xref: /openbmc/linux/net/sunrpc/xdr.c (revision dd093fb0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/xdr.c
4  *
5  * Generic XDR support.
6  *
7  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
8  */
9 
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/string.h>
14 #include <linux/kernel.h>
15 #include <linux/pagemap.h>
16 #include <linux/errno.h>
17 #include <linux/sunrpc/xdr.h>
18 #include <linux/sunrpc/msg_prot.h>
19 #include <linux/bvec.h>
20 #include <trace/events/sunrpc.h>
21 
22 static void _copy_to_pages(struct page **, size_t, const char *, size_t);
23 
24 
25 /*
26  * XDR functions for basic NFS types
27  */
28 __be32 *
29 xdr_encode_netobj(__be32 *p, const struct xdr_netobj *obj)
30 {
31 	unsigned int	quadlen = XDR_QUADLEN(obj->len);
32 
33 	p[quadlen] = 0;		/* zero trailing bytes */
34 	*p++ = cpu_to_be32(obj->len);
35 	memcpy(p, obj->data, obj->len);
36 	return p + XDR_QUADLEN(obj->len);
37 }
38 EXPORT_SYMBOL_GPL(xdr_encode_netobj);
39 
40 __be32 *
41 xdr_decode_netobj(__be32 *p, struct xdr_netobj *obj)
42 {
43 	unsigned int	len;
44 
45 	if ((len = be32_to_cpu(*p++)) > XDR_MAX_NETOBJ)
46 		return NULL;
47 	obj->len  = len;
48 	obj->data = (u8 *) p;
49 	return p + XDR_QUADLEN(len);
50 }
51 EXPORT_SYMBOL_GPL(xdr_decode_netobj);
52 
53 /**
54  * xdr_encode_opaque_fixed - Encode fixed length opaque data
55  * @p: pointer to current position in XDR buffer.
56  * @ptr: pointer to data to encode (or NULL)
57  * @nbytes: size of data.
58  *
59  * Copy the array of data of length nbytes at ptr to the XDR buffer
60  * at position p, then align to the next 32-bit boundary by padding
61  * with zero bytes (see RFC1832).
62  * Note: if ptr is NULL, only the padding is performed.
63  *
64  * Returns the updated current XDR buffer position
65  *
66  */
67 __be32 *xdr_encode_opaque_fixed(__be32 *p, const void *ptr, unsigned int nbytes)
68 {
69 	if (likely(nbytes != 0)) {
70 		unsigned int quadlen = XDR_QUADLEN(nbytes);
71 		unsigned int padding = (quadlen << 2) - nbytes;
72 
73 		if (ptr != NULL)
74 			memcpy(p, ptr, nbytes);
75 		if (padding != 0)
76 			memset((char *)p + nbytes, 0, padding);
77 		p += quadlen;
78 	}
79 	return p;
80 }
81 EXPORT_SYMBOL_GPL(xdr_encode_opaque_fixed);
82 
83 /**
84  * xdr_encode_opaque - Encode variable length opaque data
85  * @p: pointer to current position in XDR buffer.
86  * @ptr: pointer to data to encode (or NULL)
87  * @nbytes: size of data.
88  *
89  * Returns the updated current XDR buffer position
90  */
91 __be32 *xdr_encode_opaque(__be32 *p, const void *ptr, unsigned int nbytes)
92 {
93 	*p++ = cpu_to_be32(nbytes);
94 	return xdr_encode_opaque_fixed(p, ptr, nbytes);
95 }
96 EXPORT_SYMBOL_GPL(xdr_encode_opaque);
97 
98 __be32 *
99 xdr_encode_string(__be32 *p, const char *string)
100 {
101 	return xdr_encode_array(p, string, strlen(string));
102 }
103 EXPORT_SYMBOL_GPL(xdr_encode_string);
104 
105 __be32 *
106 xdr_decode_string_inplace(__be32 *p, char **sp,
107 			  unsigned int *lenp, unsigned int maxlen)
108 {
109 	u32 len;
110 
111 	len = be32_to_cpu(*p++);
112 	if (len > maxlen)
113 		return NULL;
114 	*lenp = len;
115 	*sp = (char *) p;
116 	return p + XDR_QUADLEN(len);
117 }
118 EXPORT_SYMBOL_GPL(xdr_decode_string_inplace);
119 
120 /**
121  * xdr_terminate_string - '\0'-terminate a string residing in an xdr_buf
122  * @buf: XDR buffer where string resides
123  * @len: length of string, in bytes
124  *
125  */
126 void xdr_terminate_string(const struct xdr_buf *buf, const u32 len)
127 {
128 	char *kaddr;
129 
130 	kaddr = kmap_atomic(buf->pages[0]);
131 	kaddr[buf->page_base + len] = '\0';
132 	kunmap_atomic(kaddr);
133 }
134 EXPORT_SYMBOL_GPL(xdr_terminate_string);
135 
136 size_t xdr_buf_pagecount(const struct xdr_buf *buf)
137 {
138 	if (!buf->page_len)
139 		return 0;
140 	return (buf->page_base + buf->page_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
141 }
142 
143 int
144 xdr_alloc_bvec(struct xdr_buf *buf, gfp_t gfp)
145 {
146 	size_t i, n = xdr_buf_pagecount(buf);
147 
148 	if (n != 0 && buf->bvec == NULL) {
149 		buf->bvec = kmalloc_array(n, sizeof(buf->bvec[0]), gfp);
150 		if (!buf->bvec)
151 			return -ENOMEM;
152 		for (i = 0; i < n; i++) {
153 			bvec_set_page(&buf->bvec[i], buf->pages[i], PAGE_SIZE,
154 				      0);
155 		}
156 	}
157 	return 0;
158 }
159 
160 void
161 xdr_free_bvec(struct xdr_buf *buf)
162 {
163 	kfree(buf->bvec);
164 	buf->bvec = NULL;
165 }
166 
167 /**
168  * xdr_inline_pages - Prepare receive buffer for a large reply
169  * @xdr: xdr_buf into which reply will be placed
170  * @offset: expected offset where data payload will start, in bytes
171  * @pages: vector of struct page pointers
172  * @base: offset in first page where receive should start, in bytes
173  * @len: expected size of the upper layer data payload, in bytes
174  *
175  */
176 void
177 xdr_inline_pages(struct xdr_buf *xdr, unsigned int offset,
178 		 struct page **pages, unsigned int base, unsigned int len)
179 {
180 	struct kvec *head = xdr->head;
181 	struct kvec *tail = xdr->tail;
182 	char *buf = (char *)head->iov_base;
183 	unsigned int buflen = head->iov_len;
184 
185 	head->iov_len  = offset;
186 
187 	xdr->pages = pages;
188 	xdr->page_base = base;
189 	xdr->page_len = len;
190 
191 	tail->iov_base = buf + offset;
192 	tail->iov_len = buflen - offset;
193 	xdr->buflen += len;
194 }
195 EXPORT_SYMBOL_GPL(xdr_inline_pages);
196 
197 /*
198  * Helper routines for doing 'memmove' like operations on a struct xdr_buf
199  */
200 
201 /**
202  * _shift_data_left_pages
203  * @pages: vector of pages containing both the source and dest memory area.
204  * @pgto_base: page vector address of destination
205  * @pgfrom_base: page vector address of source
206  * @len: number of bytes to copy
207  *
208  * Note: the addresses pgto_base and pgfrom_base are both calculated in
209  *       the same way:
210  *            if a memory area starts at byte 'base' in page 'pages[i]',
211  *            then its address is given as (i << PAGE_CACHE_SHIFT) + base
212  * Alse note: pgto_base must be < pgfrom_base, but the memory areas
213  * 	they point to may overlap.
214  */
215 static void
216 _shift_data_left_pages(struct page **pages, size_t pgto_base,
217 			size_t pgfrom_base, size_t len)
218 {
219 	struct page **pgfrom, **pgto;
220 	char *vfrom, *vto;
221 	size_t copy;
222 
223 	BUG_ON(pgfrom_base <= pgto_base);
224 
225 	if (!len)
226 		return;
227 
228 	pgto = pages + (pgto_base >> PAGE_SHIFT);
229 	pgfrom = pages + (pgfrom_base >> PAGE_SHIFT);
230 
231 	pgto_base &= ~PAGE_MASK;
232 	pgfrom_base &= ~PAGE_MASK;
233 
234 	do {
235 		if (pgto_base >= PAGE_SIZE) {
236 			pgto_base = 0;
237 			pgto++;
238 		}
239 		if (pgfrom_base >= PAGE_SIZE){
240 			pgfrom_base = 0;
241 			pgfrom++;
242 		}
243 
244 		copy = len;
245 		if (copy > (PAGE_SIZE - pgto_base))
246 			copy = PAGE_SIZE - pgto_base;
247 		if (copy > (PAGE_SIZE - pgfrom_base))
248 			copy = PAGE_SIZE - pgfrom_base;
249 
250 		vto = kmap_atomic(*pgto);
251 		if (*pgto != *pgfrom) {
252 			vfrom = kmap_atomic(*pgfrom);
253 			memcpy(vto + pgto_base, vfrom + pgfrom_base, copy);
254 			kunmap_atomic(vfrom);
255 		} else
256 			memmove(vto + pgto_base, vto + pgfrom_base, copy);
257 		flush_dcache_page(*pgto);
258 		kunmap_atomic(vto);
259 
260 		pgto_base += copy;
261 		pgfrom_base += copy;
262 
263 	} while ((len -= copy) != 0);
264 }
265 
266 /**
267  * _shift_data_right_pages
268  * @pages: vector of pages containing both the source and dest memory area.
269  * @pgto_base: page vector address of destination
270  * @pgfrom_base: page vector address of source
271  * @len: number of bytes to copy
272  *
273  * Note: the addresses pgto_base and pgfrom_base are both calculated in
274  *       the same way:
275  *            if a memory area starts at byte 'base' in page 'pages[i]',
276  *            then its address is given as (i << PAGE_SHIFT) + base
277  * Also note: pgfrom_base must be < pgto_base, but the memory areas
278  * 	they point to may overlap.
