xref: /openbmc/linux/net/sunrpc/xdr.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/xdr.c
4  *
5  * Generic XDR support.
6  *
7  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
8  */
9 
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/string.h>
14 #include <linux/kernel.h>
15 #include <linux/pagemap.h>
16 #include <linux/errno.h>
17 #include <linux/sunrpc/xdr.h>
18 #include <linux/sunrpc/msg_prot.h>
19 #include <linux/bvec.h>
20 #include <trace/events/sunrpc.h>
21 
22 /*
23  * XDR functions for basic NFS types
24  */
25 __be32 *
26 xdr_encode_netobj(__be32 *p, const struct xdr_netobj *obj)
27 {
28 	unsigned int	quadlen = XDR_QUADLEN(obj->len);
29 
30 	p[quadlen] = 0;		/* zero trailing bytes */
31 	*p++ = cpu_to_be32(obj->len);
32 	memcpy(p, obj->data, obj->len);
33 	return p + XDR_QUADLEN(obj->len);
34 }
35 EXPORT_SYMBOL_GPL(xdr_encode_netobj);
36 
37 __be32 *
38 xdr_decode_netobj(__be32 *p, struct xdr_netobj *obj)
39 {
40 	unsigned int	len;
41 
42 	if ((len = be32_to_cpu(*p++)) > XDR_MAX_NETOBJ)
43 		return NULL;
44 	obj->len  = len;
45 	obj->data = (u8 *) p;
46 	return p + XDR_QUADLEN(len);
47 }
48 EXPORT_SYMBOL_GPL(xdr_decode_netobj);
49 
50 /**
51  * xdr_encode_opaque_fixed - Encode fixed length opaque data
52  * @p: pointer to current position in XDR buffer.
53  * @ptr: pointer to data to encode (or NULL)
54  * @nbytes: size of data.
55  *
56  * Copy the array of data of length nbytes at ptr to the XDR buffer
57  * at position p, then align to the next 32-bit boundary by padding
58  * with zero bytes (see RFC1832).
59  * Note: if ptr is NULL, only the padding is performed.
60  *
61  * Returns the updated current XDR buffer position
62  *
63  */
64 __be32 *xdr_encode_opaque_fixed(__be32 *p, const void *ptr, unsigned int nbytes)
65 {
66 	if (likely(nbytes != 0)) {
67 		unsigned int quadlen = XDR_QUADLEN(nbytes);
68 		unsigned int padding = (quadlen << 2) - nbytes;
69 
70 		if (ptr != NULL)
71 			memcpy(p, ptr, nbytes);
72 		if (padding != 0)
73 			memset((char *)p + nbytes, 0, padding);
74 		p += quadlen;
75 	}
76 	return p;
77 }
78 EXPORT_SYMBOL_GPL(xdr_encode_opaque_fixed);
79 
80 /**
81  * xdr_encode_opaque - Encode variable length opaque data
82  * @p: pointer to current position in XDR buffer.
83  * @ptr: pointer to data to encode (or NULL)
84  * @nbytes: size of data.
85  *
86  * Returns the updated current XDR buffer position
87  */
88 __be32 *xdr_encode_opaque(__be32 *p, const void *ptr, unsigned int nbytes)
89 {
90 	*p++ = cpu_to_be32(nbytes);
91 	return xdr_encode_opaque_fixed(p, ptr, nbytes);
92 }
93 EXPORT_SYMBOL_GPL(xdr_encode_opaque);
94 
95 __be32 *
96 xdr_encode_string(__be32 *p, const char *string)
97 {
98 	return xdr_encode_array(p, string, strlen(string));
99 }
100 EXPORT_SYMBOL_GPL(xdr_encode_string);
101 
102 __be32 *
103 xdr_decode_string_inplace(__be32 *p, char **sp,
104 			  unsigned int *lenp, unsigned int maxlen)
105 {
106 	u32 len;
107 
108 	len = be32_to_cpu(*p++);
109 	if (len > maxlen)
110 		return NULL;
111 	*lenp = len;
112 	*sp = (char *) p;
113 	return p + XDR_QUADLEN(len);
114 }
115 EXPORT_SYMBOL_GPL(xdr_decode_string_inplace);
116 
117 /**
118  * xdr_terminate_string - '\0'-terminate a string residing in an xdr_buf
119  * @buf: XDR buffer where string resides
120  * @len: length of string, in bytes
121  *
122  */
123 void
124 xdr_terminate_string(struct xdr_buf *buf, const u32 len)
125 {
126 	char *kaddr;
127 
128 	kaddr = kmap_atomic(buf->pages[0]);
129 	kaddr[buf->page_base + len] = '\0';
130 	kunmap_atomic(kaddr);
131 }
132 EXPORT_SYMBOL_GPL(xdr_terminate_string);
133 
134 size_t
135 xdr_buf_pagecount(struct xdr_buf *buf)
136 {
137 	if (!buf->page_len)
138 		return 0;
139 	return (buf->page_base + buf->page_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
140 }
141 
142 int
143 xdr_alloc_bvec(struct xdr_buf *buf, gfp_t gfp)
144 {
145 	size_t i, n = xdr_buf_pagecount(buf);
146 
147 	if (n != 0 && buf->bvec == NULL) {
148 		buf->bvec = kmalloc_array(n, sizeof(buf->bvec[0]), gfp);
149 		if (!buf->bvec)
150 			return -ENOMEM;
151 		for (i = 0; i < n; i++) {
152 			buf->bvec[i].bv_page = buf->pages[i];
153 			buf->bvec[i].bv_len = PAGE_SIZE;
154 			buf->bvec[i].bv_offset = 0;
155 		}
156 	}
157 	return 0;
158 }
159 
160 void
161 xdr_free_bvec(struct xdr_buf *buf)
162 {
163 	kfree(buf->bvec);
164 	buf->bvec = NULL;
165 }
166 
167 /**
168  * xdr_inline_pages - Prepare receive buffer for a large reply
169  * @xdr: xdr_buf into which reply will be placed
170  * @offset: expected offset where data payload will start, in bytes
171  * @pages: vector of struct page pointers
172  * @base: offset in first page where receive should start, in bytes
173  * @len: expected size of the upper layer data payload, in bytes
174  *
175  */
176 void
177 xdr_inline_pages(struct xdr_buf *xdr, unsigned int offset,
178 		 struct page **pages, unsigned int base, unsigned int len)
179 {
180 	struct kvec *head = xdr->head;
181 	struct kvec *tail = xdr->tail;
182 	char *buf = (char *)head->iov_base;
183 	unsigned int buflen = head->iov_len;
184 
185 	head->iov_len  = offset;
186 
187 	xdr->pages = pages;
188 	xdr->page_base = base;
189 	xdr->page_len = len;
190 
191 	tail->iov_base = buf + offset;
192 	tail->iov_len = buflen - offset;
193 	if ((xdr->page_len & 3) == 0)
194 		tail->iov_len -= sizeof(__be32);
195 
196 	xdr->buflen += len;
197 }
198 EXPORT_SYMBOL_GPL(xdr_inline_pages);
199 
200 /*
201  * Helper routines for doing 'memmove' like operations on a struct xdr_buf
202  */
203 
204 /**
205  * _shift_data_right_pages
206  * @pages: vector of pages containing both the source and dest memory area.
207  * @pgto_base: page vector address of destination
208  * @pgfrom_base: page vector address of source
209  * @len: number of bytes to copy
210  *
211  * Note: the addresses pgto_base and pgfrom_base are both calculated in
212  *       the same way:
213  *            if a memory area starts at byte 'base' in page 'pages[i]',
214  *            then its address is given as (i << PAGE_SHIFT) + base
215  * Also note: pgfrom_base must be < pgto_base, but the memory areas
216  * 	they point to may overlap.
