xref: /openbmc/linux/net/sunrpc/xprtrdma/frwr_ops.c (revision 4f89e4b8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015, 2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  */
6 
7 /* Lightweight memory registration using Fast Registration Work
8  * Requests (FRWR).
9  *
10  * FRWR features ordered asynchronous registration and deregistration
11  * of arbitrarily sized memory regions. This is the fastest and safest
12  * but most complex memory registration mode.
13  */
14 
15 /* Normal operation
16  *
17  * A Memory Region is prepared for RDMA READ or WRITE using a FAST_REG
18  * Work Request (frwr_map). When the RDMA operation is finished, this
19  * Memory Region is invalidated using a LOCAL_INV Work Request
20  * (frwr_unmap_sync).
21  *
22  * Typically these Work Requests are not signaled, and neither are RDMA
23  * SEND Work Requests (with the exception of signaling occasionally to
24  * prevent provider work queue overflows). This greatly reduces HCA
25  * interrupt workload.
26  *
27  * As an optimization, frwr_unmap marks MRs INVALID before the
28  * LOCAL_INV WR is posted. If posting succeeds, the MR is placed on
29  * rb_mrs immediately so that no work (like managing a linked list
30  * under a spinlock) is needed in the completion upcall.
31  *
32  * But this means that frwr_map() can occasionally encounter an MR
33  * that is INVALID but the LOCAL_INV WR has not completed. Work Queue
34  * ordering prevents a subsequent FAST_REG WR from executing against
35  * that MR while it is still being invalidated.
36  */
37 
38 /* Transport recovery
39  *
40  * ->op_map and the transport connect worker cannot run at the same
41  * time, but ->op_unmap can fire while the transport connect worker
42  * is running. Thus MR recovery is handled in ->op_map, to guarantee
43  * that recovered MRs are owned by a sending RPC, and not one where
44  * ->op_unmap could fire at the same time transport reconnect is
45  * being done.
46  *
47  * When the underlying transport disconnects, MRs are left in one of
48  * four states:
49  *
50  * INVALID:	The MR was not in use before the QP entered ERROR state.
51  *
52  * VALID:	The MR was registered before the QP entered ERROR state.
53  *
54  * FLUSHED_FR:	The MR was being registered when the QP entered ERROR
55  *		state, and the pending WR was flushed.
56  *
57  * FLUSHED_LI:	The MR was being invalidated when the QP entered ERROR
58  *		state, and the pending WR was flushed.
59  *
60  * When frwr_map encounters FLUSHED and VALID MRs, they are recovered
61  * with ib_dereg_mr and then are re-initialized. Because MR recovery
62  * allocates fresh resources, it is deferred to a workqueue, and the
63  * recovered MRs are placed back on the rb_mrs list when recovery is
64  * complete. frwr_map allocates another MR for the current RPC while
65  * the broken MR is reset.
66  *
67  * To ensure that frwr_map doesn't encounter an MR that is marked
68  * INVALID but that is about to be flushed due to a previous transport
69  * disconnect, the transport connect worker attempts to drain all
70  * pending send queue WRs before the transport is reconnected.
71  */
72 
73 #include <linux/sunrpc/rpc_rdma.h>
74 #include <linux/sunrpc/svc_rdma.h>
75 
76 #include "xprt_rdma.h"
77 #include <trace/events/rpcrdma.h>
78 
79 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
80 # define RPCDBG_FACILITY	RPCDBG_TRANS
81 #endif
82 
83 /**
84  * frwr_is_supported - Check if device supports FRWR
85  * @device: interface adapter to check
86  *
87  * Returns true if device supports FRWR, otherwise false
88  */
89 bool frwr_is_supported(struct ib_device *device)
90 {
91 	struct ib_device_attr *attrs = &device->attrs;
92 
93 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
94 		goto out_not_supported;
95 	if (attrs->max_fast_reg_page_list_len == 0)
96 		goto out_not_supported;
97 	return true;
98 
99 out_not_supported:
100 	pr_info("rpcrdma: 'frwr' mode is not supported by device %s\n",
101 		device->name);
102 	return false;
103 }
104 
105 /**
106  * frwr_release_mr - Destroy one MR
107  * @mr: MR allocated by frwr_init_mr
108  *
109  */
110 void frwr_release_mr(struct rpcrdma_mr *mr)
111 {
112 	int rc;
113 
114 	rc = ib_dereg_mr(mr->frwr.fr_mr);
115 	if (rc)
116 		trace_xprtrdma_frwr_dereg(mr, rc);
117 	kfree(mr->mr_sg);
118 	kfree(mr);
119 }
120 
121 /* MRs are dynamically allocated, so simply clean up and release the MR.
