1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/xdr.c 4 * 5 * Generic XDR support. 6 * 7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/slab.h> 12 #include <linux/types.h> 13 #include <linux/string.h> 14 #include <linux/kernel.h> 15 #include <linux/pagemap.h> 16 #include <linux/errno.h> 17 #include <linux/sunrpc/xdr.h> 18 #include <linux/sunrpc/msg_prot.h> 19 #include <linux/bvec.h> 20 #include <trace/events/sunrpc.h> 21 22 /* 23 * XDR functions for basic NFS types 24 */ 25 __be32 * 26 xdr_encode_netobj(__be32 *p, const struct xdr_netobj *obj) 27 { 28 unsigned int quadlen = XDR_QUADLEN(obj->len); 29 30 p[quadlen] = 0; /* zero trailing bytes */ 31 *p++ = cpu_to_be32(obj->len); 32 memcpy(p, obj->data, obj->len); 33 return p + XDR_QUADLEN(obj->len); 34 } 35 EXPORT_SYMBOL_GPL(xdr_encode_netobj); 36 37 __be32 * 38 xdr_decode_netobj(__be32 *p, struct xdr_netobj *obj) 39 { 40 unsigned int len; 41 42 if ((len = be32_to_cpu(*p++)) > XDR_MAX_NETOBJ) 43 return NULL; 44 obj->len = len; 45 obj->data = (u8 *) p; 46 return p + XDR_QUADLEN(len); 47 } 48 EXPORT_SYMBOL_GPL(xdr_decode_netobj); 49 50 /** 51 * xdr_encode_opaque_fixed - Encode fixed length opaque data 52 * @p: pointer to current position in XDR buffer. 53 * @ptr: pointer to data to encode (or NULL) 54 * @nbytes: size of data. 55 * 56 * Copy the array of data of length nbytes at ptr to the XDR buffer 57 * at position p, then align to the next 32-bit boundary by padding 58 * with zero bytes (see RFC1832). 59 * Note: if ptr is NULL, only the padding is performed. 60 * 61 * Returns the updated current XDR buffer position 62 * 63 */ 64 __be32 *xdr_encode_opaque_fixed(__be32 *p, const void *ptr, unsigned int nbytes) 65 { 66 if (likely(nbytes != 0)) { 67 unsigned int quadlen = XDR_QUADLEN(nbytes); 68 unsigned int padding = (quadlen << 2) - nbytes; 69 70 if (ptr != NULL) 71 memcpy(p, ptr, nbytes); 72 if (padding != 0) 73 memset((char *)p + nbytes, 0, padding); 74 p += quadlen; 75 } 76 return p; 77 } 78 EXPORT_SYMBOL_GPL(xdr_encode_opaque_fixed); 79 80 /** 81 * xdr_encode_opaque - Encode variable length opaque data 82 * @p: pointer to current position in XDR buffer. 83 * @ptr: pointer to data to encode (or NULL) 84 * @nbytes: size of data. 85 * 86 * Returns the updated current XDR buffer position 87 */ 88 __be32 *xdr_encode_opaque(__be32 *p, const void *ptr, unsigned int nbytes) 89 { 90 *p++ = cpu_to_be32(nbytes); 91 return xdr_encode_opaque_fixed(p, ptr, nbytes); 92 } 93 EXPORT_SYMBOL_GPL(xdr_encode_opaque); 94 95 __be32 * 96 xdr_encode_string(__be32 *p, const char *string) 97 { 98 return xdr_encode_array(p, string, strlen(string)); 99 } 100 EXPORT_SYMBOL_GPL(xdr_encode_string); 101 102 __be32 * 103 xdr_decode_string_inplace(__be32 *p, char **sp, 104 unsigned int *lenp, unsigned int maxlen) 105 { 106 u32 len; 107 108 len = be32_to_cpu(*p++); 109 if (len > maxlen) 110 return NULL; 111 *lenp = len; 112 *sp = (char *) p; 113 return p + XDR_QUADLEN(len); 114 } 115 EXPORT_SYMBOL_GPL(xdr_decode_string_inplace); 116 117 /** 118 * xdr_terminate_string - '\0'-terminate a string residing in an xdr_buf 119 * @buf: XDR buffer where string resides 120 * @len: length of string, in bytes 121 * 122 */ 123 void 124 xdr_terminate_string(struct xdr_buf *buf, const u32 len) 125 { 126 char *kaddr; 127 128 kaddr = kmap_atomic(buf->pages[0]); 129 kaddr[buf->page_base + len] = '\0'; 130 kunmap_atomic(kaddr); 131 } 132 EXPORT_SYMBOL_GPL(xdr_terminate_string); 133 134 size_t 135 xdr_buf_pagecount(struct xdr_buf *buf) 136 { 137 if (!buf->page_len) 138 return 0; 139 return (buf->page_base + buf->page_len + PAGE_SIZE - 1) >> PAGE_SHIFT; 140 } 141 142 int 143 xdr_alloc_bvec(struct xdr_buf *buf, gfp_t gfp) 144 { 145 size_t i, n = xdr_buf_pagecount(buf); 146 147 if (n != 0 && buf->bvec == NULL) { 148 buf->bvec = kmalloc_array(n, sizeof(buf->bvec[0]), gfp); 149 if (!buf->bvec) 150 return -ENOMEM; 151 for (i = 0; i < n; i++) { 152 buf->bvec[i].bv_page = buf->pages[i]; 153 buf->bvec[i].bv_len = PAGE_SIZE; 154 buf->bvec[i].bv_offset = 0; 155 } 156 } 157 return 0; 158 } 159 160 void 161 xdr_free_bvec(struct xdr_buf *buf) 162 { 163 kfree(buf->bvec); 164 buf->bvec = NULL; 165 } 166 167 /** 168 * xdr_inline_pages - Prepare receive buffer for a large reply 169 * @xdr: xdr_buf into which reply will be placed 170 * @offset: expected offset where data payload will start, in bytes 171 * @pages: vector of struct page pointers 172 * @base: offset in first page where receive should start, in bytes 173 * @len: expected size of the upper layer data payload, in bytes 174 * 175 */ 176 void 177 xdr_inline_pages(struct xdr_buf *xdr, unsigned int offset, 178 struct page **pages, unsigned int base, unsigned int len) 179 { 180 struct kvec *head = xdr->head; 181 struct kvec *tail = xdr->tail; 182 char *buf = (char *)head->iov_base; 183 unsigned int buflen = head->iov_len; 184 185 head->iov_len = offset; 186 187 xdr->pages = pages; 188 xdr->page_base = base; 189 xdr->page_len = len; 190 191 tail->iov_base = buf + offset; 192 tail->iov_len = buflen - offset; 193 if ((xdr->page_len & 3) == 0) 194 tail->iov_len -= sizeof(__be32); 195 196 xdr->buflen += len; 197 } 198 EXPORT_SYMBOL_GPL(xdr_inline_pages); 199 200 /* 201 * Helper routines for doing 'memmove' like operations on a struct xdr_buf 202 */ 203 204 /** 205 * _shift_data_right_pages 206 * @pages: vector of pages containing both the source and dest memory area. 207 * @pgto_base: page vector address of destination 208 * @pgfrom_base: page vector address of source 209 * @len: number of bytes to copy 210 * 211 * Note: the addresses pgto_base and pgfrom_base are both calculated in 212 * the same way: 213 * if a memory area starts at byte 'base' in page 'pages[i]', 214 * then its address is given as (i << PAGE_SHIFT) + base 215 * Also note: pgfrom_base must be < pgto_base, but the memory areas 216 * they point to may overlap. 