279  */
280 static void
281 _shift_data_right_pages(struct page **pages, size_t pgto_base,
282 		size_t pgfrom_base, size_t len)
283 {
284 	struct page **pgfrom, **pgto;
285 	char *vfrom, *vto;
286 	size_t copy;
287 
288 	BUG_ON(pgto_base <= pgfrom_base);
289 
290 	if (!len)
291 		return;
292 
293 	pgto_base += len;
294 	pgfrom_base += len;
295 
296 	pgto = pages + (pgto_base >> PAGE_SHIFT);
297 	pgfrom = pages + (pgfrom_base >> PAGE_SHIFT);
298 
299 	pgto_base &= ~PAGE_MASK;
300 	pgfrom_base &= ~PAGE_MASK;
301 
302 	do {
303 		/* Are any pointers crossing a page boundary? */
304 		if (pgto_base == 0) {
305 			pgto_base = PAGE_SIZE;
306 			pgto--;
307 		}
308 		if (pgfrom_base == 0) {
309 			pgfrom_base = PAGE_SIZE;
310 			pgfrom--;
311 		}
312 
313 		copy = len;
314 		if (copy > pgto_base)
315 			copy = pgto_base;
316 		if (copy > pgfrom_base)
317 			copy = pgfrom_base;
318 		pgto_base -= copy;
319 		pgfrom_base -= copy;
320 
321 		vto = kmap_atomic(*pgto);
322 		if (*pgto != *pgfrom) {
323 			vfrom = kmap_atomic(*pgfrom);
324 			memcpy(vto + pgto_base, vfrom + pgfrom_base, copy);
325 			kunmap_atomic(vfrom);
326 		} else
327 			memmove(vto + pgto_base, vto + pgfrom_base, copy);
328 		flush_dcache_page(*pgto);
329 		kunmap_atomic(vto);
330 
331 	} while ((len -= copy) != 0);
332 }
333 
334 /**
335  * _copy_to_pages
336  * @pages: array of pages
337  * @pgbase: page vector address of destination
338  * @p: pointer to source data
339  * @len: length
340  *
341  * Copies data from an arbitrary memory location into an array of pages
342  * The copy is assumed to be non-overlapping.
343  */
344 static void
345 _copy_to_pages(struct page **pages, size_t pgbase, const char *p, size_t len)
346 {
347 	struct page **pgto;
348 	char *vto;
349 	size_t copy;
350 
351 	if (!len)
352 		return;
353 
354 	pgto = pages + (pgbase >> PAGE_SHIFT);
355 	pgbase &= ~PAGE_MASK;
356 
357 	for (;;) {
358 		copy = PAGE_SIZE - pgbase;
359 		if (copy > len)
360 			copy = len;
361 
362 		vto = kmap_atomic(*pgto);
363 		memcpy(vto + pgbase, p, copy);
364 		kunmap_atomic(vto);
365 
366 		len -= copy;
367 		if (len == 0)
368 			break;
369 
370 		pgbase += copy;
371 		if (pgbase == PAGE_SIZE) {
372 			flush_dcache_page(*pgto);
373 			pgbase = 0;
374 			pgto++;
375 		}
376 		p += copy;
377 	}
378 	flush_dcache_page(*pgto);
379 }
380 
381 /**
382  * _copy_from_pages
383  * @p: pointer to destination
384  * @pages: array of pages
385  * @pgbase: offset of source data
386  * @len: length
387  *
388  * Copies data into an arbitrary memory location from an array of pages
389  * The copy is assumed to be non-overlapping.
390  */
391 void
392 _copy_from_pages(char *p, struct page **pages, size_t pgbase, size_t len)
393 {
394 	struct page **pgfrom;
395 	char *vfrom;
396 	size_t copy;
397 
398 	if (!len)
399 		return;
400 
401 	pgfrom = pages + (pgbase >> PAGE_SHIFT);
402 	pgbase &= ~PAGE_MASK;
403 
404 	do {
405 		copy = PAGE_SIZE - pgbase;
406 		if (copy > len)
407 			copy = len;
408 
409 		vfrom = kmap_atomic(*pgfrom);
410 		memcpy(p, vfrom + pgbase, copy);
411 		kunmap_atomic(vfrom);
412 
413 		pgbase += copy;
414 		if (pgbase == PAGE_SIZE) {
415 			pgbase = 0;
416 			pgfrom++;
417 		}
418 		p += copy;
419 
420 	} while ((len -= copy) != 0);
421 }
422 EXPORT_SYMBOL_GPL(_copy_from_pages);
423 
424 static void xdr_buf_iov_zero(const struct kvec *iov, unsigned int base,
425 			     unsigned int len)
426 {
427 	if (base >= iov->iov_len)
428 		return;
429 	if (len > iov->iov_len - base)
430 		len = iov->iov_len - base;
431 	memset(iov->iov_base + base, 0, len);
432 }
433 
434 /**
435  * xdr_buf_pages_zero
436  * @buf: xdr_buf
437  * @pgbase: beginning offset
438  * @len: length
439  */
440 static void xdr_buf_pages_zero(const struct xdr_buf *buf, unsigned int pgbase,
441 			       unsigned int len)
442 {
443 	struct page **pages = buf->pages;
444 	struct page **page;
445 	char *vpage;
446 	unsigned int zero;
447 
448 	if (!len)
449 		return;
450 	if (pgbase >= buf->page_len) {
451 		xdr_buf_iov_zero(buf->tail, pgbase - buf->page_len, len);
452 		return;
453 	}
454 	if (pgbase + len > buf->page_len) {
455 		xdr_buf_iov_zero(buf->tail, 0, pgbase + len - buf->page_len);
456 		len = buf->page_len - pgbase;
457 	}
458 
459 	pgbase += buf->page_base;
460 
461 	page = pages + (pgbase >> PAGE_SHIFT);
462 	pgbase &= ~PAGE_MASK;
463 
464 	do {
465 		zero = PAGE_SIZE - pgbase;
466 		if (zero > len)
467 			zero = len;
468 
469 		vpage = kmap_atomic(*page);
470 		memset(vpage + pgbase, 0, zero);
471 		kunmap_atomic(vpage);
472 
473 		flush_dcache_page(*page);
474 		pgbase = 0;
475 		page++;
476 
477 	} while ((len -= zero) != 0);
478 }
479 
480 static unsigned int xdr_buf_pages_fill_sparse(const struct xdr_buf *buf,
481 					      unsigned int buflen, gfp_t gfp)
482 {
483 	unsigned int i, npages, pagelen;
484 
485 	if (!(buf->flags & XDRBUF_SPARSE_PAGES))
486 		return buflen;
487 	if (buflen <= buf->head->iov_len)
488 		return buflen;
489 	pagelen = buflen - buf->head->iov_len;
490 	if (pagelen > buf->page_len)
491 		pagelen = buf->page_len;
492 	npages = (pagelen + buf->page_base + PAGE_SIZE - 1) >> PAGE_SHIFT;
493 	for (i = 0; i < npages; i++) {
494 		if (!buf->pages[i])
495 			continue;
496 		buf->pages[i] = alloc_page(gfp);
497 		if (likely(buf->pages[i]))
498 			continue;
499 		buflen -= pagelen;
500 		pagelen = i << PAGE_SHIFT;
501 		if (pagelen > buf->page_base)
502 			buflen += pagelen - buf->page_base;
503 		break;
504 	}
505 	return buflen;
506 }
507 
508 static void xdr_buf_try_expand(struct xdr_buf *buf, unsigned int len)
509 {
510 	struct kvec *head = buf->head;
511 	struct kvec *tail = buf->tail;
512 	unsigned int sum = head->iov_len + buf->page_len + tail->iov_len;
513 	unsigned int free_space, newlen;
514 
515 	if (sum > buf->len) {
516 		free_space = min_t(unsigned int, sum - buf->len, len);
517 		newlen = xdr_buf_pages_fill_sparse(buf, buf->len + free_space,
518 						   GFP_KERNEL);
519 		free_space = newlen - buf->len;
520 		buf->len = newlen;
521 		len -= free_space;
522 		if (!len)
523 			return;
524 	}
525 
526 	if (buf->buflen > sum) {
527 		/* Expand the tail buffer */
528 		free_space = min_t(unsigned int, buf->buflen - sum, len);
529 		tail->iov_len += free_space;
530 		buf->len += free_space;
531 	}
532 }
533 
534 static void xdr_buf_tail_copy_right(const struct xdr_buf *buf,
535 				    unsigned int base, unsigned int len,
536 				    unsigned int shift)
537 {
538 	const struct kvec *tail = buf->tail;
539 	unsigned int to = base + shift;
540 
541 	if (to >= tail->iov_len)
542 		return;
543 	if (len + to > tail->iov_len)
544 		len = tail->iov_len - to;
545 	memmove(tail->iov_base + to, tail->iov_base + base, len);
546 }
547 
548 static void xdr_buf_pages_copy_right(const struct xdr_buf *buf,
549 				     unsigned int base, unsigned int len,
550 				     unsigned int shift)
551 {
552 	const struct kvec *tail = buf->tail;
553 	unsigned int to = base + shift;
554 	unsigned int pglen = 0;
555 	unsigned int talen = 0, tato = 0;
556 
557 	if (base >= buf->page_len)
558 		return;
559 	if (len > buf->page_len - base)
560 		len = buf->page_len - base;
561 	if (to >= buf->page_len) {
562 		tato = to - buf->page_len;
563 		if (tail->iov_len >= len + tato)
564 			talen = len;
565 		else if (tail->iov_len > tato)
566 			talen = tail->iov_len - tato;
567 	} else if (len + to >= buf->page_len) {
568 		pglen = buf->page_len - to;
569 		talen = len - pglen;
570 		if (talen > tail->iov_len)
571 			talen = tail->iov_len;
572 	} else
573 		pglen = len;
574 
575 	_copy_from_pages(tail->iov_base + tato, buf->pages,
576 			 buf->page_base + base + pglen, talen);
577 	_shift_data_right_pages(buf->pages, buf->page_base + to,
578 				buf->page_base + base, pglen);
579 }
580 
581 static void xdr_buf_head_copy_right(const struct xdr_buf *buf,
582 				    unsigned int base, unsigned int len,
583 				    unsigned int shift)
584 {
585 	const struct kvec *head = buf->head;
586 	const struct kvec *tail = buf->tail;
587 	unsigned int to = base + shift;
588 	unsigned int pglen = 0, pgto = 0;
589 	unsigned int talen = 0, tato = 0;
590 
591 	if (base >= head->iov_len)
592 		return;
593 	if (len > head->iov_len - base)
594 		len = head->iov_len - base;
595 	if (to >= buf->page_len + head->iov_len) {
596 		tato = to - buf->page_len - head->iov_len;
597 		talen = len;
598 	} else if (to >= head->iov_len) {
599 		pgto = to - head->iov_len;
600 		pglen = len;
601 		if (pgto + pglen > buf->page_len) {
602 			talen = pgto + pglen - buf->page_len;
603 			pglen -= talen;
604 		}
605 	} else {
606 		pglen = len - to;
607 		if (pglen > buf->page_len) {
608 			talen = pglen - buf->page_len;
609 			pglen = buf->page_len;
610 		}
611 	}
612 
613 	len -= talen;
614 	base += len;
615 	if (talen + tato > tail->iov_len)
616 		talen = tail->iov_len > tato ? tail->iov_len - tato : 0;
617 	memcpy(tail->iov_base + tato, head->iov_base + base, talen);
618 
619 	len -= pglen;
620 	base -= pglen;
621 	_copy_to_pages(buf->pages, buf->page_base + pgto, head->iov_base + base,
622 		       pglen);
623 
624 	base -= len;
