1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/xdr.c 4 * 5 * Generic XDR support. 6 * 7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/slab.h> 12 #include <linux/types.h> 13 #include <linux/string.h> 14 #include <linux/kernel.h> 15 #include <linux/pagemap.h> 16 #include <linux/errno.h> 17 #include <linux/sunrpc/xdr.h> 18 #include <linux/sunrpc/msg_prot.h> 19 #include <linux/bvec.h> 20 #include <trace/events/sunrpc.h> 21 22 static void _copy_to_pages(struct page **, size_t, const char *, size_t); 23 24 25 /* 26 * XDR functions for basic NFS types 27 */ 28 __be32 * 29 xdr_encode_netobj(__be32 *p, const struct xdr_netobj *obj) 30 { 31 unsigned int quadlen = XDR_QUADLEN(obj->len); 32 33 p[quadlen] = 0; /* zero trailing bytes */ 34 *p++ = cpu_to_be32(obj->len); 35 memcpy(p, obj->data, obj->len); 36 return p + XDR_QUADLEN(obj->len); 37 } 38 EXPORT_SYMBOL_GPL(xdr_encode_netobj); 39 40 __be32 * 41 xdr_decode_netobj(__be32 *p, struct xdr_netobj *obj) 42 { 43 unsigned int len; 44 45 if ((len = be32_to_cpu(*p++)) > XDR_MAX_NETOBJ) 46 return NULL; 47 obj->len = len; 48 obj->data = (u8 *) p; 49 return p + XDR_QUADLEN(len); 50 } 51 EXPORT_SYMBOL_GPL(xdr_decode_netobj); 52 53 /** 54 * xdr_encode_opaque_fixed - Encode fixed length opaque data 55 * @p: pointer to current position in XDR buffer. 56 * @ptr: pointer to data to encode (or NULL) 57 * @nbytes: size of data. 58 * 59 * Copy the array of data of length nbytes at ptr to the XDR buffer 60 * at position p, then align to the next 32-bit boundary by padding 61 * with zero bytes (see RFC1832). 62 * Note: if ptr is NULL, only the padding is performed. 63 * 64 * Returns the updated current XDR buffer position 65 * 66 */ 67 __be32 *xdr_encode_opaque_fixed(__be32 *p, const void *ptr, unsigned int nbytes) 68 { 69 if (likely(nbytes != 0)) { 70 unsigned int quadlen = XDR_QUADLEN(nbytes); 71 unsigned int padding = (quadlen << 2) - nbytes; 72 73 if (ptr != NULL) 74 memcpy(p, ptr, nbytes); 75 if (padding != 0) 76 memset((char *)p + nbytes, 0, padding); 77 p += quadlen; 78 } 79 return p; 80 } 81 EXPORT_SYMBOL_GPL(xdr_encode_opaque_fixed); 82 83 /** 84 * xdr_encode_opaque - Encode variable length opaque data 85 * @p: pointer to current position in XDR buffer. 86 * @ptr: pointer to data to encode (or NULL) 87 * @nbytes: size of data. 88 * 89 * Returns the updated current XDR buffer position 90 */ 91 __be32 *xdr_encode_opaque(__be32 *p, const void *ptr, unsigned int nbytes) 92 { 93 *p++ = cpu_to_be32(nbytes); 94 return xdr_encode_opaque_fixed(p, ptr, nbytes); 95 } 96 EXPORT_SYMBOL_GPL(xdr_encode_opaque); 97 98 __be32 * 99 xdr_encode_string(__be32 *p, const char *string) 100 { 101 return xdr_encode_array(p, string, strlen(string)); 102 } 103 EXPORT_SYMBOL_GPL(xdr_encode_string); 104 105 __be32 * 106 xdr_decode_string_inplace(__be32 *p, char **sp, 107 unsigned int *lenp, unsigned int maxlen) 108 { 109 u32 len; 110 111 len = be32_to_cpu(*p++); 112 if (len > maxlen) 113 return NULL; 114 *lenp = len; 115 *sp = (char *) p; 116 return p + XDR_QUADLEN(len); 117 } 118 EXPORT_SYMBOL_GPL(xdr_decode_string_inplace); 119 120 /** 121 * xdr_terminate_string - '\0'-terminate a string residing in an xdr_buf 122 * @buf: XDR buffer where string resides 123 * @len: length of string, in bytes 124 * 125 */ 126 void xdr_terminate_string(const struct xdr_buf *buf, const u32 len) 127 { 128 char *kaddr; 129 130 kaddr = kmap_atomic(buf->pages[0]); 131 kaddr[buf->page_base + len] = '\0'; 132 kunmap_atomic(kaddr); 133 } 134 EXPORT_SYMBOL_GPL(xdr_terminate_string); 135 136 size_t xdr_buf_pagecount(const struct xdr_buf *buf) 137 { 138 if (!buf->page_len) 139 return 0; 140 return (buf->page_base + buf->page_len + PAGE_SIZE - 1) >> PAGE_SHIFT; 141 } 142 143 int 144 xdr_alloc_bvec(struct xdr_buf *buf, gfp_t gfp) 145 { 146 size_t i, n = xdr_buf_pagecount(buf); 147 148 if (n != 0 && buf->bvec == NULL) { 149 buf->bvec = kmalloc_array(n, sizeof(buf->bvec[0]), gfp); 150 if (!buf->bvec) 151 return -ENOMEM; 152 for (i = 0; i < n; i++) { 153 bvec_set_page(&buf->bvec[i], buf->pages[i], PAGE_SIZE, 154 0); 155 } 156 } 157 return 0; 158 } 159 160 void 161 xdr_free_bvec(struct xdr_buf *buf) 162 { 163 kfree(buf->bvec); 164 buf->bvec = NULL; 165 } 166 167 /** 168 * xdr_inline_pages - Prepare receive buffer for a large reply 169 * @xdr: xdr_buf into which reply will be placed 170 * @offset: expected offset where data payload will start, in bytes 171 * @pages: vector of struct page pointers 172 * @base: offset in first page where receive should start, in bytes 173 * @len: expected size of the upper layer data payload, in bytes 174 * 175 */ 176 void 177 xdr_inline_pages(struct xdr_buf *xdr, unsigned int offset, 178 struct page **pages, unsigned int base, unsigned int len) 179 { 180 struct kvec *head = xdr->head; 181 struct kvec *tail = xdr->tail; 182 char *buf = (char *)head->iov_base; 183 unsigned int buflen = head->iov_len; 184 185 head->iov_len = offset; 186 187 xdr->pages = pages; 188 xdr->page_base = base; 189 xdr->page_len = len; 190 191 tail->iov_base = buf + offset; 192 tail->iov_len = buflen - offset; 193 xdr->buflen += len; 194 } 195 EXPORT_SYMBOL_GPL(xdr_inline_pages); 196 197 /* 198 * Helper routines for doing 'memmove' like operations on a struct xdr_buf 199 */ 200 201 /** 202 * _shift_data_left_pages 203 * @pages: vector of pages containing both the source and dest memory area. 204 * @pgto_base: page vector address of destination 205 * @pgfrom_base: page vector address of source 206 * @len: number of bytes to copy 207 * 208 * Note: the addresses pgto_base and pgfrom_base are both calculated in 209 * the same way: 210 * if a memory area starts at byte 'base' in page 'pages[i]', 211 * then its address is given as (i << PAGE_CACHE_SHIFT) + base 212 * Alse note: pgto_base must be < pgfrom_base, but the memory areas 213 * they point to may overlap. 214 */ 215 static void 216 _shift_data_left_pages(struct page **pages, size_t pgto_base, 217 size_t pgfrom_base, size_t len) 218 { 219 struct page **pgfrom, **pgto; 220 char *vfrom, *vto; 221 size_t copy; 222 223 BUG_ON(pgfrom_base <= pgto_base); 224 225 if (!len) 226 return; 227 228 pgto = pages + (pgto_base >> PAGE_SHIFT); 229 pgfrom = pages + (pgfrom_base >> PAGE_SHIFT); 230 231 pgto_base &= ~PAGE_MASK; 232 pgfrom_base &= ~PAGE_MASK; 233 234 do { 235 if (pgto_base >= PAGE_SIZE) { 236 pgto_base = 0; 237 pgto++; 238 } 239 if (pgfrom_base >= PAGE_SIZE){ 240 pgfrom_base = 0; 241 pgfrom++; 242 } 243 244 copy = len; 245 if (copy > (PAGE_SIZE - pgto_base)) 246 copy = PAGE_SIZE - pgto_base; 247 if (copy > (PAGE_SIZE - pgfrom_base)) 248 copy = PAGE_SIZE - pgfrom_base; 249 250 vto = kmap_atomic(*pgto); 251 if (*pgto != *pgfrom) { 252 vfrom = kmap_atomic(*pgfrom); 253 memcpy(vto + pgto_base, vfrom + pgfrom_base, copy); 254 kunmap_atomic(vfrom); 255 } else 256 memmove(vto + pgto_base, vto + pgfrom_base, copy); 257 flush_dcache_page(*pgto); 258 kunmap_atomic(vto); 259 260 pgto_base += copy; 261 pgfrom_base += copy; 262 263 } while ((len -= copy) != 0); 264 } 265 266 /** 267 * _shift_data_right_pages 268 * @pages: vector of pages containing both the source and dest memory area. 269 * @pgto_base: page vector address of destination 270 * @pgfrom_base: page vector address of source 271 * @len: number of bytes to copy 272 * 273 * Note: the addresses pgto_base and pgfrom_base are both calculated in 274 * the same way: 275 * if a memory area starts at byte 'base' in page 'pages[i]', 276 * then its address is given as (i << PAGE_SHIFT) + base 277 * Also note: pgfrom_base must be < pgto_base, but the memory areas 278 * they point to may overlap. 279 */ 280 static void 281 _shift_data_right_pages(struct page **pages, size_t pgto_base, 282 size_t pgfrom_base, size_t len) 283 { 284 struct page **pgfrom, **pgto; 285 char *vfrom, *vto; 286 size_t copy; 287 288 BUG_ON(pgto_base <= pgfrom_base); 289 290 if (!len) 291 return; 292 293 pgto_base += len; 294 pgfrom_base += len; 295 296 pgto = pages + (pgto_base >> PAGE_SHIFT); 297 pgfrom = pages + (pgfrom_base >> PAGE_SHIFT); 298 299 pgto_base &= ~PAGE_MASK; 300 pgfrom_base &= ~PAGE_MASK; 301 302 do { 303 /* Are any pointers crossing a page boundary? */ 304 if (pgto_base == 0) { 305 pgto_base = PAGE_SIZE; 306 pgto--; 307 } 308 if (pgfrom_base == 0) { 309 pgfrom_base = PAGE_SIZE; 310 pgfrom--; 311 } 312 313 copy = len; 314 if (copy > pgto_base) 315 copy = pgto_base; 316 if (copy > pgfrom_base) 317 copy = pgfrom_base; 318 pgto_base -= copy; 319 pgfrom_base -= copy; 320 321 vto = kmap_atomic(*pgto); 322 if (*pgto != *pgfrom) { 323 vfrom = kmap_atomic(*pgfrom); 324 memcpy(vto + pgto_base, vfrom + pgfrom_base, copy); 325 kunmap_atomic(vfrom); 326 } else 327 memmove(vto + pgto_base, vto + pgfrom_base, copy); 328 flush_dcache_page(*pgto); 329 kunmap_atomic(vto); 330 331 } while ((len -= copy) != 0); 332 } 333 334 /** 335 * _copy_to_pages 336 * @pages: array of pages 337 * @pgbase: page vector address of destination 338 * @p: pointer to source data 339 * @len: length 340 * 341 * Copies data from an arbitrary memory location into an array of pages 342 * The copy is assumed to be non-overlapping. 