217 */ 218 static void 219 _shift_data_right_pages(struct page **pages, size_t pgto_base, 220 size_t pgfrom_base, size_t len) 221 { 222 struct page **pgfrom, **pgto; 223 char *vfrom, *vto; 224 size_t copy; 225 226 BUG_ON(pgto_base <= pgfrom_base); 227 228 pgto_base += len; 229 pgfrom_base += len; 230 231 pgto = pages + (pgto_base >> PAGE_SHIFT); 232 pgfrom = pages + (pgfrom_base >> PAGE_SHIFT); 233 234 pgto_base &= ~PAGE_MASK; 235 pgfrom_base &= ~PAGE_MASK; 236 237 do { 238 /* Are any pointers crossing a page boundary? */ 239 if (pgto_base == 0) { 240 pgto_base = PAGE_SIZE; 241 pgto--; 242 } 243 if (pgfrom_base == 0) { 244 pgfrom_base = PAGE_SIZE; 245 pgfrom--; 246 } 247 248 copy = len; 249 if (copy > pgto_base) 250 copy = pgto_base; 251 if (copy > pgfrom_base) 252 copy = pgfrom_base; 253 pgto_base -= copy; 254 pgfrom_base -= copy; 255 256 vto = kmap_atomic(*pgto); 257 if (*pgto != *pgfrom) { 258 vfrom = kmap_atomic(*pgfrom); 259 memcpy(vto + pgto_base, vfrom + pgfrom_base, copy); 260 kunmap_atomic(vfrom); 261 } else 262 memmove(vto + pgto_base, vto + pgfrom_base, copy); 263 flush_dcache_page(*pgto); 264 kunmap_atomic(vto); 265 266 } while ((len -= copy) != 0); 267 } 268 269 /** 270 * _copy_to_pages 271 * @pages: array of pages 272 * @pgbase: page vector address of destination 273 * @p: pointer to source data 274 * @len: length 275 * 276 * Copies data from an arbitrary memory location into an array of pages 277 * The copy is assumed to be non-overlapping. 278 */ 279 static void 280 _copy_to_pages(struct page **pages, size_t pgbase, const char *p, size_t len) 281 { 282 struct page **pgto; 283 char *vto; 284 size_t copy; 285 286 pgto = pages + (pgbase >> PAGE_SHIFT); 287 pgbase &= ~PAGE_MASK; 288 289 for (;;) { 290 copy = PAGE_SIZE - pgbase; 291 if (copy > len) 292 copy = len; 293 294 vto = kmap_atomic(*pgto); 295 memcpy(vto + pgbase, p, copy); 296 kunmap_atomic(vto); 297 298 len -= copy; 299 if (len == 0) 300 break; 301 302 pgbase += copy; 303 if (pgbase == PAGE_SIZE) { 304 flush_dcache_page(*pgto); 305 pgbase = 0; 306 pgto++; 307 } 308 p += copy; 309 } 310 flush_dcache_page(*pgto); 311 } 312 313 /** 314 * _copy_from_pages 315 * @p: pointer to destination 316 * @pages: array of pages 317 * @pgbase: offset of source data 318 * @len: length 319 * 320 * Copies data into an arbitrary memory location from an array of pages 321 * The copy is assumed to be non-overlapping. 322 */ 323 void 324 _copy_from_pages(char *p, struct page **pages, size_t pgbase, size_t len) 325 { 326 struct page **pgfrom; 327 char *vfrom; 328 size_t copy; 329 330 pgfrom = pages + (pgbase >> PAGE_SHIFT); 331 pgbase &= ~PAGE_MASK; 332 333 do { 334 copy = PAGE_SIZE - pgbase; 335 if (copy > len) 336 copy = len; 337 338 vfrom = kmap_atomic(*pgfrom); 339 memcpy(p, vfrom + pgbase, copy); 340 kunmap_atomic(vfrom); 341 342 pgbase += copy; 343 if (pgbase == PAGE_SIZE) { 344 pgbase = 0; 345 pgfrom++; 346 } 347 p += copy; 348 349 } while ((len -= copy) != 0); 350 } 351 EXPORT_SYMBOL_GPL(_copy_from_pages); 352 353 /** 354 * xdr_shrink_bufhead 355 * @buf: xdr_buf 356 * @len: bytes to remove from buf->head[0] 357 * 358 * Shrinks XDR buffer's header kvec buf->head[0] by 359 * 'len' bytes. The extra data is not lost, but is instead 360 * moved into the inlined pages and/or the tail. 361 */ 362 static unsigned int 363 xdr_shrink_bufhead(struct xdr_buf *buf, size_t len) 364 { 365 struct kvec *head, *tail; 366 size_t copy, offs; 367 unsigned int pglen = buf->page_len; 368 unsigned int result; 369 370 result = 0; 371 tail = buf->tail; 372 head = buf->head; 373 374 WARN_ON_ONCE(len > head->iov_len); 375 if (len > head->iov_len) 376 len = head->iov_len; 377 378 /* Shift the tail first */ 379 if (tail->iov_len != 0) { 380 if (tail->iov_len > len) { 381 copy = tail->iov_len - len; 382 memmove((char *)tail->iov_base + len, 383 tail->iov_base, copy); 384 result += copy; 385 } 386 /* Copy from the inlined pages into the tail */ 387 copy = len; 388 if (copy > pglen) 389 copy = pglen; 390 offs = len - copy; 391 if (offs >= tail->iov_len) 392 copy = 0; 393 else if (copy > tail->iov_len - offs) 394 copy = tail->iov_len - offs; 395 if (copy != 0) { 396 _copy_from_pages((char *)tail->iov_base + offs, 397 buf->pages, 398 buf->page_base + pglen + offs - len, 399 copy); 400 result += copy; 401 } 402 /* Do we also need to copy data from the head into the tail ? */ 403 if (len > pglen) { 404 offs = copy = len - pglen; 405 if (copy > tail->iov_len) 406 copy = tail->iov_len; 407 memcpy(tail->iov_base, 408 (char *)head->iov_base + 409 head->iov_len - offs, 410 copy); 411 result += copy; 412 } 413 } 414 /* Now handle pages */ 415 if (pglen != 0) { 416 if (pglen > len) 417 _shift_data_right_pages(buf->pages, 418 buf->page_base + len, 419 buf->page_base, 420 pglen - len); 421 copy = len; 422 if (len > pglen) 423 copy = pglen; 424 _copy_to_pages(buf->pages, buf->page_base, 425 (char *)head->iov_base + head->iov_len - len, 426 copy); 427 result += copy; 428 } 429 head->iov_len -= len; 430 buf->buflen -= len; 431 /* Have we truncated the message? */ 432 if (buf->len > buf->buflen) 433 buf->len = buf->buflen; 434 435 return result; 436 } 437 438 /** 439 * xdr_shrink_pagelen - shrinks buf->pages by up to @len bytes 440 * @buf: xdr_buf 441 * @len: bytes to remove from buf->pages 442 * 443 * The extra data is not lost, but is instead moved into buf->tail. 444 * Returns the actual number of bytes moved. 