625 	memmove(head->iov_base + to, head->iov_base + base, len);
626 }
627 
628 static void xdr_buf_tail_shift_right(const struct xdr_buf *buf,
629 				     unsigned int base, unsigned int len,
630 				     unsigned int shift)
631 {
632 	const struct kvec *tail = buf->tail;
633 
634 	if (base >= tail->iov_len || !shift || !len)
635 		return;
636 	xdr_buf_tail_copy_right(buf, base, len, shift);
637 }
638 
639 static void xdr_buf_pages_shift_right(const struct xdr_buf *buf,
640 				      unsigned int base, unsigned int len,
641 				      unsigned int shift)
642 {
643 	if (!shift || !len)
644 		return;
645 	if (base >= buf->page_len) {
646 		xdr_buf_tail_shift_right(buf, base - buf->page_len, len, shift);
647 		return;
648 	}
649 	if (base + len > buf->page_len)
650 		xdr_buf_tail_shift_right(buf, 0, base + len - buf->page_len,
651 					 shift);
652 	xdr_buf_pages_copy_right(buf, base, len, shift);
653 }
654 
655 static void xdr_buf_head_shift_right(const struct xdr_buf *buf,
656 				     unsigned int base, unsigned int len,
657 				     unsigned int shift)
658 {
659 	const struct kvec *head = buf->head;
660 
661 	if (!shift)
662 		return;
663 	if (base >= head->iov_len) {
664 		xdr_buf_pages_shift_right(buf, head->iov_len - base, len,
665 					  shift);
666 		return;
667 	}
668 	if (base + len > head->iov_len)
669 		xdr_buf_pages_shift_right(buf, 0, base + len - head->iov_len,
670 					  shift);
671 	xdr_buf_head_copy_right(buf, base, len, shift);
672 }
673 
674 static void xdr_buf_tail_copy_left(const struct xdr_buf *buf, unsigned int base,
675 				   unsigned int len, unsigned int shift)
676 {
677 	const struct kvec *tail = buf->tail;
678 
679 	if (base >= tail->iov_len)
680 		return;
681 	if (len > tail->iov_len - base)
682 		len = tail->iov_len - base;
683 	/* Shift data into head */
684 	if (shift > buf->page_len + base) {
685 		const struct kvec *head = buf->head;
686 		unsigned int hdto =
687 			head->iov_len + buf->page_len + base - shift;
688 		unsigned int hdlen = len;
689 
690 		if (WARN_ONCE(shift > head->iov_len + buf->page_len + base,
691 			      "SUNRPC: Misaligned data.\n"))
692 			return;
693 		if (hdto + hdlen > head->iov_len)
694 			hdlen = head->iov_len - hdto;
695 		memcpy(head->iov_base + hdto, tail->iov_base + base, hdlen);
696 		base += hdlen;
697 		len -= hdlen;
698 		if (!len)
699 			return;
700 	}
701 	/* Shift data into pages */
702 	if (shift > base) {
703 		unsigned int pgto = buf->page_len + base - shift;
704 		unsigned int pglen = len;
705 
706 		if (pgto + pglen > buf->page_len)
707 			pglen = buf->page_len - pgto;
708 		_copy_to_pages(buf->pages, buf->page_base + pgto,
709 			       tail->iov_base + base, pglen);
710 		base += pglen;
711 		len -= pglen;
712 		if (!len)
713 			return;
714 	}
715 	memmove(tail->iov_base + base - shift, tail->iov_base + base, len);
716 }
717 
718 static void xdr_buf_pages_copy_left(const struct xdr_buf *buf,
719 				    unsigned int base, unsigned int len,
720 				    unsigned int shift)
721 {
722 	unsigned int pgto;
723 
724 	if (base >= buf->page_len)
725 		return;
726 	if (len > buf->page_len - base)
727 		len = buf->page_len - base;
728 	/* Shift data into head */
729 	if (shift > base) {
730 		const struct kvec *head = buf->head;
731 		unsigned int hdto = head->iov_len + base - shift;
732 		unsigned int hdlen = len;
733 
734 		if (WARN_ONCE(shift > head->iov_len + base,
735 			      "SUNRPC: Misaligned data.\n"))
736 			return;
737 		if (hdto + hdlen > head->iov_len)
738 			hdlen = head->iov_len - hdto;
739 		_copy_from_pages(head->iov_base + hdto, buf->pages,
740 				 buf->page_base + base, hdlen);
741 		base += hdlen;
742 		len -= hdlen;
743 		if (!len)
744 			return;
745 	}
746 	pgto = base - shift;
747 	_shift_data_left_pages(buf->pages, buf->page_base + pgto,
748 			       buf->page_base + base, len);
749 }
750 
751 static void xdr_buf_tail_shift_left(const struct xdr_buf *buf,
752 				    unsigned int base, unsigned int len,
753 				    unsigned int shift)
754 {
755 	if (!shift || !len)
756 		return;
757 	xdr_buf_tail_copy_left(buf, base, len, shift);
758 }
759 
760 static void xdr_buf_pages_shift_left(const struct xdr_buf *buf,
761 				     unsigned int base, unsigned int len,
762 				     unsigned int shift)
763 {
764 	if (!shift || !len)
765 		return;
766 	if (base >= buf->page_len) {
767 		xdr_buf_tail_shift_left(buf, base - buf->page_len, len, shift);
768 		return;
769 	}
770 	xdr_buf_pages_copy_left(buf, base, len, shift);
771 	len += base;
772 	if (len <= buf->page_len)
773 		return;
774 	xdr_buf_tail_copy_left(buf, 0, len - buf->page_len, shift);
775 }
776 
777 static void xdr_buf_head_shift_left(const struct xdr_buf *buf,
778 				    unsigned int base, unsigned int len,
779 				    unsigned int shift)
780 {
781 	const struct kvec *head = buf->head;
782 	unsigned int bytes;
783 
784 	if (!shift || !len)
785 		return;
786 
787 	if (shift > base) {
788 		bytes = (shift - base);
789 		if (bytes >= len)
790 			return;
791 		base += bytes;
792 		len -= bytes;
793 	}
794 
795 	if (base < head->iov_len) {
796 		bytes = min_t(unsigned int, len, head->iov_len - base);
797 		memmove(head->iov_base + (base - shift),
798 			head->iov_base + base, bytes);
799 		base += bytes;
800 		len -= bytes;
801 	}
802 	xdr_buf_pages_shift_left(buf, base - head->iov_len, len, shift);
803 }
804 
805 /**
806  * xdr_shrink_bufhead
807  * @buf: xdr_buf
808  * @len: new length of buf->head[0]
809  *
810  * Shrinks XDR buffer's header kvec buf->head[0], setting it to
811  * 'len' bytes. The extra data is not lost, but is instead
812  * moved into the inlined pages and/or the tail.
813  */
814 static unsigned int xdr_shrink_bufhead(struct xdr_buf *buf, unsigned int len)
815 {
816 	struct kvec *head = buf->head;
817 	unsigned int shift, buflen = max(buf->len, len);
818 
819 	WARN_ON_ONCE(len > head->iov_len);
820 	if (head->iov_len > buflen) {
821 		buf->buflen -= head->iov_len - buflen;
822 		head->iov_len = buflen;
823 	}
824 	if (len >= head->iov_len)
825 		return 0;
826 	shift = head->iov_len - len;
827 	xdr_buf_try_expand(buf, shift);
828 	xdr_buf_head_shift_right(buf, len, buflen - len, shift);
829 	head->iov_len = len;
830 	buf->buflen -= shift;
831 	buf->len -= shift;
832 	return shift;
833 }
834 
835 /**
836  * xdr_shrink_pagelen - shrinks buf->pages to @len bytes
837  * @buf: xdr_buf
838  * @len: new page buffer length
839  *
840  * The extra data is not lost, but is instead moved into buf->tail.
841  * Returns the actual number of bytes moved.
842  */
843 static unsigned int xdr_shrink_pagelen(struct xdr_buf *buf, unsigned int len)
844 {
845 	unsigned int shift, buflen = buf->len - buf->head->iov_len;
846 
847 	WARN_ON_ONCE(len > buf->page_len);
848 	if (buf->head->iov_len >= buf->len || len > buflen)
849 		buflen = len;
850 	if (buf->page_len > buflen) {
851 		buf->buflen -= buf->page_len - buflen;
852 		buf->page_len = buflen;
853 	}
854 	if (len >= buf->page_len)
855 		return 0;
856 	shift = buf->page_len - len;
857 	xdr_buf_try_expand(buf, shift);
858 	xdr_buf_pages_shift_right(buf, len, buflen - len, shift);
859 	buf->page_len = len;
860 	buf->len -= shift;
861 	buf->buflen -= shift;
862 	return shift;
863 }
864 
865 void
866 xdr_shift_buf(struct xdr_buf *buf, size_t len)
867 {
868 	xdr_shrink_bufhead(buf, buf->head->iov_len - len);
869 }
870 EXPORT_SYMBOL_GPL(xdr_shift_buf);
871 
872 /**
873  * xdr_stream_pos - Return the current offset from the start of the xdr_stream
874  * @xdr: pointer to struct xdr_stream
875  */
876 unsigned int xdr_stream_pos(const struct xdr_stream *xdr)
877 {
878 	return (unsigned int)(XDR_QUADLEN(xdr->buf->len) - xdr->nwords) << 2;
879 }
880 EXPORT_SYMBOL_GPL(xdr_stream_pos);
881 
882 static void xdr_stream_set_pos(struct xdr_stream *xdr, unsigned int pos)
883 {
884 	unsigned int blen = xdr->buf->len;
885 
886 	xdr->nwords = blen > pos ? XDR_QUADLEN(blen) - XDR_QUADLEN(pos) : 0;
887 }
888 
889 static void xdr_stream_page_set_pos(struct xdr_stream *xdr, unsigned int pos)
890 {
891 	xdr_stream_set_pos(xdr, pos + xdr->buf->head[0].iov_len);
892 }
893 
894 /**
895  * xdr_page_pos - Return the current offset from the start of the xdr pages
896  * @xdr: pointer to struct xdr_stream
897  */
898 unsigned int xdr_page_pos(const struct xdr_stream *xdr)
899 {
900 	unsigned int pos = xdr_stream_pos(xdr);
901 
902 	WARN_ON(pos < xdr->buf->head[0].iov_len);
903 	return pos - xdr->buf->head[0].iov_len;
904 }
905 EXPORT_SYMBOL_GPL(xdr_page_pos);
906 
907 /**
908  * xdr_init_encode - Initialize a struct xdr_stream for sending data.
909  * @xdr: pointer to xdr_stream struct
910  * @buf: pointer to XDR buffer in which to encode data
911  * @p: current pointer inside XDR buffer
912  * @rqst: pointer to controlling rpc_rqst, for debugging
913  *
914  * Note: at the moment the RPC client only passes the length of our
915  *	 scratch buffer in the xdr_buf's header kvec. Previously this
916  *	 meant we needed to call xdr_adjust_iovec() after encoding the
917  *	 data. With the new scheme, the xdr_stream manages the details
918  *	 of the buffer length, and takes care of adjusting the kvec
919  *	 length for us.