343 */ 344 static void 345 _copy_to_pages(struct page **pages, size_t pgbase, const char *p, size_t len) 346 { 347 struct page **pgto; 348 char *vto; 349 size_t copy; 350 351 if (!len) 352 return; 353 354 pgto = pages + (pgbase >> PAGE_SHIFT); 355 pgbase &= ~PAGE_MASK; 356 357 for (;;) { 358 copy = PAGE_SIZE - pgbase; 359 if (copy > len) 360 copy = len; 361 362 vto = kmap_atomic(*pgto); 363 memcpy(vto + pgbase, p, copy); 364 kunmap_atomic(vto); 365 366 len -= copy; 367 if (len == 0) 368 break; 369 370 pgbase += copy; 371 if (pgbase == PAGE_SIZE) { 372 flush_dcache_page(*pgto); 373 pgbase = 0; 374 pgto++; 375 } 376 p += copy; 377 } 378 flush_dcache_page(*pgto); 379 } 380 381 /** 382 * _copy_from_pages 383 * @p: pointer to destination 384 * @pages: array of pages 385 * @pgbase: offset of source data 386 * @len: length 387 * 388 * Copies data into an arbitrary memory location from an array of pages 389 * The copy is assumed to be non-overlapping. 390 */ 391 void 392 _copy_from_pages(char *p, struct page **pages, size_t pgbase, size_t len) 393 { 394 struct page **pgfrom; 395 char *vfrom; 396 size_t copy; 397 398 if (!len) 399 return; 400 401 pgfrom = pages + (pgbase >> PAGE_SHIFT); 402 pgbase &= ~PAGE_MASK; 403 404 do { 405 copy = PAGE_SIZE - pgbase; 406 if (copy > len) 407 copy = len; 408 409 vfrom = kmap_atomic(*pgfrom); 410 memcpy(p, vfrom + pgbase, copy); 411 kunmap_atomic(vfrom); 412 413 pgbase += copy; 414 if (pgbase == PAGE_SIZE) { 415 pgbase = 0; 416 pgfrom++; 417 } 418 p += copy; 419 420 } while ((len -= copy) != 0); 421 } 422 EXPORT_SYMBOL_GPL(_copy_from_pages); 423 424 static void xdr_buf_iov_zero(const struct kvec *iov, unsigned int base, 425 unsigned int len) 426 { 427 if (base >= iov->iov_len) 428 return; 429 if (len > iov->iov_len - base) 430 len = iov->iov_len - base; 431 memset(iov->iov_base + base, 0, len); 432 } 433 434 /** 435 * xdr_buf_pages_zero 436 * @buf: xdr_buf 437 * @pgbase: beginning offset 438 * @len: length 439 */ 440 static void xdr_buf_pages_zero(const struct xdr_buf *buf, unsigned int pgbase, 441 unsigned int len) 442 { 443 struct page **pages = buf->pages; 444 struct page **page; 445 char *vpage; 446 unsigned int zero; 447 448 if (!len) 449 return; 450 if (pgbase >= buf->page_len) { 451 xdr_buf_iov_zero(buf->tail, pgbase - buf->page_len, len); 452 return; 453 } 454 if (pgbase + len > buf->page_len) { 455 xdr_buf_iov_zero(buf->tail, 0, pgbase + len - buf->page_len); 456 len = buf->page_len - pgbase; 457 } 458 459 pgbase += buf->page_base; 460 461 page = pages + (pgbase >> PAGE_SHIFT); 462 pgbase &= ~PAGE_MASK; 463 464 do { 465 zero = PAGE_SIZE - pgbase; 466 if (zero > len) 467 zero = len; 468 469 vpage = kmap_atomic(*page); 470 memset(vpage + pgbase, 0, zero); 471 kunmap_atomic(vpage); 472 473 flush_dcache_page(*page); 474 pgbase = 0; 475 page++; 476 477 } while ((len -= zero) != 0); 478 } 479 480 static unsigned int xdr_buf_pages_fill_sparse(const struct xdr_buf *buf, 481 unsigned int buflen, gfp_t gfp) 482 { 483 unsigned int i, npages, pagelen; 484 485 if (!(buf->flags & XDRBUF_SPARSE_PAGES)) 486 return buflen; 487 if (buflen <= buf->head->iov_len) 488 return buflen; 489 pagelen = buflen - buf->head->iov_len; 490 if (pagelen > buf->page_len) 491 pagelen = buf->page_len; 492 npages = (pagelen + buf->page_base + PAGE_SIZE - 1) >> PAGE_SHIFT; 493 for (i = 0; i < npages; i++) { 494 if (!buf->pages[i]) 495 continue; 496 buf->pages[i] = alloc_page(gfp); 497 if (likely(buf->pages[i])) 498 continue; 499 buflen -= pagelen; 500 pagelen = i << PAGE_SHIFT; 501 if (pagelen > buf->page_base) 502 buflen += pagelen - buf->page_base; 503 break; 504 } 505 return buflen; 506 } 507 508 static void xdr_buf_try_expand(struct xdr_buf *buf, unsigned int len) 509 { 510 struct kvec *head = buf->head; 511 struct kvec *tail = buf->tail; 512 unsigned int sum = head->iov_len + buf->page_len + tail->iov_len; 513 unsigned int free_space, newlen; 514 515 if (sum > buf->len) { 516 free_space = min_t(unsigned int, sum - buf->len, len); 517 newlen = xdr_buf_pages_fill_sparse(buf, buf->len + free_space, 518 GFP_KERNEL); 519 free_space = newlen - buf->len; 520 buf->len = newlen; 521 len -= free_space; 522 if (!len) 523 return; 524 } 525 526 if (buf->buflen > sum) { 527 /* Expand the tail buffer */ 528 free_space = min_t(unsigned int, buf->buflen - sum, len); 529 tail->iov_len += free_space; 530 buf->len += free_space; 531 } 532 } 533 534 static void xdr_buf_tail_copy_right(const struct xdr_buf *buf, 535 unsigned int base, unsigned int len, 536 unsigned int shift) 537 { 538 const struct kvec *tail = buf->tail; 539 unsigned int to = base + shift; 540 541 if (to >= tail->iov_len) 542 return; 543 if (len + to > tail->iov_len) 544 len = tail->iov_len - to; 545 memmove(tail->iov_base + to, tail->iov_base + base, len); 546 } 547 548 static void xdr_buf_pages_copy_right(const struct xdr_buf *buf, 549 unsigned int base, unsigned int len, 550 unsigned int shift) 551 { 552 const struct kvec *tail = buf->tail; 553 unsigned int to = base + shift; 554 unsigned int pglen = 0; 555 unsigned int talen = 0, tato = 0; 556 557 if (base >= buf->page_len) 558 return; 559 if (len > buf->page_len - base) 560 len = buf->page_len - base; 561 if (to >= buf->page_len) { 562 tato = to - buf->page_len; 563 if (tail->iov_len >= len + tato) 564 talen = len; 565 else if (tail->iov_len > tato) 566 talen = tail->iov_len - tato; 567 } else if (len + to >= buf->page_len) { 568 pglen = buf->page_len - to; 569 talen = len - pglen; 570 if (talen > tail->iov_len) 571 talen = tail->iov_len; 572 } else 573 pglen = len; 574 575 _copy_from_pages(tail->iov_base + tato, buf->pages, 576 buf->page_base + base + pglen, talen); 577 _shift_data_right_pages(buf->pages, buf->page_base + to, 578 buf->page_base + base, pglen); 579 } 580 581 static void xdr_buf_head_copy_right(const struct xdr_buf *buf, 582 unsigned int base, unsigned int len, 583 unsigned int shift) 584 { 585 const struct kvec *head = buf->head; 586 const struct kvec *tail = buf->tail; 587 unsigned int to = base + shift; 588 unsigned int pglen = 0, pgto = 0; 589 unsigned int talen = 0, tato = 0; 590 591 if (base >= head->iov_len) 592 return; 593 if (len > head->iov_len - base) 594 len = head->iov_len - base; 595 if (to >= buf->page_len + head->iov_len) { 596 tato = to - buf->page_len - head->iov_len; 597 talen = len; 598 } else if (to >= head->iov_len) { 599 pgto = to - head->iov_len; 600 pglen = len; 601 if (pgto + pglen > buf->page_len) { 602 talen = pgto + pglen - buf->page_len; 603 pglen -= talen; 604 } 605 } else { 606 pglen = len - to; 607 if (pglen > buf->page_len) { 608 talen = pglen - buf->page_len; 609 pglen = buf->page_len; 610 } 611 } 612 613 len -= talen; 614 base += len; 615 if (talen + tato > tail->iov_len) 616 talen = tail->iov_len > tato ? tail->iov_len - tato : 0; 617 memcpy(tail->iov_base + tato, head->iov_base + base, talen); 618 619 len -= pglen; 620 base -= pglen; 621 _copy_to_pages(buf->pages, buf->page_base + pgto, head->iov_base + base, 622 pglen); 623 624 base -= len; 625 memmove(head->iov_base + to, head->iov_base + base, len); 626 } 627 628 static void xdr_buf_tail_shift_right(const struct xdr_buf *buf, 629 unsigned int base, unsigned int len, 630 unsigned int shift) 631 { 632 const struct kvec *tail = buf->tail; 633 634 if (base >= tail->iov_len || !shift || !len) 635 return; 636 xdr_buf_tail_copy_right(buf, base, len, shift); 637 } 638 639 static void xdr_buf_pages_shift_right(const struct xdr_buf *buf, 640 unsigned int base, unsigned int len, 641 unsigned int shift) 642 { 643 if (!shift || !len) 644 return; 645 if (base >= buf->page_len) { 646 xdr_buf_tail_shift_right(buf, base - buf->page_len, len, shift); 647 return; 648 } 649 if (base + len > buf->page_len) 650 xdr_buf_tail_shift_right(buf, 0, base + len - buf->page_len, 651 shift); 652 xdr_buf_pages_copy_right(buf, base, len, shift); 653 } 654 655 static void xdr_buf_head_shift_right(const struct xdr_buf *buf, 656 unsigned int base, unsigned int len, 657 unsigned int shift) 658 { 659 const struct kvec *head = buf->head; 660 661 if (!shift) 662 return; 663 if (base >= head->iov_len) { 664 xdr_buf_pages_shift_right(buf, head->iov_len - base, len, 665 shift); 666 return; 667 } 668 if (base + len > head->iov_len) 669 xdr_buf_pages_shift_right(buf, 0, base + len - head->iov_len, 670 shift); 671 xdr_buf_head_copy_right(buf, base, len, shift); 672 } 673 674 static void xdr_buf_tail_copy_left(const struct xdr_buf *buf, unsigned int base, 675 unsigned int len, unsigned int shift) 676 { 677 const struct kvec *tail = buf->tail; 678 679 if (base >= tail->iov_len) 680 return; 681 if (len > tail->iov_len - base) 682 len = tail->iov_len - base; 683 /* Shift data into head */ 684 if (shift > buf->page_len + base) { 685 const struct kvec *head = buf->head; 686 unsigned int hdto = 687 head->iov_len + buf->page_len + base - shift; 688 unsigned int hdlen = len; 689 690 if (WARN_ONCE(shift > head->iov_len + buf->page_len + base, 691 "SUNRPC: Misaligned data.