1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015, 2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 */ 6 7 /* Lightweight memory registration using Fast Registration Work 8 * Requests (FRWR). 9 * 10 * FRWR features ordered asynchronous registration and deregistration 11 * of arbitrarily sized memory regions. This is the fastest and safest 12 * but most complex memory registration mode. 13 */ 14 15 /* Normal operation 16 * 17 * A Memory Region is prepared for RDMA READ or WRITE using a FAST_REG 18 * Work Request (frwr_map). When the RDMA operation is finished, this 19 * Memory Region is invalidated using a LOCAL_INV Work Request 20 * (frwr_unmap_sync). 21 * 22 * Typically these Work Requests are not signaled, and neither are RDMA 23 * SEND Work Requests (with the exception of signaling occasionally to 24 * prevent provider work queue overflows). This greatly reduces HCA 25 * interrupt workload. 26 * 27 * As an optimization, frwr_unmap marks MRs INVALID before the 28 * LOCAL_INV WR is posted. If posting succeeds, the MR is placed on 29 * rb_mrs immediately so that no work (like managing a linked list 30 * under a spinlock) is needed in the completion upcall. 31 * 32 * But this means that frwr_map() can occasionally encounter an MR 33 * that is INVALID but the LOCAL_INV WR has not completed. Work Queue 34 * ordering prevents a subsequent FAST_REG WR from executing against 35 * that MR while it is still being invalidated. 36 */ 37 38 /* Transport recovery 39 * 40 * ->op_map and the transport connect worker cannot run at the same 41 * time, but ->op_unmap can fire while the transport connect worker 42 * is running. Thus MR recovery is handled in ->op_map, to guarantee 43 * that recovered MRs are owned by a sending RPC, and not one where 44 * ->op_unmap could fire at the same time transport reconnect is 45 * being done. 46 * 47 * When the underlying transport disconnects, MRs are left in one of 48 * four states: 49 * 50 * INVALID: The MR was not in use before the QP entered ERROR state. 51 * 52 * VALID: The MR was registered before the QP entered ERROR state. 53 * 54 * FLUSHED_FR: The MR was being registered when the QP entered ERROR 55 * state, and the pending WR was flushed. 56 * 57 * FLUSHED_LI: The MR was being invalidated when the QP entered ERROR 58 * state, and the pending WR was flushed. 59 * 60 * When frwr_map encounters FLUSHED and VALID MRs, they are recovered 61 * with ib_dereg_mr and then are re-initialized. Because MR recovery 62 * allocates fresh resources, it is deferred to a workqueue, and the 63 * recovered MRs are placed back on the rb_mrs list when recovery is 64 * complete. frwr_map allocates another MR for the current RPC while 65 * the broken MR is reset. 66 * 67 * To ensure that frwr_map doesn't encounter an MR that is marked 68 * INVALID but that is about to be flushed due to a previous transport 69 * disconnect, the transport connect worker attempts to drain all 70 * pending send queue WRs before the transport is reconnected. 