1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015, 2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 */ 6 7 /* Lightweight memory registration using Fast Registration Work 8 * Requests (FRWR). 9 * 10 * FRWR features ordered asynchronous registration and invalidation 11 * of arbitrarily-sized memory regions. This is the fastest and safest 12 * but most complex memory registration mode. 13 */ 14 15 /* Normal operation 16 * 17 * A Memory Region is prepared for RDMA Read or Write using a FAST_REG 18 * Work Request (frwr_map). When the RDMA operation is finished, this 19 * Memory Region is invalidated using a LOCAL_INV Work Request 20 * (frwr_unmap_async and frwr_unmap_sync). 21 * 22 * Typically FAST_REG Work Requests are not signaled, and neither are 23 * RDMA Send Work Requests (with the exception of signaling occasionally 24 * to prevent provider work queue overflows). This greatly reduces HCA 25 * interrupt workload. 26 */ 27 28 /* Transport recovery 29 * 30 * frwr_map and frwr_unmap_* cannot run at the same time the transport 31 * connect worker is running. The connect worker holds the transport 32 * send lock, just as ->send_request does. This prevents frwr_map and 33 * the connect worker from running concurrently. When a connection is 34 * closed, the Receive completion queue is drained before the allowing 35 * the connect worker to get control. This prevents frwr_unmap and the 36 * connect worker from running concurrently. 37 * 38 * When the underlying transport disconnects, MRs that are in flight 39 * are flushed and are likely unusable. Thus all MRs are destroyed. 40 * New MRs are created on demand. 41 */ 42 43 #include <linux/sunrpc/svc_rdma.h> 44 45 #include "xprt_rdma.h" 46 #include <trace/events/rpcrdma.h> 47 48 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 49 # define RPCDBG_FACILITY RPCDBG_TRANS 50 #endif 51 52 /** 53 * frwr_release_mr - Destroy one MR 54 * @mr: MR allocated by frwr_mr_init 55 * 56 */ 57 void frwr_release_mr(struct rpcrdma_mr *mr) 58 { 59 int rc; 60 61 rc = ib_dereg_mr(mr->frwr.fr_mr); 62 if (rc) 63 trace_xprtrdma_frwr_dereg(mr, rc); 64 kfree(mr->mr_sg); 65 kfree(mr); 66 } 67 68 static void frwr_mr_recycle(struct rpcrdma_mr *mr) 69 { 70 struct rpcrdma_xprt *r_xprt = mr->mr_xprt; 71 72 trace_xprtrdma_mr_recycle(mr); 73 74 if (mr->mr_dir != DMA_NONE) { 75 trace_xprtrdma_mr_unmap(mr); 76 ib_dma_unmap_sg(r_xprt->rx_ep->re_id->device, 77 mr->mr_sg, mr->mr_nents, mr->mr_dir); 78 mr->mr_dir = DMA_NONE; 79 } 80 81 spin_lock(&r_xprt->rx_buf.rb_lock); 82 list_del(&mr->mr_all); 83 r_xprt->rx_stats.mrs_recycled++; 84 spin_unlock(&r_xprt->rx_buf.rb_lock); 85 86 frwr_release_mr(mr); 87 } 88 89 /* frwr_reset - Place MRs back on the free list 90 * @req: request to reset 91 * 92 * Used after a failed marshal. For FRWR, this means the MRs 93 * don't have to be fully released and recreated. 94 * 95 * NB: This is safe only as long as none of @req's MRs are 96 * involved with an ongoing asynchronous FAST_REG or LOCAL_INV 97 * Work Request. 98 */ 99 void frwr_reset(struct rpcrdma_req *req) 100 { 101 struct rpcrdma_mr *mr; 102 103 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) 104 rpcrdma_mr_put(mr); 105 } 106 107 /** 108 * frwr_mr_init - Initialize one MR 109 * @r_xprt: controlling transport instance 110 * @mr: generic MR to prepare for FRWR 111 * 112 * Returns zero if successful. Otherwise a negative errno 113 * is returned. 