\n")) 692 return; 693 if (hdto + hdlen > head->iov_len) 694 hdlen = head->iov_len - hdto; 695 memcpy(head->iov_base + hdto, tail->iov_base + base, hdlen); 696 base += hdlen; 697 len -= hdlen; 698 if (!len) 699 return; 700 } 701 /* Shift data into pages */ 702 if (shift > base) { 703 unsigned int pgto = buf->page_len + base - shift; 704 unsigned int pglen = len; 705 706 if (pgto + pglen > buf->page_len) 707 pglen = buf->page_len - pgto; 708 _copy_to_pages(buf->pages, buf->page_base + pgto, 709 tail->iov_base + base, pglen); 710 base += pglen; 711 len -= pglen; 712 if (!len) 713 return; 714 } 715 memmove(tail->iov_base + base - shift, tail->iov_base + base, len); 716 } 717 718 static void xdr_buf_pages_copy_left(const struct xdr_buf *buf, 719 unsigned int base, unsigned int len, 720 unsigned int shift) 721 { 722 unsigned int pgto; 723 724 if (base >= buf->page_len) 725 return; 726 if (len > buf->page_len - base) 727 len = buf->page_len - base; 728 /* Shift data into head */ 729 if (shift > base) { 730 const struct kvec *head = buf->head; 731 unsigned int hdto = head->iov_len + base - shift; 732 unsigned int hdlen = len; 733 734 if (WARN_ONCE(shift > head->iov_len + base, 735 "SUNRPC: Misaligned data.\n")) 736 return; 737 if (hdto + hdlen > head->iov_len) 738 hdlen = head->iov_len - hdto; 739 _copy_from_pages(head->iov_base + hdto, buf->pages, 740 buf->page_base + base, hdlen); 741 base += hdlen; 742 len -= hdlen; 743 if (!len) 744 return; 745 } 746 pgto = base - shift; 747 _shift_data_left_pages(buf->pages, buf->page_base + pgto, 748 buf->page_base + base, len); 749 } 750 751 static void xdr_buf_tail_shift_left(const struct xdr_buf *buf, 752 unsigned int base, unsigned int len, 753 unsigned int shift) 754 { 755 if (!shift || !len) 756 return; 757 xdr_buf_tail_copy_left(buf, base, len, shift); 758 } 759 760 static void xdr_buf_pages_shift_left(const struct xdr_buf *buf, 761 unsigned int base, unsigned int len, 762 unsigned int shift) 763 { 764 if (!shift || !len) 765 return; 766 if (base >= buf->page_len) { 767 xdr_buf_tail_shift_left(buf, base - buf->page_len, len, shift); 768 return; 769 } 770 xdr_buf_pages_copy_left(buf, base, len, shift); 771 len += base; 772 if (len <= buf->page_len) 773 return; 774 xdr_buf_tail_copy_left(buf, 0, len - buf->page_len, shift); 775 } 776 777 static void xdr_buf_head_shift_left(const struct xdr_buf *buf, 778 unsigned int base, unsigned int len, 779 unsigned int shift) 780 { 781 const struct kvec *head = buf->head; 782 unsigned int bytes; 783 784 if (!shift || !len) 785 return; 786 787 if (shift > base) { 788 bytes = (shift - base); 789 if (bytes >= len) 790 return; 791 base += bytes; 792 len -= bytes; 793 } 794 795 if (base < head->iov_len) { 796 bytes = min_t(unsigned int, len, head->iov_len - base); 797 memmove(head->iov_base + (base - shift), 798 head->iov_base + base, bytes); 799 base += bytes; 800 len -= bytes; 801 } 802 xdr_buf_pages_shift_left(buf, base - head->iov_len, len, shift); 803 } 804 805 /** 806 * xdr_shrink_bufhead 807 * @buf: xdr_buf 808 * @len: new length of buf->head[0] 809 * 810 * Shrinks XDR buffer's header kvec buf->head[0], setting it to 811 * 'len' bytes. The extra data is not lost, but is instead 812 * moved into the inlined pages and/or the tail. 813 */ 814 static unsigned int xdr_shrink_bufhead(struct xdr_buf *buf, unsigned int len) 815 { 816 struct kvec *head = buf->head; 817 unsigned int shift, buflen = max(buf->len, len); 818 819 WARN_ON_ONCE(len > head->iov_len); 820 if (head->iov_len > buflen) { 821 buf->buflen -= head->iov_len - buflen; 822 head->iov_len = buflen; 823 } 824 if (len >= head->iov_len) 825 return 0; 826 shift = head->iov_len - len; 827 xdr_buf_try_expand(buf, shift); 828 xdr_buf_head_shift_right(buf, len, buflen - len, shift); 829 head->iov_len = len; 830 buf->buflen -= shift; 831 buf->len -= shift; 832 return shift; 833 } 834 835 /** 836 * xdr_shrink_pagelen - shrinks buf->pages to @len bytes 837 * @buf: xdr_buf 838 * @len: new page buffer length 839 * 840 * The extra data is not lost, but is instead moved into buf->tail. 841 * Returns the actual number of bytes moved. 842 */ 843 static unsigned int xdr_shrink_pagelen(struct xdr_buf *buf, unsigned int len) 844 { 845 unsigned int shift, buflen = buf->len - buf->head->iov_len; 846 847 WARN_ON_ONCE(len > buf->page_len); 848 if (buf->head->iov_len >= buf->len || len > buflen) 849 buflen = len; 850 if (buf->page_len > buflen) { 851 buf->buflen -= buf->page_len - buflen; 852 buf->page_len = buflen; 853 } 854 if (len >= buf->page_len) 855 return 0; 856 shift = buf->page_len - len; 857 xdr_buf_try_expand(buf, shift); 858 xdr_buf_pages_shift_right(buf, len, buflen - len, shift); 859 buf->page_len = len; 860 buf->len -= shift; 861 buf->buflen -= shift; 862 return shift; 863 } 864 865 /** 866 * xdr_stream_pos - Return the current offset from the start of the xdr_stream 867 * @xdr: pointer to struct xdr_stream 868 */ 869 unsigned int xdr_stream_pos(const struct xdr_stream *xdr) 870 { 871 return (unsigned int)(XDR_QUADLEN(xdr->buf->len) - xdr->nwords) << 2; 872 } 873 EXPORT_SYMBOL_GPL(xdr_stream_pos); 874 875 static void xdr_stream_set_pos(struct xdr_stream *xdr, unsigned int pos) 876 { 877 unsigned int blen = xdr->buf->len; 878 879 xdr->nwords = blen > pos ? XDR_QUADLEN(blen) - XDR_QUADLEN(pos) : 0; 880 } 881 882 static void xdr_stream_page_set_pos(struct xdr_stream *xdr, unsigned int pos) 883 { 884 xdr_stream_set_pos(xdr, pos + xdr->buf->head[0].iov_len); 885 } 886 887 /** 888 * xdr_page_pos - Return the current offset from the start of the xdr pages 889 * @xdr: pointer to struct xdr_stream 890 */ 891 unsigned int xdr_page_pos(const struct xdr_stream *xdr) 892 { 893 unsigned int pos = xdr_stream_pos(xdr); 894 895 WARN_ON(pos < xdr->buf->head[0].iov_len); 896 return pos - xdr->buf->head[0].iov_len; 897 } 898 EXPORT_SYMBOL_GPL(xdr_page_pos); 899 900 /** 901 * xdr_init_encode - Initialize a struct xdr_stream for sending data. 902 * @xdr: pointer to xdr_stream struct 903 * @buf: pointer to XDR buffer in which to encode data 904 * @p: current pointer inside XDR buffer 905 * @rqst: pointer to controlling rpc_rqst, for debugging 906 * 907 * Note: at the moment the RPC client only passes the length of our 908 * scratch buffer in the xdr_buf's header kvec. Previously this 909 * meant we needed to call xdr_adjust_iovec() after encoding the 910 * data. With the new scheme, the xdr_stream manages the details 911 * of the buffer length, and takes care of adjusting the kvec 912 * length for us. 913 */ 914 void xdr_init_encode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p, 915 struct rpc_rqst *rqst) 916 { 917 struct kvec *iov = buf->head; 918 int scratch_len = buf->buflen - buf->page_len - buf->tail[0].iov_len; 919 920 xdr_reset_scratch_buffer(xdr); 921 BUG_ON(scratch_len < 0); 922 xdr->buf = buf; 923 xdr->iov = iov; 924 xdr->p = (__be32 *)((char *)iov->iov_base + iov->iov_len); 925 xdr->end = (__be32 *)((char *)iov->iov_base + scratch_len); 926 BUG_ON(iov->iov_len > scratch_len); 927 928 if (p != xdr->p && p != NULL) { 929 size_t len; 930 931 BUG_ON(p < xdr->p || p > xdr->end); 932 len = (char *)p - (char *)xdr->p; 933 xdr->p = p; 934 buf->len += len; 935 iov->iov_len += len; 936 } 937 xdr->rqst = rqst; 938 } 939 EXPORT_SYMBOL_GPL(xdr_init_encode); 940 941 /** 942 * xdr_init_encode_pages - Initialize an xdr_stream for encoding into pages 943 * @xdr: pointer to xdr_stream struct 944 * @buf: pointer to XDR buffer into which to encode data 945 * @pages: list of pages to decode into 946 * @rqst: pointer to controlling rpc_rqst, for debugging 947 * 948 */ 949 void xdr_init_encode_pages(struct xdr_stream *xdr, struct xdr_buf *buf, 950 struct page **pages, struct rpc_rqst *rqst) 951 { 952 xdr_reset_scratch_buffer(xdr); 953 954 xdr->buf = buf; 955 xdr->page_ptr = pages; 956 xdr->iov = NULL; 957 xdr->p = page_address(*pages); 958 xdr->end = (void *)xdr->p + min_t(u32, buf->buflen, PAGE_SIZE); 959 xdr->rqst = rqst; 960 } 961 EXPORT_SYMBOL_GPL(xdr_init_encode_pages); 962 963 /** 964 * __xdr_commit_encode - Ensure all data is written to buffer 965 * @xdr: pointer to xdr_stream 966 * 967 * We handle encoding across page boundaries by giving the caller a 968 * temporary location to write to, then later copying the data into 969 * place; xdr_commit_encode does that copying. 