217  */
218 static void
219 _shift_data_right_pages(struct page **pages, size_t pgto_base,
220 		size_t pgfrom_base, size_t len)
221 {
222 	struct page **pgfrom, **pgto;
223 	char *vfrom, *vto;
224 	size_t copy;
225 
226 	BUG_ON(pgto_base <= pgfrom_base);
227 
228 	pgto_base += len;
229 	pgfrom_base += len;
230 
231 	pgto = pages + (pgto_base >> PAGE_SHIFT);
232 	pgfrom = pages + (pgfrom_base >> PAGE_SHIFT);
233 
234 	pgto_base &= ~PAGE_MASK;
235 	pgfrom_base &= ~PAGE_MASK;
236 
237 	do {
238 		/* Are any pointers crossing a page boundary? */
239 		if (pgto_base == 0) {
240 			pgto_base = PAGE_SIZE;
241 			pgto--;
242 		}
243 		if (pgfrom_base == 0) {
244 			pgfrom_base = PAGE_SIZE;
245 			pgfrom--;
246 		}
247 
248 		copy = len;
249 		if (copy > pgto_base)
250 			copy = pgto_base;
251 		if (copy > pgfrom_base)
252 			copy = pgfrom_base;
253 		pgto_base -= copy;
254 		pgfrom_base -= copy;
255 
256 		vto = kmap_atomic(*pgto);
257 		if (*pgto != *pgfrom) {
258 			vfrom = kmap_atomic(*pgfrom);
259 			memcpy(vto + pgto_base, vfrom + pgfrom_base, copy);
260 			kunmap_atomic(vfrom);
261 		} else
262 			memmove(vto + pgto_base, vto + pgfrom_base, copy);
263 		flush_dcache_page(*pgto);
264 		kunmap_atomic(vto);
265 
266 	} while ((len -= copy) != 0);
267 }
268 
269 /**
270  * _copy_to_pages
271  * @pages: array of pages
272  * @pgbase: page vector address of destination
273  * @p: pointer to source data
274  * @len: length
275  *
276  * Copies data from an arbitrary memory location into an array of pages
277  * The copy is assumed to be non-overlapping.
278  */
279 static void
280 _copy_to_pages(struct page **pages, size_t pgbase, const char *p, size_t len)
281 {
282 	struct page **pgto;
283 	char *vto;
284 	size_t copy;
285 
286 	pgto = pages + (pgbase >> PAGE_SHIFT);
287 	pgbase &= ~PAGE_MASK;
288 
289 	for (;;) {
290 		copy = PAGE_SIZE - pgbase;
291 		if (copy > len)
292 			copy = len;
293 
294 		vto = kmap_atomic(*pgto);
295 		memcpy(vto + pgbase, p, copy);
296 		kunmap_atomic(vto);
297 
298 		len -= copy;
299 		if (len == 0)
300 			break;
301 
302 		pgbase += copy;
303 		if (pgbase == PAGE_SIZE) {
304 			flush_dcache_page(*pgto);
305 			pgbase = 0;
306 			pgto++;
307 		}
308 		p += copy;
309 	}
310 	flush_dcache_page(*pgto);
311 }
312 
313 /**
314  * _copy_from_pages
315  * @p: pointer to destination
316  * @pages: array of pages
317  * @pgbase: offset of source data
318  * @len: length
319  *
320  * Copies data into an arbitrary memory location from an array of pages
321  * The copy is assumed to be non-overlapping.
322  */
323 void
324 _copy_from_pages(char *p, struct page **pages, size_t pgbase, size_t len)
325 {
326 	struct page **pgfrom;
327 	char *vfrom;
328 	size_t copy;
329 
330 	pgfrom = pages + (pgbase >> PAGE_SHIFT);
331 	pgbase &= ~PAGE_MASK;
332 
333 	do {
334 		copy = PAGE_SIZE - pgbase;
335 		if (copy > len)
336 			copy = len;
337 
338 		vfrom = kmap_atomic(*pgfrom);
339 		memcpy(p, vfrom + pgbase, copy);
340 		kunmap_atomic(vfrom);
341 
342 		pgbase += copy;
343 		if (pgbase == PAGE_SIZE) {
344 			pgbase = 0;
345 			pgfrom++;
346 		}
347 		p += copy;
348 
349 	} while ((len -= copy) != 0);
350 }
351 EXPORT_SYMBOL_GPL(_copy_from_pages);
352 
353 /**
354  * xdr_shrink_bufhead
355  * @buf: xdr_buf
356  * @len: bytes to remove from buf->head[0]
357  *
358  * Shrinks XDR buffer's header kvec buf->head[0] by
359  * 'len' bytes. The extra data is not lost, but is instead
360  * moved into the inlined pages and/or the tail.
361  */
362 static unsigned int
363 xdr_shrink_bufhead(struct xdr_buf *buf, size_t len)
364 {
365 	struct kvec *head, *tail;
366 	size_t copy, offs;
367 	unsigned int pglen = buf->page_len;
368 	unsigned int result;
369 
370 	result = 0;
371 	tail = buf->tail;
372 	head = buf->head;
373 
374 	WARN_ON_ONCE(len > head->iov_len);
375 	if (len > head->iov_len)
376 		len = head->iov_len;
377 
378 	/* Shift the tail first */
379 	if (tail->iov_len != 0) {
380 		if (tail->iov_len > len) {
381 			copy = tail->iov_len - len;
382 			memmove((char *)tail->iov_base + len,
383 					tail->iov_base, copy);
384 			result += copy;
385 		}
386 		/* Copy from the inlined pages into the tail */
387 		copy = len;
388 		if (copy > pglen)
389 			copy = pglen;
390 		offs = len - copy;
391 		if (offs >= tail->iov_len)
392 			copy = 0;
393 		else if (copy > tail->iov_len - offs)
394 			copy = tail->iov_len - offs;
395 		if (copy != 0) {
396 			_copy_from_pages((char *)tail->iov_base + offs,
397 					buf->pages,
398 					buf->page_base + pglen + offs - len,
399 					copy);
400 			result += copy;
401 		}
402 		/* Do we also need to copy data from the head into the tail ? */
403 		if (len > pglen) {
404 			offs = copy = len - pglen;
405 			if (copy > tail->iov_len)
406 				copy = tail->iov_len;
407 			memcpy(tail->iov_base,
408 					(char *)head->iov_base +
409 					head->iov_len - offs,
410 					copy);
411 			result += copy;
412 		}
413 	}
414 	/* Now handle pages */
415 	if (pglen != 0) {
416 		if (pglen > len)
417 			_shift_data_right_pages(buf->pages,
418 					buf->page_base + len,
419 					buf->page_base,
420 					pglen - len);
421 		copy = len;
422 		if (len > pglen)
423 			copy = pglen;
424 		_copy_to_pages(buf->pages, buf->page_base,
425 				(char *)head->iov_base + head->iov_len - len,
426 				copy);
427 		result += copy;
428 	}
429 	head->iov_len -= len;
430 	buf->buflen -= len;
431 	/* Have we truncated the message? */
432 	if (buf->len > buf->buflen)
433 		buf->len = buf->buflen;
434 
435 	return result;
436 }
437 
438 /**
439  * xdr_shrink_pagelen - shrinks buf->pages by up to @len bytes
440  * @buf: xdr_buf
441  * @len: bytes to remove from buf->pages
442  *
443  * The extra data is not lost, but is instead moved into buf->tail.
444  * Returns the actual number of bytes moved.