122  * A replacement MR will subsequently be allocated on demand.
123  */
124 static void
125 frwr_mr_recycle_worker(struct work_struct *work)
126 {
127 	struct rpcrdma_mr *mr = container_of(work, struct rpcrdma_mr, mr_recycle);
128 	struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
129 
130 	trace_xprtrdma_mr_recycle(mr);
131 
132 	if (mr->mr_dir != DMA_NONE) {
133 		trace_xprtrdma_mr_unmap(mr);
134 		ib_dma_unmap_sg(r_xprt->rx_ia.ri_id->device,
135 				mr->mr_sg, mr->mr_nents, mr->mr_dir);
136 		mr->mr_dir = DMA_NONE;
137 	}
138 
139 	spin_lock(&r_xprt->rx_buf.rb_mrlock);
140 	list_del(&mr->mr_all);
141 	r_xprt->rx_stats.mrs_recycled++;
142 	spin_unlock(&r_xprt->rx_buf.rb_mrlock);
143 
144 	frwr_release_mr(mr);
145 }
146 
147 /* frwr_reset - Place MRs back on the free list
148  * @req: request to reset
149  *
150  * Used after a failed marshal. For FRWR, this means the MRs
151  * don't have to be fully released and recreated.
152  *
153  * NB: This is safe only as long as none of @req's MRs are
154  * involved with an ongoing asynchronous FAST_REG or LOCAL_INV
155  * Work Request.
156  */
157 void frwr_reset(struct rpcrdma_req *req)
158 {
159 	while (!list_empty(&req->rl_registered)) {
160 		struct rpcrdma_mr *mr;
161 
162 		mr = rpcrdma_mr_pop(&req->rl_registered);
163 		rpcrdma_mr_unmap_and_put(mr);
164 	}
165 }
166 
167 /**
168  * frwr_init_mr - Initialize one MR
169  * @ia: interface adapter
170  * @mr: generic MR to prepare for FRWR
171  *
172  * Returns zero if successful. Otherwise a negative errno
173  * is returned.
174  */
175 int frwr_init_mr(struct rpcrdma_ia *ia, struct rpcrdma_mr *mr)
176 {
177 	unsigned int depth = ia->ri_max_frwr_depth;
178 	struct scatterlist *sg;
179 	struct ib_mr *frmr;
180 	int rc;
181 
182 	frmr = ib_alloc_mr(ia->ri_pd, ia->ri_mrtype, depth);
183 	if (IS_ERR(frmr))
184 		goto out_mr_err;
185 
186 	sg = kcalloc(depth, sizeof(*sg), GFP_KERNEL);
187 	if (!sg)
188 		goto out_list_err;
189 
190 	mr->frwr.fr_mr = frmr;
191 	mr->mr_dir = DMA_NONE;
192 	INIT_LIST_HEAD(&mr->mr_list);
193 	INIT_WORK(&mr->mr_recycle, frwr_mr_recycle_worker);
194 	init_completion(&mr->frwr.fr_linv_done);
195 
196 	sg_init_table(sg, depth);
197 	mr->mr_sg = sg;
198 	return 0;
199 
200 out_mr_err:
201 	rc = PTR_ERR(frmr);
202 	trace_xprtrdma_frwr_alloc(mr, rc);
203 	return rc;
204 
205 out_list_err:
206 	dprintk("RPC:       %s: sg allocation failure\n",
207 		__func__);
208 	ib_dereg_mr(frmr);
209 	return -ENOMEM;
210 }
211 
212 /**
213  * frwr_open - Prepare an endpoint for use with FRWR
214  * @ia: interface adapter this endpoint will use
215  * @ep: endpoint to prepare
216  *
217  * On success, sets:
218  *	ep->rep_attr.cap.max_send_wr
219  *	ep->rep_attr.cap.max_recv_wr
220  *	ep->rep_max_requests
221  *	ia->ri_max_segs
222  *
223  * And these FRWR-related fields:
224  *	ia->ri_max_frwr_depth
225  *	ia->ri_mrtype
226  *
227  * On failure, a negative errno is returned.