970 * 971 * Normally the caller doesn't need to call this directly, as the 972 * following xdr_reserve_space will do it. But an explicit call may be 973 * required at the end of encoding, or any other time when the xdr_buf 974 * data might be read. 975 */ 976 void __xdr_commit_encode(struct xdr_stream *xdr) 977 { 978 size_t shift = xdr->scratch.iov_len; 979 void *page; 980 981 page = page_address(*xdr->page_ptr); 982 memcpy(xdr->scratch.iov_base, page, shift); 983 memmove(page, page + shift, (void *)xdr->p - page); 984 xdr_reset_scratch_buffer(xdr); 985 } 986 EXPORT_SYMBOL_GPL(__xdr_commit_encode); 987 988 /* 989 * The buffer space to be reserved crosses the boundary between 990 * xdr->buf->head and xdr->buf->pages, or between two pages 991 * in xdr->buf->pages. 992 */ 993 static noinline __be32 *xdr_get_next_encode_buffer(struct xdr_stream *xdr, 994 size_t nbytes) 995 { 996 int space_left; 997 int frag1bytes, frag2bytes; 998 void *p; 999 1000 if (nbytes > PAGE_SIZE) 1001 goto out_overflow; /* Bigger buffers require special handling */ 1002 if (xdr->buf->len + nbytes > xdr->buf->buflen) 1003 goto out_overflow; /* Sorry, we're totally out of space */ 1004 frag1bytes = (xdr->end - xdr->p) << 2; 1005 frag2bytes = nbytes - frag1bytes; 1006 if (xdr->iov) 1007 xdr->iov->iov_len += frag1bytes; 1008 else 1009 xdr->buf->page_len += frag1bytes; 1010 xdr->page_ptr++; 1011 xdr->iov = NULL; 1012 1013 /* 1014 * If the last encode didn't end exactly on a page boundary, the 1015 * next one will straddle boundaries. Encode into the next 1016 * page, then copy it back later in xdr_commit_encode. We use 1017 * the "scratch" iov to track any temporarily unused fragment of 1018 * space at the end of the previous buffer: 1019 */ 1020 xdr_set_scratch_buffer(xdr, xdr->p, frag1bytes); 1021 1022 /* 1023 * xdr->p is where the next encode will start after 1024 * xdr_commit_encode() has shifted this one back: 1025 */ 1026 p = page_address(*xdr->page_ptr); 1027 xdr->p = p + frag2bytes; 1028 space_left = xdr->buf->buflen - xdr->buf->len; 1029 if (space_left - frag1bytes >= PAGE_SIZE) 1030 xdr->end = p + PAGE_SIZE; 1031 else 1032 xdr->end = p + space_left - frag1bytes; 1033 1034 xdr->buf->page_len += frag2bytes; 1035 xdr->buf->len += nbytes; 1036 return p; 1037 out_overflow: 1038 trace_rpc_xdr_overflow(xdr, nbytes); 1039 return NULL; 1040 } 1041 1042 /** 1043 * xdr_reserve_space - Reserve buffer space for sending 1044 * @xdr: pointer to xdr_stream 1045 * @nbytes: number of bytes to reserve 1046 * 1047 * Checks that we have enough buffer space to encode 'nbytes' more 1048 * bytes of data. If so, update the total xdr_buf length, and 1049 * adjust the length of the current kvec. 1050 */ 1051 __be32 * xdr_reserve_space(struct xdr_stream *xdr, size_t nbytes) 1052 { 1053 __be32 *p = xdr->p; 1054 __be32 *q; 1055 1056 xdr_commit_encode(xdr); 1057 /* align nbytes on the next 32-bit boundary */ 1058 nbytes += 3; 1059 nbytes &= ~3; 1060 q = p + (nbytes >> 2); 1061 if (unlikely(q > xdr->end || q < p)) 1062 return xdr_get_next_encode_buffer(xdr, nbytes); 1063 xdr->p = q; 1064 if (xdr->iov) 1065 xdr->iov->iov_len += nbytes; 1066 else 1067 xdr->buf->page_len += nbytes; 1068 xdr->buf->len += nbytes; 1069 return p; 1070 } 1071 EXPORT_SYMBOL_GPL(xdr_reserve_space); 1072 1073 1074 /** 1075 * xdr_reserve_space_vec - Reserves a large amount of buffer space for sending 1076 * @xdr: pointer to xdr_stream 1077 * @vec: pointer to a kvec array 1078 * @nbytes: number of bytes to reserve 1079 * 1080 * Reserves enough buffer space to encode 'nbytes' of data and stores the 1081 * pointers in 'vec'. The size argument passed to xdr_reserve_space() is 1082 * determined based on the number of bytes remaining in the current page to 1083 * avoid invalidating iov_base pointers when xdr_commit_encode() is called. 1084 */ 1085 int xdr_reserve_space_vec(struct xdr_stream *xdr, struct kvec *vec, size_t nbytes) 1086 { 1087 int thislen; 1088 int v = 0; 1089 __be32 *p; 1090 1091 /* 1092 * svcrdma requires every READ payload to start somewhere 1093 * in xdr->pages. 1094 */ 1095 if (xdr->iov == xdr->buf->head) { 1096 xdr->iov = NULL; 1097 xdr->end = xdr->p; 1098 } 1099 1100 while (nbytes) { 1101 thislen = xdr->buf->page_len % PAGE_SIZE; 1102 thislen = min_t(size_t, nbytes, PAGE_SIZE - thislen); 1103 1104 p = xdr_reserve_space(xdr, thislen); 1105 if (!p) 1106 return -EIO; 1107 1108 vec[v].iov_base = p; 1109 vec[v].iov_len = thislen; 1110 v++; 1111 nbytes -= thislen; 1112 } 1113 1114 return v; 1115 } 1116 EXPORT_SYMBOL_GPL(xdr_reserve_space_vec); 1117 1118 /** 1119 * xdr_truncate_encode - truncate an encode buffer 1120 * @xdr: pointer to xdr_stream 1121 * @len: new length of buffer 1122 * 1123 * Truncates the xdr stream, so that xdr->buf->len == len, 1124 * and xdr->p points at offset len from the start of the buffer, and 1125 * head, tail, and page lengths are adjusted to correspond. 1126 * 1127 * If this means moving xdr->p to a different buffer, we assume that 1128 * the end pointer should be set to the end of the current page, 1129 * except in the case of the head buffer when we assume the head 1130 * buffer's current length represents the end of the available buffer. 1131 * 1132 * This is *not* safe to use on a buffer that already has inlined page 1133 * cache pages (as in a zero-copy server read reply), except for the 1134 * simple case of truncating from one position in the tail to another. 1135 * 1136 */ 1137 void xdr_truncate_encode(struct xdr_stream *xdr, size_t len) 1138 { 1139 struct xdr_buf *buf = xdr->buf; 1140 struct kvec *head = buf->head; 1141 struct kvec *tail = buf->tail; 1142 int fraglen; 1143 int new; 1144 1145 if (len > buf->len) { 1146 WARN_ON_ONCE(1); 1147 return; 1148 } 1149 xdr_commit_encode(xdr); 1150 1151 fraglen = min_t(int, buf->len - len, tail->iov_len); 1152 tail->iov_len -= fraglen; 1153 buf->len -= fraglen; 1154 if (tail->iov_len) { 1155 xdr->p = tail->iov_base + tail->iov_len; 1156 WARN_ON_ONCE(!xdr->end); 1157 WARN_ON_ONCE(!xdr->iov); 1158 return; 1159 } 1160 WARN_ON_ONCE(fraglen); 1161 fraglen = min_t(int, buf->len - len, buf->page_len); 1162 buf->page_len -= fraglen; 1163 buf->len -= fraglen; 1164 1165 new = buf->page_base + buf->page_len; 1166 1167 xdr->page_ptr = buf->pages + (new >> PAGE_SHIFT); 1168 1169 if (buf->page_len) { 1170 xdr->p = page_address(*xdr->page_ptr); 1171 xdr->end = (void *)xdr->p + PAGE_SIZE; 1172 xdr->p = (void *)xdr->p + (new % PAGE_SIZE); 1173 WARN_ON_ONCE(xdr->iov); 1174 return; 1175 } 1176 if (fraglen) 1177 xdr->end = head->iov_base + head->iov_len; 1178 /* (otherwise assume xdr->end is already set) */ 1179 xdr->page_ptr--; 1180 head->iov_len = len; 1181 buf->len = len; 1182 xdr->p = head->iov_base + head->iov_len; 1183 xdr->iov = buf->head; 1184 } 1185 EXPORT_SYMBOL(xdr_truncate_encode); 1186 1187 /** 1188 * xdr_truncate_decode - Truncate a decoding stream 1189 * @xdr: pointer to struct xdr_stream 1190 * @len: Number of bytes to remove 1191 * 1192 */ 1193 void xdr_truncate_decode(struct xdr_stream *xdr, size_t len) 1194 { 1195 unsigned int nbytes = xdr_align_size(len); 1196 1197 xdr->buf->len -= nbytes; 1198 xdr->nwords -= XDR_QUADLEN(nbytes); 1199 } 1200 EXPORT_SYMBOL_GPL(xdr_truncate_decode); 1201 1202 /** 1203 * xdr_restrict_buflen - decrease available buffer space 1204 * @xdr: pointer to xdr_stream 1205 * @newbuflen: new maximum number of bytes available 1206 * 1207 * Adjust our idea of how much space is available in the buffer. 