445  */
446 static unsigned int
447 xdr_shrink_pagelen(struct xdr_buf *buf, size_t len)
448 {
449 	struct kvec *tail;
450 	size_t copy;
451 	unsigned int pglen = buf->page_len;
452 	unsigned int tailbuf_len;
453 	unsigned int result;
454 
455 	result = 0;
456 	tail = buf->tail;
457 	if (len > buf->page_len)
458 		len = buf-> page_len;
459 	tailbuf_len = buf->buflen - buf->head->iov_len - buf->page_len;
460 
461 	/* Shift the tail first */
462 	if (tailbuf_len != 0) {
463 		unsigned int free_space = tailbuf_len - tail->iov_len;
464 
465 		if (len < free_space)
466 			free_space = len;
467 		tail->iov_len += free_space;
468 
469 		copy = len;
470 		if (tail->iov_len > len) {
471 			char *p = (char *)tail->iov_base + len;
472 			memmove(p, tail->iov_base, tail->iov_len - len);
473 			result += tail->iov_len - len;
474 		} else
475 			copy = tail->iov_len;
476 		/* Copy from the inlined pages into the tail */
477 		_copy_from_pages((char *)tail->iov_base,
478 				buf->pages, buf->page_base + pglen - len,
479 				copy);
480 		result += copy;
481 	}
482 	buf->page_len -= len;
483 	buf->buflen -= len;
484 	/* Have we truncated the message? */
485 	if (buf->len > buf->buflen)
486 		buf->len = buf->buflen;
487 
488 	return result;
489 }
490 
491 void
492 xdr_shift_buf(struct xdr_buf *buf, size_t len)
493 {
494 	xdr_shrink_bufhead(buf, len);
495 }
496 EXPORT_SYMBOL_GPL(xdr_shift_buf);
497 
498 /**
499  * xdr_stream_pos - Return the current offset from the start of the xdr_stream
500  * @xdr: pointer to struct xdr_stream
501  */
502 unsigned int xdr_stream_pos(const struct xdr_stream *xdr)
503 {
504 	return (unsigned int)(XDR_QUADLEN(xdr->buf->len) - xdr->nwords) << 2;
505 }
506 EXPORT_SYMBOL_GPL(xdr_stream_pos);
507 
508 /**
509  * xdr_init_encode - Initialize a struct xdr_stream for sending data.
510  * @xdr: pointer to xdr_stream struct
511  * @buf: pointer to XDR buffer in which to encode data
512  * @p: current pointer inside XDR buffer
513  * @rqst: pointer to controlling rpc_rqst, for debugging
514  *
515  * Note: at the moment the RPC client only passes the length of our
516  *	 scratch buffer in the xdr_buf's header kvec. Previously this
517  *	 meant we needed to call xdr_adjust_iovec() after encoding the
518  *	 data. With the new scheme, the xdr_stream manages the details
519  *	 of the buffer length, and takes care of adjusting the kvec
520  *	 length for us.
521  */
522 void xdr_init_encode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p,
523 		     struct rpc_rqst *rqst)
524 {
525 	struct kvec *iov = buf->head;
526 	int scratch_len = buf->buflen - buf->page_len - buf->tail[0].iov_len;
527 
528 	xdr_set_scratch_buffer(xdr, NULL, 0);
529 	BUG_ON(scratch_len < 0);
530 	xdr->buf = buf;
531 	xdr->iov = iov;
532 	xdr->p = (__be32 *)((char *)iov->iov_base + iov->iov_len);
533 	xdr->end = (__be32 *)((char *)iov->iov_base + scratch_len);
534 	BUG_ON(iov->iov_len > scratch_len);
535 
536 	if (p != xdr->p && p != NULL) {
537 		size_t len;
538 
539 		BUG_ON(p < xdr->p || p > xdr->end);
540 		len = (char *)p - (char *)xdr->p;
541 		xdr->p = p;
542 		buf->len += len;
543 		iov->iov_len += len;
544 	}
545 	xdr->rqst = rqst;
546 }
547 EXPORT_SYMBOL_GPL(xdr_init_encode);
548 
549 /**
550  * xdr_commit_encode - Ensure all data is written to buffer
551  * @xdr: pointer to xdr_stream
552  *
553  * We handle encoding across page boundaries by giving the caller a
554  * temporary location to write to, then later copying the data into
555  * place; xdr_commit_encode does that copying.
556  *
557  * Normally the caller doesn't need to call this directly, as the
558  * following xdr_reserve_space will do it.  But an explicit call may be
559  * required at the end of encoding, or any other time when the xdr_buf
560  * data might be read.
561  */
562 inline void xdr_commit_encode(struct xdr_stream *xdr)
563 {
564 	int shift = xdr->scratch.iov_len;
565 	void *page;
566 
567 	if (shift == 0)
568 		return;
569 	page = page_address(*xdr->page_ptr);
570 	memcpy(xdr->scratch.iov_base, page, shift);
571 	memmove(page, page + shift, (void *)xdr->p - page);
572 	xdr->scratch.iov_len = 0;
573 }
574 EXPORT_SYMBOL_GPL(xdr_commit_encode);
575 
576 static __be32 *xdr_get_next_encode_buffer(struct xdr_stream *xdr,
577 		size_t nbytes)
578 {
579 	__be32 *p;
580 	int space_left;
581 	int frag1bytes, frag2bytes;
582 
583 	if (nbytes > PAGE_SIZE)
584 		goto out_overflow; /* Bigger buffers require special handling */
585 	if (xdr->buf->len + nbytes > xdr->buf->buflen)
586 		goto out_overflow; /* Sorry, we're totally out of space */
587 	frag1bytes = (xdr->end - xdr->p) << 2;
588 	frag2bytes = nbytes - frag1bytes;
589 	if (xdr->iov)
590 		xdr->iov->iov_len += frag1bytes;
591 	else
592 		xdr->buf->page_len += frag1bytes;
593 	xdr->page_ptr++;
594 	xdr->iov = NULL;
595 	/*
596 	 * If the last encode didn't end exactly on a page boundary, the
597 	 * next one will straddle boundaries.  Encode into the next
598 	 * page, then copy it back later in xdr_commit_encode.  We use
599 	 * the "scratch" iov to track any temporarily unused fragment of
600 	 * space at the end of the previous buffer:
601 	 */
602 	xdr->scratch.iov_base = xdr->p;
603 	xdr->scratch.iov_len = frag1bytes;
604 	p = page_address(*xdr->page_ptr);
605 	/*
606 	 * Note this is where the next encode will start after we've
607 	 * shifted this one back:
608 	 */
609 	xdr->p = (void *)p + frag2bytes;
610 	space_left = xdr->buf->buflen - xdr->buf->len;
611 	xdr->end = (void *)p + min_t(int, space_left, PAGE_SIZE);
612 	xdr->buf->page_len += frag2bytes;
613 	xdr->buf->len += nbytes;
614 	return p;
615 out_overflow:
616 	trace_rpc_xdr_overflow(xdr, nbytes);
617 	return NULL;
618 }
619 
620 /**
621  * xdr_reserve_space - Reserve buffer space for sending
622  * @xdr: pointer to xdr_stream
623  * @nbytes: number of bytes to reserve
624  *
625  * Checks that we have enough buffer space to encode 'nbytes' more
626  * bytes of data. If so, update the total xdr_buf length, and
627  * adjust the length of the current kvec.
628  */
629 __be32 * xdr_reserve_space(struct xdr_stream *xdr, size_t nbytes)
630 {
631 	__be32 *p = xdr->p;
632 	__be32 *q;
633 
634 	xdr_commit_encode(xdr);
635 	/* align nbytes on the next 32-bit boundary */
636 	nbytes += 3;
637 	nbytes &= ~3;
638 	q = p + (nbytes >> 2);
639 	if (unlikely(q > xdr->end || q < p))
640 		return xdr_get_next_encode_buffer(xdr, nbytes);
641 	xdr->p = q;
642 	if (xdr->iov)
643 		xdr->iov->iov_len += nbytes;
644 	else
645 		xdr->buf->page_len += nbytes;
646 	xdr->buf->len += nbytes;
647 	return p;
648 }
649 EXPORT_SYMBOL_GPL(xdr_reserve_space);
650 
651 /**
652  * xdr_truncate_encode - truncate an encode buffer
653  * @xdr: pointer to xdr_stream
654  * @len: new length of buffer
655  *
656  * Truncates the xdr stream, so that xdr->buf->len == len,
657  * and xdr->p points at offset len from the start of the buffer, and
658  * head, tail, and page lengths are adjusted to correspond.
659  *
660  * If this means moving xdr->p to a different buffer, we assume that
661  * that the end pointer should be set to the end of the current page,
662  * except in the case of the head buffer when we assume the head
663  * buffer's current length represents the end of the available buffer.