920  */
921 void xdr_init_encode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p,
922 		     struct rpc_rqst *rqst)
923 {
924 	struct kvec *iov = buf->head;
925 	int scratch_len = buf->buflen - buf->page_len - buf->tail[0].iov_len;
926 
927 	xdr_reset_scratch_buffer(xdr);
928 	BUG_ON(scratch_len < 0);
929 	xdr->buf = buf;
930 	xdr->iov = iov;
931 	xdr->p = (__be32 *)((char *)iov->iov_base + iov->iov_len);
932 	xdr->end = (__be32 *)((char *)iov->iov_base + scratch_len);
933 	BUG_ON(iov->iov_len > scratch_len);
934 
935 	if (p != xdr->p && p != NULL) {
936 		size_t len;
937 
938 		BUG_ON(p < xdr->p || p > xdr->end);
939 		len = (char *)p - (char *)xdr->p;
940 		xdr->p = p;
941 		buf->len += len;
942 		iov->iov_len += len;
943 	}
944 	xdr->rqst = rqst;
945 }
946 EXPORT_SYMBOL_GPL(xdr_init_encode);
947 
948 /**
949  * xdr_init_encode_pages - Initialize an xdr_stream for encoding into pages
950  * @xdr: pointer to xdr_stream struct
951  * @buf: pointer to XDR buffer into which to encode data
952  * @pages: list of pages to decode into
953  * @rqst: pointer to controlling rpc_rqst, for debugging
954  *
955  */
956 void xdr_init_encode_pages(struct xdr_stream *xdr, struct xdr_buf *buf,
957 			   struct page **pages, struct rpc_rqst *rqst)
958 {
959 	xdr_reset_scratch_buffer(xdr);
960 
961 	xdr->buf = buf;
962 	xdr->page_ptr = pages;
963 	xdr->iov = NULL;
964 	xdr->p = page_address(*pages);
965 	xdr->end = (void *)xdr->p + min_t(u32, buf->buflen, PAGE_SIZE);
966 	xdr->rqst = rqst;
967 }
968 EXPORT_SYMBOL_GPL(xdr_init_encode_pages);
969 
970 /**
971  * __xdr_commit_encode - Ensure all data is written to buffer
972  * @xdr: pointer to xdr_stream
973  *
974  * We handle encoding across page boundaries by giving the caller a
975  * temporary location to write to, then later copying the data into
976  * place; xdr_commit_encode does that copying.
977  *
978  * Normally the caller doesn't need to call this directly, as the
979  * following xdr_reserve_space will do it.  But an explicit call may be
980  * required at the end of encoding, or any other time when the xdr_buf
981  * data might be read.
982  */
983 void __xdr_commit_encode(struct xdr_stream *xdr)
984 {
985 	size_t shift = xdr->scratch.iov_len;
986 	void *page;
987 
988 	page = page_address(*xdr->page_ptr);
989 	memcpy(xdr->scratch.iov_base, page, shift);
990 	memmove(page, page + shift, (void *)xdr->p - page);
991 	xdr_reset_scratch_buffer(xdr);
992 }
993 EXPORT_SYMBOL_GPL(__xdr_commit_encode);
994 
995 /*
996  * The buffer space to be reserved crosses the boundary between
997  * xdr->buf->head and xdr->buf->pages, or between two pages
998  * in xdr->buf->pages.
999  */
1000 static noinline __be32 *xdr_get_next_encode_buffer(struct xdr_stream *xdr,
1001 						   size_t nbytes)
1002 {
1003 	int space_left;
1004 	int frag1bytes, frag2bytes;
1005 	void *p;
1006 
1007 	if (nbytes > PAGE_SIZE)
1008 		goto out_overflow; /* Bigger buffers require special handling */
1009 	if (xdr->buf->len + nbytes > xdr->buf->buflen)
1010 		goto out_overflow; /* Sorry, we're totally out of space */
1011 	frag1bytes = (xdr->end - xdr->p) << 2;
1012 	frag2bytes = nbytes - frag1bytes;
1013 	if (xdr->iov)
1014 		xdr->iov->iov_len += frag1bytes;
1015 	else
1016 		xdr->buf->page_len += frag1bytes;
1017 	xdr->page_ptr++;
1018 	xdr->iov = NULL;
1019 
1020 	/*
1021 	 * If the last encode didn't end exactly on a page boundary, the
1022 	 * next one will straddle boundaries.  Encode into the next
1023 	 * page, then copy it back later in xdr_commit_encode.  We use
1024 	 * the "scratch" iov to track any temporarily unused fragment of
1025 	 * space at the end of the previous buffer:
1026 	 */
1027 	xdr_set_scratch_buffer(xdr, xdr->p, frag1bytes);
1028 
1029 	/*
1030 	 * xdr->p is where the next encode will start after
1031 	 * xdr_commit_encode() has shifted this one back:
1032 	 */
1033 	p = page_address(*xdr->page_ptr);
1034 	xdr->p = p + frag2bytes;
1035 	space_left = xdr->buf->buflen - xdr->buf->len;
1036 	if (space_left - frag1bytes >= PAGE_SIZE)
1037 		xdr->end = p + PAGE_SIZE;
1038 	else
1039 		xdr->end = p + space_left - frag1bytes;
1040 
1041 	xdr->buf->page_len += frag2bytes;
1042 	xdr->buf->len += nbytes;
1043 	return p;
1044 out_overflow:
1045 	trace_rpc_xdr_overflow(xdr, nbytes);
1046 	return NULL;
1047 }
1048 
1049 /**
1050  * xdr_reserve_space - Reserve buffer space for sending
1051  * @xdr: pointer to xdr_stream
1052  * @nbytes: number of bytes to reserve
1053  *
1054  * Checks that we have enough buffer space to encode 'nbytes' more
1055  * bytes of data. If so, update the total xdr_buf length, and
1056  * adjust the length of the current kvec.
1057  */
1058 __be32 * xdr_reserve_space(struct xdr_stream *xdr, size_t nbytes)
1059 {
1060 	__be32 *p = xdr->p;
1061 	__be32 *q;
1062 
1063 	xdr_commit_encode(xdr);
1064 	/* align nbytes on the next 32-bit boundary */
1065 	nbytes += 3;
1066 	nbytes &= ~3;
1067 	q = p + (nbytes >> 2);
1068 	if (unlikely(q > xdr->end || q < p))
1069 		return xdr_get_next_encode_buffer(xdr, nbytes);
1070 	xdr->p = q;
1071 	if (xdr->iov)
1072 		xdr->iov->iov_len += nbytes;
1073 	else
1074 		xdr->buf->page_len += nbytes;
1075 	xdr->buf->len += nbytes;
1076 	return p;
1077 }
1078 EXPORT_SYMBOL_GPL(xdr_reserve_space);
1079 
1080 
1081 /**
1082  * xdr_reserve_space_vec - Reserves a large amount of buffer space for sending
1083  * @xdr: pointer to xdr_stream
1084  * @vec: pointer to a kvec array
1085  * @nbytes: number of bytes to reserve
1086  *
1087  * Reserves enough buffer space to encode 'nbytes' of data and stores the
1088  * pointers in 'vec'. The size argument passed to xdr_reserve_space() is
1089  * determined based on the number of bytes remaining in the current page to
1090  * avoid invalidating iov_base pointers when xdr_commit_encode() is called.
1091  */
1092 int xdr_reserve_space_vec(struct xdr_stream *xdr, struct kvec *vec, size_t nbytes)
1093 {
1094 	int thislen;
1095 	int v = 0;
1096 	__be32 *p;
1097 
1098 	/*
1099 	 * svcrdma requires every READ payload to start somewhere
1100 	 * in xdr->pages.
1101 	 */
1102 	if (xdr->iov == xdr->buf->head) {
1103 		xdr->iov = NULL;
1104 		xdr->end = xdr->p;
1105 	}
1106 
1107 	while (nbytes) {
1108 		thislen = xdr->buf->page_len % PAGE_SIZE;
1109 		thislen = min_t(size_t, nbytes, PAGE_SIZE - thislen);
1110 
1111 		p = xdr_reserve_space(xdr, thislen);
1112 		if (!p)
1113 			return -EIO;
1114 
1115 		vec[v].iov_base = p;
1116 		vec[v].iov_len = thislen;
1117 		v++;
1118 		nbytes -= thislen;
1119 	}
1120 
1121 	return v;
1122 }
1123 EXPORT_SYMBOL_GPL(xdr_reserve_space_vec);
1124 
1125 /**
1126  * xdr_truncate_encode - truncate an encode buffer
1127  * @xdr: pointer to xdr_stream
1128  * @len: new length of buffer
1129  *
1130  * Truncates the xdr stream, so that xdr->buf->len == len,
1131  * and xdr->p points at offset len from the start of the buffer, and
1132  * head, tail, and page lengths are adjusted to correspond.
1133  *
1134  * If this means moving xdr->p to a different buffer, we assume that
1135  * the end pointer should be set to the end of the current page,
1136  * except in the case of the head buffer when we assume the head
1137  * buffer's current length represents the end of the available buffer.
1138  *
1139  * This is *not* safe to use on a buffer that already has inlined page
1140  * cache pages (as in a zero-copy server read reply), except for the
1141  * simple case of truncating from one position in the tail to another.
1142  *
1143  */
1144 void xdr_truncate_encode(struct xdr_stream *xdr, size_t len)
1145 {
1146 	struct xdr_buf *buf = xdr->buf;
1147 	struct kvec *head = buf->head;
1148 	struct kvec *tail = buf->tail;
1149 	int fraglen;
1150 	int new;
1151 
1152 	if (len > buf->len) {
1153 		WARN_ON_ONCE(1);
1154 		return;
1155 	}
1156 	xdr_commit_encode(xdr);
1157 
1158 	fraglen = min_t(int, buf->len - len, tail->iov_len);
1159 	tail->iov_len -= fraglen;
1160 	buf->len -= fraglen;
1161 	if (tail->iov_len) {
1162 		xdr->p = tail->iov_base + tail->iov_len;
1163 		WARN_ON_ONCE(!xdr->end);
1164 		WARN_ON_ONCE(!xdr->iov);
1165 		return;
1166 	}
1167 	WARN_ON_ONCE(fraglen);
1168 	fraglen = min_t(int, buf->len - len, buf->page_len);
1169 	buf->page_len -= fraglen;
1170 	buf->len -= fraglen;
1171 
1172 	new = buf->page_base + buf->page_len;
1173 
1174 	xdr->page_ptr = buf->pages + (new >> PAGE_SHIFT);
1175 
1176 	if (buf->page_len) {
1177 		xdr->p = page_address(*xdr->page_ptr);
1178 		xdr->end = (void *)xdr->p + PAGE_SIZE;
1179 		xdr->p = (void *)xdr->p + (new % PAGE_SIZE);
1180 		WARN_ON_ONCE(xdr->iov);
1181 		return;
1182 	}
1183 	if (fraglen)
1184 		xdr->end = head->iov_base + head->iov_len;
1185 	/* (otherwise assume xdr->end is already set) */
1186 	xdr->page_ptr--;
1187 	head->iov_len = len;
1188 	buf->len = len;
1189 	xdr->p = head->iov_base + head->iov_len;
1190 	xdr->iov = buf->head;
1191 }
1192 EXPORT_SYMBOL(xdr_truncate_encode);
1193 
1194 /**
1195  * xdr_restrict_buflen - decrease available buffer space
1196  * @xdr: pointer to xdr_stream
1197  * @newbuflen: new maximum number of bytes available
1198  *
1199  * Adjust our idea of how much space is available in the buffer.