1208 * If we've already used too much space in the buffer, returns -1. 1209 * If the available space is already smaller than newbuflen, returns 0 1210 * and does nothing. Otherwise, adjusts xdr->buf->buflen to newbuflen 1211 * and ensures xdr->end is set at most offset newbuflen from the start 1212 * of the buffer. 1213 */ 1214 int xdr_restrict_buflen(struct xdr_stream *xdr, int newbuflen) 1215 { 1216 struct xdr_buf *buf = xdr->buf; 1217 int left_in_this_buf = (void *)xdr->end - (void *)xdr->p; 1218 int end_offset = buf->len + left_in_this_buf; 1219 1220 if (newbuflen < 0 || newbuflen < buf->len) 1221 return -1; 1222 if (newbuflen > buf->buflen) 1223 return 0; 1224 if (newbuflen < end_offset) 1225 xdr->end = (void *)xdr->end + newbuflen - end_offset; 1226 buf->buflen = newbuflen; 1227 return 0; 1228 } 1229 EXPORT_SYMBOL(xdr_restrict_buflen); 1230 1231 /** 1232 * xdr_write_pages - Insert a list of pages into an XDR buffer for sending 1233 * @xdr: pointer to xdr_stream 1234 * @pages: array of pages to insert 1235 * @base: starting offset of first data byte in @pages 1236 * @len: number of data bytes in @pages to insert 1237 * 1238 * After the @pages are added, the tail iovec is instantiated pointing to 1239 * end of the head buffer, and the stream is set up to encode subsequent 1240 * items into the tail. 1241 */ 1242 void xdr_write_pages(struct xdr_stream *xdr, struct page **pages, unsigned int base, 1243 unsigned int len) 1244 { 1245 struct xdr_buf *buf = xdr->buf; 1246 struct kvec *tail = buf->tail; 1247 1248 buf->pages = pages; 1249 buf->page_base = base; 1250 buf->page_len = len; 1251 1252 tail->iov_base = xdr->p; 1253 tail->iov_len = 0; 1254 xdr->iov = tail; 1255 1256 if (len & 3) { 1257 unsigned int pad = 4 - (len & 3); 1258 1259 BUG_ON(xdr->p >= xdr->end); 1260 tail->iov_base = (char *)xdr->p + (len & 3); 1261 tail->iov_len += pad; 1262 len += pad; 1263 *xdr->p++ = 0; 1264 } 1265 buf->buflen += len; 1266 buf->len += len; 1267 } 1268 EXPORT_SYMBOL_GPL(xdr_write_pages); 1269 1270 static unsigned int xdr_set_iov(struct xdr_stream *xdr, struct kvec *iov, 1271 unsigned int base, unsigned int len) 1272 { 1273 if (len > iov->iov_len) 1274 len = iov->iov_len; 1275 if (unlikely(base > len)) 1276 base = len; 1277 xdr->p = (__be32*)(iov->iov_base + base); 1278 xdr->end = (__be32*)(iov->iov_base + len); 1279 xdr->iov = iov; 1280 xdr->page_ptr = NULL; 1281 return len - base; 1282 } 1283 1284 static unsigned int xdr_set_tail_base(struct xdr_stream *xdr, 1285 unsigned int base, unsigned int len) 1286 { 1287 struct xdr_buf *buf = xdr->buf; 1288 1289 xdr_stream_set_pos(xdr, base + buf->page_len + buf->head->iov_len); 1290 return xdr_set_iov(xdr, buf->tail, base, len); 1291 } 1292 1293 static unsigned int xdr_set_page_base(struct xdr_stream *xdr, 1294 unsigned int base, unsigned int len) 1295 { 1296 unsigned int pgnr; 1297 unsigned int maxlen; 1298 unsigned int pgoff; 1299 unsigned int pgend; 1300 void *kaddr; 1301 1302 maxlen = xdr->buf->page_len; 1303 if (base >= maxlen) 1304 return 0; 1305 else 1306 maxlen -= base; 1307 if (len > maxlen) 1308 len = maxlen; 1309 1310 xdr_stream_page_set_pos(xdr, base); 1311 base += xdr->buf->page_base; 1312 1313 pgnr = base >> PAGE_SHIFT; 1314 xdr->page_ptr = &xdr->buf->pages[pgnr]; 1315 kaddr = page_address(*xdr->page_ptr); 1316 1317 pgoff = base & ~PAGE_MASK; 1318 xdr->p = (__be32*)(kaddr + pgoff); 1319 1320 pgend = pgoff + len; 1321 if (pgend > PAGE_SIZE) 1322 pgend = PAGE_SIZE; 1323 xdr->end = (__be32*)(kaddr + pgend); 1324 xdr->iov = NULL; 1325 return len; 1326 } 1327 1328 static void xdr_set_page(struct xdr_stream *xdr, unsigned int base, 1329 unsigned int len) 1330 { 1331 if (xdr_set_page_base(xdr, base, len) == 0) { 1332 base -= xdr->buf->page_len; 1333 xdr_set_tail_base(xdr, base, len); 1334 } 1335 } 1336 1337 static void xdr_set_next_page(struct xdr_stream *xdr) 1338 { 1339 unsigned int newbase; 1340 1341 newbase = (1 + xdr->page_ptr - xdr->buf->pages) << PAGE_SHIFT; 1342 newbase -= xdr->buf->page_base; 1343 if (newbase < xdr->buf->page_len) 1344 xdr_set_page_base(xdr, newbase, xdr_stream_remaining(xdr)); 1345 else 1346 xdr_set_tail_base(xdr, 0, xdr_stream_remaining(xdr)); 1347 } 1348 1349 static bool xdr_set_next_buffer(struct xdr_stream *xdr) 1350 { 1351 if (xdr->page_ptr != NULL) 1352 xdr_set_next_page(xdr); 1353 else if (xdr->iov == xdr->buf->head) 1354 xdr_set_page(xdr, 0, xdr_stream_remaining(xdr)); 1355 return xdr->p != xdr->end; 1356 } 1357 1358 /** 1359 * xdr_init_decode - Initialize an xdr_stream for decoding data. 1360 * @xdr: pointer to xdr_stream struct 1361 * @buf: pointer to XDR buffer from which to decode data 1362 * @p: current pointer inside XDR buffer 1363 * @rqst: pointer to controlling rpc_rqst, for debugging 1364 */ 1365 void xdr_init_decode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p, 1366 struct rpc_rqst *rqst) 1367 { 1368 xdr->buf = buf; 1369 xdr_reset_scratch_buffer(xdr); 1370 xdr->nwords = XDR_QUADLEN(buf->len); 1371 if (xdr_set_iov(xdr, buf->head, 0, buf->len) == 0 && 1372 xdr_set_page_base(xdr, 0, buf->len) == 0) 1373 xdr_set_iov(xdr, buf->tail, 0, buf->len); 1374 if (p != NULL && p > xdr->p && xdr->end >= p) { 1375 xdr->nwords -= p - xdr->p; 1376 xdr->p = p; 1377 } 1378 xdr->rqst = rqst; 1379 } 1380 EXPORT_SYMBOL_GPL(xdr_init_decode); 1381 1382 /** 1383 * xdr_init_decode_pages - Initialize an xdr_stream for decoding into pages 1384 * @xdr: pointer to xdr_stream struct 1385 * @buf: pointer to XDR buffer from which to decode data 1386 * @pages: list of pages to decode into 1387 * @len: length in bytes of buffer in pages 1388 */ 1389 void xdr_init_decode_pages(struct xdr_stream *xdr, struct xdr_buf *buf, 1390 struct page **pages, unsigned int len) 1391 { 1392 memset(buf, 0, sizeof(*buf)); 1393 buf->pages = pages; 1394 buf->page_len = len; 1395 buf->buflen = len; 1396 buf->len = len; 1397 xdr_init_decode(xdr, buf, NULL, NULL); 1398 } 1399 EXPORT_SYMBOL_GPL(xdr_init_decode_pages); 1400 1401 static __be32 * __xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes) 1402 { 1403 unsigned int nwords = XDR_QUADLEN(nbytes); 1404 __be32 *p = xdr->p; 1405 __be32 *q = p + nwords; 1406 1407 if (unlikely(nwords > xdr->nwords || q > xdr->end || q < p)) 1408 return NULL; 1409 xdr->p = q; 1410 xdr->nwords -= nwords; 1411 return p; 1412 } 1413 1414 static __be32 *xdr_copy_to_scratch(struct xdr_stream *xdr, size_t nbytes) 1415 { 1416 __be32 *p; 1417 char *cpdest = xdr->scratch.iov_base; 1418 size_t cplen = (char *)xdr->end - (char *)xdr->p; 1419 1420 if (nbytes > xdr->scratch.iov_len) 1421 goto out_overflow; 1422 p = __xdr_inline_decode(xdr, cplen); 1423 if (p == NULL) 1424 return NULL; 1425 memcpy(cpdest, p, cplen); 1426 if (!xdr_set_next_buffer(xdr)) 1427 goto out_overflow; 1428 cpdest += cplen; 1429 nbytes -= cplen; 1430 p = __xdr_inline_decode(xdr, nbytes); 1431 if (p == NULL) 1432 return NULL; 1433 memcpy(cpdest, p, nbytes); 1434 return xdr->scratch.iov_base; 1435 out_overflow: 1436 trace_rpc_xdr_overflow(xdr, nbytes); 1437 return NULL; 1438 } 1439 1440 /** 1441 * xdr_inline_decode - Retrieve XDR data to decode 1442 * @xdr: pointer to xdr_stream struct 1443 * @nbytes: number of bytes of data to decode 1444 * 1445 * Check if the input buffer is long enough to enable us to decode 1446 * 'nbytes' more bytes of data starting at the current position. 1447 * If so return the current pointer, then update the current 1448 * pointer position. 