445 */ 446 static unsigned int 447 xdr_shrink_pagelen(struct xdr_buf *buf, size_t len) 448 { 449 struct kvec *tail; 450 size_t copy; 451 unsigned int pglen = buf->page_len; 452 unsigned int tailbuf_len; 453 unsigned int result; 454 455 result = 0; 456 tail = buf->tail; 457 if (len > buf->page_len) 458 len = buf-> page_len; 459 tailbuf_len = buf->buflen - buf->head->iov_len - buf->page_len; 460 461 /* Shift the tail first */ 462 if (tailbuf_len != 0) { 463 unsigned int free_space = tailbuf_len - tail->iov_len; 464 465 if (len < free_space) 466 free_space = len; 467 tail->iov_len += free_space; 468 469 copy = len; 470 if (tail->iov_len > len) { 471 char *p = (char *)tail->iov_base + len; 472 memmove(p, tail->iov_base, tail->iov_len - len); 473 result += tail->iov_len - len; 474 } else 475 copy = tail->iov_len; 476 /* Copy from the inlined pages into the tail */ 477 _copy_from_pages((char *)tail->iov_base, 478 buf->pages, buf->page_base + pglen - len, 479 copy); 480 result += copy; 481 } 482 buf->page_len -= len; 483 buf->buflen -= len; 484 /* Have we truncated the message? */ 485 if (buf->len > buf->buflen) 486 buf->len = buf->buflen; 487 488 return result; 489 } 490 491 void 492 xdr_shift_buf(struct xdr_buf *buf, size_t len) 493 { 494 xdr_shrink_bufhead(buf, len); 495 } 496 EXPORT_SYMBOL_GPL(xdr_shift_buf); 497 498 /** 499 * xdr_stream_pos - Return the current offset from the start of the xdr_stream 500 * @xdr: pointer to struct xdr_stream 501 */ 502 unsigned int xdr_stream_pos(const struct xdr_stream *xdr) 503 { 504 return (unsigned int)(XDR_QUADLEN(xdr->buf->len) - xdr->nwords) << 2; 505 } 506 EXPORT_SYMBOL_GPL(xdr_stream_pos); 507 508 /** 509 * xdr_init_encode - Initialize a struct xdr_stream for sending data. 510 * @xdr: pointer to xdr_stream struct 511 * @buf: pointer to XDR buffer in which to encode data 512 * @p: current pointer inside XDR buffer 513 * @rqst: pointer to controlling rpc_rqst, for debugging 514 * 515 * Note: at the moment the RPC client only passes the length of our 516 * scratch buffer in the xdr_buf's header kvec. Previously this 517 * meant we needed to call xdr_adjust_iovec() after encoding the 518 * data. With the new scheme, the xdr_stream manages the details 519 * of the buffer length, and takes care of adjusting the kvec 520 * length for us. 521 */ 522 void xdr_init_encode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p, 523 struct rpc_rqst *rqst) 524 { 525 struct kvec *iov = buf->head; 526 int scratch_len = buf->buflen - buf->page_len - buf->tail[0].iov_len; 527 528 xdr_set_scratch_buffer(xdr, NULL, 0); 529 BUG_ON(scratch_len < 0); 530 xdr->buf = buf; 531 xdr->iov = iov; 532 xdr->p = (__be32 *)((char *)iov->iov_base + iov->iov_len); 533 xdr->end = (__be32 *)((char *)iov->iov_base + scratch_len); 534 BUG_ON(iov->iov_len > scratch_len); 535 536 if (p != xdr->p && p != NULL) { 537 size_t len; 538 539 BUG_ON(p < xdr->p || p > xdr->end); 540 len = (char *)p - (char *)xdr->p; 541 xdr->p = p; 542 buf->len += len; 543 iov->iov_len += len; 544 } 545 xdr->rqst = rqst; 546 } 547 EXPORT_SYMBOL_GPL(xdr_init_encode); 548 549 /** 550 * xdr_commit_encode - Ensure all data is written to buffer 551 * @xdr: pointer to xdr_stream 552 * 553 * We handle encoding across page boundaries by giving the caller a 554 * temporary location to write to, then later copying the data into 555 * place; xdr_commit_encode does that copying. 556 * 557 * Normally the caller doesn't need to call this directly, as the 558 * following xdr_reserve_space will do it. But an explicit call may be 559 * required at the end of encoding, or any other time when the xdr_buf 560 * data might be read. 561 */ 562 inline void xdr_commit_encode(struct xdr_stream *xdr) 563 { 564 int shift = xdr->scratch.iov_len; 565 void *page; 566 567 if (shift == 0) 568 return; 569 page = page_address(*xdr->page_ptr); 570 memcpy(xdr->scratch.iov_base, page, shift); 571 memmove(page, page + shift, (void *)xdr->p - page); 572 xdr->scratch.iov_len = 0; 573 } 574 EXPORT_SYMBOL_GPL(xdr_commit_encode); 575 576 static __be32 *xdr_get_next_encode_buffer(struct xdr_stream *xdr, 577 size_t nbytes) 578 { 579 __be32 *p; 580 int space_left; 581 int frag1bytes, frag2bytes; 582 583 if (nbytes > PAGE_SIZE) 584 goto out_overflow; /* Bigger buffers require special handling */ 585 if (xdr->buf->len + nbytes > xdr->buf->buflen) 586 goto out_overflow; /* Sorry, we're totally out of space */ 587 frag1bytes = (xdr->end - xdr->p) << 2; 588 frag2bytes = nbytes - frag1bytes; 589 if (xdr->iov) 590 xdr->iov->iov_len += frag1bytes; 591 else 592 xdr->buf->page_len += frag1bytes; 593 xdr->page_ptr++; 594 xdr->iov = NULL; 595 /* 596 * If the last encode didn't end exactly on a page boundary, the 597 * next one will straddle boundaries. Encode into the next 598 * page, then copy it back later in xdr_commit_encode. We use 599 * the "scratch" iov to track any temporarily unused fragment of 600 * space at the end of the previous buffer: 601 */ 602 xdr->scratch.iov_base = xdr->p; 603 xdr->scratch.iov_len = frag1bytes; 604 p = page_address(*xdr->page_ptr); 605 /* 606 * Note this is where the next encode will start after we've 607 * shifted this one back: 608 */ 609 xdr->p = (void *)p + frag2bytes; 610 space_left = xdr->buf->buflen - xdr->buf->len; 611 xdr->end = (void *)p + min_t(int, space_left, PAGE_SIZE); 612 xdr->buf->page_len += frag2bytes; 613 xdr->buf->len += nbytes; 614 return p; 615 out_overflow: 616 trace_rpc_xdr_overflow(xdr, nbytes); 617 return NULL; 618 } 619 620 /** 621 * xdr_reserve_space - Reserve buffer space for sending 622 * @xdr: pointer to xdr_stream 623 * @nbytes: number of bytes to reserve 624 * 625 * Checks that we have enough buffer space to encode 'nbytes' more 626 * bytes of data. If so, update the total xdr_buf length, and 627 * adjust the length of the current kvec. 628 */ 629 __be32 * xdr_reserve_space(struct xdr_stream *xdr, size_t nbytes) 630 { 631 __be32 *p = xdr->p; 632 __be32 *q; 633 634 xdr_commit_encode(xdr); 635 /* align nbytes on the next 32-bit boundary */ 636 nbytes += 3; 637 nbytes &= ~3; 638 q = p + (nbytes >> 2); 639 if (unlikely(q > xdr->end || q < p)) 640 return xdr_get_next_encode_buffer(xdr, nbytes); 641 xdr->p = q; 642 if (xdr->iov) 643 xdr->iov->iov_len += nbytes; 644 else 645 xdr->buf->page_len += nbytes; 646 xdr->buf->len += nbytes; 647 return p; 648 } 649 EXPORT_SYMBOL_GPL(xdr_reserve_space); 650 651 /** 652 * xdr_truncate_encode - truncate an encode buffer 653 * @xdr: pointer to xdr_stream 654 * @len: new length of buffer 655 * 656 * Truncates the xdr stream, so that xdr->buf->len == len, 657 * and xdr->p points at offset len from the start of the buffer, and 658 * head, tail, and page lengths are adjusted to correspond. 