1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015, 2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 */ 6 7 /* Lightweight memory registration using Fast Registration Work 8 * Requests (FRWR). 9 * 10 * FRWR features ordered asynchronous registration and invalidation 11 * of arbitrarily-sized memory regions. This is the fastest and safest 12 * but most complex memory registration mode. 13 */ 14 15 /* Normal operation 16 * 17 * A Memory Region is prepared for RDMA Read or Write using a FAST_REG 18 * Work Request (frwr_map). When the RDMA operation is finished, this 19 * Memory Region is invalidated using a LOCAL_INV Work Request 20 * (frwr_unmap_async and frwr_unmap_sync). 21 * 22 * Typically FAST_REG Work Requests are not signaled, and neither are 23 * RDMA Send Work Requests (with the exception of signaling occasionally 24 * to prevent provider work queue overflows). This greatly reduces HCA 25 * interrupt workload. 26 */ 27 28 /* Transport recovery 29 * 30 * frwr_map and frwr_unmap_* cannot run at the same time the transport 31 * connect worker is running. The connect worker holds the transport 32 * send lock, just as ->send_request does. This prevents frwr_map and 33 * the connect worker from running concurrently. When a connection is 34 * closed, the Receive completion queue is drained before the allowing 35 * the connect worker to get control. This prevents frwr_unmap and the 36 * connect worker from running concurrently. 37 * 38 * When the underlying transport disconnects, MRs that are in flight 39 * are flushed and are likely unusable. Thus all MRs are destroyed. 40 * New MRs are created on demand. 41 */ 42 43 #include <linux/sunrpc/rpc_rdma.h> 44 #include <linux/sunrpc/svc_rdma.h> 45 46 #include "xprt_rdma.h" 47 #include <trace/events/rpcrdma.h> 48 49 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 50 # define RPCDBG_FACILITY RPCDBG_TRANS 51 #endif 52 53 /** 54 * frwr_release_mr - Destroy one MR 55 * @mr: MR allocated by frwr_init_mr 56 * 57 */ 58 void frwr_release_mr(struct rpcrdma_mr *mr) 59 { 60 int rc; 61 62 rc = ib_dereg_mr(mr->frwr.fr_mr); 63 if (rc) 64 trace_xprtrdma_frwr_dereg(mr, rc); 65 kfree(mr->mr_sg); 66 kfree(mr); 67 } 68 69 static void frwr_mr_recycle(struct rpcrdma_mr *mr) 70 { 71 struct rpcrdma_xprt *r_xprt = mr->mr_xprt; 72 73 trace_xprtrdma_mr_recycle(mr); 74 75 if (mr->mr_dir != DMA_NONE) { 76 trace_xprtrdma_mr_unmap(mr); 77 ib_dma_unmap_sg(r_xprt->rx_ia.ri_id->device, 78 mr->mr_sg, mr->mr_nents, mr->mr_dir); 79 mr->mr_dir = DMA_NONE; 80 } 81 82 spin_lock(&r_xprt->rx_buf.rb_lock); 83 list_del(&mr->mr_all); 84 r_xprt->rx_stats.mrs_recycled++; 85 spin_unlock(&r_xprt->rx_buf.rb_lock); 86 87 frwr_release_mr(mr); 88 } 89 90 /* frwr_reset - Place MRs back on the free list 91 * @req: request to reset 92 * 93 * Used after a failed marshal. For FRWR, this means the MRs 94 * don't have to be fully released and recreated. 95 * 96 * NB: This is safe only as long as none of @req's MRs are 97 * involved with an ongoing asynchronous FAST_REG or LOCAL_INV 98 * Work Request. 99 */ 100 void frwr_reset(struct rpcrdma_req *req) 101 { 102 struct rpcrdma_mr *mr; 103 104 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) 105 rpcrdma_mr_put(mr); 106 } 107 108 /** 109 * frwr_init_mr - Initialize one MR 110 * @ia: interface adapter 111 * @mr: generic MR to prepare for FRWR 112 * 113 * Returns zero if successful. Otherwise a negative errno 114 * is returned. 