228  */
229 int frwr_open(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep)
230 {
231 	struct ib_device_attr *attrs = &ia->ri_id->device->attrs;
232 	int max_qp_wr, depth, delta;
233 
234 	ia->ri_mrtype = IB_MR_TYPE_MEM_REG;
235 	if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG)
236 		ia->ri_mrtype = IB_MR_TYPE_SG_GAPS;
237 
238 	/* Quirk: Some devices advertise a large max_fast_reg_page_list_len
239 	 * capability, but perform optimally when the MRs are not larger
240 	 * than a page.
241 	 */
242 	if (attrs->max_sge_rd > 1)
243 		ia->ri_max_frwr_depth = attrs->max_sge_rd;
244 	else
245 		ia->ri_max_frwr_depth = attrs->max_fast_reg_page_list_len;
246 	if (ia->ri_max_frwr_depth > RPCRDMA_MAX_DATA_SEGS)
247 		ia->ri_max_frwr_depth = RPCRDMA_MAX_DATA_SEGS;
248 	dprintk("RPC:       %s: max FR page list depth = %u\n",
249 		__func__, ia->ri_max_frwr_depth);
250 
251 	/* Add room for frwr register and invalidate WRs.
252 	 * 1. FRWR reg WR for head
253 	 * 2. FRWR invalidate WR for head
254 	 * 3. N FRWR reg WRs for pagelist
255 	 * 4. N FRWR invalidate WRs for pagelist
256 	 * 5. FRWR reg WR for tail
257 	 * 6. FRWR invalidate WR for tail
258 	 * 7. The RDMA_SEND WR
259 	 */
260 	depth = 7;
261 
262 	/* Calculate N if the device max FRWR depth is smaller than
263 	 * RPCRDMA_MAX_DATA_SEGS.
264 	 */
265 	if (ia->ri_max_frwr_depth < RPCRDMA_MAX_DATA_SEGS) {
266 		delta = RPCRDMA_MAX_DATA_SEGS - ia->ri_max_frwr_depth;
267 		do {
268 			depth += 2; /* FRWR reg + invalidate */
269 			delta -= ia->ri_max_frwr_depth;
270 		} while (delta > 0);
271 	}
272 
273 	max_qp_wr = ia->ri_id->device->attrs.max_qp_wr;
274 	max_qp_wr -= RPCRDMA_BACKWARD_WRS;
275 	max_qp_wr -= 1;
276 	if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE)
277 		return -ENOMEM;
278 	if (ep->rep_max_requests > max_qp_wr)
279 		ep->rep_max_requests = max_qp_wr;
280 	ep->rep_attr.cap.max_send_wr = ep->rep_max_requests * depth;
281 	if (ep->rep_attr.cap.max_send_wr > max_qp_wr) {
282 		ep->rep_max_requests = max_qp_wr / depth;
283 		if (!ep->rep_max_requests)
284 			return -EINVAL;
285 		ep->rep_attr.cap.max_send_wr = ep->rep_max_requests * depth;
286 	}
287 	ep->rep_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
288 	ep->rep_attr.cap.max_send_wr += 1; /* for ib_drain_sq */
289 	ep->rep_attr.cap.max_recv_wr = ep->rep_max_requests;
290 	ep->rep_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
291 	ep->rep_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */
292 
293 	ia->ri_max_segs = max_t(unsigned int, 1, RPCRDMA_MAX_DATA_SEGS /
294 				ia->ri_max_frwr_depth);
295 	/* Reply chunks require segments for head and tail buffers */
296 	ia->ri_max_segs += 2;
297 	if (ia->ri_max_segs > RPCRDMA_MAX_HDR_SEGS)
298 		ia->ri_max_segs = RPCRDMA_MAX_HDR_SEGS;
299 	return 0;
300 }
301 
302 /**
303  * frwr_maxpages - Compute size of largest payload
304  * @r_xprt: transport
305  *
306  * Returns maximum size of an RPC message, in pages.