114 */ 115 int frwr_mr_init(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr) 116 { 117 struct rpcrdma_ep *ep = r_xprt->rx_ep; 118 unsigned int depth = ep->re_max_fr_depth; 119 struct scatterlist *sg; 120 struct ib_mr *frmr; 121 int rc; 122 123 frmr = ib_alloc_mr(ep->re_pd, ep->re_mrtype, depth); 124 if (IS_ERR(frmr)) 125 goto out_mr_err; 126 127 sg = kmalloc_array(depth, sizeof(*sg), GFP_NOFS); 128 if (!sg) 129 goto out_list_err; 130 131 mr->mr_xprt = r_xprt; 132 mr->frwr.fr_mr = frmr; 133 mr->mr_dir = DMA_NONE; 134 INIT_LIST_HEAD(&mr->mr_list); 135 init_completion(&mr->frwr.fr_linv_done); 136 137 sg_init_table(sg, depth); 138 mr->mr_sg = sg; 139 return 0; 140 141 out_mr_err: 142 rc = PTR_ERR(frmr); 143 trace_xprtrdma_frwr_alloc(mr, rc); 144 return rc; 145 146 out_list_err: 147 ib_dereg_mr(frmr); 148 return -ENOMEM; 149 } 150 151 /** 152 * frwr_query_device - Prepare a transport for use with FRWR 153 * @ep: endpoint to fill in 154 * @device: RDMA device to query 155 * 156 * On success, sets: 157 * ep->re_attr 158 * ep->re_max_requests 159 * ep->re_max_rdma_segs 160 * ep->re_max_fr_depth 161 * ep->re_mrtype 162 * 163 * Return values: 164 * On success, returns zero. 165 * %-EINVAL - the device does not support FRWR memory registration 166 * %-ENOMEM - the device is not sufficiently capable for NFS/RDMA 167 */ 168 int frwr_query_device(struct rpcrdma_ep *ep, const struct ib_device *device) 169 { 170 const struct ib_device_attr *attrs = &device->attrs; 171 int max_qp_wr, depth, delta; 172 unsigned int max_sge; 173 174 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) || 175 attrs->max_fast_reg_page_list_len == 0) { 176 pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n", 177 device->name); 178 return -EINVAL; 179 } 180 181 max_sge = min_t(unsigned int, attrs->max_send_sge, 182 RPCRDMA_MAX_SEND_SGES); 183 if (max_sge < RPCRDMA_MIN_SEND_SGES) { 184 pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge); 185 return -ENOMEM; 186 } 187 ep->re_attr.cap.max_send_sge = max_sge; 188 ep->re_attr.cap.max_recv_sge = 1; 189 190 ep->re_mrtype = IB_MR_TYPE_MEM_REG; 191 if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG) 192 ep->re_mrtype = IB_MR_TYPE_SG_GAPS; 193 194 /* Quirk: Some devices advertise a large max_fast_reg_page_list_len 195 * capability, but perform optimally when the MRs are not larger 196 * than a page. 197 */ 198 if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS) 199 ep->re_max_fr_depth = attrs->max_sge_rd; 200 else 201 ep->re_max_fr_depth = attrs->max_fast_reg_page_list_len; 202 if (ep->re_max_fr_depth > RPCRDMA_MAX_DATA_SEGS) 203 ep->re_max_fr_depth = RPCRDMA_MAX_DATA_SEGS; 204 205 /* Add room for frwr register and invalidate WRs. 206 * 1. FRWR reg WR for head 207 * 2. FRWR invalidate WR for head 208 * 3. N FRWR reg WRs for pagelist 209 * 4. N FRWR invalidate WRs for pagelist 210 * 5. FRWR reg WR for tail 211 * 6. FRWR invalidate WR for tail 212 * 7. The RDMA_SEND WR 213 */ 214 depth = 7; 215 216 /* Calculate N if the device max FRWR depth is smaller than 217 * RPCRDMA_MAX_DATA_SEGS. 218 */ 219 if (ep->re_max_fr_depth < RPCRDMA_MAX_DATA_SEGS) { 220 delta = RPCRDMA_MAX_DATA_SEGS - ep->re_max_fr_depth; 221 do { 222 depth += 2; /* FRWR reg + invalidate */ 223 delta -= ep->re_max_fr_depth; 224 } while (delta > 0); 225 } 226 227 max_qp_wr = attrs->max_qp_wr; 228 max_qp_wr -= RPCRDMA_BACKWARD_WRS; 229 max_qp_wr -= 1; 230 if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE) 231 return -ENOMEM; 232 if (ep->re_max_requests > max_qp_wr) 233 ep->re_max_requests = max_qp_wr; 234 ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth; 235 if (ep->re_attr.cap.max_send_wr > max_qp_wr) { 236 ep->re_max_requests = max_qp_wr / depth; 237 if (!ep->re_max_requests) 238 return -ENOMEM; 239 ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth; 240 } 241 ep->re_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS; 242 ep->re_attr.cap.max_send_wr += 1; /* for ib_drain_sq */ 243 ep->re_attr.cap.max_recv_wr = ep->re_max_requests; 244 ep->re_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS; 245 ep->re_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */ 246 247 ep->re_max_rdma_segs = 248 DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ep->re_max_fr_depth); 249 /* Reply chunks require segments for head and tail buffers */ 250 ep->re_max_rdma_segs += 2; 251 if (ep->re_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS) 252 ep->re_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS; 253 254 /* Ensure the underlying device is capable of conveying the 255 * largest r/wsize NFS will ask for. This guarantees that 256 * failing over from one RDMA device to another will not 257 * break NFS I/O. 258 */ 259 if ((ep->re_max_rdma_segs * ep->re_max_fr_depth) < RPCRDMA_MAX_SEGS) 260 return -ENOMEM; 261 262 return 0; 263 } 264 265 /** 266 * frwr_map - Register a memory region 267 * @r_xprt: controlling transport 268 * @seg: memory region co-ordinates 269 * @nsegs: number of segments remaining 270 * @writing: true when RDMA Write will be used 271 * @xid: XID of RPC using the registered memory 272 * @mr: MR to fill in 273 * 274 * Prepare a REG_MR Work Request to register a memory region 275 * for remote access via RDMA READ or RDMA WRITE. 276 * 277 * Returns the next segment or a negative errno pointer. 278 * On success, @mr is filled in. 279 */ 280 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt, 281 struct rpcrdma_mr_seg *seg, 282 int nsegs, bool writing, __be32 xid, 283 struct rpcrdma_mr *mr) 284 { 285 struct rpcrdma_ep *ep = r_xprt->rx_ep; 286 struct ib_reg_wr *reg_wr; 287 int i, n, dma_nents; 288 struct ib_mr *ibmr; 289 u8 key; 290 291 if (nsegs > ep->re_max_fr_depth) 292 nsegs = ep->re_max_fr_depth; 293 for (i = 0; i < nsegs;) { 294 if (seg->mr_page) 295 sg_set_page(&mr->mr_sg[i], 296 seg->mr_page, 297 seg->mr_len, 298 offset_in_page(seg->mr_offset)); 299 else 300 sg_set_buf(&mr->mr_sg[i], seg->mr_offset, 301 seg->mr_len); 302 303 ++seg; 304 ++i; 305 if (ep->re_mrtype == IB_MR_TYPE_SG_GAPS) 306 continue; 307 if ((i < nsegs && offset_in_page(seg->mr_offset)) || 308 offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) 309 break; 310 } 311 mr->mr_dir = rpcrdma_data_dir(writing); 312 mr->mr_nents = i; 313 314 dma_nents = ib_dma_map_sg(ep->re_id->device, mr->mr_sg, mr->mr_nents, 315 mr->mr_dir); 316 if (!dma_nents) 317 goto out_dmamap_err; 318 319 ibmr = mr->frwr.fr_mr; 320 n = ib_map_mr_sg(ibmr, mr->mr_sg, dma_nents, NULL, PAGE_SIZE); 321 if (n != dma_nents) 322 goto out_mapmr_err; 323 324 ibmr->iova &= 0x00000000ffffffff; 325 ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32; 326 key = (u8)(ibmr->rkey & 0x000000FF); 327 ib_update_fast_reg_key(ibmr, ++key); 328 329 reg_wr = &mr->frwr.fr_regwr; 330 reg_wr->mr = ibmr; 331 reg_wr->key = ibmr->rkey; 332 reg_wr->access = writing ? 