1200  * If we've already used too much space in the buffer, returns -1.
1201  * If the available space is already smaller than newbuflen, returns 0
1202  * and does nothing.  Otherwise, adjusts xdr->buf->buflen to newbuflen
1203  * and ensures xdr->end is set at most offset newbuflen from the start
1204  * of the buffer.
1205  */
1206 int xdr_restrict_buflen(struct xdr_stream *xdr, int newbuflen)
1207 {
1208 	struct xdr_buf *buf = xdr->buf;
1209 	int left_in_this_buf = (void *)xdr->end - (void *)xdr->p;
1210 	int end_offset = buf->len + left_in_this_buf;
1211 
1212 	if (newbuflen < 0 || newbuflen < buf->len)
1213 		return -1;
1214 	if (newbuflen > buf->buflen)
1215 		return 0;
1216 	if (newbuflen < end_offset)
1217 		xdr->end = (void *)xdr->end + newbuflen - end_offset;
1218 	buf->buflen = newbuflen;
1219 	return 0;
1220 }
1221 EXPORT_SYMBOL(xdr_restrict_buflen);
1222 
1223 /**
1224  * xdr_write_pages - Insert a list of pages into an XDR buffer for sending
1225  * @xdr: pointer to xdr_stream
1226  * @pages: array of pages to insert
1227  * @base: starting offset of first data byte in @pages
1228  * @len: number of data bytes in @pages to insert
1229  *
1230  * After the @pages are added, the tail iovec is instantiated pointing to
1231  * end of the head buffer, and the stream is set up to encode subsequent
1232  * items into the tail.
1233  */
1234 void xdr_write_pages(struct xdr_stream *xdr, struct page **pages, unsigned int base,
1235 		 unsigned int len)
1236 {
1237 	struct xdr_buf *buf = xdr->buf;
1238 	struct kvec *tail = buf->tail;
1239 
1240 	buf->pages = pages;
1241 	buf->page_base = base;
1242 	buf->page_len = len;
1243 
1244 	tail->iov_base = xdr->p;
1245 	tail->iov_len = 0;
1246 	xdr->iov = tail;
1247 
1248 	if (len & 3) {
1249 		unsigned int pad = 4 - (len & 3);
1250 
1251 		BUG_ON(xdr->p >= xdr->end);
1252 		tail->iov_base = (char *)xdr->p + (len & 3);
1253 		tail->iov_len += pad;
1254 		len += pad;
1255 		*xdr->p++ = 0;
1256 	}
1257 	buf->buflen += len;
1258 	buf->len += len;
1259 }
1260 EXPORT_SYMBOL_GPL(xdr_write_pages);
1261 
1262 static unsigned int xdr_set_iov(struct xdr_stream *xdr, struct kvec *iov,
1263 				unsigned int base, unsigned int len)
1264 {
1265 	if (len > iov->iov_len)
1266 		len = iov->iov_len;
1267 	if (unlikely(base > len))
1268 		base = len;
1269 	xdr->p = (__be32*)(iov->iov_base + base);
1270 	xdr->end = (__be32*)(iov->iov_base + len);
1271 	xdr->iov = iov;
1272 	xdr->page_ptr = NULL;
1273 	return len - base;
1274 }
1275 
1276 static unsigned int xdr_set_tail_base(struct xdr_stream *xdr,
1277 				      unsigned int base, unsigned int len)
1278 {
1279 	struct xdr_buf *buf = xdr->buf;
1280 
1281 	xdr_stream_set_pos(xdr, base + buf->page_len + buf->head->iov_len);
1282 	return xdr_set_iov(xdr, buf->tail, base, len);
1283 }
1284 
1285 static unsigned int xdr_set_page_base(struct xdr_stream *xdr,
1286 				      unsigned int base, unsigned int len)
1287 {
1288 	unsigned int pgnr;
1289 	unsigned int maxlen;
1290 	unsigned int pgoff;
1291 	unsigned int pgend;
1292 	void *kaddr;
1293 
1294 	maxlen = xdr->buf->page_len;
1295 	if (base >= maxlen)
1296 		return 0;
1297 	else
1298 		maxlen -= base;
1299 	if (len > maxlen)
1300 		len = maxlen;
1301 
1302 	xdr_stream_page_set_pos(xdr, base);
1303 	base += xdr->buf->page_base;
1304 
1305 	pgnr = base >> PAGE_SHIFT;
1306 	xdr->page_ptr = &xdr->buf->pages[pgnr];
1307 	kaddr = page_address(*xdr->page_ptr);
1308 
1309 	pgoff = base & ~PAGE_MASK;
1310 	xdr->p = (__be32*)(kaddr + pgoff);
1311 
1312 	pgend = pgoff + len;
1313 	if (pgend > PAGE_SIZE)
1314 		pgend = PAGE_SIZE;
1315 	xdr->end = (__be32*)(kaddr + pgend);
1316 	xdr->iov = NULL;
1317 	return len;
1318 }
1319 
1320 static void xdr_set_page(struct xdr_stream *xdr, unsigned int base,
1321 			 unsigned int len)
1322 {
1323 	if (xdr_set_page_base(xdr, base, len) == 0) {
1324 		base -= xdr->buf->page_len;
1325 		xdr_set_tail_base(xdr, base, len);
1326 	}
1327 }
1328 
1329 static void xdr_set_next_page(struct xdr_stream *xdr)
1330 {
1331 	unsigned int newbase;
1332 
1333 	newbase = (1 + xdr->page_ptr - xdr->buf->pages) << PAGE_SHIFT;
1334 	newbase -= xdr->buf->page_base;
1335 	if (newbase < xdr->buf->page_len)
1336 		xdr_set_page_base(xdr, newbase, xdr_stream_remaining(xdr));
1337 	else
1338 		xdr_set_tail_base(xdr, 0, xdr_stream_remaining(xdr));
1339 }
1340 
1341 static bool xdr_set_next_buffer(struct xdr_stream *xdr)
1342 {
1343 	if (xdr->page_ptr != NULL)
1344 		xdr_set_next_page(xdr);
1345 	else if (xdr->iov == xdr->buf->head)
1346 		xdr_set_page(xdr, 0, xdr_stream_remaining(xdr));
1347 	return xdr->p != xdr->end;
1348 }
1349 
1350 /**
1351  * xdr_init_decode - Initialize an xdr_stream for decoding data.
1352  * @xdr: pointer to xdr_stream struct
1353  * @buf: pointer to XDR buffer from which to decode data
1354  * @p: current pointer inside XDR buffer
1355  * @rqst: pointer to controlling rpc_rqst, for debugging
1356  */
1357 void xdr_init_decode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p,
1358 		     struct rpc_rqst *rqst)
1359 {
1360 	xdr->buf = buf;
1361 	xdr_reset_scratch_buffer(xdr);
1362 	xdr->nwords = XDR_QUADLEN(buf->len);
1363 	if (xdr_set_iov(xdr, buf->head, 0, buf->len) == 0 &&
1364 	    xdr_set_page_base(xdr, 0, buf->len) == 0)
1365 		xdr_set_iov(xdr, buf->tail, 0, buf->len);
1366 	if (p != NULL && p > xdr->p && xdr->end >= p) {
1367 		xdr->nwords -= p - xdr->p;
1368 		xdr->p = p;
1369 	}
1370 	xdr->rqst = rqst;
1371 }
1372 EXPORT_SYMBOL_GPL(xdr_init_decode);
1373 
1374 /**
1375  * xdr_init_decode_pages - Initialize an xdr_stream for decoding into pages
1376  * @xdr: pointer to xdr_stream struct
1377  * @buf: pointer to XDR buffer from which to decode data
1378  * @pages: list of pages to decode into
1379  * @len: length in bytes of buffer in pages
1380  */
1381 void xdr_init_decode_pages(struct xdr_stream *xdr, struct xdr_buf *buf,
1382 			   struct page **pages, unsigned int len)
1383 {
1384 	memset(buf, 0, sizeof(*buf));
1385 	buf->pages =  pages;
1386 	buf->page_len =  len;
1387 	buf->buflen =  len;
1388 	buf->len = len;
1389 	xdr_init_decode(xdr, buf, NULL, NULL);
1390 }
1391 EXPORT_SYMBOL_GPL(xdr_init_decode_pages);
1392 
1393 static __be32 * __xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes)
1394 {
1395 	unsigned int nwords = XDR_QUADLEN(nbytes);
1396 	__be32 *p = xdr->p;
1397 	__be32 *q = p + nwords;
1398 
1399 	if (unlikely(nwords > xdr->nwords || q > xdr->end || q < p))
1400 		return NULL;
1401 	xdr->p = q;
1402 	xdr->nwords -= nwords;
1403 	return p;
1404 }
1405 
1406 static __be32 *xdr_copy_to_scratch(struct xdr_stream *xdr, size_t nbytes)
1407 {
1408 	__be32 *p;
1409 	char *cpdest = xdr->scratch.iov_base;
1410 	size_t cplen = (char *)xdr->end - (char *)xdr->p;
1411 
1412 	if (nbytes > xdr->scratch.iov_len)
1413 		goto out_overflow;
1414 	p = __xdr_inline_decode(xdr, cplen);
1415 	if (p == NULL)
1416 		return NULL;
1417 	memcpy(cpdest, p, cplen);
1418 	if (!xdr_set_next_buffer(xdr))
1419 		goto out_overflow;
1420 	cpdest += cplen;
1421 	nbytes -= cplen;
1422 	p = __xdr_inline_decode(xdr, nbytes);
1423 	if (p == NULL)
1424 		return NULL;
1425 	memcpy(cpdest, p, nbytes);
1426 	return xdr->scratch.iov_base;
1427 out_overflow:
1428 	trace_rpc_xdr_overflow(xdr, nbytes);
1429 	return NULL;
1430 }
1431 
1432 /**
1433  * xdr_inline_decode - Retrieve XDR data to decode
1434  * @xdr: pointer to xdr_stream struct
1435  * @nbytes: number of bytes of data to decode
1436  *
1437  * Check if the input buffer is long enough to enable us to decode
1438  * 'nbytes' more bytes of data starting at the current position.