71 */ 72 73 #include <linux/sunrpc/rpc_rdma.h> 74 #include <linux/sunrpc/svc_rdma.h> 75 76 #include "xprt_rdma.h" 77 #include <trace/events/rpcrdma.h> 78 79 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 80 # define RPCDBG_FACILITY RPCDBG_TRANS 81 #endif 82 83 /** 84 * frwr_is_supported - Check if device supports FRWR 85 * @device: interface adapter to check 86 * 87 * Returns true if device supports FRWR, otherwise false 88 */ 89 bool frwr_is_supported(struct ib_device *device) 90 { 91 struct ib_device_attr *attrs = &device->attrs; 92 93 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS)) 94 goto out_not_supported; 95 if (attrs->max_fast_reg_page_list_len == 0) 96 goto out_not_supported; 97 return true; 98 99 out_not_supported: 100 pr_info("rpcrdma: 'frwr' mode is not supported by device %s\n", 101 device->name); 102 return false; 103 } 104 105 /** 106 * frwr_release_mr - Destroy one MR 107 * @mr: MR allocated by frwr_init_mr 108 * 109 */ 110 void frwr_release_mr(struct rpcrdma_mr *mr) 111 { 112 int rc; 113 114 rc = ib_dereg_mr(mr->frwr.fr_mr); 115 if (rc) 116 trace_xprtrdma_frwr_dereg(mr, rc); 117 kfree(mr->mr_sg); 118 kfree(mr); 119 } 120 121 /* MRs are dynamically allocated, so simply clean up and release the MR. 122 * A replacement MR will subsequently be allocated on demand. 123 */ 124 static void 125 frwr_mr_recycle_worker(struct work_struct *work) 126 { 127 struct rpcrdma_mr *mr = container_of(work, struct rpcrdma_mr, mr_recycle); 128 struct rpcrdma_xprt *r_xprt = mr->mr_xprt; 129 130 trace_xprtrdma_mr_recycle(mr); 131 132 if (mr->mr_dir != DMA_NONE) { 133 trace_xprtrdma_mr_unmap(mr); 134 ib_dma_unmap_sg(r_xprt->rx_ia.ri_id->device, 135 mr->mr_sg, mr->mr_nents, mr->mr_dir); 136 mr->mr_dir = DMA_NONE; 137 } 138 139 spin_lock(&r_xprt->rx_buf.rb_mrlock); 140 list_del(&mr->mr_all); 141 r_xprt->rx_stats.mrs_recycled++; 142 spin_unlock(&r_xprt->rx_buf.rb_mrlock); 143 144 frwr_release_mr(mr); 145 } 146 147 /** 148 * frwr_init_mr - Initialize one MR 149 * @ia: interface adapter 150 * @mr: generic MR to prepare for FRWR 151 * 152 * Returns zero if successful. Otherwise a negative errno 153 * is returned. 154 */ 155 int frwr_init_mr(struct rpcrdma_ia *ia, struct rpcrdma_mr *mr) 156 { 157 unsigned int depth = ia->ri_max_frwr_depth; 158 struct scatterlist *sg; 159 struct ib_mr *frmr; 160 int rc; 161 162 frmr = ib_alloc_mr(ia->ri_pd, ia->ri_mrtype, depth); 163 if (IS_ERR(frmr)) 164 goto out_mr_err; 165 166 sg = kcalloc(depth, sizeof(*sg), GFP_KERNEL); 167 if (!sg) 168 goto out_list_err; 169 170 mr->frwr.fr_mr = frmr; 171 mr->frwr.fr_state = FRWR_IS_INVALID; 172 mr->mr_dir = DMA_NONE; 173 INIT_LIST_HEAD(&mr->mr_list); 174 INIT_WORK(&mr->mr_recycle, frwr_mr_recycle_worker); 175 init_completion(&mr->frwr.fr_linv_done); 176 177 sg_init_table(sg, depth); 178 mr->mr_sg = sg; 179 return 0; 180 181 out_mr_err: 182 rc = PTR_ERR(frmr); 183 trace_xprtrdma_frwr_alloc(mr, rc); 184 return rc; 185 186 out_list_err: 187 dprintk("RPC: %s: sg allocation failure\n", 188 __func__); 189 ib_dereg_mr(frmr); 190 return -ENOMEM; 191 } 192 193 /** 194 * frwr_open - Prepare an endpoint for use with FRWR 195 * @ia: interface adapter this endpoint will use 196 * @ep: endpoint to prepare 197 * 198 * On success, sets: 199 * ep->rep_attr.cap.max_send_wr 200 * ep->rep_attr.cap.max_recv_wr 201 * ep->rep_max_requests 202 * ia->ri_max_segs 203 * 204 * And these FRWR-related fields: 205 * ia->ri_max_frwr_depth 206 * ia->ri_mrtype 207 * 208 * On failure, a negative errno is returned. 