115 */ 116 int frwr_init_mr(struct rpcrdma_ia *ia, struct rpcrdma_mr *mr) 117 { 118 unsigned int depth = ia->ri_max_frwr_depth; 119 struct scatterlist *sg; 120 struct ib_mr *frmr; 121 int rc; 122 123 frmr = ib_alloc_mr(ia->ri_pd, ia->ri_mrtype, depth); 124 if (IS_ERR(frmr)) 125 goto out_mr_err; 126 127 sg = kcalloc(depth, sizeof(*sg), GFP_NOFS); 128 if (!sg) 129 goto out_list_err; 130 131 mr->frwr.fr_mr = frmr; 132 mr->mr_dir = DMA_NONE; 133 INIT_LIST_HEAD(&mr->mr_list); 134 init_completion(&mr->frwr.fr_linv_done); 135 136 sg_init_table(sg, depth); 137 mr->mr_sg = sg; 138 return 0; 139 140 out_mr_err: 141 rc = PTR_ERR(frmr); 142 trace_xprtrdma_frwr_alloc(mr, rc); 143 return rc; 144 145 out_list_err: 146 ib_dereg_mr(frmr); 147 return -ENOMEM; 148 } 149 150 /** 151 * frwr_query_device - Prepare a transport for use with FRWR 152 * @r_xprt: controlling transport instance 153 * @device: RDMA device to query 154 * 155 * On success, sets: 156 * ep->rep_attr 157 * ep->rep_max_requests 158 * ia->ri_max_rdma_segs 159 * 160 * And these FRWR-related fields: 161 * ia->ri_max_frwr_depth 162 * ia->ri_mrtype 163 * 164 * Return values: 165 * On success, returns zero. 166 * %-EINVAL - the device does not support FRWR memory registration 167 * %-ENOMEM - the device is not sufficiently capable for NFS/RDMA 168 */ 169 int frwr_query_device(struct rpcrdma_xprt *r_xprt, 170 const struct ib_device *device) 171 { 172 const struct ib_device_attr *attrs = &device->attrs; 173 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 174 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 175 int max_qp_wr, depth, delta; 176 unsigned int max_sge; 177 178 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) || 179 attrs->max_fast_reg_page_list_len == 0) { 180 pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n", 181 device->name); 182 return -EINVAL; 183 } 184 185 max_sge = min_t(unsigned int, attrs->max_send_sge, 186 RPCRDMA_MAX_SEND_SGES); 187 if (max_sge < RPCRDMA_MIN_SEND_SGES) { 188 pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge); 189 return -ENOMEM; 190 } 191 ep->rep_attr.cap.max_send_sge = max_sge; 192 ep->rep_attr.cap.max_recv_sge = 1; 193 194 ia->ri_mrtype = IB_MR_TYPE_MEM_REG; 195 if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG) 196 ia->ri_mrtype = IB_MR_TYPE_SG_GAPS; 197 198 /* Quirk: Some devices advertise a large max_fast_reg_page_list_len 199 * capability, but perform optimally when the MRs are not larger 200 * than a page. 201 */ 202 if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS) 203 ia->ri_max_frwr_depth = attrs->max_sge_rd; 204 else 205 ia->ri_max_frwr_depth = attrs->max_fast_reg_page_list_len; 206 if (ia->ri_max_frwr_depth > RPCRDMA_MAX_DATA_SEGS) 207 ia->ri_max_frwr_depth = RPCRDMA_MAX_DATA_SEGS; 208 209 /* Add room for frwr register and invalidate WRs. 210 * 1. FRWR reg WR for head 211 * 2. FRWR invalidate WR for head 212 * 3. N FRWR reg WRs for pagelist 213 * 4. N FRWR invalidate WRs for pagelist 214 * 5. FRWR reg WR for tail 215 * 6. FRWR invalidate WR for tail 216 * 7. The RDMA_SEND WR 217 */ 218 depth = 7; 219 220 /* Calculate N if the device max FRWR depth is smaller than 221 * RPCRDMA_MAX_DATA_SEGS. 222 */ 223 if (ia->ri_max_frwr_depth < RPCRDMA_MAX_DATA_SEGS) { 224 delta = RPCRDMA_MAX_DATA_SEGS - ia->ri_max_frwr_depth; 225 do { 226 depth += 2; /* FRWR reg + invalidate */ 227 delta -= ia->ri_max_frwr_depth; 228 } while (delta > 0); 229 } 230 231 max_qp_wr = attrs->max_qp_wr; 232 max_qp_wr -= RPCRDMA_BACKWARD_WRS; 233 max_qp_wr -= 1; 234 if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE) 235 return -ENOMEM; 236 if (ep->rep_max_requests > max_qp_wr) 237 ep->rep_max_requests = max_qp_wr; 238 ep->rep_attr.cap.max_send_wr = ep->rep_max_requests * depth; 239 if (ep->rep_attr.cap.max_send_wr > max_qp_wr) { 240 ep->rep_max_requests = max_qp_wr / depth; 241 if (!ep->rep_max_requests) 242 return -ENOMEM; 243 ep->rep_attr.cap.max_send_wr = ep->rep_max_requests * depth; 244 } 245 ep->rep_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS; 246 ep->rep_attr.cap.max_send_wr += 1; /* for ib_drain_sq */ 247 ep->rep_attr.cap.max_recv_wr = ep->rep_max_requests; 248 ep->rep_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS; 249 ep->rep_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */ 250 251 ia->ri_max_rdma_segs = 252 DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ia->ri_max_frwr_depth); 253 /* Reply chunks require segments for head and tail buffers */ 254 ia->ri_max_rdma_segs += 2; 255 if (ia->ri_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS) 256 ia->ri_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS; 257 258 /* Ensure the underlying device is capable of conveying the 259 * largest r/wsize NFS will ask for. This guarantees that 260 * failing over from one RDMA device to another will not 261 * break NFS I/O. 262 */ 263 if ((ia->ri_max_rdma_segs * ia->ri_max_frwr_depth) < RPCRDMA_MAX_SEGS) 264 return -ENOMEM; 265 266 return 0; 267 } 268 269 /** 270 * frwr_map - Register a memory region 271 * @r_xprt: controlling transport 272 * @seg: memory region co-ordinates 273 * @nsegs: number of segments remaining 274 * @writing: true when RDMA Write will be used 275 * @xid: XID of RPC using the registered memory 276 * @mr: MR to fill in 277 * 278 * Prepare a REG_MR Work Request to register a memory region 279 * for remote access via RDMA READ or RDMA WRITE. 280 * 281 * Returns the next segment or a negative errno pointer. 282 * On success, @mr is filled in. 283 */ 284 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt, 285 struct rpcrdma_mr_seg *seg, 286 int nsegs, bool writing, __be32 xid, 287 struct rpcrdma_mr *mr) 288 { 289 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 290 struct ib_reg_wr *reg_wr; 291 struct ib_mr *ibmr; 292 int i, n; 293 u8 key; 294 295 if (nsegs > ia->ri_max_frwr_depth) 296 nsegs = ia->ri_max_frwr_depth; 297 for (i = 0; i < nsegs;) { 298 if (seg->mr_page) 299 sg_set_page(&mr->mr_sg[i], 300 seg->mr_page, 301 seg->mr_len, 302 offset_in_page(seg->mr_offset)); 303 else 304 sg_set_buf(&mr->mr_sg[i], seg->mr_offset, 305 seg->mr_len); 306 307 ++seg; 308 ++i; 309 if (ia->ri_mrtype == IB_MR_TYPE_SG_GAPS) 310 continue; 311 if ((i < nsegs && offset_in_page(seg->mr_offset)) || 312 offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) 313 break; 314 } 315 mr->mr_dir = rpcrdma_data_dir(writing); 316 317 mr->mr_nents = 318 ib_dma_map_sg(ia->ri_id->device, mr->mr_sg, i, mr->mr_dir); 319 if (!mr->mr_nents) 320 goto out_dmamap_err; 321 322 ibmr = mr->frwr.fr_mr; 323 n = ib_map_mr_sg(ibmr, mr->mr_sg, mr->mr_nents, NULL, PAGE_SIZE); 324 if (unlikely(n != mr->mr_nents)) 325 goto out_mapmr_err; 326 327 ibmr->iova &= 0x00000000ffffffff; 328 ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32; 329 key = (u8)(ibmr->rkey & 0x000000FF); 330 ib_update_fast_reg_key(ibmr, ++key); 331 332 reg_wr = &mr->frwr.fr_regwr; 333 reg_wr->mr = ibmr; 334 reg_wr->key = ibmr->rkey; 335 reg_wr->access = writing ? 