1439  * If so return the current pointer, then update the current
1440  * pointer position.
1441  */
1442 __be32 * xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes)
1443 {
1444 	__be32 *p;
1445 
1446 	if (unlikely(nbytes == 0))
1447 		return xdr->p;
1448 	if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr))
1449 		goto out_overflow;
1450 	p = __xdr_inline_decode(xdr, nbytes);
1451 	if (p != NULL)
1452 		return p;
1453 	return xdr_copy_to_scratch(xdr, nbytes);
1454 out_overflow:
1455 	trace_rpc_xdr_overflow(xdr, nbytes);
1456 	return NULL;
1457 }
1458 EXPORT_SYMBOL_GPL(xdr_inline_decode);
1459 
1460 static void xdr_realign_pages(struct xdr_stream *xdr)
1461 {
1462 	struct xdr_buf *buf = xdr->buf;
1463 	struct kvec *iov = buf->head;
1464 	unsigned int cur = xdr_stream_pos(xdr);
1465 	unsigned int copied;
1466 
1467 	/* Realign pages to current pointer position */
1468 	if (iov->iov_len > cur) {
1469 		copied = xdr_shrink_bufhead(buf, cur);
1470 		trace_rpc_xdr_alignment(xdr, cur, copied);
1471 		xdr_set_page(xdr, 0, buf->page_len);
1472 	}
1473 }
1474 
1475 static unsigned int xdr_align_pages(struct xdr_stream *xdr, unsigned int len)
1476 {
1477 	struct xdr_buf *buf = xdr->buf;
1478 	unsigned int nwords = XDR_QUADLEN(len);
1479 	unsigned int copied;
1480 
1481 	if (xdr->nwords == 0)
1482 		return 0;
1483 
1484 	xdr_realign_pages(xdr);
1485 	if (nwords > xdr->nwords) {
1486 		nwords = xdr->nwords;
1487 		len = nwords << 2;
1488 	}
1489 	if (buf->page_len <= len)
1490 		len = buf->page_len;
1491 	else if (nwords < xdr->nwords) {
1492 		/* Truncate page data and move it into the tail */
1493 		copied = xdr_shrink_pagelen(buf, len);
1494 		trace_rpc_xdr_alignment(xdr, len, copied);
1495 	}
1496 	return len;
1497 }
1498 
1499 /**
1500  * xdr_read_pages - align page-based XDR data to current pointer position
1501  * @xdr: pointer to xdr_stream struct
1502  * @len: number of bytes of page data
1503  *
1504  * Moves data beyond the current pointer position from the XDR head[] buffer
1505  * into the page list. Any data that lies beyond current position + @len
1506  * bytes is moved into the XDR tail[]. The xdr_stream current position is
1507  * then advanced past that data to align to the next XDR object in the tail.
1508  *
1509  * Returns the number of XDR encoded bytes now contained in the pages
1510  */
1511 unsigned int xdr_read_pages(struct xdr_stream *xdr, unsigned int len)
1512 {
1513 	unsigned int nwords = XDR_QUADLEN(len);
1514 	unsigned int base, end, pglen;
1515 
1516 	pglen = xdr_align_pages(xdr, nwords << 2);
1517 	if (pglen == 0)
1518 		return 0;
1519 
1520 	base = (nwords << 2) - pglen;
1521 	end = xdr_stream_remaining(xdr) - pglen;
1522 
1523 	xdr_set_tail_base(xdr, base, end);
1524 	return len <= pglen ? len : pglen;
1525 }
1526 EXPORT_SYMBOL_GPL(xdr_read_pages);
1527 
1528 /**
1529  * xdr_set_pagelen - Sets the length of the XDR pages
1530  * @xdr: pointer to xdr_stream struct
1531  * @len: new length of the XDR page data
1532  *
1533  * Either grows or shrinks the length of the xdr pages by setting pagelen to
1534  * @len bytes. When shrinking, any extra data is moved into buf->tail, whereas
1535  * when growing any data beyond the current pointer is moved into the tail.
1536  *
1537  * Returns True if the operation was successful, and False otherwise.
1538  */
1539 void xdr_set_pagelen(struct xdr_stream *xdr, unsigned int len)
1540 {
1541 	struct xdr_buf *buf = xdr->buf;
1542 	size_t remaining = xdr_stream_remaining(xdr);
1543 	size_t base = 0;
1544 
1545 	if (len < buf->page_len) {
1546 		base = buf->page_len - len;
1547 		xdr_shrink_pagelen(buf, len);
1548 	} else {
1549 		xdr_buf_head_shift_right(buf, xdr_stream_pos(xdr),
1550 					 buf->page_len, remaining);
1551 		if (len > buf->page_len)
1552 			xdr_buf_try_expand(buf, len - buf->page_len);
1553 	}
1554 	xdr_set_tail_base(xdr, base, remaining);
1555 }
1556 EXPORT_SYMBOL_GPL(xdr_set_pagelen);
1557 
1558 /**
1559  * xdr_enter_page - decode data from the XDR page
1560  * @xdr: pointer to xdr_stream struct
1561  * @len: number of bytes of page data
1562  *
1563  * Moves data beyond the current pointer position from the XDR head[] buffer
1564  * into the page list. Any data that lies beyond current position + "len"
1565  * bytes is moved into the XDR tail[]. The current pointer is then
1566  * repositioned at the beginning of the first XDR page.
1567  */
1568 void xdr_enter_page(struct xdr_stream *xdr, unsigned int len)
1569 {
1570 	len = xdr_align_pages(xdr, len);
1571 	/*
1572 	 * Position current pointer at beginning of tail, and
1573 	 * set remaining message length.
1574 	 */
1575 	if (len != 0)
1576 		xdr_set_page_base(xdr, 0, len);
1577 }
1578 EXPORT_SYMBOL_GPL(xdr_enter_page);
1579 
1580 static const struct kvec empty_iov = {.iov_base = NULL, .iov_len = 0};
1581 
1582 void xdr_buf_from_iov(const struct kvec *iov, struct xdr_buf *buf)
1583 {
1584 	buf->head[0] = *iov;
1585 	buf->tail[0] = empty_iov;
1586 	buf->page_len = 0;
1587 	buf->buflen = buf->len = iov->iov_len;
1588 }
1589 EXPORT_SYMBOL_GPL(xdr_buf_from_iov);
1590 
1591 /**
1592  * xdr_buf_subsegment - set subbuf to a portion of buf
1593  * @buf: an xdr buffer
1594  * @subbuf: the result buffer
1595  * @base: beginning of range in bytes
1596  * @len: length of range in bytes
1597  *
1598  * sets @subbuf to an xdr buffer representing the portion of @buf of
1599  * length @len starting at offset @base.
1600  *
1601  * @buf and @subbuf may be pointers to the same struct xdr_buf.
1602  *
1603  * Returns -1 if base or length are out of bounds.
1604  */
1605 int xdr_buf_subsegment(const struct xdr_buf *buf, struct xdr_buf *subbuf,
1606 		       unsigned int base, unsigned int len)
1607 {
1608 	subbuf->buflen = subbuf->len = len;
1609 	if (base < buf->head[0].iov_len) {
1610 		subbuf->head[0].iov_base = buf->head[0].iov_base + base;
1611 		subbuf->head[0].iov_len = min_t(unsigned int, len,
1612 						buf->head[0].iov_len - base);
1613 		len -= subbuf->head[0].iov_len;
1614 		base = 0;
1615 	} else {
1616 		base -= buf->head[0].iov_len;
1617 		subbuf->head[0].iov_base = buf->head[0].iov_base;
1618 		subbuf->head[0].iov_len = 0;
1619 	}
1620 
1621 	if (base < buf->page_len) {
1622 		subbuf->page_len = min(buf->page_len - base, len);
1623 		base += buf->page_base;
1624 		subbuf->page_base = base & ~PAGE_MASK;
1625 		subbuf->pages = &buf->pages[base >> PAGE_SHIFT];
1626 		len -= subbuf->page_len;
1627 		base = 0;
1628 	} else {
1629 		base -= buf->page_len;
1630 		subbuf->pages = buf->pages;
1631 		subbuf->page_base = 0;
1632 		subbuf->page_len = 0;
1633 	}
1634 
1635 	if (base < buf->tail[0].iov_len) {
1636 		subbuf->tail[0].iov_base = buf->tail[0].iov_base + base;
1637 		subbuf->tail[0].iov_len = min_t(unsigned int, len,
1638 						buf->tail[0].iov_len - base);
1639 		len -= subbuf->tail[0].iov_len;
1640 		base = 0;
1641 	} else {
1642 		base -= buf->tail[0].iov_len;
1643 		subbuf->tail[0].iov_base = buf->tail[0].iov_base;
1644 		subbuf->tail[0].iov_len = 0;
1645 	}
1646 
1647 	if (base || len)
1648 		return -1;
1649 	return 0;
1650 }
1651 EXPORT_SYMBOL_GPL(xdr_buf_subsegment);
1652 
1653 /**
1654  * xdr_stream_subsegment - set @subbuf to a portion of @xdr
1655  * @xdr: an xdr_stream set up for decoding
1656  * @subbuf: the result buffer
1657  * @nbytes: length of @xdr to extract, in bytes
1658  *
1659  * Sets up @subbuf to represent a portion of @xdr. The portion
1660  * starts at the current offset in @xdr, and extends for a length
1661  * of @nbytes. If this is successful, @xdr is advanced to the next
1662  * XDR data item following that portion.
1663  *
1664  * Return values:
1665  *   %true: @subbuf has been initialized, and @xdr has been advanced.
1666  *   %false: a bounds error has occurred
1667  */
1668 bool xdr_stream_subsegment(struct xdr_stream *xdr, struct xdr_buf *subbuf,
1669 			   unsigned int nbytes)
1670 {
1671 	unsigned int start = xdr_stream_pos(xdr);
1672 	unsigned int remaining, len;
1673 
1674 	/* Extract @subbuf and bounds-check the fn arguments */
1675 	if (xdr_buf_subsegment(xdr->buf, subbuf, start, nbytes))
1676 		return false;
1677 
1678 	/* Advance @xdr by @nbytes */
1679 	for (remaining = nbytes; remaining;) {
1680 		if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr))
1681 			return false;
1682 
1683 		len = (char *)xdr->end - (char *)xdr->p;
1684 		if (remaining <= len) {
1685 			xdr->p = (__be32 *)((char *)xdr->p +
1686 					(remaining + xdr_pad_size(nbytes)));
1687 			break;
1688 		}
1689 
1690 		xdr->p = (__be32 *)((char *)xdr->p + len);
1691 		xdr->end = xdr->p;
1692 		remaining -= len;
1693 	}
1694 
1695 	xdr_stream_set_pos(xdr, start + nbytes);
1696 	return true;
1697 }
1698 EXPORT_SYMBOL_GPL(xdr_stream_subsegment);
1699 
1700 /**
1701  * xdr_stream_move_subsegment - Move part of a stream to another position
1702  * @xdr: the source xdr_stream
1703  * @offset: the source offset of the segment
1704  * @target: the target offset of the segment
1705  * @length: the number of bytes to move
1706  *
1707  * Moves @length bytes from @offset to @target in the xdr_stream, overwriting
1708  * anything in its space. Returns the number of bytes in the segment.