209 */ 210 int frwr_open(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep) 211 { 212 struct ib_device_attr *attrs = &ia->ri_id->device->attrs; 213 int max_qp_wr, depth, delta; 214 215 ia->ri_mrtype = IB_MR_TYPE_MEM_REG; 216 if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG) 217 ia->ri_mrtype = IB_MR_TYPE_SG_GAPS; 218 219 /* Quirk: Some devices advertise a large max_fast_reg_page_list_len 220 * capability, but perform optimally when the MRs are not larger 221 * than a page. 222 */ 223 if (attrs->max_sge_rd > 1) 224 ia->ri_max_frwr_depth = attrs->max_sge_rd; 225 else 226 ia->ri_max_frwr_depth = attrs->max_fast_reg_page_list_len; 227 if (ia->ri_max_frwr_depth > RPCRDMA_MAX_DATA_SEGS) 228 ia->ri_max_frwr_depth = RPCRDMA_MAX_DATA_SEGS; 229 dprintk("RPC: %s: max FR page list depth = %u\n", 230 __func__, ia->ri_max_frwr_depth); 231 232 /* Add room for frwr register and invalidate WRs. 233 * 1. FRWR reg WR for head 234 * 2. FRWR invalidate WR for head 235 * 3. N FRWR reg WRs for pagelist 236 * 4. N FRWR invalidate WRs for pagelist 237 * 5. FRWR reg WR for tail 238 * 6. FRWR invalidate WR for tail 239 * 7. The RDMA_SEND WR 240 */ 241 depth = 7; 242 243 /* Calculate N if the device max FRWR depth is smaller than 244 * RPCRDMA_MAX_DATA_SEGS. 245 */ 246 if (ia->ri_max_frwr_depth < RPCRDMA_MAX_DATA_SEGS) { 247 delta = RPCRDMA_MAX_DATA_SEGS - ia->ri_max_frwr_depth; 248 do { 249 depth += 2; /* FRWR reg + invalidate */ 250 delta -= ia->ri_max_frwr_depth; 251 } while (delta > 0); 252 } 253 254 max_qp_wr = ia->ri_id->device->attrs.max_qp_wr; 255 max_qp_wr -= RPCRDMA_BACKWARD_WRS; 256 max_qp_wr -= 1; 257 if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE) 258 return -ENOMEM; 259 if (ep->rep_max_requests > max_qp_wr) 260 ep->rep_max_requests = max_qp_wr; 261 ep->rep_attr.cap.max_send_wr = ep->rep_max_requests * depth; 262 if (ep->rep_attr.cap.max_send_wr > max_qp_wr) { 263 ep->rep_max_requests = max_qp_wr / depth; 264 if (!ep->rep_max_requests) 265 return -EINVAL; 266 ep->rep_attr.cap.max_send_wr = ep->rep_max_requests * depth; 267 } 268 ep->rep_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS; 269 ep->rep_attr.cap.max_send_wr += 1; /* for ib_drain_sq */ 270 ep->rep_attr.cap.max_recv_wr = ep->rep_max_requests; 271 ep->rep_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS; 272 ep->rep_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */ 273 274 ia->ri_max_segs = max_t(unsigned int, 1, RPCRDMA_MAX_DATA_SEGS / 275 ia->ri_max_frwr_depth); 276 /* Reply chunks require segments for head and tail buffers */ 277 ia->ri_max_segs += 2; 278 if (ia->ri_max_segs > RPCRDMA_MAX_HDR_SEGS) 279 ia->ri_max_segs = RPCRDMA_MAX_HDR_SEGS; 280 return 0; 281 } 282 283 /** 284 * frwr_maxpages - Compute size of largest payload 285 * @r_xprt: transport 286 * 287 * Returns maximum size of an RPC message, in pages. 