659 * 660 * If this means moving xdr->p to a different buffer, we assume that 661 * that the end pointer should be set to the end of the current page, 662 * except in the case of the head buffer when we assume the head 663 * buffer's current length represents the end of the available buffer. 664 * 665 * This is *not* safe to use on a buffer that already has inlined page 666 * cache pages (as in a zero-copy server read reply), except for the 667 * simple case of truncating from one position in the tail to another. 668 * 669 */ 670 void xdr_truncate_encode(struct xdr_stream *xdr, size_t len) 671 { 672 struct xdr_buf *buf = xdr->buf; 673 struct kvec *head = buf->head; 674 struct kvec *tail = buf->tail; 675 int fraglen; 676 int new; 677 678 if (len > buf->len) { 679 WARN_ON_ONCE(1); 680 return; 681 } 682 xdr_commit_encode(xdr); 683 684 fraglen = min_t(int, buf->len - len, tail->iov_len); 685 tail->iov_len -= fraglen; 686 buf->len -= fraglen; 687 if (tail->iov_len) { 688 xdr->p = tail->iov_base + tail->iov_len; 689 WARN_ON_ONCE(!xdr->end); 690 WARN_ON_ONCE(!xdr->iov); 691 return; 692 } 693 WARN_ON_ONCE(fraglen); 694 fraglen = min_t(int, buf->len - len, buf->page_len); 695 buf->page_len -= fraglen; 696 buf->len -= fraglen; 697 698 new = buf->page_base + buf->page_len; 699 700 xdr->page_ptr = buf->pages + (new >> PAGE_SHIFT); 701 702 if (buf->page_len) { 703 xdr->p = page_address(*xdr->page_ptr); 704 xdr->end = (void *)xdr->p + PAGE_SIZE; 705 xdr->p = (void *)xdr->p + (new % PAGE_SIZE); 706 WARN_ON_ONCE(xdr->iov); 707 return; 708 } 709 if (fraglen) 710 xdr->end = head->iov_base + head->iov_len; 711 /* (otherwise assume xdr->end is already set) */ 712 xdr->page_ptr--; 713 head->iov_len = len; 714 buf->len = len; 715 xdr->p = head->iov_base + head->iov_len; 716 xdr->iov = buf->head; 717 } 718 EXPORT_SYMBOL(xdr_truncate_encode); 719 720 /** 721 * xdr_restrict_buflen - decrease available buffer space 722 * @xdr: pointer to xdr_stream 723 * @newbuflen: new maximum number of bytes available 724 * 725 * Adjust our idea of how much space is available in the buffer. 726 * If we've already used too much space in the buffer, returns -1. 727 * If the available space is already smaller than newbuflen, returns 0 728 * and does nothing. Otherwise, adjusts xdr->buf->buflen to newbuflen 729 * and ensures xdr->end is set at most offset newbuflen from the start 730 * of the buffer. 731 */ 732 int xdr_restrict_buflen(struct xdr_stream *xdr, int newbuflen) 733 { 734 struct xdr_buf *buf = xdr->buf; 735 int left_in_this_buf = (void *)xdr->end - (void *)xdr->p; 736 int end_offset = buf->len + left_in_this_buf; 737 738 if (newbuflen < 0 || newbuflen < buf->len) 739 return -1; 740 if (newbuflen > buf->buflen) 741 return 0; 742 if (newbuflen < end_offset) 743 xdr->end = (void *)xdr->end + newbuflen - end_offset; 744 buf->buflen = newbuflen; 745 return 0; 746 } 747 EXPORT_SYMBOL(xdr_restrict_buflen); 748 749 /** 750 * xdr_write_pages - Insert a list of pages into an XDR buffer for sending 751 * @xdr: pointer to xdr_stream 752 * @pages: list of pages 753 * @base: offset of first byte 754 * @len: length of data in bytes 755 * 756 */ 757 void xdr_write_pages(struct xdr_stream *xdr, struct page **pages, unsigned int base, 758 unsigned int len) 759 { 760 struct xdr_buf *buf = xdr->buf; 761 struct kvec *iov = buf->tail; 762 buf->pages = pages; 763 buf->page_base = base; 764 buf->page_len = len; 765 766 iov->iov_base = (char *)xdr->p; 767 iov->iov_len = 0; 768 xdr->iov = iov; 769 770 if (len & 3) { 771 unsigned int pad = 4 - (len & 3); 772 773 BUG_ON(xdr->p >= xdr->end); 774 iov->iov_base = (char *)xdr->p + (len & 3); 775 iov->iov_len += pad; 776 len += pad; 777 *xdr->p++ = 0; 778 } 779 buf->buflen += len; 780 buf->len += len; 781 } 782 EXPORT_SYMBOL_GPL(xdr_write_pages); 783 784 static void xdr_set_iov(struct xdr_stream *xdr, struct kvec *iov, 785 unsigned int len) 786 { 787 if (len > iov->iov_len) 788 len = iov->iov_len; 789 xdr->p = (__be32*)iov->iov_base; 790 xdr->end = (__be32*)(iov->iov_base + len); 791 xdr->iov = iov; 792 xdr->page_ptr = NULL; 793 } 794 795 static int xdr_set_page_base(struct xdr_stream *xdr, 796 unsigned int base, unsigned int len) 797 { 798 unsigned int pgnr; 799 unsigned int maxlen; 800 unsigned int pgoff; 801 unsigned int pgend; 802 void *kaddr; 803 804 maxlen = xdr->buf->page_len; 805 if (base >= maxlen) 806 return -EINVAL; 807 maxlen -= base; 808 if (len > maxlen) 809 len = maxlen; 810 811 base += xdr->buf->page_base; 812 813 pgnr = base >> PAGE_SHIFT; 814 xdr->page_ptr = &xdr->buf->pages[pgnr]; 815 kaddr = page_address(*xdr->page_ptr); 816 817 pgoff = base & ~PAGE_MASK; 818 xdr->p = (__be32*)(kaddr + pgoff); 819 820 pgend = pgoff + len; 821 if (pgend > PAGE_SIZE) 822 pgend = PAGE_SIZE; 823 xdr->end = (__be32*)(kaddr + pgend); 824 xdr->iov = NULL; 825 return 0; 826 } 827 828 static void xdr_set_next_page(struct xdr_stream *xdr) 829 { 830 unsigned int newbase; 831 832 newbase = (1 + xdr->page_ptr - xdr->buf->pages) << PAGE_SHIFT; 833 newbase -= xdr->buf->page_base; 834 835 if (xdr_set_page_base(xdr, newbase, PAGE_SIZE) < 0) 836 xdr_set_iov(xdr, xdr->buf->tail, xdr->nwords << 2); 837 } 838 839 static bool xdr_set_next_buffer(struct xdr_stream *xdr) 840 { 841 if (xdr->page_ptr != NULL) 842 xdr_set_next_page(xdr); 843 else if (xdr->iov == xdr->buf->head) { 844 if (xdr_set_page_base(xdr, 0, PAGE_SIZE) < 0) 845 xdr_set_iov(xdr, xdr->buf->tail, xdr->nwords << 2); 846 } 847 return xdr->p != xdr->end; 848 } 849 850 /** 851 * xdr_init_decode - Initialize an xdr_stream for decoding data. 852 * @xdr: pointer to xdr_stream struct 853 * @buf: pointer to XDR buffer from which to decode data 854 * @p: current pointer inside XDR buffer 855 * @rqst: pointer to controlling rpc_rqst, for debugging 856 */ 857 void xdr_init_decode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p, 858 struct rpc_rqst *rqst) 859 { 860 xdr->buf = buf; 861 xdr->scratch.iov_base = NULL; 862 xdr->scratch.iov_len = 0; 863 xdr->nwords = XDR_QUADLEN(buf->len); 864 if (buf->head[0].iov_len != 0) 865 