664  *
665  * This is *not* safe to use on a buffer that already has inlined page
666  * cache pages (as in a zero-copy server read reply), except for the
667  * simple case of truncating from one position in the tail to another.
668  *
669  */
670 void xdr_truncate_encode(struct xdr_stream *xdr, size_t len)
671 {
672 	struct xdr_buf *buf = xdr->buf;
673 	struct kvec *head = buf->head;
674 	struct kvec *tail = buf->tail;
675 	int fraglen;
676 	int new;
677 
678 	if (len > buf->len) {
679 		WARN_ON_ONCE(1);
680 		return;
681 	}
682 	xdr_commit_encode(xdr);
683 
684 	fraglen = min_t(int, buf->len - len, tail->iov_len);
685 	tail->iov_len -= fraglen;
686 	buf->len -= fraglen;
687 	if (tail->iov_len) {
688 		xdr->p = tail->iov_base + tail->iov_len;
689 		WARN_ON_ONCE(!xdr->end);
690 		WARN_ON_ONCE(!xdr->iov);
691 		return;
692 	}
693 	WARN_ON_ONCE(fraglen);
694 	fraglen = min_t(int, buf->len - len, buf->page_len);
695 	buf->page_len -= fraglen;
696 	buf->len -= fraglen;
697 
698 	new = buf->page_base + buf->page_len;
699 
700 	xdr->page_ptr = buf->pages + (new >> PAGE_SHIFT);
701 
702 	if (buf->page_len) {
703 		xdr->p = page_address(*xdr->page_ptr);
704 		xdr->end = (void *)xdr->p + PAGE_SIZE;
705 		xdr->p = (void *)xdr->p + (new % PAGE_SIZE);
706 		WARN_ON_ONCE(xdr->iov);
707 		return;
708 	}
709 	if (fraglen)
710 		xdr->end = head->iov_base + head->iov_len;
711 	/* (otherwise assume xdr->end is already set) */
712 	xdr->page_ptr--;
713 	head->iov_len = len;
714 	buf->len = len;
715 	xdr->p = head->iov_base + head->iov_len;
716 	xdr->iov = buf->head;
717 }
718 EXPORT_SYMBOL(xdr_truncate_encode);
719 
720 /**
721  * xdr_restrict_buflen - decrease available buffer space
722  * @xdr: pointer to xdr_stream
723  * @newbuflen: new maximum number of bytes available
724  *
725  * Adjust our idea of how much space is available in the buffer.
726  * If we've already used too much space in the buffer, returns -1.
727  * If the available space is already smaller than newbuflen, returns 0
728  * and does nothing.  Otherwise, adjusts xdr->buf->buflen to newbuflen
729  * and ensures xdr->end is set at most offset newbuflen from the start
730  * of the buffer.
731  */
732 int xdr_restrict_buflen(struct xdr_stream *xdr, int newbuflen)
733 {
734 	struct xdr_buf *buf = xdr->buf;
735 	int left_in_this_buf = (void *)xdr->end - (void *)xdr->p;
736 	int end_offset = buf->len + left_in_this_buf;
737 
738 	if (newbuflen < 0 || newbuflen < buf->len)
739 		return -1;
740 	if (newbuflen > buf->buflen)
741 		return 0;
742 	if (newbuflen < end_offset)
743 		xdr->end = (void *)xdr->end + newbuflen - end_offset;
744 	buf->buflen = newbuflen;
745 	return 0;
746 }
747 EXPORT_SYMBOL(xdr_restrict_buflen);
748 
749 /**
750  * xdr_write_pages - Insert a list of pages into an XDR buffer for sending
751  * @xdr: pointer to xdr_stream
752  * @pages: list of pages
753  * @base: offset of first byte
754  * @len: length of data in bytes
755  *
756  */
757 void xdr_write_pages(struct xdr_stream *xdr, struct page **pages, unsigned int base,
758 		 unsigned int len)
759 {
760 	struct xdr_buf *buf = xdr->buf;
761 	struct kvec *iov = buf->tail;
762 	buf->pages = pages;
763 	buf->page_base = base;
764 	buf->page_len = len;
765 
766 	iov->iov_base = (char *)xdr->p;
767 	iov->iov_len  = 0;
768 	xdr->iov = iov;
769 
770 	if (len & 3) {
771 		unsigned int pad = 4 - (len & 3);
772 
773 		BUG_ON(xdr->p >= xdr->end);
774 		iov->iov_base = (char *)xdr->p + (len & 3);
775 		iov->iov_len  += pad;
776 		len += pad;
777 		*xdr->p++ = 0;
778 	}
779 	buf->buflen += len;
780 	buf->len += len;
781 }
782 EXPORT_SYMBOL_GPL(xdr_write_pages);
783 
784 static void xdr_set_iov(struct xdr_stream *xdr, struct kvec *iov,
785 		unsigned int len)
786 {
787 	if (len > iov->iov_len)
788 		len = iov->iov_len;
789 	xdr->p = (__be32*)iov->iov_base;
790 	xdr->end = (__be32*)(iov->iov_base + len);
791 	xdr->iov = iov;
792 	xdr->page_ptr = NULL;
793 }
794 
795 static int xdr_set_page_base(struct xdr_stream *xdr,
796 		unsigned int base, unsigned int len)
797 {
798 	unsigned int pgnr;
799 	unsigned int maxlen;
800 	unsigned int pgoff;
801 	unsigned int pgend;
802 	void *kaddr;
803 
804 	maxlen = xdr->buf->page_len;
805 	if (base >= maxlen)
806 		return -EINVAL;
807 	maxlen -= base;
808 	if (len > maxlen)
809 		len = maxlen;
810 
811 	base += xdr->buf->page_base;
812 
813 	pgnr = base >> PAGE_SHIFT;
814 	xdr->page_ptr = &xdr->buf->pages[pgnr];
815 	kaddr = page_address(*xdr->page_ptr);
816 
817 	pgoff = base & ~PAGE_MASK;
818 	xdr->p = (__be32*)(kaddr + pgoff);
819 
820 	pgend = pgoff + len;
821 	if (pgend > PAGE_SIZE)
822 		pgend = PAGE_SIZE;
823 	xdr->end = (__be32*)(kaddr + pgend);
824 	xdr->iov = NULL;
825 	return 0;
826 }
827 
828 static void xdr_set_next_page(struct xdr_stream *xdr)
829 {
830 	unsigned int newbase;
831 
832 	newbase = (1 + xdr->page_ptr - xdr->buf->pages) << PAGE_SHIFT;
833 	newbase -= xdr->buf->page_base;
834 
835 	if (xdr_set_page_base(xdr, newbase, PAGE_SIZE) < 0)
836 		xdr_set_iov(xdr, xdr->buf->tail, xdr->nwords << 2);
837 }
838 
839 static bool xdr_set_next_buffer(struct xdr_stream *xdr)
840 {
841 	if (xdr->page_ptr != NULL)
842 		xdr_set_next_page(xdr);
843 	else if (xdr->iov == xdr->buf->head) {
844 		if (xdr_set_page_base(xdr, 0, PAGE_SIZE) < 0)
845 			xdr_set_iov(xdr, xdr->buf->tail, xdr->nwords << 2);
846 	}
847 	return xdr->p != xdr->end;
848 }
849 
850 /**
851  * xdr_init_decode - Initialize an xdr_stream for decoding data.