336 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE : 337 IB_ACCESS_REMOTE_READ; 338 339 mr->mr_handle = ibmr->rkey; 340 mr->mr_length = ibmr->length; 341 mr->mr_offset = ibmr->iova; 342 trace_xprtrdma_mr_map(mr); 343 344 return seg; 345 346 out_dmamap_err: 347 mr->mr_dir = DMA_NONE; 348 trace_xprtrdma_frwr_sgerr(mr, i); 349 return ERR_PTR(-EIO); 350 351 out_mapmr_err: 352 trace_xprtrdma_frwr_maperr(mr, n); 353 return ERR_PTR(-EIO); 354 } 355 356 /** 357 * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC 358 * @cq: completion queue (ignored) 359 * @wc: completed WR 360 * 361 */ 362 static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc) 363 { 364 struct ib_cqe *cqe = wc->wr_cqe; 365 struct rpcrdma_frwr *frwr = 366 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 367 368 /* WARNING: Only wr_cqe and status are reliable at this point */ 369 trace_xprtrdma_wc_fastreg(wc, frwr); 370 /* The MR will get recycled when the associated req is retransmitted */ 371 } 372 373 /** 374 * frwr_send - post Send WR containing the RPC Call message 375 * @ia: interface adapter 376 * @req: Prepared RPC Call 377 * 378 * For FRWR, chain any FastReg WRs to the Send WR. Only a 379 * single ib_post_send call is needed to register memory 380 * and then post the Send WR. 381 * 382 * Returns the result of ib_post_send. 383 */ 384 int frwr_send(struct rpcrdma_ia *ia, struct rpcrdma_req *req) 385 { 386 struct ib_send_wr *post_wr; 387 struct rpcrdma_mr *mr; 388 389 post_wr = &req->rl_wr; 390 list_for_each_entry(mr, &req->rl_registered, mr_list) { 391 struct rpcrdma_frwr *frwr; 392 393 frwr = &mr->frwr; 394 395 frwr->fr_cqe.done = frwr_wc_fastreg; 396 frwr->fr_regwr.wr.next = post_wr; 397 frwr->fr_regwr.wr.wr_cqe = &frwr->fr_cqe; 398 frwr->fr_regwr.wr.num_sge = 0; 399 frwr->fr_regwr.wr.opcode = IB_WR_REG_MR; 400 frwr->fr_regwr.wr.send_flags = 0; 401 402 post_wr = &frwr->fr_regwr.wr; 403 } 404 405 return ib_post_send(ia->ri_id->qp, post_wr, NULL); 406 } 407 408 /** 409 * frwr_reminv - handle a remotely invalidated mr on the @mrs list 410 * @rep: Received reply 411 * @mrs: list of MRs to check 412 * 413 */ 414 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs) 415 { 416 struct rpcrdma_mr *mr; 417 418 list_for_each_entry(mr, mrs, mr_list) 419 if (mr->mr_handle == rep->rr_inv_rkey) { 420 list_del_init(&mr->mr_list); 421 trace_xprtrdma_mr_remoteinv(mr); 422 rpcrdma_mr_put(mr); 423 break; /* only one invalidated MR per RPC */ 424 } 425 } 426 427 static void __frwr_release_mr(struct ib_wc *wc, struct rpcrdma_mr *mr) 428 { 429 if (wc->status != IB_WC_SUCCESS) 430 frwr_mr_recycle(mr); 431 else 432 rpcrdma_mr_put(mr); 433 } 434 435 /** 436 * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC 437 * @cq: completion queue (ignored) 438 * @wc: completed WR 439 * 440 */ 441 static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc) 442 { 443 struct ib_cqe *cqe = wc->wr_cqe; 444 struct rpcrdma_frwr *frwr = 445 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 446 struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr); 447 448 /* WARNING: Only wr_cqe and status are reliable at this point */ 449 trace_xprtrdma_wc_li(wc, frwr); 450 __frwr_release_mr(wc, mr); 451 } 452 453 /** 454 * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC 455 * @cq: completion queue (ignored) 456 * @wc: completed WR 457 * 458 * Awaken anyone waiting for an MR to finish being fenced. 