xdr_set_iov(xdr, buf->head, buf->len); 866 else if (buf->page_len != 0) 867 xdr_set_page_base(xdr, 0, buf->len); 868 else 869 xdr_set_iov(xdr, buf->head, buf->len); 870 if (p != NULL && p > xdr->p && xdr->end >= p) { 871 xdr->nwords -= p - xdr->p; 872 xdr->p = p; 873 } 874 xdr->rqst = rqst; 875 } 876 EXPORT_SYMBOL_GPL(xdr_init_decode); 877 878 /** 879 * xdr_init_decode_pages - Initialize an xdr_stream for decoding into pages 880 * @xdr: pointer to xdr_stream struct 881 * @buf: pointer to XDR buffer from which to decode data 882 * @pages: list of pages to decode into 883 * @len: length in bytes of buffer in pages 884 */ 885 void xdr_init_decode_pages(struct xdr_stream *xdr, struct xdr_buf *buf, 886 struct page **pages, unsigned int len) 887 { 888 memset(buf, 0, sizeof(*buf)); 889 buf->pages = pages; 890 buf->page_len = len; 891 buf->buflen = len; 892 buf->len = len; 893 xdr_init_decode(xdr, buf, NULL, NULL); 894 } 895 EXPORT_SYMBOL_GPL(xdr_init_decode_pages); 896 897 static __be32 * __xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes) 898 { 899 unsigned int nwords = XDR_QUADLEN(nbytes); 900 __be32 *p = xdr->p; 901 __be32 *q = p + nwords; 902 903 if (unlikely(nwords > xdr->nwords || q > xdr->end || q < p)) 904 return NULL; 905 xdr->p = q; 906 xdr->nwords -= nwords; 907 return p; 908 } 909 910 /** 911 * xdr_set_scratch_buffer - Attach a scratch buffer for decoding data. 912 * @xdr: pointer to xdr_stream struct 913 * @buf: pointer to an empty buffer 914 * @buflen: size of 'buf' 915 * 916 * The scratch buffer is used when decoding from an array of pages. 917 * If an xdr_inline_decode() call spans across page boundaries, then 918 * we copy the data into the scratch buffer in order to allow linear 919 * access. 920 */ 921 void xdr_set_scratch_buffer(struct xdr_stream *xdr, void *buf, size_t buflen) 922 { 923 xdr->scratch.iov_base = buf; 924 xdr->scratch.iov_len = buflen; 925 } 926 EXPORT_SYMBOL_GPL(xdr_set_scratch_buffer); 927 928 static __be32 *xdr_copy_to_scratch(struct xdr_stream *xdr, size_t nbytes) 929 { 930 __be32 *p; 931 char *cpdest = xdr->scratch.iov_base; 932 size_t cplen = (char *)xdr->end - (char *)xdr->p; 933 934 if (nbytes > xdr->scratch.iov_len) 935 goto out_overflow; 936 p = __xdr_inline_decode(xdr, cplen); 937 if (p == NULL) 938 return NULL; 939 memcpy(cpdest, p, cplen); 940 if (!xdr_set_next_buffer(xdr)) 941 goto out_overflow; 942 cpdest += cplen; 943 nbytes -= cplen; 944 p = __xdr_inline_decode(xdr, nbytes); 945 if (p == NULL) 946 return NULL; 947 memcpy(cpdest, p, nbytes); 948 return xdr->scratch.iov_base; 949 out_overflow: 950 trace_rpc_xdr_overflow(xdr, nbytes); 951 return NULL; 952 } 953 954 /** 955 * xdr_inline_decode - Retrieve XDR data to decode 956 * @xdr: pointer to xdr_stream struct 957 * @nbytes: number of bytes of data to decode 958 * 959 * Check if the input buffer is long enough to enable us to decode 960 * 'nbytes' more bytes of data starting at the current position. 961 * If so return the current pointer, then update the current 962 * pointer position. 963 */ 964 __be32 * xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes) 965 { 966 __be32 *p; 967 968 if (unlikely(nbytes == 0)) 969 return xdr->p; 970 if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr)) 971 goto out_overflow; 972 p = __xdr_inline_decode(xdr, nbytes); 973 if (p != NULL) 974 return p; 975 return xdr_copy_to_scratch(xdr, nbytes); 976 out_overflow: 977 trace_rpc_xdr_overflow(xdr, nbytes); 978 return NULL; 979 } 980 EXPORT_SYMBOL_GPL(xdr_inline_decode); 981 982 static unsigned int xdr_align_pages(struct xdr_stream *xdr, unsigned int len) 983 { 984 struct xdr_buf *buf = xdr->buf; 985 struct kvec *iov; 986 unsigned int nwords = XDR_QUADLEN(len); 987 unsigned int cur = xdr_stream_pos(xdr); 988 unsigned int copied, offset; 989 990 if (xdr->nwords == 0) 991 return 0; 992 993 /* Realign pages to current pointer position */ 994 iov = buf->head; 995 if (iov->iov_len > cur) { 996 offset = iov->iov_len - cur; 997 copied = xdr_shrink_bufhead(buf, offset); 998 trace_rpc_xdr_alignment(xdr, offset, copied); 999 xdr->nwords = XDR_QUADLEN(buf->len - cur); 1000 } 1001 1002 if (nwords > xdr->nwords) { 1003 nwords = xdr->nwords; 1004 len = nwords << 2; 1005 } 1006 if (buf->page_len <= len) 1007 len = buf->page_len; 1008 else if (nwords < xdr->nwords) { 1009 /* Truncate page data and move it into the tail */ 1010 offset = buf->page_len - len; 1011 copied = xdr_shrink_pagelen(buf, offset); 1012 trace_rpc_xdr_alignment(xdr, offset, copied); 1013 xdr->nwords = XDR_QUADLEN(buf->len - cur); 1014 } 1015 return len; 1016 } 1017 1018 /** 1019 * xdr_read_pages - Ensure page-based XDR data to decode is aligned at current pointer position 1020 * @xdr: pointer to xdr_stream struct 1021 * @len: number of bytes of page data 1022 * 1023 * Moves data beyond the current pointer position from the XDR head[] buffer 1024 * into the page list. Any data that lies beyond current position + "len" 1025 * bytes is moved into the XDR tail[]. 1026 * 1027 * Returns the number of XDR encoded bytes now contained in the pages 1028 */ 1029 unsigned int xdr_read_pages(struct xdr_stream *xdr, unsigned int len) 1030 { 1031 struct xdr_buf *buf = xdr->buf; 1032 struct kvec *iov; 1033 unsigned int nwords; 1034 unsigned int end; 1035 unsigned int padding; 1036 1037 len = xdr_align_pages(xdr, len); 1038 if (len == 0) 1039 return 0; 1040 nwords = XDR_QUADLEN(len); 1041 padding = (nwords << 2) - len; 1042 xdr->iov = iov = buf->tail; 1043 /* Compute remaining message length. */ 1044 end = ((xdr->nwords - nwords) << 2) + padding; 1045 if (end > iov->iov_len) 1046 end = iov->iov_len; 1047 1048 /* 1049 * Position current pointer at beginning of tail, and 1050 * set remaining message length. 