1449 */ 1450 __be32 * xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes) 1451 { 1452 __be32 *p; 1453 1454 if (unlikely(nbytes == 0)) 1455 return xdr->p; 1456 if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr)) 1457 goto out_overflow; 1458 p = __xdr_inline_decode(xdr, nbytes); 1459 if (p != NULL) 1460 return p; 1461 return xdr_copy_to_scratch(xdr, nbytes); 1462 out_overflow: 1463 trace_rpc_xdr_overflow(xdr, nbytes); 1464 return NULL; 1465 } 1466 EXPORT_SYMBOL_GPL(xdr_inline_decode); 1467 1468 static void xdr_realign_pages(struct xdr_stream *xdr) 1469 { 1470 struct xdr_buf *buf = xdr->buf; 1471 struct kvec *iov = buf->head; 1472 unsigned int cur = xdr_stream_pos(xdr); 1473 unsigned int copied; 1474 1475 /* Realign pages to current pointer position */ 1476 if (iov->iov_len > cur) { 1477 copied = xdr_shrink_bufhead(buf, cur); 1478 trace_rpc_xdr_alignment(xdr, cur, copied); 1479 xdr_set_page(xdr, 0, buf->page_len); 1480 } 1481 } 1482 1483 static unsigned int xdr_align_pages(struct xdr_stream *xdr, unsigned int len) 1484 { 1485 struct xdr_buf *buf = xdr->buf; 1486 unsigned int nwords = XDR_QUADLEN(len); 1487 unsigned int copied; 1488 1489 if (xdr->nwords == 0) 1490 return 0; 1491 1492 xdr_realign_pages(xdr); 1493 if (nwords > xdr->nwords) { 1494 nwords = xdr->nwords; 1495 len = nwords << 2; 1496 } 1497 if (buf->page_len <= len) 1498 len = buf->page_len; 1499 else if (nwords < xdr->nwords) { 1500 /* Truncate page data and move it into the tail */ 1501 copied = xdr_shrink_pagelen(buf, len); 1502 trace_rpc_xdr_alignment(xdr, len, copied); 1503 } 1504 return len; 1505 } 1506 1507 /** 1508 * xdr_read_pages - align page-based XDR data to current pointer position 1509 * @xdr: pointer to xdr_stream struct 1510 * @len: number of bytes of page data 1511 * 1512 * Moves data beyond the current pointer position from the XDR head[] buffer 1513 * into the page list. Any data that lies beyond current position + @len 1514 * bytes is moved into the XDR tail[]. The xdr_stream current position is 1515 * then advanced past that data to align to the next XDR object in the tail. 1516 * 1517 * Returns the number of XDR encoded bytes now contained in the pages 1518 */ 1519 unsigned int xdr_read_pages(struct xdr_stream *xdr, unsigned int len) 1520 { 1521 unsigned int nwords = XDR_QUADLEN(len); 1522 unsigned int base, end, pglen; 1523 1524 pglen = xdr_align_pages(xdr, nwords << 2); 1525 if (pglen == 0) 1526 return 0; 1527 1528 base = (nwords << 2) - pglen; 1529 end = xdr_stream_remaining(xdr) - pglen; 1530 1531 xdr_set_tail_base(xdr, base, end); 1532 return len <= pglen ? len : pglen; 1533 } 1534 EXPORT_SYMBOL_GPL(xdr_read_pages); 1535 1536 /** 1537 * xdr_set_pagelen - Sets the length of the XDR pages 1538 * @xdr: pointer to xdr_stream struct 1539 * @len: new length of the XDR page data 1540 * 1541 * Either grows or shrinks the length of the xdr pages by setting pagelen to 1542 * @len bytes. When shrinking, any extra data is moved into buf->tail, whereas 1543 * when growing any data beyond the current pointer is moved into the tail. 1544 * 1545 * Returns True if the operation was successful, and False otherwise. 1546 */ 1547 void xdr_set_pagelen(struct xdr_stream *xdr, unsigned int len) 1548 { 1549 struct xdr_buf *buf = xdr->buf; 1550 size_t remaining = xdr_stream_remaining(xdr); 1551 size_t base = 0; 1552 1553 if (len < buf->page_len) { 1554 base = buf->page_len - len; 1555 xdr_shrink_pagelen(buf, len); 1556 } else { 1557 xdr_buf_head_shift_right(buf, xdr_stream_pos(xdr), 1558 buf->page_len, remaining); 1559 if (len > buf->page_len) 1560 xdr_buf_try_expand(buf, len - buf->page_len); 1561 } 1562 xdr_set_tail_base(xdr, base, remaining); 1563 } 1564 EXPORT_SYMBOL_GPL(xdr_set_pagelen); 1565 1566 /** 1567 * xdr_enter_page - decode data from the XDR page 1568 * @xdr: pointer to xdr_stream struct 1569 * @len: number of bytes of page data 1570 * 1571 * Moves data beyond the current pointer position from the XDR head[] buffer 1572 * into the page list. Any data that lies beyond current position + "len" 1573 * bytes is moved into the XDR tail[]. The current pointer is then 1574 * repositioned at the beginning of the first XDR page. 1575 */ 1576 void xdr_enter_page(struct xdr_stream *xdr, unsigned int len) 1577 { 1578 len = xdr_align_pages(xdr, len); 1579 /* 1580 * Position current pointer at beginning of tail, and 1581 * set remaining message length. 1582 */ 1583 if (len != 0) 1584 xdr_set_page_base(xdr, 0, len); 1585 } 1586 EXPORT_SYMBOL_GPL(xdr_enter_page); 1587 1588 static const struct kvec empty_iov = {.iov_base = NULL, .iov_len = 0}; 1589 1590 void xdr_buf_from_iov(const struct kvec *iov, struct xdr_buf *buf) 1591 { 1592 buf->head[0] = *iov; 1593 buf->tail[0] = empty_iov; 1594 buf->page_len = 0; 1595 buf->buflen = buf->len = iov->iov_len; 1596 } 1597 EXPORT_SYMBOL_GPL(xdr_buf_from_iov); 1598 1599 /** 1600 * xdr_buf_subsegment - set subbuf to a portion of buf 1601 * @buf: an xdr buffer 1602 * @subbuf: the result buffer 1603 * @base: beginning of range in bytes 1604 * @len: length of range in bytes 1605 * 1606 * sets @subbuf to an xdr buffer representing the portion of @buf of 1607 * length @len starting at offset @base. 1608 * 1609 * @buf and @subbuf may be pointers to the same struct xdr_buf. 1610 * 1611 * Returns -1 if base or length are out of bounds. 1612 */ 1613 int xdr_buf_subsegment(const struct xdr_buf *buf, struct xdr_buf *subbuf, 1614 unsigned int base, unsigned int len) 1615 { 1616 subbuf->buflen = subbuf->len = len; 1617 if (base < buf->head[0].iov_len) { 1618 subbuf->head[0].iov_base = buf->head[0].iov_base + base; 1619 subbuf->head[0].iov_len = min_t(unsigned int, len, 1620 buf->head[0].iov_len - base); 1621 len -= subbuf->head[0].iov_len; 1622 base = 0; 1623 } else { 1624 base -= buf->head[0].iov_len; 1625 subbuf->head[0].iov_base = buf->head[0].iov_base; 1626 subbuf->head[0].iov_len = 0; 1627 } 1628 1629 if (base < buf->page_len) { 1630 subbuf->page_len = min(buf->page_len - base, len); 1631 base += buf->page_base; 1632 subbuf->page_base = base & ~PAGE_MASK; 1633 subbuf->pages = &buf->pages[base >> PAGE_SHIFT]; 1634 len -= subbuf->page_len; 1635 base = 0; 1636 } else { 1637 base -= buf->page_len; 1638 subbuf->pages = buf->pages; 1639 subbuf->page_base = 0; 1640 subbuf->page_len = 0; 1641 } 1642 1643 if (base < buf->tail[0].iov_len) { 1644 subbuf->tail[0].iov_base = buf->tail[0].iov_base + base; 1645 subbuf->tail[0].iov_len = min_t(unsigned int, len, 1646 buf->tail[0].iov_len - base); 1647 len -= subbuf->tail[0].iov_len; 1648 base = 0; 1649 } else { 1650 base -= buf->tail[0].iov_len; 1651 subbuf->tail[0].iov_base = buf->tail[0].iov_base; 1652 subbuf->tail[0].iov_len = 0; 1653 } 1654 1655 if (base || len) 1656 return -1; 1657 return 0; 1658 } 1659 EXPORT_SYMBOL_GPL(xdr_buf_subsegment); 1660 1661 /** 1662 * xdr_stream_subsegment - set @subbuf to a portion of @xdr 1663 * @xdr: an xdr_stream set up for decoding 1664 * @subbuf: the result buffer 1665 * @nbytes: length of @xdr to extract, in bytes 1666 * 1667 * Sets up @subbuf to represent a portion of @xdr. The portion 1668 * starts at the current offset in @xdr, and extends for a length 1669 * of @nbytes. If this is successful, @xdr is advanced to the next 1670 * XDR data item following that portion. 1671 * 1672 * Return values: 1673 * %true: @subbuf has been initialized, and @xdr has been advanced. 1674 * %false: a bounds error has occurred 1675 */ 1676 bool xdr_stream_subsegment(struct xdr_stream *xdr, struct xdr_buf *subbuf, 1677 unsigned int nbytes) 1678 { 1679 unsigned int start = xdr_stream_pos(xdr); 1680 unsigned int remaining, len; 1681 1682 /* Extract @subbuf and bounds-check the fn arguments */ 1683 if (xdr_buf_subsegment(xdr->buf, subbuf, start, nbytes)) 1684 return false; 1685 1686 /* Advance @xdr by @nbytes */ 1687 for (remaining = nbytes; remaining;) { 1688 if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr)) 1689 return false; 1690 1691 len = (char *)xdr->end - (char *)xdr->p; 1692 if (remaining <= len) { 1693 xdr->p = (__be32 *)((char *)xdr->p + 1694 (remaining + xdr_pad_size(nbytes))); 1695 break; 1696 } 1697 1698 xdr->p = (__be32 *)((char *)xdr->p + len); 1699 xdr->end = xdr->p; 1700 remaining -= len; 1701 } 1702 1703 xdr_stream_set_pos(xdr, start + nbytes); 1704 return true; 1705 } 1706 EXPORT_SYMBOL_GPL(xdr_stream_subsegment); 1707 1708 /** 1709 * xdr_stream_move_subsegment - Move part of a stream to another position 1710 * @xdr: the source xdr_stream 1711 * @offset: the source offset of the segment 1712 * @target: the target offset of the segment 1713 * @length: the number of bytes to move 1714 * 1715 * Moves @length bytes from @offset to @target in the xdr_stream, overwriting 1716 * anything in its space. Returns the number of bytes in the segment. 