307  *
308  * FRWR mode conveys a list of pages per chunk segment. The
309  * maximum length of that list is the FRWR page list depth.
310  */
311 size_t frwr_maxpages(struct rpcrdma_xprt *r_xprt)
312 {
313 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
314 
315 	return min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS,
316 		     (ia->ri_max_segs - 2) * ia->ri_max_frwr_depth);
317 }
318 
319 /**
320  * frwr_map - Register a memory region
321  * @r_xprt: controlling transport
322  * @seg: memory region co-ordinates
323  * @nsegs: number of segments remaining
324  * @writing: true when RDMA Write will be used
325  * @xid: XID of RPC using the registered memory
326  * @out: initialized MR
327  *
328  * Prepare a REG_MR Work Request to register a memory region
329  * for remote access via RDMA READ or RDMA WRITE.
330  *
331  * Returns the next segment or a negative errno pointer.
332  * On success, the prepared MR is planted in @out.
333  */
334 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt,
335 				struct rpcrdma_mr_seg *seg,
336 				int nsegs, bool writing, __be32 xid,
337 				struct rpcrdma_mr **out)
338 {
339 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
340 	bool holes_ok = ia->ri_mrtype == IB_MR_TYPE_SG_GAPS;
341 	struct rpcrdma_mr *mr;
342 	struct ib_mr *ibmr;
343 	struct ib_reg_wr *reg_wr;
344 	int i, n;
345 	u8 key;
346 
347 	mr = rpcrdma_mr_get(r_xprt);
348 	if (!mr)
349 		goto out_getmr_err;
350 
351 	if (nsegs > ia->ri_max_frwr_depth)
352 		nsegs = ia->ri_max_frwr_depth;
353 	for (i = 0; i < nsegs;) {
354 		if (seg->mr_page)
355 			sg_set_page(&mr->mr_sg[i],
356 				    seg->mr_page,
357 				    seg->mr_len,
358 				    offset_in_page(seg->mr_offset));
359 		else
360 			sg_set_buf(&mr->mr_sg[i], seg->mr_offset,
361 				   seg->mr_len);
362 
363 		++seg;
364 		++i;
365 		if (holes_ok)
366 			continue;
367 		if ((i < nsegs && offset_in_page(seg->mr_offset)) ||
368 		    offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
369 			break;
370 	}
371 	mr->mr_dir = rpcrdma_data_dir(writing);
372 
373 	mr->mr_nents =
374 		ib_dma_map_sg(ia->ri_id->device, mr->mr_sg, i, mr->mr_dir);
375 	if (!mr->mr_nents)
376 		goto out_dmamap_err;
377 
378 	ibmr = mr->frwr.fr_mr;
379 	n = ib_map_mr_sg(ibmr, mr->mr_sg, mr->mr_nents, NULL, PAGE_SIZE);
380 	if (unlikely(n != mr->mr_nents))
381 		goto out_mapmr_err;
382 
383 	ibmr->iova &= 0x00000000ffffffff;
384 	ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32;
385 	key = (u8)(ibmr->rkey & 0x000000FF);
386 	ib_update_fast_reg_key(ibmr, ++key);
387 
388 	reg_wr = &mr->frwr.fr_regwr;
389 	reg_wr->mr = ibmr;
390 	reg_wr->key = ibmr->rkey;
391 	reg_wr->access = writing ?