459 */ 460 static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc) 461 { 462 struct ib_cqe *cqe = wc->wr_cqe; 463 struct rpcrdma_frwr *frwr = 464 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 465 struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr); 466 467 /* WARNING: Only wr_cqe and status are reliable at this point */ 468 trace_xprtrdma_wc_li_wake(wc, frwr); 469 __frwr_release_mr(wc, mr); 470 complete(&frwr->fr_linv_done); 471 } 472 473 /** 474 * frwr_unmap_sync - invalidate memory regions that were registered for @req 475 * @r_xprt: controlling transport instance 476 * @req: rpcrdma_req with a non-empty list of MRs to process 477 * 478 * Sleeps until it is safe for the host CPU to access the previously mapped 479 * memory regions. This guarantees that registered MRs are properly fenced 480 * from the server before the RPC consumer accesses the data in them. It 481 * also ensures proper Send flow control: waking the next RPC waits until 482 * this RPC has relinquished all its Send Queue entries. 483 */ 484 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 485 { 486 struct ib_send_wr *first, **prev, *last; 487 const struct ib_send_wr *bad_wr; 488 struct rpcrdma_frwr *frwr; 489 struct rpcrdma_mr *mr; 490 int rc; 491 492 /* ORDER: Invalidate all of the MRs first 493 * 494 * Chain the LOCAL_INV Work Requests and post them with 495 * a single ib_post_send() call. 496 */ 497 frwr = NULL; 498 prev = &first; 499 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) { 500 501 trace_xprtrdma_mr_localinv(mr); 502 r_xprt->rx_stats.local_inv_needed++; 503 504 frwr = &mr->frwr; 505 frwr->fr_cqe.done = frwr_wc_localinv; 506 last = &frwr->fr_invwr; 507 last->next = NULL; 508 last->wr_cqe = &frwr->fr_cqe; 509 last->sg_list = NULL; 510 last->num_sge = 0; 511 last->opcode = IB_WR_LOCAL_INV; 512 last->send_flags = IB_SEND_SIGNALED; 513 last->ex.invalidate_rkey = mr->mr_handle; 514 515 *prev = last; 516 prev = &last->next; 517 } 518 519 /* Strong send queue ordering guarantees that when the 520 * last WR in the chain completes, all WRs in the chain 521 * are complete. 522 */ 523 frwr->fr_cqe.done = frwr_wc_localinv_wake; 524 reinit_completion(&frwr->fr_linv_done); 525 526 /* Transport disconnect drains the receive CQ before it 527 * replaces the QP. The RPC reply handler won't call us 528 * unless ri_id->qp is a valid pointer. 529 */ 530 bad_wr = NULL; 531 rc = ib_post_send(r_xprt->rx_ia.ri_id->qp, first, &bad_wr); 532 533 /* The final LOCAL_INV WR in the chain is supposed to 534 * do the wake. If it was never posted, the wake will 535 * not happen, so don't wait in that case. 536 */ 537 if (bad_wr != first) 538 wait_for_completion(&frwr->fr_linv_done); 539 if (!rc) 540 return; 541 542 /* Recycle MRs in the LOCAL_INV chain that did not get posted. 