1051 */ 1052 xdr->p = (__be32 *)((char *)iov->iov_base + padding); 1053 xdr->end = (__be32 *)((char *)iov->iov_base + end); 1054 xdr->page_ptr = NULL; 1055 xdr->nwords = XDR_QUADLEN(end - padding); 1056 return len; 1057 } 1058 EXPORT_SYMBOL_GPL(xdr_read_pages); 1059 1060 /** 1061 * xdr_enter_page - decode data from the XDR page 1062 * @xdr: pointer to xdr_stream struct 1063 * @len: number of bytes of page data 1064 * 1065 * Moves data beyond the current pointer position from the XDR head[] buffer 1066 * into the page list. Any data that lies beyond current position + "len" 1067 * bytes is moved into the XDR tail[]. The current pointer is then 1068 * repositioned at the beginning of the first XDR page. 1069 */ 1070 void xdr_enter_page(struct xdr_stream *xdr, unsigned int len) 1071 { 1072 len = xdr_align_pages(xdr, len); 1073 /* 1074 * Position current pointer at beginning of tail, and 1075 * set remaining message length. 1076 */ 1077 if (len != 0) 1078 xdr_set_page_base(xdr, 0, len); 1079 } 1080 EXPORT_SYMBOL_GPL(xdr_enter_page); 1081 1082 static const struct kvec empty_iov = {.iov_base = NULL, .iov_len = 0}; 1083 1084 void 1085 xdr_buf_from_iov(struct kvec *iov, struct xdr_buf *buf) 1086 { 1087 buf->head[0] = *iov; 1088 buf->tail[0] = empty_iov; 1089 buf->page_len = 0; 1090 buf->buflen = buf->len = iov->iov_len; 1091 } 1092 EXPORT_SYMBOL_GPL(xdr_buf_from_iov); 1093 1094 /** 1095 * xdr_buf_subsegment - set subbuf to a portion of buf 1096 * @buf: an xdr buffer 1097 * @subbuf: the result buffer 1098 * @base: beginning of range in bytes 1099 * @len: length of range in bytes 1100 * 1101 * sets @subbuf to an xdr buffer representing the portion of @buf of 1102 * length @len starting at offset @base. 1103 * 1104 * @buf and @subbuf may be pointers to the same struct xdr_buf. 1105 * 1106 * Returns -1 if base of length are out of bounds. 1107 */ 1108 int 1109 xdr_buf_subsegment(struct xdr_buf *buf, struct xdr_buf *subbuf, 1110 unsigned int base, unsigned int len) 1111 { 1112 subbuf->buflen = subbuf->len = len; 1113 if (base < buf->head[0].iov_len) { 1114 subbuf->head[0].iov_base = buf->head[0].iov_base + base; 1115 subbuf->head[0].iov_len = min_t(unsigned int, len, 1116 buf->head[0].iov_len - base); 1117 len -= subbuf->head[0].iov_len; 1118 base = 0; 1119 } else { 1120 base -= buf->head[0].iov_len; 1121 subbuf->head[0].iov_len = 0; 1122 } 1123 1124 if (base < buf->page_len) { 1125 subbuf->page_len = min(buf->page_len - base, len); 1126 base += buf->page_base; 1127 subbuf->page_base = base & ~PAGE_MASK; 1128 subbuf->pages = &buf->pages[base >> PAGE_SHIFT]; 1129 len -= subbuf->page_len; 1130 base = 0; 1131 } else { 1132 base -= buf->page_len; 1133 subbuf->page_len = 0; 1134 } 1135 1136 if (base < buf->tail[0].iov_len) { 1137 subbuf->tail[0].iov_base = buf->tail[0].iov_base + base; 1138 subbuf->tail[0].iov_len = min_t(unsigned int, len, 1139 buf->tail[0].iov_len - base); 1140 len -= subbuf->tail[0].iov_len; 1141 base = 0; 1142 } else { 1143 base -= buf->tail[0].iov_len; 1144 subbuf->tail[0].iov_len = 0; 1145 } 1146 1147 if (base || len) 1148 return -1; 1149 return 0; 1150 } 1151 EXPORT_SYMBOL_GPL(xdr_buf_subsegment); 1152 1153 static void __read_bytes_from_xdr_buf(struct xdr_buf *subbuf, void *obj, unsigned int len) 1154 { 1155 unsigned int this_len; 1156 1157 this_len = min_t(unsigned int, len, subbuf->head[0].iov_len); 1158 memcpy(obj, subbuf->head[0].iov_base, this_len); 1159 len -= this_len; 1160 obj += this_len; 1161 this_len = min_t(unsigned int, len, subbuf->page_len); 1162 if (this_len) 1163 _copy_from_pages(obj, subbuf->pages, subbuf->page_base, this_len); 1164 len -= this_len; 1165 obj += this_len; 1166 this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len); 1167 memcpy(obj, subbuf->tail[0].iov_base, this_len); 1168 } 1169 1170 /* obj is assumed to point to allocated memory of size at least len: */ 1171 int read_bytes_from_xdr_buf(struct xdr_buf *buf, unsigned int base, void *obj, unsigned int len) 1172 { 1173 struct xdr_buf subbuf; 1174 int status; 1175 1176 status = xdr_buf_subsegment(buf, &subbuf, base, len); 1177 if (status != 0) 1178 return status; 1179 __read_bytes_from_xdr_buf(&subbuf, obj, len); 1180 return 0; 1181 } 1182 EXPORT_SYMBOL_GPL(read_bytes_from_xdr_buf); 1183 1184 static void __write_bytes_to_xdr_buf(struct xdr_buf *subbuf, void *obj, unsigned int len) 1185 { 1186 unsigned int this_len; 1187 1188 this_len = min_t(unsigned int, len, subbuf->head[0].iov_len); 1189 memcpy(subbuf->head[0].iov_base, obj, this_len); 1190 len -= this_len; 1191 obj += this_len; 1192 this_len = min_t(unsigned int, len, subbuf->page_len); 1193 if (this_len) 1194 _copy_to_pages(subbuf->pages, subbuf->page_base, obj, this_len); 1195 len -= this_len; 1196 obj += this_len; 1197 this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len); 1198 memcpy(subbuf->tail[0].iov_base, obj, this_len); 1199 } 1200 1201 /* obj is assumed to point to allocated memory of size at least len: */ 1202 int write_bytes_to_xdr_buf(struct xdr_buf *buf, unsigned int base, void *obj, unsigned int len) 1203 { 1204 struct xdr_buf subbuf; 1205 int status; 1206 1207 status = xdr_buf_subsegment(buf, &subbuf, base, len); 1208 if (status != 0) 1209 return status; 1210 __write_bytes_to_xdr_buf(&subbuf, obj, len); 1211 return 0; 1212 } 1213 EXPORT_SYMBOL_GPL(write_bytes_to_xdr_buf); 1214 1215 int 1216 xdr_decode_word(struct xdr_buf *buf, unsigned int base, u32 *obj) 1217 { 1218 __be32 raw; 1219 int status; 1220 1221 status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj)); 1222 if (status) 1223 return status; 1224 *obj = be32_to_cpu(raw); 1225 return 0; 1226 } 1227 EXPORT_SYMBOL_GPL(xdr_decode_word); 1228 1229 int 1230 xdr_encode_word(struct xdr_buf *buf, unsigned int base, u32 obj) 1231 { 1232 __be32 raw = cpu_to_be32(obj); 1233 1234 return write_bytes_to_xdr_buf(buf, base, &raw, sizeof(obj)); 1235 } 1236 EXPORT_SYMBOL_GPL(xdr_encode_word); 1237 1238 /** 1239 * xdr_buf_read_mic() - obtain the address of the GSS mic from xdr buf 1240 * @buf: pointer to buffer containing a mic 1241 * @mic: on success, returns the address of the mic 1242 * @offset: the offset in buf where mic may be found 1243 * 1244 * This function may modify the xdr buf if the mic is found to be straddling 1245 * a boundary between head, pages, and tail. On success the mic can be read 1246 * from the address returned. There is no need to free the mic. 1247 * 1248 * Return: Success returns 0, otherwise an integer error. 