852  * @xdr: pointer to xdr_stream struct
853  * @buf: pointer to XDR buffer from which to decode data
854  * @p: current pointer inside XDR buffer
855  * @rqst: pointer to controlling rpc_rqst, for debugging
856  */
857 void xdr_init_decode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p,
858 		     struct rpc_rqst *rqst)
859 {
860 	xdr->buf = buf;
861 	xdr->scratch.iov_base = NULL;
862 	xdr->scratch.iov_len = 0;
863 	xdr->nwords = XDR_QUADLEN(buf->len);
864 	if (buf->head[0].iov_len != 0)
865 		xdr_set_iov(xdr, buf->head, buf->len);
866 	else if (buf->page_len != 0)
867 		xdr_set_page_base(xdr, 0, buf->len);
868 	else
869 		xdr_set_iov(xdr, buf->head, buf->len);
870 	if (p != NULL && p > xdr->p && xdr->end >= p) {
871 		xdr->nwords -= p - xdr->p;
872 		xdr->p = p;
873 	}
874 	xdr->rqst = rqst;
875 }
876 EXPORT_SYMBOL_GPL(xdr_init_decode);
877 
878 /**
879  * xdr_init_decode_pages - Initialize an xdr_stream for decoding into pages
880  * @xdr: pointer to xdr_stream struct
881  * @buf: pointer to XDR buffer from which to decode data
882  * @pages: list of pages to decode into
883  * @len: length in bytes of buffer in pages
884  */
885 void xdr_init_decode_pages(struct xdr_stream *xdr, struct xdr_buf *buf,
886 			   struct page **pages, unsigned int len)
887 {
888 	memset(buf, 0, sizeof(*buf));
889 	buf->pages =  pages;
890 	buf->page_len =  len;
891 	buf->buflen =  len;
892 	buf->len = len;
893 	xdr_init_decode(xdr, buf, NULL, NULL);
894 }
895 EXPORT_SYMBOL_GPL(xdr_init_decode_pages);
896 
897 static __be32 * __xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes)
898 {
899 	unsigned int nwords = XDR_QUADLEN(nbytes);
900 	__be32 *p = xdr->p;
901 	__be32 *q = p + nwords;
902 
903 	if (unlikely(nwords > xdr->nwords || q > xdr->end || q < p))
904 		return NULL;
905 	xdr->p = q;
906 	xdr->nwords -= nwords;
907 	return p;
908 }
909 
910 /**
911  * xdr_set_scratch_buffer - Attach a scratch buffer for decoding data.
912  * @xdr: pointer to xdr_stream struct
913  * @buf: pointer to an empty buffer
914  * @buflen: size of 'buf'
915  *
916  * The scratch buffer is used when decoding from an array of pages.
917  * If an xdr_inline_decode() call spans across page boundaries, then
918  * we copy the data into the scratch buffer in order to allow linear
919  * access.
920  */
921 void xdr_set_scratch_buffer(struct xdr_stream *xdr, void *buf, size_t buflen)
922 {
923 	xdr->scratch.iov_base = buf;
924 	xdr->scratch.iov_len = buflen;
925 }
926 EXPORT_SYMBOL_GPL(xdr_set_scratch_buffer);
927 
928 static __be32 *xdr_copy_to_scratch(struct xdr_stream *xdr, size_t nbytes)
929 {
930 	__be32 *p;
931 	char *cpdest = xdr->scratch.iov_base;
932 	size_t cplen = (char *)xdr->end - (char *)xdr->p;
933 
934 	if (nbytes > xdr->scratch.iov_len)
935 		goto out_overflow;
936 	p = __xdr_inline_decode(xdr, cplen);
937 	if (p == NULL)
938 		return NULL;
939 	memcpy(cpdest, p, cplen);
940 	if (!xdr_set_next_buffer(xdr))
941 		goto out_overflow;
942 	cpdest += cplen;
943 	nbytes -= cplen;
944 	p = __xdr_inline_decode(xdr, nbytes);
945 	if (p == NULL)
946 		return NULL;
947 	memcpy(cpdest, p, nbytes);
948 	return xdr->scratch.iov_base;
949 out_overflow:
950 	trace_rpc_xdr_overflow(xdr, nbytes);
951 	return NULL;
952 }
953 
954 /**
955  * xdr_inline_decode - Retrieve XDR data to decode
956  * @xdr: pointer to xdr_stream struct
957  * @nbytes: number of bytes of data to decode
958  *
959  * Check if the input buffer is long enough to enable us to decode
960  * 'nbytes' more bytes of data starting at the current position.
961  * If so return the current pointer, then update the current
962  * pointer position.
963  */
964 __be32 * xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes)
965 {
966 	__be32 *p;
967 
968 	if (unlikely(nbytes == 0))
969 		return xdr->p;
970 	if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr))
971 		goto out_overflow;
972 	p = __xdr_inline_decode(xdr, nbytes);
973 	if (p != NULL)
974 		return p;
975 	return xdr_copy_to_scratch(xdr, nbytes);
976 out_overflow:
977 	trace_rpc_xdr_overflow(xdr, nbytes);
978 	return NULL;
979 }
980 EXPORT_SYMBOL_GPL(xdr_inline_decode);
981 
982 static unsigned int xdr_align_pages(struct xdr_stream *xdr, unsigned int len)
983 {
984 	struct xdr_buf *buf = xdr->buf;
985 	struct kvec *iov;
986 	unsigned int nwords = XDR_QUADLEN(len);
987 	unsigned int cur = xdr_stream_pos(xdr);
988 	unsigned int copied, offset;
989 
990 	if (xdr->nwords == 0)
991 		return 0;
992 
993 	/* Realign pages to current pointer position */
994 	iov = buf->head;
995 	if (iov->iov_len > cur) {
996 		offset = iov->iov_len - cur;
997 		copied = xdr_shrink_bufhead(buf, offset);
998 		trace_rpc_xdr_alignment(xdr, offset, copied);
999 		xdr->nwords = XDR_QUADLEN(buf->len - cur);
1000 	}
1001 
1002 	if (nwords > xdr->nwords) {
1003 		nwords = xdr->nwords;
1004 		len = nwords << 2;
1005 	}
1006 	if (buf->page_len <= len)
1007 		len = buf->page_len;
1008 	else if (nwords < xdr->nwords) {
1009 		/* Truncate page data and move it into the tail */
1010 		offset = buf->page_len - len;
1011 		copied = xdr_shrink_pagelen(buf, offset);
1012 		trace_rpc_xdr_alignment(xdr, offset, copied);
1013 		xdr->nwords = XDR_QUADLEN(buf->len - cur);
1014 	}
1015 	return len;
1016 }
1017 
1018 /**
1019  * xdr_read_pages - Ensure page-based XDR data to decode is aligned at current pointer position
1020  * @xdr: pointer to xdr_stream struct
1021  * @len: number of bytes of page data
1022  *
1023  * Moves data beyond the current pointer position from the XDR head[] buffer
1024  * into the page list. Any data that lies beyond current position + "len"
1025  * bytes is moved into the XDR tail[].
1026  *
1027  * Returns the number of XDR encoded bytes now contained in the pages
1028  */
1029 unsigned int xdr_read_pages(struct xdr_stream *xdr, unsigned int len)
1030 {
1031 	struct xdr_buf *buf = xdr->buf;
1032 	struct kvec *iov;
1033 	unsigned int nwords;
1034 	unsigned int end;
1035 	unsigned int padding;
1036 
1037 	len = xdr_align_pages(xdr, len);
1038 	if (len == 0)
1039 		return 0;
1040 	nwords = XDR_QUADLEN(len);
1041 	padding = (nwords << 2) - len;
1042 	xdr->iov = iov = buf->tail;
1043 	/* Compute remaining message length.  */
1044 	end = ((xdr->nwords - nwords) << 2) + padding;
1045 	if (end > iov->iov_len)
1046 		end = iov->iov_len;
1047 
1048 	/*
1049 	 * Position current pointer at beginning of tail, and
1050 	 * set remaining message length.
1051 	 */
1052 	xdr->p = (__be32 *)((char *)iov->iov_base + padding);
1053 	xdr->end = (__be32 *)((char *)iov->iov_base + end);
1054 	xdr->page_ptr = NULL;
1055 	xdr->nwords = XDR_QUADLEN(end - padding);
1056 	return len;
1057 }
1058 EXPORT_SYMBOL_GPL(xdr_read_pages);
1059 
1060 /**
1061  * xdr_enter_page - decode data from the XDR page
1062  * @xdr: pointer to xdr_stream struct
1063  * @len: number of bytes of page data
1064  *
1065  * Moves data beyond the current pointer position from the XDR head[] buffer
1066  * into the page list. Any data that lies beyond current position + "len"
1067  * bytes is moved into the XDR tail[]. The current pointer is then
1068  * repositioned at the beginning of the first XDR page.