288 * 289 * FRWR mode conveys a list of pages per chunk segment. The 290 * maximum length of that list is the FRWR page list depth. 291 */ 292 size_t frwr_maxpages(struct rpcrdma_xprt *r_xprt) 293 { 294 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 295 296 return min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS, 297 (ia->ri_max_segs - 2) * ia->ri_max_frwr_depth); 298 } 299 300 /** 301 * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC 302 * @cq: completion queue (ignored) 303 * @wc: completed WR 304 * 305 */ 306 static void 307 frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc) 308 { 309 struct ib_cqe *cqe = wc->wr_cqe; 310 struct rpcrdma_frwr *frwr = 311 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 312 313 /* WARNING: Only wr_cqe and status are reliable at this point */ 314 if (wc->status != IB_WC_SUCCESS) 315 frwr->fr_state = FRWR_FLUSHED_FR; 316 trace_xprtrdma_wc_fastreg(wc, frwr); 317 } 318 319 /** 320 * frwr_wc_localinv - Invoked by RDMA provider for a flushed LocalInv WC 321 * @cq: completion queue (ignored) 322 * @wc: completed WR 323 * 324 */ 325 static void 326 frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc) 327 { 328 struct ib_cqe *cqe = wc->wr_cqe; 329 struct rpcrdma_frwr *frwr = container_of(cqe, struct rpcrdma_frwr, 330 fr_cqe); 331 332 /* WARNING: Only wr_cqe and status are reliable at this point */ 333 if (wc->status != IB_WC_SUCCESS) 334 frwr->fr_state = FRWR_FLUSHED_LI; 335 trace_xprtrdma_wc_li(wc, frwr); 336 } 337 338 /** 339 * frwr_wc_localinv_wake - Invoked by RDMA provider for a signaled LocalInv WC 340 * @cq: completion queue (ignored) 341 * @wc: completed WR 342 * 343 * Awaken anyone waiting for an MR to finish being fenced. 344 */ 345 static void 346 frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc) 347 { 348 struct ib_cqe *cqe = wc->wr_cqe; 349 struct rpcrdma_frwr *frwr = container_of(cqe, struct rpcrdma_frwr, 350 fr_cqe); 351 352 /* WARNING: Only wr_cqe and status are reliable at this point */ 353 if (wc->status != IB_WC_SUCCESS) 354 frwr->fr_state = FRWR_FLUSHED_LI; 355 trace_xprtrdma_wc_li_wake(wc, frwr); 356 complete(&frwr->fr_linv_done); 357 } 358 359 /** 360 * frwr_map - Register a memory region 361 * @r_xprt: controlling transport 362 * @seg: memory region co-ordinates 363 * @nsegs: number of segments remaining 364 * @writing: true when RDMA Write will be used 365 * @xid: XID of RPC using the registered memory 366 * @out: initialized MR 367 * 368 * Prepare a REG_MR Work Request to register a memory region 369 * for remote access via RDMA READ or RDMA WRITE. 370 * 371 * Returns the next segment or a negative errno pointer. 372 * On success, the prepared MR is planted in @out. 373 */ 374 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt, 375 struct rpcrdma_mr_seg *seg, 376 int nsegs, bool writing, __be32 xid, 377 struct rpcrdma_mr **out) 378 { 379 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 380 bool holes_ok = ia->ri_mrtype == IB_MR_TYPE_SG_GAPS; 381 struct rpcrdma_frwr *frwr; 382 struct rpcrdma_mr *mr; 383 struct ib_mr *ibmr; 384 struct ib_reg_wr *reg_wr; 385 int i, n; 386 u8 