392 			 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
393 			 IB_ACCESS_REMOTE_READ;
394 
395 	mr->mr_handle = ibmr->rkey;
396 	mr->mr_length = ibmr->length;
397 	mr->mr_offset = ibmr->iova;
398 	trace_xprtrdma_mr_map(mr);
399 
400 	*out = mr;
401 	return seg;
402 
403 out_getmr_err:
404 	xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
405 	return ERR_PTR(-EAGAIN);
406 
407 out_dmamap_err:
408 	mr->mr_dir = DMA_NONE;
409 	trace_xprtrdma_frwr_sgerr(mr, i);
410 	rpcrdma_mr_put(mr);
411 	return ERR_PTR(-EIO);
412 
413 out_mapmr_err:
414 	trace_xprtrdma_frwr_maperr(mr, n);
415 	rpcrdma_mr_recycle(mr);
416 	return ERR_PTR(-EIO);
417 }
418 
419 /**
420  * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC
421  * @cq:	completion queue (ignored)
422  * @wc:	completed WR
423  *
424  */
425 static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
426 {
427 	struct ib_cqe *cqe = wc->wr_cqe;
428 	struct rpcrdma_frwr *frwr =
429 		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
430 
431 	/* WARNING: Only wr_cqe and status are reliable at this point */
432 	trace_xprtrdma_wc_fastreg(wc, frwr);
433 	/* The MR will get recycled when the associated req is retransmitted */
434 }
435 
436 /**
437  * frwr_send - post Send WR containing the RPC Call message
438  * @ia: interface adapter
439  * @req: Prepared RPC Call
440  *
441  * For FRWR, chain any FastReg WRs to the Send WR. Only a
442  * single ib_post_send call is needed to register memory
443  * and then post the Send WR.
444  *
445  * Returns the result of ib_post_send.
446  */
447 int frwr_send(struct rpcrdma_ia *ia, struct rpcrdma_req *req)
448 {
449 	struct ib_send_wr *post_wr;
450 	struct rpcrdma_mr *mr;
451 
452 	post_wr = &req->rl_sendctx->sc_wr;
453 	list_for_each_entry(mr, &req->rl_registered, mr_list) {
454 		struct rpcrdma_frwr *frwr;
455 
456 		frwr = &mr->frwr;
457 
458 		frwr->fr_cqe.done = frwr_wc_fastreg;
459 		frwr->fr_regwr.wr.next = post_wr;
460 		frwr->fr_regwr.wr.wr_cqe = &frwr->fr_cqe;
461 		frwr->fr_regwr.wr.num_sge = 0;
462 		frwr->fr_regwr.wr.opcode = IB_WR_REG_MR;
463 		frwr->fr_regwr.wr.send_flags = 0;
464 
465 		post_wr = &frwr->fr_regwr.wr;
466 	}
467 
468 	/* If ib_post_send fails, the next ->send_request for
469 	 * @req will queue these MRs for recovery.
470 	 */
471 	return ib_post_send(ia->ri_id->qp, post_wr, NULL);
472 }
473 
474 /**
475  * frwr_reminv - handle a remotely invalidated mr on the @mrs list
476  * @rep: Received reply
477  * @mrs: list of MRs to check
478  *
479  */
480 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs)
481 {
482 	struct rpcrdma_mr *mr;
483 
484 	list_for_each_entry(mr, mrs, mr_list)
485 		if (mr->mr_handle == rep->rr_inv_rkey) {
486 			list_del_init(&mr->mr_list);
487 			trace_xprtrdma_mr_remoteinv(mr);
488 			rpcrdma_mr_unmap_and_put(mr);
489 			break;	/* only one invalidated MR per RPC */
490 		}
491 }
492 
493 static void __frwr_release_mr(struct ib_wc *wc, struct rpcrdma_mr *mr)
494 {
495 	if (wc->status != IB_WC_SUCCESS)
496 		rpcrdma_mr_recycle(mr);
497 	else
498 		rpcrdma_mr_unmap_and_put(mr);
499 }
500 
501 /**
502  * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC
503  * @cq:	completion queue (ignored)
504  * @wc:	completed WR
505  *
506  */
507 static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
508 {
509 	struct ib_cqe *cqe = wc->wr_cqe;
510 	struct rpcrdma_frwr *frwr =
511 		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
512 	struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr);
513 
514 	/* WARNING: Only wr_cqe and status are reliable at this point */
515 	trace_xprtrdma_wc_li(wc, frwr);
516 	__frwr_release_mr(wc, mr);
517 }
518 
519 /**
520  * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC
521  * @cq:	completion queue (ignored)
522  * @wc:	completed WR
523  *
524  * Awaken anyone waiting for an MR to finish being fenced.