1069  */
1070 void xdr_enter_page(struct xdr_stream *xdr, unsigned int len)
1071 {
1072 	len = xdr_align_pages(xdr, len);
1073 	/*
1074 	 * Position current pointer at beginning of tail, and
1075 	 * set remaining message length.
1076 	 */
1077 	if (len != 0)
1078 		xdr_set_page_base(xdr, 0, len);
1079 }
1080 EXPORT_SYMBOL_GPL(xdr_enter_page);
1081 
1082 static const struct kvec empty_iov = {.iov_base = NULL, .iov_len = 0};
1083 
1084 void
1085 xdr_buf_from_iov(struct kvec *iov, struct xdr_buf *buf)
1086 {
1087 	buf->head[0] = *iov;
1088 	buf->tail[0] = empty_iov;
1089 	buf->page_len = 0;
1090 	buf->buflen = buf->len = iov->iov_len;
1091 }
1092 EXPORT_SYMBOL_GPL(xdr_buf_from_iov);
1093 
1094 /**
1095  * xdr_buf_subsegment - set subbuf to a portion of buf
1096  * @buf: an xdr buffer
1097  * @subbuf: the result buffer
1098  * @base: beginning of range in bytes
1099  * @len: length of range in bytes
1100  *
1101  * sets @subbuf to an xdr buffer representing the portion of @buf of
1102  * length @len starting at offset @base.
1103  *
1104  * @buf and @subbuf may be pointers to the same struct xdr_buf.
1105  *
1106  * Returns -1 if base of length are out of bounds.
1107  */
1108 int
1109 xdr_buf_subsegment(struct xdr_buf *buf, struct xdr_buf *subbuf,
1110 			unsigned int base, unsigned int len)
1111 {
1112 	subbuf->buflen = subbuf->len = len;
1113 	if (base < buf->head[0].iov_len) {
1114 		subbuf->head[0].iov_base = buf->head[0].iov_base + base;
1115 		subbuf->head[0].iov_len = min_t(unsigned int, len,
1116 						buf->head[0].iov_len - base);
1117 		len -= subbuf->head[0].iov_len;
1118 		base = 0;
1119 	} else {
1120 		base -= buf->head[0].iov_len;
1121 		subbuf->head[0].iov_len = 0;
1122 	}
1123 
1124 	if (base < buf->page_len) {
1125 		subbuf->page_len = min(buf->page_len - base, len);
1126 		base += buf->page_base;
1127 		subbuf->page_base = base & ~PAGE_MASK;
1128 		subbuf->pages = &buf->pages[base >> PAGE_SHIFT];
1129 		len -= subbuf->page_len;
1130 		base = 0;
1131 	} else {
1132 		base -= buf->page_len;
1133 		subbuf->page_len = 0;
1134 	}
1135 
1136 	if (base < buf->tail[0].iov_len) {
1137 		subbuf->tail[0].iov_base = buf->tail[0].iov_base + base;
1138 		subbuf->tail[0].iov_len = min_t(unsigned int, len,
1139 						buf->tail[0].iov_len - base);
1140 		len -= subbuf->tail[0].iov_len;
1141 		base = 0;
1142 	} else {
1143 		base -= buf->tail[0].iov_len;
1144 		subbuf->tail[0].iov_len = 0;
1145 	}
1146 
1147 	if (base || len)
1148 		return -1;
1149 	return 0;
1150 }
1151 EXPORT_SYMBOL_GPL(xdr_buf_subsegment);
1152 
1153 static void __read_bytes_from_xdr_buf(struct xdr_buf *subbuf, void *obj, unsigned int len)
1154 {
1155 	unsigned int this_len;
1156 
1157 	this_len = min_t(unsigned int, len, subbuf->head[0].iov_len);
1158 	memcpy(obj, subbuf->head[0].iov_base, this_len);
1159 	len -= this_len;
1160 	obj += this_len;
1161 	this_len = min_t(unsigned int, len, subbuf->page_len);
1162 	if (this_len)
1163 		_copy_from_pages(obj, subbuf->pages, subbuf->page_base, this_len);
1164 	len -= this_len;
1165 	obj += this_len;
1166 	this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len);
1167 	memcpy(obj, subbuf->tail[0].iov_base, this_len);
1168 }
1169 
1170 /* obj is assumed to point to allocated memory of size at least len: */
1171 int read_bytes_from_xdr_buf(struct xdr_buf *buf, unsigned int base, void *obj, unsigned int len)
1172 {
1173 	struct xdr_buf subbuf;
1174 	int status;
1175 
1176 	status = xdr_buf_subsegment(buf, &subbuf, base, len);
1177 	if (status != 0)
1178 		return status;
1179 	__read_bytes_from_xdr_buf(&subbuf, obj, len);
1180 	return 0;
1181 }
1182 EXPORT_SYMBOL_GPL(read_bytes_from_xdr_buf);
1183 
1184 static void __write_bytes_to_xdr_buf(struct xdr_buf *subbuf, void *obj, unsigned int len)
1185 {
1186 	unsigned int this_len;
1187 
1188 	this_len = min_t(unsigned int, len, subbuf->head[0].iov_len);
1189 	memcpy(subbuf->head[0].iov_base, obj, this_len);
1190 	len -= this_len;
1191 	obj += this_len;
1192 	this_len = min_t(unsigned int, len, subbuf->page_len);
1193 	if (this_len)
1194 		_copy_to_pages(subbuf->pages, subbuf->page_base, obj, this_len);
1195 	len -= this_len;
1196 	obj += this_len;
1197 	this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len);
1198 	memcpy(subbuf->tail[0].iov_base, obj, this_len);
1199 }
1200 
1201 /* obj is assumed to point to allocated memory of size at least len: */
1202 int write_bytes_to_xdr_buf(struct xdr_buf *buf, unsigned int base, void *obj, unsigned int len)
1203 {
1204 	struct xdr_buf subbuf;
1205 	int status;
1206 
1207 	status = xdr_buf_subsegment(buf, &subbuf, base, len);
1208 	if (status != 0)
1209 		return status;
1210 	__write_bytes_to_xdr_buf(&subbuf, obj, len);
1211 	return 0;
1212 }
1213 EXPORT_SYMBOL_GPL(write_bytes_to_xdr_buf);
1214 
1215 int
1216 xdr_decode_word(struct xdr_buf *buf, unsigned int base, u32 *obj)
1217 {
1218 	__be32	raw;
1219 	int	status;
1220 
1221 	status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj));
1222 	if (status)
1223 		return status;
1224 	*obj = be32_to_cpu(raw);
1225 	return 0;
1226 }
1227 EXPORT_SYMBOL_GPL(xdr_decode_word);
1228 
1229 int
1230 xdr_encode_word(struct xdr_buf *buf, unsigned int base, u32 obj)
1231 {
1232 	__be32	raw = cpu_to_be32(obj);
1233 
1234 	return write_bytes_to_xdr_buf(buf, base, &raw, sizeof(obj));
1235 }
1236 EXPORT_SYMBOL_GPL(xdr_encode_word);
1237 
1238 /**
1239  * xdr_buf_read_mic() - obtain the address of the GSS mic from xdr buf
1240  * @buf: pointer to buffer containing a mic
1241  * @mic: on success, returns the address of the mic
1242  * @offset: the offset in buf where mic may be found
1243  *
1244  * This function may modify the xdr buf if the mic is found to be straddling
1245  * a boundary between head, pages, and tail.  On success the mic can be read
1246  * from the address returned.  There is no need to free the mic.
1247  *
1248  * Return: Success returns 0, otherwise an integer error.