key; 387 388 mr = NULL; 389 do { 390 if (mr) 391 rpcrdma_mr_recycle(mr); 392 mr = rpcrdma_mr_get(r_xprt); 393 if (!mr) 394 return ERR_PTR(-EAGAIN); 395 } while (mr->frwr.fr_state != FRWR_IS_INVALID); 396 frwr = &mr->frwr; 397 frwr->fr_state = FRWR_IS_VALID; 398 399 if (nsegs > ia->ri_max_frwr_depth) 400 nsegs = ia->ri_max_frwr_depth; 401 for (i = 0; i < nsegs;) { 402 if (seg->mr_page) 403 sg_set_page(&mr->mr_sg[i], 404 seg->mr_page, 405 seg->mr_len, 406 offset_in_page(seg->mr_offset)); 407 else 408 sg_set_buf(&mr->mr_sg[i], seg->mr_offset, 409 seg->mr_len); 410 411 ++seg; 412 ++i; 413 if (holes_ok) 414 continue; 415 if ((i < nsegs && offset_in_page(seg->mr_offset)) || 416 offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) 417 break; 418 } 419 mr->mr_dir = rpcrdma_data_dir(writing); 420 421 mr->mr_nents = 422 ib_dma_map_sg(ia->ri_id->device, mr->mr_sg, i, mr->mr_dir); 423 if (!mr->mr_nents) 424 goto out_dmamap_err; 425 426 ibmr = frwr->fr_mr; 427 n = ib_map_mr_sg(ibmr, mr->mr_sg, mr->mr_nents, NULL, PAGE_SIZE); 428 if (unlikely(n != mr->mr_nents)) 429 goto out_mapmr_err; 430 431 ibmr->iova &= 0x00000000ffffffff; 432 ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32; 433 key = (u8)(ibmr->rkey & 0x000000FF); 434 ib_update_fast_reg_key(ibmr, ++key); 435 436 reg_wr = &frwr->fr_regwr; 437 reg_wr->mr = ibmr; 438 reg_wr->key = ibmr->rkey; 439 reg_wr->access = writing ? 440 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE : 441 IB_ACCESS_REMOTE_READ; 442 443 mr->mr_handle = ibmr->rkey; 444 mr->mr_length = ibmr->length; 445 mr->mr_offset = ibmr->iova; 446 trace_xprtrdma_mr_map(mr); 447 448 *out = mr; 449 return seg; 450 451 out_dmamap_err: 452 mr->mr_dir = DMA_NONE; 453 trace_xprtrdma_frwr_sgerr(mr, i); 454 rpcrdma_mr_put(mr); 455 return ERR_PTR(-EIO); 456 457 out_mapmr_err: 458 trace_xprtrdma_frwr_maperr(mr, n); 459 rpcrdma_mr_recycle(mr); 460 return ERR_PTR(-EIO); 461 } 462 463 /** 464 * frwr_send - post Send WR containing the RPC Call message 465 * @ia: interface adapter 466 * @req: Prepared RPC Call 467 * 468 * For FRWR, chain any FastReg WRs to the Send WR. Only a 469 * single ib_post_send call is needed to register memory 470 * and then post the Send WR. 471 * 472 * Returns the result of ib_post_send. 473 */ 474 int frwr_send(struct rpcrdma_ia *ia, struct rpcrdma_req *req) 475 { 476 struct ib_send_wr *post_wr; 477 struct rpcrdma_mr *mr; 478 479 post_wr = &req->rl_sendctx->sc_wr; 480 list_for_each_entry(mr, &req->rl_registered, mr_list) { 481 struct rpcrdma_frwr *frwr; 482 483 frwr = &mr->frwr; 484 485 frwr->fr_cqe.done = frwr_wc_fastreg; 486 frwr->fr_regwr.wr.next = post_wr; 487 frwr->fr_regwr.wr.wr_cqe = &frwr->fr_cqe; 488 frwr->fr_regwr.wr.num_sge = 0; 489 frwr->fr_regwr.wr.opcode = IB_WR_REG_MR; 490 frwr->fr_regwr.wr.send_flags = 0; 491 492 post_wr = &frwr->fr_regwr.wr; 493 } 494 495 /* If ib_post_send fails, the next ->send_request for 496 * @req will queue these MRs for recovery. 