525  */
526 static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
527 {
528 	struct ib_cqe *cqe = wc->wr_cqe;
529 	struct rpcrdma_frwr *frwr =
530 		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
531 	struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr);
532 
533 	/* WARNING: Only wr_cqe and status are reliable at this point */
534 	trace_xprtrdma_wc_li_wake(wc, frwr);
535 	complete(&frwr->fr_linv_done);
536 	__frwr_release_mr(wc, mr);
537 }
538 
539 /**
540  * frwr_unmap_sync - invalidate memory regions that were registered for @req
541  * @r_xprt: controlling transport instance
542  * @req: rpcrdma_req with a non-empty list of MRs to process
543  *
544  * Sleeps until it is safe for the host CPU to access the previously mapped
545  * memory regions. This guarantees that registered MRs are properly fenced
546  * from the server before the RPC consumer accesses the data in them. It
547  * also ensures proper Send flow control: waking the next RPC waits until
548  * this RPC has relinquished all its Send Queue entries.
549  */
550 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
551 {
552 	struct ib_send_wr *first, **prev, *last;
553 	const struct ib_send_wr *bad_wr;
554 	struct rpcrdma_frwr *frwr;
555 	struct rpcrdma_mr *mr;
556 	int rc;
557 
558 	/* ORDER: Invalidate all of the MRs first
559 	 *
560 	 * Chain the LOCAL_INV Work Requests and post them with
561 	 * a single ib_post_send() call.
562 	 */
563 	frwr = NULL;
564 	prev = &first;
565 	while (!list_empty(&req->rl_registered)) {
566 		mr = rpcrdma_mr_pop(&req->rl_registered);
567 
568 		trace_xprtrdma_mr_localinv(mr);
569 		r_xprt->rx_stats.local_inv_needed++;
570 
571 		frwr = &mr->frwr;
572 		frwr->fr_cqe.done = frwr_wc_localinv;
573 		last = &frwr->fr_invwr;
574 		last->next = NULL;
575 		last->wr_cqe = &frwr->fr_cqe;
576 		last->sg_list = NULL;
577 		last->num_sge = 0;
578 		last->opcode = IB_WR_LOCAL_INV;
579 		last->send_flags = IB_SEND_SIGNALED;
580 		last->ex.invalidate_rkey = mr->mr_handle;
581 
582 		*prev = last;
583 		prev = &last->next;
584 	}
585 
586 	/* Strong send queue ordering guarantees that when the
587 	 * last WR in the chain completes, all WRs in the chain
588 	 * are complete.
589 	 */
590 	frwr->fr_cqe.done = frwr_wc_localinv_wake;
591 	reinit_completion(&frwr->fr_linv_done);
592 
593 	/* Transport disconnect drains the receive CQ before it
594 	 * replaces the QP. The RPC reply handler won't call us
595 	 * unless ri_id->qp is a valid pointer.
596 	 */
597 	bad_wr = NULL;
598 	rc = ib_post_send(r_xprt->rx_ia.ri_id->qp, first, &bad_wr);
599 	trace_xprtrdma_post_send(req, rc);
600 
601 	/* The final LOCAL_INV WR in the chain is supposed to
602 	 * do the wake. If it was never posted, the wake will
603 	 * not happen, so don't wait in that case.
604 	 */
605 	if (bad_wr != first)
606 		wait_for_completion(&frwr->fr_linv_done);
607 	if (!rc)
608 		return;
609 
610 	/* Recycle MRs in the LOCAL_INV chain that did not get posted.