333 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE : 334 IB_ACCESS_REMOTE_READ; 335 336 mr->mr_handle = ibmr->rkey; 337 mr->mr_length = ibmr->length; 338 mr->mr_offset = ibmr->iova; 339 trace_xprtrdma_mr_map(mr); 340 341 return seg; 342 343 out_dmamap_err: 344 mr->mr_dir = DMA_NONE; 345 trace_xprtrdma_frwr_sgerr(mr, i); 346 return ERR_PTR(-EIO); 347 348 out_mapmr_err: 349 trace_xprtrdma_frwr_maperr(mr, n); 350 return ERR_PTR(-EIO); 351 } 352 353 /** 354 * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC 355 * @cq: completion queue 356 * @wc: WCE for a completed FastReg WR 357 * 358 */ 359 static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc) 360 { 361 struct ib_cqe *cqe = wc->wr_cqe; 362 struct rpcrdma_frwr *frwr = 363 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 364 365 /* WARNING: Only wr_cqe and status are reliable at this point */ 366 trace_xprtrdma_wc_fastreg(wc, frwr); 367 /* The MR will get recycled when the associated req is retransmitted */ 368 369 rpcrdma_flush_disconnect(cq->cq_context, wc); 370 } 371 372 /** 373 * frwr_send - post Send WRs containing the RPC Call message 374 * @r_xprt: controlling transport instance 375 * @req: prepared RPC Call 376 * 377 * For FRWR, chain any FastReg WRs to the Send WR. Only a 378 * single ib_post_send call is needed to register memory 379 * and then post the Send WR. 380 * 381 * Returns the return code from ib_post_send. 382 * 383 * Caller must hold the transport send lock to ensure that the 384 * pointers to the transport's rdma_cm_id and QP are stable. 385 */ 386 int frwr_send(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 387 { 388 struct ib_send_wr *post_wr; 389 struct rpcrdma_mr *mr; 390 391 post_wr = &req->rl_wr; 392 list_for_each_entry(mr, &req->rl_registered, mr_list) { 393 struct rpcrdma_frwr *frwr; 394 395 frwr = &mr->frwr; 396 397 frwr->fr_cqe.done = frwr_wc_fastreg; 398 frwr->fr_regwr.wr.next = post_wr; 399 frwr->fr_regwr.wr.wr_cqe = &frwr->fr_cqe; 400 frwr->fr_regwr.wr.num_sge = 0; 401 frwr->fr_regwr.wr.opcode = IB_WR_REG_MR; 402 frwr->fr_regwr.wr.send_flags = 0; 403 404 post_wr = &frwr->fr_regwr.wr; 405 } 406 407 return ib_post_send(r_xprt->rx_ep->re_id->qp, post_wr, NULL); 408 } 409 410 /** 411 * frwr_reminv - handle a remotely invalidated mr on the @mrs list 412 * @rep: Received reply 413 * @mrs: list of MRs to check 414 * 415 */ 416 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs) 417 { 418 struct rpcrdma_mr *mr; 419 420 list_for_each_entry(mr, mrs, mr_list) 421 if (mr->mr_handle == rep->rr_inv_rkey) { 422 list_del_init(&mr->mr_list); 423 trace_xprtrdma_mr_reminv(mr); 424 rpcrdma_mr_put(mr); 425 break; /* only one invalidated MR per RPC */ 426 } 427 } 428 429 static void __frwr_release_mr(struct ib_wc *wc, struct rpcrdma_mr *mr) 430 { 431 if (wc->status != IB_WC_SUCCESS) 432 frwr_mr_recycle(mr); 433 else 434 rpcrdma_mr_put(mr); 435 } 436 437 /** 438 * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC 439 * @cq: completion queue 440 * @wc: WCE for a completed LocalInv WR 441 * 442 */ 443 static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc) 444 { 445 struct ib_cqe *cqe = wc->wr_cqe; 446 struct rpcrdma_frwr *frwr = 447 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 448 struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr); 449 450 /* WARNING: Only wr_cqe and status are reliable at this point */ 451 trace_xprtrdma_wc_li(wc, frwr); 452 __frwr_release_mr(wc, mr); 453 454 rpcrdma_flush_disconnect(cq->cq_context, wc); 455 } 456 457 /** 458 * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC 459 * @cq: completion queue 460 * @wc: WCE for a completed LocalInv WR 461 * 462 * Awaken anyone waiting for an MR to finish being fenced. 