1249  */
1250 int xdr_buf_read_mic(struct xdr_buf *buf, struct xdr_netobj *mic, unsigned int offset)
1251 {
1252 	struct xdr_buf subbuf;
1253 	unsigned int boundary;
1254 
1255 	if (xdr_decode_word(buf, offset, &mic->len))
1256 		return -EFAULT;
1257 	offset += 4;
1258 
1259 	/* Is the mic partially in the head? */
1260 	boundary = buf->head[0].iov_len;
1261 	if (offset < boundary && (offset + mic->len) > boundary)
1262 		xdr_shift_buf(buf, boundary - offset);
1263 
1264 	/* Is the mic partially in the pages? */
1265 	boundary += buf->page_len;
1266 	if (offset < boundary && (offset + mic->len) > boundary)
1267 		xdr_shrink_pagelen(buf, boundary - offset);
1268 
1269 	if (xdr_buf_subsegment(buf, &subbuf, offset, mic->len))
1270 		return -EFAULT;
1271 
1272 	/* Is the mic contained entirely in the head? */
1273 	mic->data = subbuf.head[0].iov_base;
1274 	if (subbuf.head[0].iov_len == mic->len)
1275 		return 0;
1276 	/* ..or is the mic contained entirely in the tail? */
1277 	mic->data = subbuf.tail[0].iov_base;
1278 	if (subbuf.tail[0].iov_len == mic->len)
1279 		return 0;
1280 
1281 	/* Find a contiguous area in @buf to hold all of @mic */
1282 	if (mic->len > buf->buflen - buf->len)
1283 		return -ENOMEM;
1284 	if (buf->tail[0].iov_len != 0)
1285 		mic->data = buf->tail[0].iov_base + buf->tail[0].iov_len;
1286 	else
1287 		mic->data = buf->head[0].iov_base + buf->head[0].iov_len;
1288 	__read_bytes_from_xdr_buf(&subbuf, mic->data, mic->len);
1289 	return 0;
1290 }
1291 EXPORT_SYMBOL_GPL(xdr_buf_read_mic);
1292 
1293 /* Returns 0 on success, or else a negative error code. */
1294 static int
1295 xdr_xcode_array2(struct xdr_buf *buf, unsigned int base,
1296 		 struct xdr_array2_desc *desc, int encode)
1297 {
1298 	char *elem = NULL, *c;
1299 	unsigned int copied = 0, todo, avail_here;
1300 	struct page **ppages = NULL;
1301 	int err;
1302 
1303 	if (encode) {
1304 		if (xdr_encode_word(buf, base, desc->array_len) != 0)
1305 			return -EINVAL;
1306 	} else {
1307 		if (xdr_decode_word(buf, base, &desc->array_len) != 0 ||
1308 		    desc->array_len > desc->array_maxlen ||
1309 		    (unsigned long) base + 4 + desc->array_len *
1310 				    desc->elem_size > buf->len)
1311 			return -EINVAL;
1312 	}
1313 	base += 4;
1314 
1315 	if (!desc->xcode)
1316 		return 0;
1317 
1318 	todo = desc->array_len * desc->elem_size;
1319 
1320 	/* process head */
1321 	if (todo && base < buf->head->iov_len) {
1322 		c = buf->head->iov_base + base;
1323 		avail_here = min_t(unsigned int, todo,
1324 				   buf->head->iov_len - base);
1325 		todo -= avail_here;
1326 
1327 		while (avail_here >= desc->elem_size) {
1328 			err = desc->xcode(desc, c);
1329 			if (err)
1330 				goto out;
1331 			c += desc->elem_size;
1332 			avail_here -= desc->elem_size;
1333 		}
1334 		if (avail_here) {
1335 			if (!elem) {
1336 				elem = kmalloc(desc->elem_size, GFP_KERNEL);
1337 				err = -ENOMEM;
1338 				if (!elem)
1339 					goto out;
1340 			}
1341 			if (encode) {
1342 				err = desc->xcode(desc, elem);
1343 				if (err)
1344 					goto out;
1345 				memcpy(c, elem, avail_here);
1346 			} else
1347 				memcpy(elem, c, avail_here);
1348 			copied = avail_here;
1349 		}
1350 		base = buf->head->iov_len;  /* align to start of pages */
1351 	}
1352 
1353 	/* process pages array */
1354 	base -= buf->head->iov_len;
1355 	if (todo && base < buf->page_len) {
1356 		unsigned int avail_page;
1357 
1358 		avail_here = min(todo, buf->page_len - base);
1359 		todo -= avail_here;
1360 
1361 		base += buf->page_base;
1362 		ppages = buf->pages + (base >> PAGE_SHIFT);
1363 		base &= ~PAGE_MASK;
1364 		avail_page = min_t(unsigned int, PAGE_SIZE - base,
1365 					avail_here);
1366 		c = kmap(*ppages) + base;
1367 
1368 		while (avail_here) {
1369 			avail_here -= avail_page;
1370 			if (copied || avail_page < desc->elem_size) {
1371 				unsigned int l = min(avail_page,
1372 					desc->elem_size - copied);
1373 				if (!elem) {
1374 					elem = kmalloc(desc->elem_size,
1375 						       GFP_KERNEL);
1376 					err = -ENOMEM;
1377 					if (!elem)
1378 						goto out;
1379 				}
1380 				if (encode) {
1381 					if (!copied) {
1382 						err = desc->xcode(desc, elem);
1383 						if (err)
1384 							goto out;
1385 					}
1386 					memcpy(c, elem + copied, l);
1387 					copied += l;
1388 					if (copied == desc->elem_size)
1389 						copied = 0;
1390 				} else {
1391 					memcpy(elem + copied, c, l);
1392 					copied += l;
1393 					if (copied == desc->elem_size) {
1394 						err = desc->xcode(desc, elem);
1395 						if (err)
1396 							goto out;
1397 						copied = 0;
1398 					}
1399 				}
1400 				avail_page -= l;
1401 				c += l;
1402 			}
1403 			while (avail_page >= desc->elem_size) {
1404 				err = desc->xcode(desc, c);
1405 				if (err)
1406 					goto out;
1407 				c += desc->elem_size;
1408 				avail_page -= desc->elem_size;
1409 			}
1410 			if (avail_page) {
1411 				unsigned int l = min(avail_page,
1412 					    desc->elem_size - copied);
1413 				if (!elem) {
1414 					elem = kmalloc(desc->elem_size,
1415 						       GFP_KERNEL);
1416 					err = -ENOMEM;
1417 					if (!elem)
1418 						goto out;
1419 				}
1420 				if (encode) {
1421 					if (!copied) {
1422 						err = desc->xcode(desc, elem);
1423 						if (err)
1424 							goto out;
1425 					}
1426 					memcpy(c, elem + copied, l);
1427 					copied += l;
1428 					if (copied == desc->elem_size)
1429 						copied = 0;
1430 				} else {
1431 					memcpy(elem + copied, c, l);
1432 					copied += l;
1433 					if (copied == desc->elem_size) {
1434 						err = desc->xcode(desc, elem);
1435 						if (err)
1436 							goto out;
1437 						copied = 0;
1438 					}
1439 				}
1440 			}
1441 			if (avail_here) {
1442 				kunmap(*ppages);
1443 				ppages++;
1444 				c = kmap(*ppages);
1445 			}
1446 
1447 			avail_page = min(avail_here,
1448 				 (unsigned int) PAGE_SIZE);
1449 		}
1450 		base = buf->page_len;  /* align to start of tail */
1451 	}
1452 
1453 	/* process tail */
1454 	base -= buf->page_len;
1455 	if (todo) {
1456 		c = buf->tail->iov_base + base;
1457 		if (copied) {
1458 			unsigned int l = desc->elem_size - copied;
1459 
1460 			if (encode)
1461 				memcpy(c, elem + copied, l);
1462 			else {
1463 				memcpy(elem + copied, c, l);
1464 				err = desc->xcode(desc, elem);
1465 				if (err)
1466 					goto out;
1467 			}
1468 			todo -= l;
1469 			c += l;
1470 		}
1471 		while (todo) {
1472 			err = desc->xcode(desc, c);