1709  */
1710 unsigned int xdr_stream_move_subsegment(struct xdr_stream *xdr, unsigned int offset,
1711 					unsigned int target, unsigned int length)
1712 {
1713 	struct xdr_buf buf;
1714 	unsigned int shift;
1715 
1716 	if (offset < target) {
1717 		shift = target - offset;
1718 		if (xdr_buf_subsegment(xdr->buf, &buf, offset, shift + length) < 0)
1719 			return 0;
1720 		xdr_buf_head_shift_right(&buf, 0, length, shift);
1721 	} else if (offset > target) {
1722 		shift = offset - target;
1723 		if (xdr_buf_subsegment(xdr->buf, &buf, target, shift + length) < 0)
1724 			return 0;
1725 		xdr_buf_head_shift_left(&buf, shift, length, shift);
1726 	}
1727 	return length;
1728 }
1729 EXPORT_SYMBOL_GPL(xdr_stream_move_subsegment);
1730 
1731 /**
1732  * xdr_stream_zero - zero out a portion of an xdr_stream
1733  * @xdr: an xdr_stream to zero out
1734  * @offset: the starting point in the stream
1735  * @length: the number of bytes to zero
1736  */
1737 unsigned int xdr_stream_zero(struct xdr_stream *xdr, unsigned int offset,
1738 			     unsigned int length)
1739 {
1740 	struct xdr_buf buf;
1741 
1742 	if (xdr_buf_subsegment(xdr->buf, &buf, offset, length) < 0)
1743 		return 0;
1744 	if (buf.head[0].iov_len)
1745 		xdr_buf_iov_zero(buf.head, 0, buf.head[0].iov_len);
1746 	if (buf.page_len > 0)
1747 		xdr_buf_pages_zero(&buf, 0, buf.page_len);
1748 	if (buf.tail[0].iov_len)
1749 		xdr_buf_iov_zero(buf.tail, 0, buf.tail[0].iov_len);
1750 	return length;
1751 }
1752 EXPORT_SYMBOL_GPL(xdr_stream_zero);
1753 
1754 /**
1755  * xdr_buf_trim - lop at most "len" bytes off the end of "buf"
1756  * @buf: buf to be trimmed
1757  * @len: number of bytes to reduce "buf" by
1758  *
1759  * Trim an xdr_buf by the given number of bytes by fixing up the lengths. Note
1760  * that it's possible that we'll trim less than that amount if the xdr_buf is
1761  * too small, or if (for instance) it's all in the head and the parser has
1762  * already read too far into it.
1763  */
1764 void xdr_buf_trim(struct xdr_buf *buf, unsigned int len)
1765 {
1766 	size_t cur;
1767 	unsigned int trim = len;
1768 
1769 	if (buf->tail[0].iov_len) {
1770 		cur = min_t(size_t, buf->tail[0].iov_len, trim);
1771 		buf->tail[0].iov_len -= cur;
1772 		trim -= cur;
1773 		if (!trim)
1774 			goto fix_len;
1775 	}
1776 
1777 	if (buf->page_len) {
1778 		cur = min_t(unsigned int, buf->page_len, trim);
1779 		buf->page_len -= cur;
1780 		trim -= cur;
1781 		if (!trim)
1782 			goto fix_len;
1783 	}
1784 
1785 	if (buf->head[0].iov_len) {
1786 		cur = min_t(size_t, buf->head[0].iov_len, trim);
1787 		buf->head[0].iov_len -= cur;
1788 		trim -= cur;
1789 	}
1790 fix_len:
1791 	buf->len -= (len - trim);
1792 }
1793 EXPORT_SYMBOL_GPL(xdr_buf_trim);
1794 
1795 static void __read_bytes_from_xdr_buf(const struct xdr_buf *subbuf,
1796 				      void *obj, unsigned int len)
1797 {
1798 	unsigned int this_len;
1799 
1800 	this_len = min_t(unsigned int, len, subbuf->head[0].iov_len);
1801 	memcpy(obj, subbuf->head[0].iov_base, this_len);
1802 	len -= this_len;
1803 	obj += this_len;
1804 	this_len = min_t(unsigned int, len, subbuf->page_len);
1805 	_copy_from_pages(obj, subbuf->pages, subbuf->page_base, this_len);
1806 	len -= this_len;
1807 	obj += this_len;
1808 	this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len);
1809 	memcpy(obj, subbuf->tail[0].iov_base, this_len);
1810 }
1811 
1812 /* obj is assumed to point to allocated memory of size at least len: */
1813 int read_bytes_from_xdr_buf(const struct xdr_buf *buf, unsigned int base,
1814 			    void *obj, unsigned int len)
1815 {
1816 	struct xdr_buf subbuf;
1817 	int status;
1818 
1819 	status = xdr_buf_subsegment(buf, &subbuf, base, len);
1820 	if (status != 0)
1821 		return status;
1822 	__read_bytes_from_xdr_buf(&subbuf, obj, len);
1823 	return 0;
1824 }
1825 EXPORT_SYMBOL_GPL(read_bytes_from_xdr_buf);
1826 
1827 static void __write_bytes_to_xdr_buf(const struct xdr_buf *subbuf,
1828 				     void *obj, unsigned int len)
1829 {
1830 	unsigned int this_len;
1831 
1832 	this_len = min_t(unsigned int, len, subbuf->head[0].iov_len);
1833 	memcpy(subbuf->head[0].iov_base, obj, this_len);
1834 	len -= this_len;
1835 	obj += this_len;
1836 	this_len = min_t(unsigned int, len, subbuf->page_len);
1837 	_copy_to_pages(subbuf->pages, subbuf->page_base, obj, this_len);
1838 	len -= this_len;
1839 	obj += this_len;
1840 	this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len);
1841 	memcpy(subbuf->tail[0].iov_base, obj, this_len);
1842 }
1843 
1844 /* obj is assumed to point to allocated memory of size at least len: */
1845 int write_bytes_to_xdr_buf(const struct xdr_buf *buf, unsigned int base,
1846 			   void *obj, unsigned int len)
1847 {
1848 	struct xdr_buf subbuf;
1849 	int status;
1850 
1851 	status = xdr_buf_subsegment(buf, &subbuf, base, len);
1852 	if (status != 0)
1853 		return status;
1854 	__write_bytes_to_xdr_buf(&subbuf, obj, len);
1855 	return 0;
1856 }
1857 EXPORT_SYMBOL_GPL(write_bytes_to_xdr_buf);
1858 
1859 int xdr_decode_word(const struct xdr_buf *buf, unsigned int base, u32 *obj)
1860 {
1861 	__be32	raw;
1862 	int	status;
1863 
1864 	status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj));
1865 	if (status)
1866 		return status;
1867 	*obj = be32_to_cpu(raw);
1868 	return 0;
1869 }
1870 EXPORT_SYMBOL_GPL(xdr_decode_word);
1871 
1872 int xdr_encode_word(const struct xdr_buf *buf, unsigned int base, u32 obj)
1873 {
1874 	__be32	raw = cpu_to_be32(obj);
1875 
1876 	return write_bytes_to_xdr_buf(buf, base, &raw, sizeof(obj));
1877 }
1878 EXPORT_SYMBOL_GPL(xdr_encode_word);
1879 
1880 /* Returns 0 on success, or else a negative error code. */
1881 static int xdr_xcode_array2(const struct xdr_buf *buf, unsigned int base,
1882 			    struct xdr_array2_desc *desc, int encode)
1883 {
1884 	char *elem = NULL, *c;
1885 	unsigned int copied = 0, todo, avail_here;
1886 	struct page **ppages = NULL;
1887 	int err;
1888 
1889 	if (encode) {
1890 		if (xdr_encode_word(buf, base, desc->array_len) != 0)
1891 			return -EINVAL;
1892 	} else {
1893 		if (xdr_decode_word(buf, base, &desc->array_len) != 0 ||
1894 		    desc->array_len > desc->array_maxlen ||
1895 		    (unsigned long) base + 4 + desc->array_len *
1896 				    desc->elem_size > buf->len)
1897 			return -EINVAL;
1898 	}
1899 	base += 4;
1900 
1901 	if (!desc->xcode)
1902 		return 0;
1903 
1904 	todo = desc->array_len * desc->elem_size;
1905 
1906 	/* process head */
1907 	if (todo && base < buf->head->iov_len) {
1908 		c = buf->head->iov_base + base;
1909 		avail_here = min_t(unsigned int, todo,
1910 				   buf->head->iov_len - base);
1911 		todo -= avail_here;
1912 
1913 		while (avail_here >= desc->elem_size) {
1914 			err = desc->xcode(desc, c);
1915 			if (err)
1916 				goto out;
1917 			c += desc->elem_size;
1918 			avail_here -= desc->elem_size;
1919 		}
1920 		if (avail_here) {
1921 			if (!elem) {
1922 				elem = kmalloc(desc->elem_size, GFP_KERNEL);
1923 				err = -ENOMEM;
1924 				if (!elem)
1925 					goto out;
1926 			}
1927 			if (encode) {
1928 				err = desc->xcode(desc, elem);
1929 				if (err)
1930 					goto out;
1931 				memcpy(c, elem, avail_here);
1932 			} else
1933 				memcpy(elem, c, avail_here);
1934 			copied = avail_here;
1935 		}
1936 		base = buf->head->iov_len;  /* align to start of pages */
1937 	}
1938 
1939 	/* process pages array */
1940 	base -= buf->head->iov_len;
1941 	if (todo && base < buf->page_len) {
1942 		unsigned int avail_page;
1943 
1944 		avail_here = min(todo, buf->page_len - base);
1945 		todo -= avail_here;
1946 
1947 		base += buf->page_base;
1948 		ppages = buf->pages + (base >> PAGE_SHIFT);
1949 		base &= ~PAGE_MASK;
1950 		avail_page = min_t(unsigned int, PAGE_SIZE - base,
1951 					avail_here);
1952 		c = kmap(*ppages) + base;
1953 
1954 		while (avail_here) {
1955 			avail_here -= avail_page;
1956 			if (copied || avail_page < desc->elem_size) {
1957 				unsigned int l = min(avail_page,
1958 					desc->elem_size - copied);
1959 				if (!elem) {
1960 					elem = kmalloc(desc->elem_size,
1961 						       GFP_KERNEL);
1962 					err = -ENOMEM;
1963 					if (!elem)
1964 						goto out;
1965 				}
1966 				if (encode) {
1967 					if (!copied) {
1968 						err = desc->xcode(desc, elem);
1969 						if (err)
1970 							goto out;
1971 					}
1972 					memcpy(c, elem + copied, l);
1973 					copied += l;
1974 					if (copied == desc->elem_size)
1975 						copied = 0;
1976 				} else {
1977 					memcpy(elem + copied, c, l);