463 */ 464 static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc) 465 { 466 struct ib_cqe *cqe = wc->wr_cqe; 467 struct rpcrdma_frwr *frwr = 468 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 469 struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr); 470 471 /* WARNING: Only wr_cqe and status are reliable at this point */ 472 trace_xprtrdma_wc_li_wake(wc, frwr); 473 __frwr_release_mr(wc, mr); 474 complete(&frwr->fr_linv_done); 475 476 rpcrdma_flush_disconnect(cq->cq_context, wc); 477 } 478 479 /** 480 * frwr_unmap_sync - invalidate memory regions that were registered for @req 481 * @r_xprt: controlling transport instance 482 * @req: rpcrdma_req with a non-empty list of MRs to process 483 * 484 * Sleeps until it is safe for the host CPU to access the previously mapped 485 * memory regions. This guarantees that registered MRs are properly fenced 486 * from the server before the RPC consumer accesses the data in them. It 487 * also ensures proper Send flow control: waking the next RPC waits until 488 * this RPC has relinquished all its Send Queue entries. 489 */ 490 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 491 { 492 struct ib_send_wr *first, **prev, *last; 493 const struct ib_send_wr *bad_wr; 494 struct rpcrdma_frwr *frwr; 495 struct rpcrdma_mr *mr; 496 int rc; 497 498 /* ORDER: Invalidate all of the MRs first 499 * 500 * Chain the LOCAL_INV Work Requests and post them with 501 * a single ib_post_send() call. 502 */ 503 frwr = NULL; 504 prev = &first; 505 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) { 506 507 trace_xprtrdma_mr_localinv(mr); 508 r_xprt->rx_stats.local_inv_needed++; 509 510 frwr = &mr->frwr; 511 frwr->fr_cqe.done = frwr_wc_localinv; 512 last = &frwr->fr_invwr; 513 last->next = NULL; 514 last->wr_cqe = &frwr->fr_cqe; 515 last->sg_list = NULL; 516 last->num_sge = 0; 517 last->opcode = IB_WR_LOCAL_INV; 518 last->send_flags = IB_SEND_SIGNALED; 519 last->ex.invalidate_rkey = mr->mr_handle; 520 521 *prev = last; 522 prev = &last->next; 523 } 524 525 /* Strong send queue ordering guarantees that when the 526 * last WR in the chain completes, all WRs in the chain 527 * are complete. 528 */ 529 frwr->fr_cqe.done = frwr_wc_localinv_wake; 530 reinit_completion(&frwr->fr_linv_done); 531 532 /* Transport disconnect drains the receive CQ before it 533 * replaces the QP. The RPC reply handler won't call us 534 * unless re_id->qp is a valid pointer. 535 */ 536 bad_wr = NULL; 537 rc = ib_post_send(r_xprt->rx_ep->re_id->qp, first, &bad_wr); 538 539 /* The final LOCAL_INV WR in the chain is supposed to 540 * do the wake. If it was never posted, the wake will 541 * not happen, so don't wait in that case. 542 */ 543 if (bad_wr != first) 544 wait_for_completion(&frwr->fr_linv_done); 545 if (!rc) 546 return; 547 548 /* Recycle MRs in the LOCAL_INV chain that did not get posted. 