1473 			if (err)
1474 				goto out;
1475 			c += desc->elem_size;
1476 			todo -= desc->elem_size;
1477 		}
1478 	}
1479 	err = 0;
1480 
1481 out:
1482 	kfree(elem);
1483 	if (ppages)
1484 		kunmap(*ppages);
1485 	return err;
1486 }
1487 
1488 int
1489 xdr_decode_array2(struct xdr_buf *buf, unsigned int base,
1490 		  struct xdr_array2_desc *desc)
1491 {
1492 	if (base >= buf->len)
1493 		return -EINVAL;
1494 
1495 	return xdr_xcode_array2(buf, base, desc, 0);
1496 }
1497 EXPORT_SYMBOL_GPL(xdr_decode_array2);
1498 
1499 int
1500 xdr_encode_array2(struct xdr_buf *buf, unsigned int base,
1501 		  struct xdr_array2_desc *desc)
1502 {
1503 	if ((unsigned long) base + 4 + desc->array_len * desc->elem_size >
1504 	    buf->head->iov_len + buf->page_len + buf->tail->iov_len)
1505 		return -EINVAL;
1506 
1507 	return xdr_xcode_array2(buf, base, desc, 1);
1508 }
1509 EXPORT_SYMBOL_GPL(xdr_encode_array2);
1510 
1511 int
1512 xdr_process_buf(struct xdr_buf *buf, unsigned int offset, unsigned int len,
1513 		int (*actor)(struct scatterlist *, void *), void *data)
1514 {
1515 	int i, ret = 0;
1516 	unsigned int page_len, thislen, page_offset;
1517 	struct scatterlist      sg[1];
1518 
1519 	sg_init_table(sg, 1);
1520 
1521 	if (offset >= buf->head[0].iov_len) {
1522 		offset -= buf->head[0].iov_len;
1523 	} else {
1524 		thislen = buf->head[0].iov_len - offset;
1525 		if (thislen > len)
1526 			thislen = len;
1527 		sg_set_buf(sg, buf->head[0].iov_base + offset, thislen);
1528 		ret = actor(sg, data);
1529 		if (ret)
1530 			goto out;
1531 		offset = 0;
1532 		len -= thislen;
1533 	}
1534 	if (len == 0)
1535 		goto out;
1536 
1537 	if (offset >= buf->page_len) {
1538 		offset -= buf->page_len;
1539 	} else {
1540 		page_len = buf->page_len - offset;
1541 		if (page_len > len)
1542 			page_len = len;
1543 		len -= page_len;
1544 		page_offset = (offset + buf->page_base) & (PAGE_SIZE - 1);
1545 		i = (offset + buf->page_base) >> PAGE_SHIFT;
1546 		thislen = PAGE_SIZE - page_offset;
1547 		do {
1548 			if (thislen > page_len)
1549 				thislen = page_len;
1550 			sg_set_page(sg, buf->pages[i], thislen, page_offset);
1551 			ret = actor(sg, data);
1552 			if (ret)
1553 				goto out;
1554 			page_len -= thislen;
1555 			i++;
1556 			page_offset = 0;
1557 			thislen = PAGE_SIZE;
1558 		} while (page_len != 0);
1559 		offset = 0;
1560 	}
1561 	if (len == 0)
1562 		goto out;
1563 	if (offset < buf->tail[0].iov_len) {
1564 		thislen = buf->tail[0].iov_len - offset;
1565 		if (thislen > len)
1566 			thislen = len;
1567 		sg_set_buf(sg, buf->tail[0].iov_base + offset, thislen);
1568 		ret = actor(sg, data);
1569 		len -= thislen;
1570 	}
1571 	if (len != 0)
1572 		ret = -EINVAL;
1573 out:
1574 	return ret;
1575 }
1576 EXPORT_SYMBOL_GPL(xdr_process_buf);
1577 
1578 /**
1579  * xdr_stream_decode_opaque - Decode variable length opaque
1580  * @xdr: pointer to xdr_stream
1581  * @ptr: location to store opaque data
1582  * @size: size of storage buffer @ptr
1583  *
1584  * Return values:
1585  *   On success, returns size of object stored in *@ptr
1586  *   %-EBADMSG on XDR buffer overflow
1587  *   %-EMSGSIZE on overflow of storage buffer @ptr
1588  */
1589 ssize_t xdr_stream_decode_opaque(struct xdr_stream *xdr, void *ptr, size_t size)
1590 {
1591 	ssize_t ret;
1592 	void *p;
1593 
1594 	ret = xdr_stream_decode_opaque_inline(xdr, &p, size);
1595 	if (ret <= 0)
1596 		return ret;
1597 	memcpy(ptr, p, ret);
1598 	return ret;
1599 }
1600 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque);
1601 
1602 /**
1603  * xdr_stream_decode_opaque_dup - Decode and duplicate variable length opaque
1604  * @xdr: pointer to xdr_stream
1605  * @ptr: location to store pointer to opaque data
1606  * @maxlen: maximum acceptable object size
1607  * @gfp_flags: GFP mask to use
1608  *
1609  * Return values:
1610  *   On success, returns size of object stored in *@ptr
1611  *   %-EBADMSG on XDR buffer overflow
1612  *   %-EMSGSIZE if the size of the object would exceed @maxlen
1613  *   %-ENOMEM on memory allocation failure
1614  */
1615 ssize_t xdr_stream_decode_opaque_dup(struct xdr_stream *xdr, void **ptr,
1616 		size_t maxlen, gfp_t gfp_flags)
1617 {
1618 	ssize_t ret;
1619 	void *p;
1620 
1621 	ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen);
1622 	if (ret > 0) {
1623 		*ptr = kmemdup(p, ret, gfp_flags);
1624 		if (*ptr != NULL)
1625 			return ret;
1626 		ret = -ENOMEM;
1627 	}
1628 	*ptr = NULL;
1629 	return ret;
1630 }
1631 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque_dup);
1632 
1633 /**
1634  * xdr_stream_decode_string - Decode variable length string
1635  * @xdr: pointer to xdr_stream
1636  * @str: location to store string
1637  * @size: size of storage buffer @str
1638  *
1639  * Return values:
1640  *   On success, returns length of NUL-terminated string stored in *@str
1641  *   %-EBADMSG on XDR buffer overflow
1642  *   %-EMSGSIZE on overflow of storage buffer @str
1643  */
1644 ssize_t xdr_stream_decode_string(struct xdr_stream *xdr, char *str, size_t size)
1645 {
1646 	ssize_t ret;
1647 	void *p;
1648 
1649 	ret = xdr_stream_decode_opaque_inline(xdr, &p, size);
1650 	if (ret > 0) {
1651 		memcpy(str, p, ret);
1652 		str[ret] = '\0';
1653 		return strlen(str);
1654 	}
1655 	*str = '\0';
1656 	return ret;
1657 }
1658 EXPORT_SYMBOL_GPL(xdr_stream_decode_string);
1659 
1660 /**
1661  * xdr_stream_decode_string_dup - Decode and duplicate variable length string
1662  * @xdr: pointer to xdr_stream
1663  * @str: location to store pointer to string
1664  * @maxlen: maximum acceptable string length
1665  * @gfp_flags: GFP mask to use
1666  *
1667  * Return values:
1668  *   On success, returns length of NUL-terminated string stored in *@ptr
1669  *   %-EBADMSG on XDR buffer overflow
1670  *   %-EMSGSIZE if the size of the string would exceed @maxlen
1671  *   %-ENOMEM on memory allocation failure
1672  */
1673 ssize_t xdr_stream_decode_string_dup(struct xdr_stream *xdr, char **str,
1674 		size_t maxlen, gfp_t gfp_flags)
1675 {
1676 	void *p;
1677 	ssize_t ret;
1678 
1679 	ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen);
1680 	if (ret > 0) {
1681 		char *s = kmalloc(ret + 1, gfp_flags);
1682 		if (s != NULL) {
1683 			memcpy(s, p, ret);
1684 			s[ret] = '\0';
1685 			*str = s;
1686 			return strlen(s);
1687 		}
1688 		ret = -ENOMEM;
1689 	}
1690 	*str = NULL;
1691 	return ret;
1692 }
1693 EXPORT_SYMBOL_GPL(xdr_stream_decode_string_dup);
1694