543 */ 544 trace_xprtrdma_post_linv(req, rc); 545 while (bad_wr) { 546 frwr = container_of(bad_wr, struct rpcrdma_frwr, 547 fr_invwr); 548 mr = container_of(frwr, struct rpcrdma_mr, frwr); 549 bad_wr = bad_wr->next; 550 551 list_del_init(&mr->mr_list); 552 frwr_mr_recycle(mr); 553 } 554 } 555 556 /** 557 * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC 558 * @cq: completion queue (ignored) 559 * @wc: completed WR 560 * 561 */ 562 static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc) 563 { 564 struct ib_cqe *cqe = wc->wr_cqe; 565 struct rpcrdma_frwr *frwr = 566 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 567 struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr); 568 struct rpcrdma_rep *rep = mr->mr_req->rl_reply; 569 570 /* WARNING: Only wr_cqe and status are reliable at this point */ 571 trace_xprtrdma_wc_li_done(wc, frwr); 572 __frwr_release_mr(wc, mr); 573 574 /* Ensure @rep is generated before __frwr_release_mr */ 575 smp_rmb(); 576 rpcrdma_complete_rqst(rep); 577 } 578 579 /** 580 * frwr_unmap_async - invalidate memory regions that were registered for @req 581 * @r_xprt: controlling transport instance 582 * @req: rpcrdma_req with a non-empty list of MRs to process 583 * 584 * This guarantees that registered MRs are properly fenced from the 585 * server before the RPC consumer accesses the data in them. It also 586 * ensures proper Send flow control: waking the next RPC waits until 587 * this RPC has relinquished all its Send Queue entries. 588 */ 589 void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 590 { 591 struct ib_send_wr *first, *last, **prev; 592 const struct ib_send_wr *bad_wr; 593 struct rpcrdma_frwr *frwr; 594 struct rpcrdma_mr *mr; 595 int rc; 596 597 /* Chain the LOCAL_INV Work Requests and post them with 598 * a single ib_post_send() call. 599 */ 600 frwr = NULL; 601 prev = &first; 602 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) { 603 604 trace_xprtrdma_mr_localinv(mr); 605 r_xprt->rx_stats.local_inv_needed++; 606 607 frwr = &mr->frwr; 608 frwr->fr_cqe.done = frwr_wc_localinv; 609 last = &frwr->fr_invwr; 610 last->next = NULL; 611 last->wr_cqe = &frwr->fr_cqe; 612 last->sg_list = NULL; 613 last->num_sge = 0; 614 last->opcode = IB_WR_LOCAL_INV; 615 last->send_flags = IB_SEND_SIGNALED; 616 last->ex.invalidate_rkey = mr->mr_handle; 617 618 *prev = last; 619 prev = &last->next; 620 } 621 622 /* Strong send queue ordering guarantees that when the 623 * last WR in the chain completes, all WRs in the chain 624 * are complete. The last completion will wake up the 625 * RPC waiter. 626 */ 627 frwr->fr_cqe.done = frwr_wc_localinv_done; 628 629 /* Transport disconnect drains the receive CQ before it 630 * replaces the QP. The RPC reply handler won't call us 631 * unless ri_id->qp is a valid pointer. 632 */ 633 bad_wr = NULL; 634 rc = ib_post_send(r_xprt->rx_ia.ri_id->qp, first, &bad_wr); 635 if (!rc) 636 return; 637 638 /* Recycle MRs in the LOCAL_INV chain that did not get posted. 639 */ 640 trace_xprtrdma_post_linv(req, rc); 641 while (bad_wr) { 642 frwr = container_of(bad_wr, struct rpcrdma_frwr, fr_invwr); 643 mr = container_of(frwr, struct rpcrdma_mr, frwr); 644 bad_wr = bad_wr->next; 645 646 frwr_mr_recycle(mr); 647 } 648 649 /* The final LOCAL_INV WR in the chain is supposed to 650 * do the wake. If it was never posted, the wake will 651 * not happen, so wake here in that case. 652 */ 653 rpcrdma_complete_rqst(req->rl_reply); 654 } 655