611 	 */
612 	while (bad_wr) {
613 		frwr = container_of(bad_wr, struct rpcrdma_frwr,
614 				    fr_invwr);
615 		mr = container_of(frwr, struct rpcrdma_mr, frwr);
616 		bad_wr = bad_wr->next;
617 
618 		list_del_init(&mr->mr_list);
619 		rpcrdma_mr_recycle(mr);
620 	}
621 }
622 
623 /**
624  * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC
625  * @cq:	completion queue (ignored)
626  * @wc:	completed WR
627  *
628  */
629 static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc)
630 {
631 	struct ib_cqe *cqe = wc->wr_cqe;
632 	struct rpcrdma_frwr *frwr =
633 		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
634 	struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr);
635 
636 	/* WARNING: Only wr_cqe and status are reliable at this point */
637 	trace_xprtrdma_wc_li_done(wc, frwr);
638 	rpcrdma_complete_rqst(frwr->fr_req->rl_reply);
639 	__frwr_release_mr(wc, mr);
640 }
641 
642 /**
643  * frwr_unmap_async - invalidate memory regions that were registered for @req
644  * @r_xprt: controlling transport instance
645  * @req: rpcrdma_req with a non-empty list of MRs to process
646  *
647  * This guarantees that registered MRs are properly fenced from the
648  * server before the RPC consumer accesses the data in them. It also
649  * ensures proper Send flow control: waking the next RPC waits until
650  * this RPC has relinquished all its Send Queue entries.
651  */
652 void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
653 {
654 	struct ib_send_wr *first, *last, **prev;
655 	const struct ib_send_wr *bad_wr;
656 	struct rpcrdma_frwr *frwr;
657 	struct rpcrdma_mr *mr;
658 	int rc;
659 
660 	/* Chain the LOCAL_INV Work Requests and post them with
661 	 * a single ib_post_send() call.
662 	 */
663 	frwr = NULL;
664 	prev = &first;
665 	while (!list_empty(&req->rl_registered)) {
666 		mr = rpcrdma_mr_pop(&req->rl_registered);
667 
668 		trace_xprtrdma_mr_localinv(mr);
669 		r_xprt->rx_stats.local_inv_needed++;
670 
671 		frwr = &mr->frwr;
672 		frwr->fr_cqe.done = frwr_wc_localinv;
673 		frwr->fr_req = req;
674 		last = &frwr->fr_invwr;
675 		last->next = NULL;
676 		last->wr_cqe = &frwr->fr_cqe;
677 		last->sg_list = NULL;
678 		last->num_sge = 0;
679 		last->opcode = IB_WR_LOCAL_INV;
680 		last->send_flags = IB_SEND_SIGNALED;
681 		last->ex.invalidate_rkey = mr->mr_handle;
682 
683 		*prev = last;
684 		prev = &last->next;
685 	}
686 
687 	/* Strong send queue ordering guarantees that when the
688 	 * last WR in the chain completes, all WRs in the chain
689 	 * are complete. The last completion will wake up the
690 	 * RPC waiter.
691 	 */
692 	frwr->fr_cqe.done = frwr_wc_localinv_done;
693 
694 	/* Transport disconnect drains the receive CQ before it
695 	 * replaces the QP. The RPC reply handler won't call us
696 	 * unless ri_id->qp is a valid pointer.
697 	 */
698 	bad_wr = NULL;
699 	rc = ib_post_send(r_xprt->rx_ia.ri_id->qp, first, &bad_wr);
700 	trace_xprtrdma_post_send(req, rc);
701 	if (!rc)
702 		return;
703 
704 	/* Recycle MRs in the LOCAL_INV chain that did not get posted.
705 	 */
706 	while (bad_wr) {
707 		frwr = container_of(bad_wr, struct rpcrdma_frwr, fr_invwr);
708 		mr = container_of(frwr, struct rpcrdma_mr, frwr);
709 		bad_wr = bad_wr->next;
710 
711 		rpcrdma_mr_recycle(mr);
712 	}
713 
714 	/* The final LOCAL_INV WR in the chain is supposed to
715 	 * do the wake. If it was never posted, the wake will
716 	 * not happen, so wake here in that case.
717 	 */
718 	rpcrdma_complete_rqst(req->rl_reply);
719 }
720