1717 */ 1718 unsigned int xdr_stream_move_subsegment(struct xdr_stream *xdr, unsigned int offset, 1719 unsigned int target, unsigned int length) 1720 { 1721 struct xdr_buf buf; 1722 unsigned int shift; 1723 1724 if (offset < target) { 1725 shift = target - offset; 1726 if (xdr_buf_subsegment(xdr->buf, &buf, offset, shift + length) < 0) 1727 return 0; 1728 xdr_buf_head_shift_right(&buf, 0, length, shift); 1729 } else if (offset > target) { 1730 shift = offset - target; 1731 if (xdr_buf_subsegment(xdr->buf, &buf, target, shift + length) < 0) 1732 return 0; 1733 xdr_buf_head_shift_left(&buf, shift, length, shift); 1734 } 1735 return length; 1736 } 1737 EXPORT_SYMBOL_GPL(xdr_stream_move_subsegment); 1738 1739 /** 1740 * xdr_stream_zero - zero out a portion of an xdr_stream 1741 * @xdr: an xdr_stream to zero out 1742 * @offset: the starting point in the stream 1743 * @length: the number of bytes to zero 1744 */ 1745 unsigned int xdr_stream_zero(struct xdr_stream *xdr, unsigned int offset, 1746 unsigned int length) 1747 { 1748 struct xdr_buf buf; 1749 1750 if (xdr_buf_subsegment(xdr->buf, &buf, offset, length) < 0) 1751 return 0; 1752 if (buf.head[0].iov_len) 1753 xdr_buf_iov_zero(buf.head, 0, buf.head[0].iov_len); 1754 if (buf.page_len > 0) 1755 xdr_buf_pages_zero(&buf, 0, buf.page_len); 1756 if (buf.tail[0].iov_len) 1757 xdr_buf_iov_zero(buf.tail, 0, buf.tail[0].iov_len); 1758 return length; 1759 } 1760 EXPORT_SYMBOL_GPL(xdr_stream_zero); 1761 1762 /** 1763 * xdr_buf_trim - lop at most "len" bytes off the end of "buf" 1764 * @buf: buf to be trimmed 1765 * @len: number of bytes to reduce "buf" by 1766 * 1767 * Trim an xdr_buf by the given number of bytes by fixing up the lengths. Note 1768 * that it's possible that we'll trim less than that amount if the xdr_buf is 1769 * too small, or if (for instance) it's all in the head and the parser has 1770 * already read too far into it. 1771 */ 1772 void xdr_buf_trim(struct xdr_buf *buf, unsigned int len) 1773 { 1774 size_t cur; 1775 unsigned int trim = len; 1776 1777 if (buf->tail[0].iov_len) { 1778 cur = min_t(size_t, buf->tail[0].iov_len, trim); 1779 buf->tail[0].iov_len -= cur; 1780 trim -= cur; 1781 if (!trim) 1782 goto fix_len; 1783 } 1784 1785 if (buf->page_len) { 1786 cur = min_t(unsigned int, buf->page_len, trim); 1787 buf->page_len -= cur; 1788 trim -= cur; 1789 if (!trim) 1790 goto fix_len; 1791 } 1792 1793 if (buf->head[0].iov_len) { 1794 cur = min_t(size_t, buf->head[0].iov_len, trim); 1795 buf->head[0].iov_len -= cur; 1796 trim -= cur; 1797 } 1798 fix_len: 1799 buf->len -= (len - trim); 1800 } 1801 EXPORT_SYMBOL_GPL(xdr_buf_trim); 1802 1803 static void __read_bytes_from_xdr_buf(const struct xdr_buf *subbuf, 1804 void *obj, unsigned int len) 1805 { 1806 unsigned int this_len; 1807 1808 this_len = min_t(unsigned int, len, subbuf->head[0].iov_len); 1809 memcpy(obj, subbuf->head[0].iov_base, this_len); 1810 len -= this_len; 1811 obj += this_len; 1812 this_len = min_t(unsigned int, len, subbuf->page_len); 1813 _copy_from_pages(obj, subbuf->pages, subbuf->page_base, this_len); 1814 len -= this_len; 1815 obj += this_len; 1816 this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len); 1817 memcpy(obj, subbuf->tail[0].iov_base, this_len); 1818 } 1819 1820 /* obj is assumed to point to allocated memory of size at least len: */ 1821 int read_bytes_from_xdr_buf(const struct xdr_buf *buf, unsigned int base, 1822 void *obj, unsigned int len) 1823 { 1824 struct xdr_buf subbuf; 1825 int status; 1826 1827 status = xdr_buf_subsegment(buf, &subbuf, base, len); 1828 if (status != 0) 1829 return status; 1830 __read_bytes_from_xdr_buf(&subbuf, obj, len); 1831 return 0; 1832 } 1833 EXPORT_SYMBOL_GPL(read_bytes_from_xdr_buf); 1834 1835 static void __write_bytes_to_xdr_buf(const struct xdr_buf *subbuf, 1836 void *obj, unsigned int len) 1837 { 1838 unsigned int this_len; 1839 1840 this_len = min_t(unsigned int, len, subbuf->head[0].iov_len); 1841 memcpy(subbuf->head[0].iov_base, obj, this_len); 1842 len -= this_len; 1843 obj += this_len; 1844 this_len = min_t(unsigned int, len, subbuf->page_len); 1845 _copy_to_pages(subbuf->pages, subbuf->page_base, obj, this_len); 1846 len -= this_len; 1847 obj += this_len; 1848 this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len); 1849 memcpy(subbuf->tail[0].iov_base, obj, this_len); 1850 } 1851 1852 /* obj is assumed to point to allocated memory of size at least len: */ 1853 int write_bytes_to_xdr_buf(const struct xdr_buf *buf, unsigned int base, 1854 void *obj, unsigned int len) 1855 { 1856 struct xdr_buf subbuf; 1857 int status; 1858 1859 status = xdr_buf_subsegment(buf, &subbuf, base, len); 1860 if (status != 0) 1861 return status; 1862 __write_bytes_to_xdr_buf(&subbuf, obj, len); 1863 return 0; 1864 } 1865 EXPORT_SYMBOL_GPL(write_bytes_to_xdr_buf); 1866 1867 int xdr_decode_word(const struct xdr_buf *buf, unsigned int base, u32 *obj) 1868 { 1869 __be32 raw; 1870 int status; 1871 1872 status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj)); 1873 if (status) 1874 return status; 1875 *obj = be32_to_cpu(raw); 1876 return 0; 1877 } 1878 EXPORT_SYMBOL_GPL(xdr_decode_word); 1879 1880 int xdr_encode_word(const struct xdr_buf *buf, unsigned int base, u32 obj) 1881 { 1882 __be32 raw = cpu_to_be32(obj); 1883 1884 return write_bytes_to_xdr_buf(buf, base, &raw, sizeof(obj)); 1885 } 1886 EXPORT_SYMBOL_GPL(xdr_encode_word); 1887 1888 /* Returns 0 on success, or else a negative error code. */ 1889 static int xdr_xcode_array2(const struct xdr_buf *buf, unsigned int base, 1890 struct xdr_array2_desc *desc, int encode) 1891 { 1892 char *elem = NULL, *c; 1893 unsigned int copied = 0, todo, avail_here; 1894 struct page **ppages = NULL; 1895 int err; 1896 1897 if (encode) { 1898 if (xdr_encode_word(buf, base, desc->array_len) != 0) 1899 return -EINVAL; 1900 } else { 1901 if (xdr_decode_word(buf, base, &desc->array_len) != 0 || 1902 desc->array_len > desc->array_maxlen || 1903 (unsigned long) base + 4 + desc->array_len * 1904 desc->elem_size > buf->len) 1905 return -EINVAL; 1906 } 1907 base += 4; 1908 1909 if (!desc->xcode) 1910 return 0; 1911 1912 todo = desc->array_len * desc->elem_size; 1913 1914 /* process head */ 1915 if (todo && base < buf->head->iov_len) { 1916 c = buf->head->iov_base + base; 1917 avail_here = min_t(unsigned int, todo, 1918 buf->head->iov_len - base); 1919 todo -= avail_here; 1920 1921 while (avail_here >= desc->elem_size) { 1922 err = desc->xcode(desc, c); 1923 if (err) 1924 goto out; 1925 c += desc->elem_size; 1926 avail_here -= desc->elem_size; 1927 } 1928 if (avail_here) { 1929 if (!elem) { 1930 elem = kmalloc(desc->elem_size, GFP_KERNEL); 1931 err = -ENOMEM; 1932 if (!elem) 1933 goto out; 1934 } 1935 if (encode) { 1936 err = desc->xcode(desc, elem); 1937 if (err) 1938 goto out; 1939 memcpy(c, elem, avail_here); 1940 } else 1941 memcpy(elem, c, avail_here); 1942 copied = avail_here; 1943 } 1944 base = buf->head->iov_len; /* align to start of pages */ 1945 } 1946 1947 /* process pages array */ 1948 base -= buf->head->iov_len; 1949 if (todo && base < buf->page_len) { 1950 unsigned int avail_page; 1951 1952 avail_here = min(todo, buf->page_len - base); 1953 todo -= avail_here; 1954 1955 base += buf->page_base; 1956 ppages = buf->pages + (base >> PAGE_SHIFT); 1957 base &= ~PAGE_MASK; 1958 avail_page = min_t(unsigned int, PAGE_SIZE - base, 1959 avail_here); 1960 c = kmap(*ppages) + base; 1961 1962 while (avail_here) { 1963 avail_here -= avail_page; 1964 if (copied || avail_page < desc->elem_size) { 1965 unsigned int l = min(avail_page, 1966 desc->elem_size - copied); 1967 if (!elem) { 1968 elem = kmalloc(desc->elem_size, 1969 GFP_KERNEL); 1970 err = -ENOMEM; 1971 if (!elem) 1972 goto out; 1973 } 1974 if (encode) { 1975 if (!copied) { 1976 err = desc->xcode(desc, elem); 1977 if (err) 1978 goto out; 1979 } 1980 memcpy(c, elem + copied, l); 1981 copied += l; 1982 if (copied == desc->elem_size) 1983 copied = 0; 1984 } else { 1985 memcpy(elem + copied, c, l); 1986 copied += l; 1987 if (copied == desc->elem_size) { 1988 err = desc->xcode(desc, elem); 1989 if (err) 1990 goto out; 1991 copied = 0; 1992 } 1993 } 1994 avail_page -= l; 1995 c += l; 1996 } 1997 while (avail_page >= desc->elem_size) { 1998 err = desc->xcode(desc, c); 1999 if (err) 2000 goto out; 2001 c += desc->elem_size; 2002 avail_page -= desc->elem_size; 2003 } 2004 if (avail_page) { 2005 unsigned int l = min(avail_page, 2006 desc->elem_size - copied); 2007 if (!elem) { 2008 elem = kmalloc(desc->elem_size, 2009 GFP_KERNEL); 2010 err = -ENOMEM; 2011 if (!elem) 2012 goto out; 2013 } 2014 if (encode) { 2015 if (!copied) { 2016 err = desc->xcode(desc, elem); 2017 if (err) 2018 goto out; 2019 } 2020 memcpy(c, elem + copied, l); 2021 copied += l; 2022 if (copied == desc->elem_size) 2023 copied = 0; 2024 } else { 2025 memcpy(elem + copied, c, l); 2026 copied += l; 2027 if (copied == desc->elem_size) { 2028 err = desc->xcode(desc, elem); 2029 if (err) 2030 goto out; 2031 copied = 0; 2032 } 2033 } 2034 } 2035 if (avail_here) { 2036 kunmap(*ppages); 2037 ppages++; 2038 c = kmap(*ppages); 2039 } 2040 2041 avail_page = min(avail_here, 2042 (unsigned int) PAGE_SIZE); 2043 } 2044 base = buf->page_len; /* align to start of tail */ 2045 } 2046 