497 */ 498 return ib_post_send(ia->ri_id->qp, post_wr, NULL); 499 } 500 501 /** 502 * frwr_reminv - handle a remotely invalidated mr on the @mrs list 503 * @rep: Received reply 504 * @mrs: list of MRs to check 505 * 506 */ 507 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs) 508 { 509 struct rpcrdma_mr *mr; 510 511 list_for_each_entry(mr, mrs, mr_list) 512 if (mr->mr_handle == rep->rr_inv_rkey) { 513 list_del_init(&mr->mr_list); 514 trace_xprtrdma_mr_remoteinv(mr); 515 mr->frwr.fr_state = FRWR_IS_INVALID; 516 rpcrdma_mr_unmap_and_put(mr); 517 break; /* only one invalidated MR per RPC */ 518 } 519 } 520 521 /** 522 * frwr_unmap_sync - invalidate memory regions that were registered for @req 523 * @r_xprt: controlling transport 524 * @mrs: list of MRs to process 525 * 526 * Sleeps until it is safe for the host CPU to access the 527 * previously mapped memory regions. 528 * 529 * Caller ensures that @mrs is not empty before the call. This 530 * function empties the list. 531 */ 532 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct list_head *mrs) 533 { 534 struct ib_send_wr *first, **prev, *last; 535 const struct ib_send_wr *bad_wr; 536 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 537 struct rpcrdma_frwr *frwr; 538 struct rpcrdma_mr *mr; 539 int count, rc; 540 541 /* ORDER: Invalidate all of the MRs first 542 * 543 * Chain the LOCAL_INV Work Requests and post them with 544 * a single ib_post_send() call. 545 */ 546 frwr = NULL; 547 count = 0; 548 prev = &first; 549 list_for_each_entry(mr, mrs, mr_list) { 550 mr->frwr.fr_state = FRWR_IS_INVALID; 551 552 frwr = &mr->frwr; 553 trace_xprtrdma_mr_localinv(mr); 554 555 frwr->fr_cqe.done = frwr_wc_localinv; 556 last = &frwr->fr_invwr; 557 memset(last, 0, sizeof(*last)); 558 last->wr_cqe = &frwr->fr_cqe; 559 last->opcode = IB_WR_LOCAL_INV; 560 last->ex.invalidate_rkey = mr->mr_handle; 561 count++; 562 563 *prev = last; 564 prev = &last->next; 565 } 566 if (!frwr) 567 goto unmap; 568 569 /* Strong send queue ordering guarantees that when the 570 * last WR in the chain completes, all WRs in the chain 571 * are complete. 572 */ 573 last->send_flags = IB_SEND_SIGNALED; 574 frwr->fr_cqe.done = frwr_wc_localinv_wake; 575 reinit_completion(&frwr->fr_linv_done); 576 577 /* Transport disconnect drains the receive CQ before it 578 * replaces the QP. The RPC reply handler won't call us 579 * unless ri_id->qp is a valid pointer. 580 */ 581 r_xprt->rx_stats.local_inv_needed++; 582 bad_wr = NULL; 583 rc = ib_post_send(ia->ri_id->qp, first, &bad_wr); 584 if (bad_wr != first) 585 wait_for_completion(&frwr->fr_linv_done); 586 if (rc) 587 goto out_release; 588 589 /* ORDER: Now DMA unmap all of the MRs, and return 590 * them to the free MR list. 591 */ 592 unmap: 593 while (!list_empty(mrs)) { 594 mr = rpcrdma_mr_pop(mrs); 595 rpcrdma_mr_unmap_and_put(mr); 596 } 597 return; 598 599 out_release: 600 pr_err("rpcrdma: FRWR invalidate ib_post_send returned %i\n", rc); 601 602 /* Unmap and release the MRs in the LOCAL_INV WRs that did not 603 * get posted. 604 */ 605 while (bad_wr) { 606 frwr = container_of(bad_wr, struct rpcrdma_frwr, 607 fr_invwr); 608 mr = container_of(frwr, struct rpcrdma_mr, frwr); 609 bad_wr = bad_wr->next; 610 611 list_del_init(&mr->mr_list); 612 rpcrdma_mr_recycle(mr); 613 } 614 } 615