1249 */ 1250 int xdr_buf_read_mic(struct xdr_buf *buf, struct xdr_netobj *mic, unsigned int offset) 1251 { 1252 struct xdr_buf subbuf; 1253 unsigned int boundary; 1254 1255 if (xdr_decode_word(buf, offset, &mic->len)) 1256 return -EFAULT; 1257 offset += 4; 1258 1259 /* Is the mic partially in the head? */ 1260 boundary = buf->head[0].iov_len; 1261 if (offset < boundary && (offset + mic->len) > boundary) 1262 xdr_shift_buf(buf, boundary - offset); 1263 1264 /* Is the mic partially in the pages? */ 1265 boundary += buf->page_len; 1266 if (offset < boundary && (offset + mic->len) > boundary) 1267 xdr_shrink_pagelen(buf, boundary - offset); 1268 1269 if (xdr_buf_subsegment(buf, &subbuf, offset, mic->len)) 1270 return -EFAULT; 1271 1272 /* Is the mic contained entirely in the head? */ 1273 mic->data = subbuf.head[0].iov_base; 1274 if (subbuf.head[0].iov_len == mic->len) 1275 return 0; 1276 /* ..or is the mic contained entirely in the tail? */ 1277 mic->data = subbuf.tail[0].iov_base; 1278 if (subbuf.tail[0].iov_len == mic->len) 1279 return 0; 1280 1281 /* Find a contiguous area in @buf to hold all of @mic */ 1282 if (mic->len > buf->buflen - buf->len) 1283 return -ENOMEM; 1284 if (buf->tail[0].iov_len != 0) 1285 mic->data = buf->tail[0].iov_base + buf->tail[0].iov_len; 1286 else 1287 mic->data = buf->head[0].iov_base + buf->head[0].iov_len; 1288 __read_bytes_from_xdr_buf(&subbuf, mic->data, mic->len); 1289 return 0; 1290 } 1291 EXPORT_SYMBOL_GPL(xdr_buf_read_mic); 1292 1293 /* Returns 0 on success, or else a negative error code. */ 1294 static int 1295 xdr_xcode_array2(struct xdr_buf *buf, unsigned int base, 1296 struct xdr_array2_desc *desc, int encode) 1297 { 1298 char *elem = NULL, *c; 1299 unsigned int copied = 0, todo, avail_here; 1300 struct page **ppages = NULL; 1301 int err; 1302 1303 if (encode) { 1304 if (xdr_encode_word(buf, base, desc->array_len) != 0) 1305 return -EINVAL; 1306 } else { 1307 if (xdr_decode_word(buf, base, &desc->array_len) != 0 || 1308 desc->array_len > desc->array_maxlen || 1309 (unsigned long) base + 4 + desc->array_len * 1310 desc->elem_size > buf->len) 1311 return -EINVAL; 1312 } 1313 base += 4; 1314 1315 if (!desc->xcode) 1316 return 0; 1317 1318 todo = desc->array_len * desc->elem_size; 1319 1320 /* process head */ 1321 if (todo && base < buf->head->iov_len) { 1322 c = buf->head->iov_base + base; 1323 avail_here = min_t(unsigned int, todo, 1324 buf->head->iov_len - base); 1325 todo -= avail_here; 1326 1327 while (avail_here >= desc->elem_size) { 1328 err = desc->xcode(desc, c); 1329 if (err) 1330 goto out; 1331 c += desc->elem_size; 1332 avail_here -= desc->elem_size; 1333 } 1334 if (avail_here) { 1335 if (!elem) { 1336 elem = kmalloc(desc->elem_size, GFP_KERNEL); 1337 err = -ENOMEM; 1338 if (!elem) 1339 goto out; 1340 } 1341 if (encode) { 1342 err = desc->xcode(desc, elem); 1343 if (err) 1344 goto out; 1345 memcpy(c, elem, avail_here); 1346 } else 1347 memcpy(elem, c, avail_here); 1348 copied = avail_here; 1349 } 1350 base = buf->head->iov_len; /* align to start of pages */ 1351 } 1352 1353 /* process pages array */ 1354 base -= buf->head->iov_len; 1355 if (todo && base < buf->page_len) { 1356 unsigned int avail_page; 1357 1358 avail_here = min(todo, buf->page_len - base); 1359 todo -= avail_here; 1360 1361 base += buf->page_base; 1362 ppages = buf->pages + (base >> PAGE_SHIFT); 1363 base &= ~PAGE_MASK; 1364 avail_page = min_t(unsigned int, PAGE_SIZE - base, 1365 avail_here); 1366 c = kmap(*ppages) + base; 1367 1368 while (avail_here) { 1369 avail_here -= avail_page; 1370 if (copied || avail_page < desc->elem_size) { 1371 unsigned int l = min(avail_page, 1372 desc->elem_size - copied); 1373 if (!elem) { 1374 elem = kmalloc(desc->elem_size, 1375 GFP_KERNEL); 1376 err = -ENOMEM; 1377 if (!elem) 1378 goto out; 1379 } 1380 if (encode) { 1381 if (!copied) { 1382 err = desc->xcode(desc, elem); 1383 if (err) 1384 goto out; 1385 } 1386 memcpy(c, elem + copied, l); 1387 copied += l; 1388 if (copied == desc->elem_size) 1389 copied = 0; 1390 } else { 1391 memcpy(elem + copied, c, l); 1392 copied += l; 1393 if (copied == desc->elem_size) { 1394 err = desc->xcode(desc, elem); 1395 if (err) 1396 goto out; 1397 copied = 0; 1398 } 1399 } 1400 avail_page -= l; 1401 c += l; 1402 } 1403 while (avail_page >= desc->elem_size) { 1404 err = desc->xcode(desc, c); 1405 if (err) 1406 goto out; 1407 c += desc->elem_size; 1408 avail_page -= desc->elem_size; 1409 } 1410 if (avail_page) { 1411 unsigned int l = min(avail_page, 1412 desc->elem_size - copied); 1413 if (!elem) { 1414 elem = kmalloc(desc->elem_size, 1415 GFP_KERNEL); 1416 err = -ENOMEM; 1417 if (!elem) 1418 goto out; 1419 } 1420 if (encode) { 1421 if (!copied) { 1422 err = desc->xcode(desc, elem); 1423 if (err) 1424 goto out; 1425 } 1426 memcpy(c, elem + copied, l); 1427 copied += l; 1428 if (copied == desc->elem_size) 1429 copied = 0; 1430 } else { 1431 memcpy(elem + copied, c, l); 1432 copied += l; 1433 if (copied == desc->elem_size) { 1434 err = desc->xcode(desc, elem); 1435 if (err) 1436 goto out; 1437 copied = 0; 1438 } 1439 } 1440 } 1441 if (avail_here) { 1442 kunmap(*ppages); 1443 ppages++; 1444 c = kmap(*ppages); 1445 } 1446 1447 avail_page = min(avail_here, 1448 (unsigned int) PAGE_SIZE); 1449 } 1450 base = buf->page_len; /* align to start of tail */ 1451 } 1452 1453 /* process tail */ 1454 base -= buf->page_len; 1455 if (todo) { 1456 c = buf->tail->iov_base + base; 1457 if (copied) { 1458 unsigned int l = desc->elem_size - copied; 1459 1460 if (encode) 1461 memcpy(c, elem + copied, l); 1462 else { 1463 memcpy(elem + copied, c, l); 1464 err = desc->xcode(desc, elem); 1465 if (err) 1466 goto out; 1467 } 1468 todo -= l; 1469 c += l; 1470 } 1471 while (todo) { 1472 err = desc->xcode(desc, c); 1473 if (err) 1474 goto out; 1475 c += desc->elem_size; 1476 todo -= desc->elem_size; 1477 } 1478 } 1479 err = 0; 1480 1481 out: 1482 kfree(elem); 1483 if (ppages) 1484 kunmap(*ppages); 1485 return err; 1486 } 1487 1488 int 1489 xdr_decode_array2(struct xdr_buf *buf, unsigned int base, 1490 struct xdr_array2_desc *desc) 1491 { 1492 if (base >= buf->len) 1493 return -EINVAL; 1494 1495 return xdr_xcode_array2(buf, base, desc, 0); 1496 } 1497 EXPORT_SYMBOL_GPL(xdr_decode_array2); 1498 1499 int 1500 xdr_encode_array2(struct xdr_buf *buf, unsigned int base, 1501 struct xdr_array2_desc *desc) 1502 { 1503 if ((unsigned long) base + 4 + desc->array_len * desc->elem_size > 1504 buf->head->iov_len + buf->page_len + buf->tail->iov_len) 1505 return -EINVAL; 1506 1507 return xdr_xcode_array2(buf, base, desc, 1); 1508 } 1509 EXPORT_SYMBOL_GPL(xdr_encode_array2); 1510 1511 int 1512 xdr_process_buf(struct xdr_buf *buf, unsigned int offset, unsigned int len, 1513 int (*actor)(struct scatterlist *, void *), void *data) 1514 { 1515 int i, ret = 0; 1516 unsigned int page_len, thislen, page_offset; 1517 struct scatterlist sg[1]; 1518 1519 sg_init_table(sg, 1); 1520 1521 if (offset >= buf->head[0].iov_len) { 1522 offset -= buf->head[0].iov_len; 1523 } else { 1524 thislen = buf->head[0].iov_len - offset; 1525 if (thislen > len) 1526 thislen = len; 1527 sg_set_buf(sg, buf->head[0].iov_base + offset, thislen); 1528 ret = actor(sg, data); 1529 if (ret) 1530 goto out; 1531 offset = 0; 1532 len -= thislen; 1533 } 1534 if (len == 0) 1535 goto out; 1536 1537 if (offset >= buf->page_len) { 1538 offset -= buf->page_len; 1539 } else { 1540 page_len = buf->page_len - offset; 1541 if (page_len > len) 1542 page_len = len; 1543 len -= page_len; 1544 page_offset = (offset + buf->page_base) & (PAGE_SIZE - 1); 1545 i = (offset + buf->page_base) >> PAGE_SHIFT; 1546 thislen = PAGE_SIZE - page_offset; 1547 do { 1548 if (thislen > page_len) 1549 thislen = page_len; 1550 sg_set_page(sg, buf->pages[i], thislen, page_offset); 1551 ret = actor(sg, data); 1552 if (ret) 1553 goto out; 1554 page_len -= thislen; 1555 i++; 1556 page_offset = 0; 1557 thislen = PAGE_SIZE; 1558 } while (page_len != 0); 1559 offset = 0; 1560 } 1561 if (len == 0) 1562 goto out; 1563 if (offset < buf->tail[0].iov_len) { 1564 thislen = buf->tail[0].iov_len - offset; 1565 if (thislen > len) 1566 thislen = len; 1567 sg_set_buf(sg, buf->tail[0].iov_base + offset, thislen); 1568 ret = actor(sg, data); 1569 len -= thislen; 1570 } 1571 if (len != 0) 1572 ret = -EINVAL; 1573 out: 1574 return ret; 1575 } 1576 EXPORT_SYMBOL_GPL(xdr_process_buf); 1577 1578 /** 1579 * xdr_stream_decode_opaque - Decode variable length opaque 1580 * @xdr: pointer to xdr_stream 1581 * @ptr: location to store opaque data 1582 * @size: size of storage buffer @ptr 1583 * 1584 * Return values: 1585 * On success, returns size of object stored in *@ptr 1586 * %-EBADMSG on XDR buffer overflow 1587 * %-EMSGSIZE on overflow of storage buffer @ptr 1588 */ 1589 ssize_t xdr_stream_decode_opaque(struct xdr_stream *xdr, void *ptr, size_t size) 1590 { 1591 ssize_t ret; 1592 void *p; 1593 1594 ret = xdr_stream_decode_opaque_inline(xdr, &p, size); 1595 if (ret <= 0) 1596 return ret; 1597 memcpy(ptr, p, ret); 1598 return ret; 1599 } 1600 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque); 1601 1602 /** 1603 * xdr_stream_decode_opaque_dup - Decode and duplicate variable length opaque 1604 * @xdr: pointer to xdr_stream 1605 * @ptr: location to store pointer to opaque data 1606 * @maxlen: maximum acceptable object size 1607 * @gfp_flags: GFP mask to use 1608 * 1609 * Return values: 1610 * On success, returns size of object stored in *@ptr 1611 * %-EBADMSG on XDR buffer overflow 1612 * %-EMSGSIZE if the size of the object would exceed @maxlen 1613 * %-ENOMEM on memory allocation failure 1614 */ 1615 ssize_t xdr_stream_decode_opaque_dup(struct xdr_stream *xdr, void **ptr, 1616 size_t maxlen, gfp_t gfp_flags) 1617 { 1618 ssize_t ret; 1619 void *p; 1620 1621 ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen); 1622 if (ret > 0) { 1623 *ptr = kmemdup(p, ret, gfp_flags); 1624 if (*ptr != NULL) 1625 return ret; 1626 ret = -ENOMEM; 1627 } 1628 *ptr = NULL; 1629 return ret; 1630 } 1631 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque_dup); 1632 1633 /** 1634 * xdr_stream_decode_string - Decode variable length string 1635 * @xdr: pointer to xdr_stream 1636 * @str: location to store string 1637 * @size: size of storage buffer @str 1638 * 1639 * Return values: 1640 * On success, returns length of NUL-terminated string stored in *@str 1641 * %-EBADMSG on XDR buffer overflow 1642 * %-EMSGSIZE on overflow of storage buffer @str 1643 */ 1644 ssize_t xdr_stream_decode_string(struct xdr_stream *xdr, char *str, size_t size) 1645 { 1646 ssize_t ret; 1647 void *p; 1648 1649 ret = xdr_stream_decode_opaque_inline(xdr, &p, size); 1650 if (ret > 0) { 1651 memcpy(str, p, ret); 1652 str[ret] = '\0'; 1653 return strlen(str); 1654 } 1655 *str = '\0'; 1656 return ret; 1657 } 1658 EXPORT_SYMBOL_GPL(xdr_stream_decode_string); 1659 1660 /** 1661 * xdr_stream_decode_string_dup - Decode and duplicate variable length string 1662 * @xdr: pointer to xdr_stream 1663 * @str: location to store pointer to string 1664 * @maxlen: maximum acceptable string length 1665 * @gfp_flags: GFP mask to use 1666 * 1667 * Return values: 1668 * On success, returns length of NUL-terminated string stored in *@ptr 1669 * %-EBADMSG on XDR buffer overflow 1670 * %-EMSGSIZE if the size of the string would exceed @maxlen 1671 * %-ENOMEM on memory allocation failure 1672 */ 1673 ssize_t xdr_stream_decode_string_dup(struct xdr_stream *xdr, char **str, 1674 size_t maxlen, gfp_t gfp_flags) 1675 { 1676 void *p; 1677 ssize_t ret; 1678 1679 ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen); 1680 if (ret > 0) { 1681 char *s = kmalloc(ret + 1, gfp_flags); 1682 if (s != NULL) { 1683 memcpy(s, p, ret); 1684 s[ret] = '\0'; 1685 *str = s; 1686 return strlen(s); 1687 } 1688 ret = -ENOMEM; 1689 } 1690 *str = NULL; 1691 return ret; 1692 } 1693 EXPORT_SYMBOL_GPL(xdr_stream_decode_string_dup); 1694