1978 					copied += l;
1979 					if (copied == desc->elem_size) {
1980 						err = desc->xcode(desc, elem);
1981 						if (err)
1982 							goto out;
1983 						copied = 0;
1984 					}
1985 				}
1986 				avail_page -= l;
1987 				c += l;
1988 			}
1989 			while (avail_page >= desc->elem_size) {
1990 				err = desc->xcode(desc, c);
1991 				if (err)
1992 					goto out;
1993 				c += desc->elem_size;
1994 				avail_page -= desc->elem_size;
1995 			}
1996 			if (avail_page) {
1997 				unsigned int l = min(avail_page,
1998 					    desc->elem_size - copied);
1999 				if (!elem) {
2000 					elem = kmalloc(desc->elem_size,
2001 						       GFP_KERNEL);
2002 					err = -ENOMEM;
2003 					if (!elem)
2004 						goto out;
2005 				}
2006 				if (encode) {
2007 					if (!copied) {
2008 						err = desc->xcode(desc, elem);
2009 						if (err)
2010 							goto out;
2011 					}
2012 					memcpy(c, elem + copied, l);
2013 					copied += l;
2014 					if (copied == desc->elem_size)
2015 						copied = 0;
2016 				} else {
2017 					memcpy(elem + copied, c, l);
2018 					copied += l;
2019 					if (copied == desc->elem_size) {
2020 						err = desc->xcode(desc, elem);
2021 						if (err)
2022 							goto out;
2023 						copied = 0;
2024 					}
2025 				}
2026 			}
2027 			if (avail_here) {
2028 				kunmap(*ppages);
2029 				ppages++;
2030 				c = kmap(*ppages);
2031 			}
2032 
2033 			avail_page = min(avail_here,
2034 				 (unsigned int) PAGE_SIZE);
2035 		}
2036 		base = buf->page_len;  /* align to start of tail */
2037 	}
2038 
2039 	/* process tail */
2040 	base -= buf->page_len;
2041 	if (todo) {
2042 		c = buf->tail->iov_base + base;
2043 		if (copied) {
2044 			unsigned int l = desc->elem_size - copied;
2045 
2046 			if (encode)
2047 				memcpy(c, elem + copied, l);
2048 			else {
2049 				memcpy(elem + copied, c, l);
2050 				err = desc->xcode(desc, elem);
2051 				if (err)
2052 					goto out;
2053 			}
2054 			todo -= l;
2055 			c += l;
2056 		}
2057 		while (todo) {
2058 			err = desc->xcode(desc, c);
2059 			if (err)
2060 				goto out;
2061 			c += desc->elem_size;
2062 			todo -= desc->elem_size;
2063 		}
2064 	}
2065 	err = 0;
2066 
2067 out:
2068 	kfree(elem);
2069 	if (ppages)
2070 		kunmap(*ppages);
2071 	return err;
2072 }
2073 
2074 int xdr_decode_array2(const struct xdr_buf *buf, unsigned int base,
2075 		      struct xdr_array2_desc *desc)
2076 {
2077 	if (base >= buf->len)
2078 		return -EINVAL;
2079 
2080 	return xdr_xcode_array2(buf, base, desc, 0);
2081 }
2082 EXPORT_SYMBOL_GPL(xdr_decode_array2);
2083 
2084 int xdr_encode_array2(const struct xdr_buf *buf, unsigned int base,
2085 		      struct xdr_array2_desc *desc)
2086 {
2087 	if ((unsigned long) base + 4 + desc->array_len * desc->elem_size >
2088 	    buf->head->iov_len + buf->page_len + buf->tail->iov_len)
2089 		return -EINVAL;
2090 
2091 	return xdr_xcode_array2(buf, base, desc, 1);
2092 }
2093 EXPORT_SYMBOL_GPL(xdr_encode_array2);
2094 
2095 int xdr_process_buf(const struct xdr_buf *buf, unsigned int offset,
2096 		    unsigned int len,
2097 		    int (*actor)(struct scatterlist *, void *), void *data)
2098 {
2099 	int i, ret = 0;
2100 	unsigned int page_len, thislen, page_offset;
2101 	struct scatterlist      sg[1];
2102 
2103 	sg_init_table(sg, 1);
2104 
2105 	if (offset >= buf->head[0].iov_len) {
2106 		offset -= buf->head[0].iov_len;
2107 	} else {
2108 		thislen = buf->head[0].iov_len - offset;
2109 		if (thislen > len)
2110 			thislen = len;
2111 		sg_set_buf(sg, buf->head[0].iov_base + offset, thislen);
2112 		ret = actor(sg, data);
2113 		if (ret)
2114 			goto out;
2115 		offset = 0;
2116 		len -= thislen;
2117 	}
2118 	if (len == 0)
2119 		goto out;
2120 
2121 	if (offset >= buf->page_len) {
2122 		offset -= buf->page_len;
2123 	} else {
2124 		page_len = buf->page_len - offset;
2125 		if (page_len > len)
2126 			page_len = len;
2127 		len -= page_len;
2128 		page_offset = (offset + buf->page_base) & (PAGE_SIZE - 1);
2129 		i = (offset + buf->page_base) >> PAGE_SHIFT;
2130 		thislen = PAGE_SIZE - page_offset;
2131 		do {
2132 			if (thislen > page_len)
2133 				thislen = page_len;
2134 			sg_set_page(sg, buf->pages[i], thislen, page_offset);
2135 			ret = actor(sg, data);
2136 			if (ret)
2137 				goto out;
2138 			page_len -= thislen;
2139 			i++;
2140 			page_offset = 0;
2141 			thislen = PAGE_SIZE;
2142 		} while (page_len != 0);
2143 		offset = 0;
2144 	}
2145 	if (len == 0)
2146 		goto out;
2147 	if (offset < buf->tail[0].iov_len) {
2148 		thislen = buf->tail[0].iov_len - offset;
2149 		if (thislen > len)
2150 			thislen = len;
2151 		sg_set_buf(sg, buf->tail[0].iov_base + offset, thislen);
2152 		ret = actor(sg, data);
2153 		len -= thislen;
2154 	}
2155 	if (len != 0)
2156 		ret = -EINVAL;
2157 out:
2158 	return ret;
2159 }
2160 EXPORT_SYMBOL_GPL(xdr_process_buf);
2161 
2162 /**
2163  * xdr_stream_decode_opaque - Decode variable length opaque
2164  * @xdr: pointer to xdr_stream
2165  * @ptr: location to store opaque data
2166  * @size: size of storage buffer @ptr
2167  *
2168  * Return values:
2169  *   On success, returns size of object stored in *@ptr
2170  *   %-EBADMSG on XDR buffer overflow
2171  *   %-EMSGSIZE on overflow of storage buffer @ptr
2172  */
2173 ssize_t xdr_stream_decode_opaque(struct xdr_stream *xdr, void *ptr, size_t size)
2174 {
2175 	ssize_t ret;
2176 	void *p;
2177 
2178 	ret = xdr_stream_decode_opaque_inline(xdr, &p, size);
2179 	if (ret <= 0)
2180 		return ret;
2181 	memcpy(ptr, p, ret);
2182 	return ret;
2183 }
2184 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque);
2185 
2186 /**
2187  * xdr_stream_decode_opaque_dup - Decode and duplicate variable length opaque
2188  * @xdr: pointer to xdr_stream
2189  * @ptr: location to store pointer to opaque data
2190  * @maxlen: maximum acceptable object size
2191  * @gfp_flags: GFP mask to use
2192  *
2193  * Return values:
2194  *   On success, returns size of object stored in *@ptr
2195  *   %-EBADMSG on XDR buffer overflow
2196  *   %-EMSGSIZE if the size of the object would exceed @maxlen
2197  *   %-ENOMEM on memory allocation failure
2198  */
2199 ssize_t xdr_stream_decode_opaque_dup(struct xdr_stream *xdr, void **ptr,
2200 		size_t maxlen, gfp_t gfp_flags)
2201 {
2202 	ssize_t ret;
2203 	void *p;
2204 
2205 	ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen);
2206 	if (ret > 0) {
2207 		*ptr = kmemdup(p, ret, gfp_flags);
2208 		if (*ptr != NULL)
2209 			return ret;
2210 		ret = -ENOMEM;
2211 	}
2212 	*ptr = NULL;
2213 	return ret;
2214 }
2215 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque_dup);
2216 
2217 /**
2218  * xdr_stream_decode_string - Decode variable length string
2219  * @xdr: pointer to xdr_stream
2220  * @str: location to store string
2221  * @size: size of storage buffer @str
2222  *
2223  * Return values:
2224  *   On success, returns length of NUL-terminated string stored in *@str
2225  *   %-EBADMSG on XDR buffer overflow
2226  *   %-EMSGSIZE on overflow of storage buffer @str
2227  */
2228 ssize_t xdr_stream_decode_string(struct xdr_stream *xdr, char *str, size_t size)
2229 {
2230 	ssize_t ret;
2231 	void *p;
2232 
2233 	ret = xdr_stream_decode_opaque_inline(xdr, &p, size);
2234 	if (ret > 0) {
2235 		memcpy(str, p, ret);
2236 		str[ret] = '\0';
2237 		return strlen(str);
2238 	}
2239 	*str = '\0';
2240 	return ret;
2241 }
2242 EXPORT_SYMBOL_GPL(xdr_stream_decode_string);
2243 
2244 /**
2245  * xdr_stream_decode_string_dup - Decode and duplicate variable length string
2246  * @xdr: pointer to xdr_stream
2247  * @str: location to store pointer to string
2248  * @maxlen: maximum acceptable string length
2249  * @gfp_flags: GFP mask to use
2250  *
2251  * Return values:
2252  *   On success, returns length of NUL-terminated string stored in *@ptr
2253  *   %-EBADMSG on XDR buffer overflow
2254  *   %-EMSGSIZE if the size of the string would exceed @maxlen
2255  *   %-ENOMEM on memory allocation failure
2256  */
2257 ssize_t xdr_stream_decode_string_dup(struct xdr_stream *xdr, char **str,
2258 		size_t maxlen, gfp_t gfp_flags)
2259 {
2260 	void *p;
2261 	ssize_t ret;
2262 
2263 	ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen);
2264 	if (ret > 0) {
2265 		char *s = kmemdup_nul(p, ret, gfp_flags);
2266 		if (s != NULL) {
2267 			*str = s;
2268 			return strlen(s);
2269 		}
2270 		ret = -ENOMEM;
2271 	}
2272 	*str = NULL;
2273 	return ret;
2274 }
2275 EXPORT_SYMBOL_GPL(xdr_stream_decode_string_dup);
2276