake here in that case. 717 */ 718 rpcrdma_complete_rqst(req->rl_reply); 719 } 720