2047 /* process tail */ 2048 base -= buf->page_len; 2049 if (todo) { 2050 c = buf->tail->iov_base + base; 2051 if (copied) { 2052 unsigned int l = desc->elem_size - copied; 2053 2054 if (encode) 2055 memcpy(c, elem + copied, l); 2056 else { 2057 memcpy(elem + copied, c, l); 2058 err = desc->xcode(desc, elem); 2059 if (err) 2060 goto out; 2061 } 2062 todo -= l; 2063 c += l; 2064 } 2065 while (todo) { 2066 err = desc->xcode(desc, c); 2067 if (err) 2068 goto out; 2069 c += desc->elem_size; 2070 todo -= desc->elem_size; 2071 } 2072 } 2073 err = 0; 2074 2075 out: 2076 kfree(elem); 2077 if (ppages) 2078 kunmap(*ppages); 2079 return err; 2080 } 2081 2082 int xdr_decode_array2(const struct xdr_buf *buf, unsigned int base, 2083 struct xdr_array2_desc *desc) 2084 { 2085 if (base >= buf->len) 2086 return -EINVAL; 2087 2088 return xdr_xcode_array2(buf, base, desc, 0); 2089 } 2090 EXPORT_SYMBOL_GPL(xdr_decode_array2); 2091 2092 int xdr_encode_array2(const struct xdr_buf *buf, unsigned int base, 2093 struct xdr_array2_desc *desc) 2094 { 2095 if ((unsigned long) base + 4 + desc->array_len * desc->elem_size > 2096 buf->head->iov_len + buf->page_len + buf->tail->iov_len) 2097 return -EINVAL; 2098 2099 return xdr_xcode_array2(buf, base, desc, 1); 2100 } 2101 EXPORT_SYMBOL_GPL(xdr_encode_array2); 2102 2103 int xdr_process_buf(const struct xdr_buf *buf, unsigned int offset, 2104 unsigned int len, 2105 int (*actor)(struct scatterlist *, void *), void *data) 2106 { 2107 int i, ret = 0; 2108 unsigned int page_len, thislen, page_offset; 2109 struct scatterlist sg[1]; 2110 2111 sg_init_table(sg, 1); 2112 2113 if (offset >= buf->head[0].iov_len) { 2114 offset -= buf->head[0].iov_len; 2115 } else { 2116 thislen = buf->head[0].iov_len - offset; 2117 if (thislen > len) 2118 thislen = len; 2119 sg_set_buf(sg, buf->head[0].iov_base + offset, thislen); 2120 ret = actor(sg, data); 2121 if (ret) 2122 goto out; 2123 offset = 0; 2124 len -= thislen; 2125 } 2126 if (len == 0) 2127 goto out; 2128 2129 if (offset >= buf->page_len) { 2130 offset -= buf->page_len; 2131 } else { 2132 page_len = buf->page_len - offset; 2133 if (page_len > len) 2134 page_len = len; 2135 len -= page_len; 2136 page_offset = (offset + buf->page_base) & (PAGE_SIZE - 1); 2137 i = (offset + buf->page_base) >> PAGE_SHIFT; 2138 thislen = PAGE_SIZE - page_offset; 2139 do { 2140 if (thislen > page_len) 2141 thislen = page_len; 2142 sg_set_page(sg, buf->pages[i], thislen, page_offset); 2143 ret = actor(sg, data); 2144 if (ret) 2145 goto out; 2146 page_len -= thislen; 2147 i++; 2148 page_offset = 0; 2149 thislen = PAGE_SIZE; 2150 } while (page_len != 0); 2151 offset = 0; 2152 } 2153 if (len == 0) 2154 goto out; 2155 if (offset < buf->tail[0].iov_len) { 2156 thislen = buf->tail[0].iov_len - offset; 2157 if (thislen > len) 2158 thislen = len; 2159 sg_set_buf(sg, buf->tail[0].iov_base + offset, thislen); 2160 ret = actor(sg, data); 2161 len -= thislen; 2162 } 2163 if (len != 0) 2164 ret = -EINVAL; 2165 out: 2166 return ret; 2167 } 2168 EXPORT_SYMBOL_GPL(xdr_process_buf); 2169 2170 /** 2171 * xdr_stream_decode_opaque - Decode variable length opaque 2172 * @xdr: pointer to xdr_stream 2173 * @ptr: location to store opaque data 2174 * @size: size of storage buffer @ptr 2175 * 2176 * Return values: 2177 * On success, returns size of object stored in *@ptr 2178 * %-EBADMSG on XDR buffer overflow 2179 * %-EMSGSIZE on overflow of storage buffer @ptr 2180 */ 2181 ssize_t xdr_stream_decode_opaque(struct xdr_stream *xdr, void *ptr, size_t size) 2182 { 2183 ssize_t ret; 2184 void *p; 2185 2186 ret = xdr_stream_decode_opaque_inline(xdr, &p, size); 2187 if (ret <= 0) 2188 return ret; 2189 memcpy(ptr, p, ret); 2190 return ret; 2191 } 2192 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque); 2193 2194 /** 2195 * xdr_stream_decode_opaque_dup - Decode and duplicate variable length opaque 2196 * @xdr: pointer to xdr_stream 2197 * @ptr: location to store pointer to opaque data 2198 * @maxlen: maximum acceptable object size 2199 * @gfp_flags: GFP mask to use 2200 * 2201 * Return values: 2202 * On success, returns size of object stored in *@ptr 2203 * %-EBADMSG on XDR buffer overflow 2204 * %-EMSGSIZE if the size of the object would exceed @maxlen 2205 * %-ENOMEM on memory allocation failure 2206 */ 2207 ssize_t xdr_stream_decode_opaque_dup(struct xdr_stream *xdr, void **ptr, 2208 size_t maxlen, gfp_t gfp_flags) 2209 { 2210 ssize_t ret; 2211 void *p; 2212 2213 ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen); 2214 if (ret > 0) { 2215 *ptr = kmemdup(p, ret, gfp_flags); 2216 if (*ptr != NULL) 2217 return ret; 2218 ret = -ENOMEM; 2219 } 2220 *ptr = NULL; 2221 return ret; 2222 } 2223 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque_dup); 2224 2225 /** 2226 * xdr_stream_decode_string - Decode variable length string 2227 * @xdr: pointer to xdr_stream 2228 * @str: location to store string 2229 * @size: size of storage buffer @str 2230 * 2231 * Return values: 2232 * On success, returns length of NUL-terminated string stored in *@str 2233 * %-EBADMSG on XDR buffer overflow 2234 * %-EMSGSIZE on overflow of storage buffer @str 2235 */ 2236 ssize_t xdr_stream_decode_string(struct xdr_stream *xdr, char *str, size_t size) 2237 { 2238 ssize_t ret; 2239 void *p; 2240 2241 ret = xdr_stream_decode_opaque_inline(xdr, &p, size); 2242 if (ret > 0) { 2243 memcpy(str, p, ret); 2244 str[ret] = '\0'; 2245 return strlen(str); 2246 } 2247 *str = '\0'; 2248 return ret; 2249 } 2250 EXPORT_SYMBOL_GPL(xdr_stream_decode_string); 2251 2252 /** 2253 * xdr_stream_decode_string_dup - Decode and duplicate variable length string 2254 * @xdr: pointer to xdr_stream 2255 * @str: location to store pointer to string 2256 * @maxlen: maximum acceptable string length 2257 * @gfp_flags: GFP mask to use 2258 * 2259 * Return values: 2260 * On success, returns length of NUL-terminated string stored in *@ptr 2261 * %-EBADMSG on XDR buffer overflow 2262 * %-EMSGSIZE if the size of the string would exceed @maxlen 2263 * %-ENOMEM on memory allocation failure 2264 */ 2265 ssize_t xdr_stream_decode_string_dup(struct xdr_stream *xdr, char **str, 2266 size_t maxlen, gfp_t gfp_flags) 2267 { 2268 void *p; 2269 ssize_t ret; 2270 2271 ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen); 2272 if (ret > 0) { 2273 char *s = kmemdup_nul(p, ret, gfp_flags); 2274 if (s != NULL) { 2275 *str = s; 2276 return strlen(s); 2277 } 2278 ret = -ENOMEM; 2279 } 2280 *str = NULL; 2281 return ret; 2282 } 2283 EXPORT_SYMBOL_GPL(xdr_stream_decode_string_dup); 2284 2285 /** 2286 * xdr_stream_decode_opaque_auth - Decode struct opaque_auth (RFC5531 S8.2) 2287 * @xdr: pointer to xdr_stream 2288 * @flavor: location to store decoded flavor 2289 * @body: location to store decode body 2290 * @body_len: location to store length of decoded body 2291 * 2292 * Return values: 2293 * On success, returns the number of buffer bytes consumed 2294 * %-EBADMSG on XDR buffer overflow 2295 * %-EMSGSIZE if the decoded size of the body field exceeds 400 octets 2296 */ 2297 ssize_t xdr_stream_decode_opaque_auth(struct xdr_stream *xdr, u32 *flavor, 2298 void **body, unsigned int *body_len) 2299 { 2300 ssize_t ret, len; 2301 2302 len = xdr_stream_decode_u32(xdr, flavor); 2303 if (unlikely(len < 0)) 2304 return len; 2305 ret = xdr_stream_decode_opaque_inline(xdr, body, RPC_MAX_AUTH_SIZE); 2306 if (unlikely(ret < 0)) 2307 return ret; 2308 *body_len = ret; 2309 return len + ret; 2310 } 2311 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque_auth); 2312 2313 /** 2314 * xdr_stream_encode_opaque_auth - Encode struct opaque_auth (RFC5531 S8.2) 2315 * @xdr: pointer to xdr_stream 2316 * @flavor: verifier flavor to encode 2317 * @body: content of body to encode 2318 * @body_len: length of body to encode 2319 * 2320 * Return values: 2321 * On success, returns length in bytes of XDR buffer consumed 2322 * %-EBADMSG on XDR buffer overflow 2323 * %-EMSGSIZE if the size of @body exceeds 400 octets 2324 */ 2325 ssize_t xdr_stream_encode_opaque_auth(struct xdr_stream *xdr, u32 flavor, 2326 void *body, unsigned int body_len) 2327 { 2328 ssize_t ret, len; 2329 2330 if (unlikely(body_len > RPC_MAX_AUTH_SIZE)) 2331 return -EMSGSIZE; 2332 len = xdr_stream_encode_u32(xdr, flavor); 2333 if (unlikely(len < 0)) 2334 return len; 2335 ret = xdr_stream_encode_opaque(xdr, body, body_len); 2336 if (unlikely(ret < 0)) 2337 return ret; 2338 return len + ret; 2339 } 2340 EXPORT_SYMBOL_GPL(xdr_stream_encode_opaque_auth); 2341