549 */ 550 trace_xprtrdma_post_linv(req, rc); 551 while (bad_wr) { 552 frwr = container_of(bad_wr, struct rpcrdma_frwr, 553 fr_invwr); 554 mr = container_of(frwr, struct rpcrdma_mr, frwr); 555 bad_wr = bad_wr->next; 556 557 list_del_init(&mr->mr_list); 558 frwr_mr_recycle(mr); 559 } 560 } 561 562 /** 563 * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC 564 * @cq: completion queue 565 * @wc: WCE for a completed LocalInv WR 566 * 567 */ 568 static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc) 569 { 570 struct ib_cqe *cqe = wc->wr_cqe; 571 struct rpcrdma_frwr *frwr = 572 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 573 struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr); 574 struct rpcrdma_rep *rep = mr->mr_req->rl_reply; 575 576 /* WARNING: Only wr_cqe and status are reliable at this point */ 577 trace_xprtrdma_wc_li_done(wc, frwr); 578 __frwr_release_mr(wc, mr); 579 580 /* Ensure @rep is generated before __frwr_release_mr */ 581 smp_rmb(); 582 rpcrdma_complete_rqst(rep); 583 584 rpcrdma_flush_disconnect(cq->cq_context, wc); 585 } 586 587 /** 588 * frwr_unmap_async - invalidate memory regions that were registered for @req 589 * @r_xprt: controlling transport instance 590 * @req: rpcrdma_req with a non-empty list of MRs to process 591 * 592 * This guarantees that registered MRs are properly fenced from the 593 * server before the RPC consumer accesses the data in them. It also 594 * ensures proper Send flow control: waking the next RPC waits until 595 * this RPC has relinquished all its Send Queue entries. 596 */ 597 void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 598 { 599 struct ib_send_wr *first, *last, **prev; 600 const struct ib_send_wr *bad_wr; 601 struct rpcrdma_frwr *frwr; 602 struct rpcrdma_mr *mr; 603 int rc; 604 605 /* Chain the LOCAL_INV Work Requests and post them with 606 * a single ib_post_send() call. 607 */ 608 frwr = NULL; 609 prev = &first; 610 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) { 611 612 trace_xprtrdma_mr_localinv(mr); 613 r_xprt->rx_stats.local_inv_needed++; 614 615 frwr = &mr->frwr; 616 frwr->fr_cqe.done = frwr_wc_localinv; 617 last = &frwr->fr_invwr; 618 last->next = NULL; 619 last->wr_cqe = &frwr->fr_cqe; 620 last->sg_list = NULL; 621 last->num_sge = 0; 622 last->opcode = IB_WR_LOCAL_INV; 623 last->send_flags = IB_SEND_SIGNALED; 624 last->ex.invalidate_rkey = mr->mr_handle; 625 626 *prev = last; 627 prev = &last->next; 628 } 629 630 /* Strong send queue ordering guarantees that when the 631 * last WR in the chain completes, all WRs in the chain 632 * are complete. The last completion will wake up the 633 * RPC waiter. 634 */ 635 frwr->fr_cqe.done = frwr_wc_localinv_done; 636 637 /* Transport disconnect drains the receive CQ before it 638 * replaces the QP. The RPC reply handler won't call us 639 * unless re_id->qp is a valid pointer. 640 */ 641 bad_wr = NULL; 642 rc = ib_post_send(r_xprt->rx_ep->re_id->qp, first, &bad_wr); 643 if (!rc) 644 return; 645 646 /* Recycle MRs in the LOCAL_INV chain that did not get posted. 647 */ 648 trace_xprtrdma_post_linv(req, rc); 649 while (bad_wr) { 650 frwr = container_of(bad_wr, struct rpcrdma_frwr, fr_invwr); 651 mr = container_of(frwr, struct rpcrdma_mr, frwr); 652 bad_wr = bad_wr->next; 653 654 frwr_mr_recycle(mr); 655 } 656 657 /* The final LOCAL_INV WR in the chain is supposed to 658 * do the wake. If it was never posted, the wake will 659 * not happen, so wake here in that case. 660 */ 661 rpcrdma_complete_rqst(req->rl_reply); 662 } 663