1 /* 2 * linux/net/sunrpc/svcsock.c 3 * 4 * These are the RPC server socket internals. 5 * 6 * The server scheduling algorithm does not always distribute the load 7 * evenly when servicing a single client. May need to modify the 8 * svc_xprt_enqueue procedure... 9 * 10 * TCP support is largely untested and may be a little slow. The problem 11 * is that we currently do two separate recvfrom's, one for the 4-byte 12 * record length, and the second for the actual record. This could possibly 13 * be improved by always reading a minimum size of around 100 bytes and 14 * tucking any superfluous bytes away in a temporary store. Still, that 15 * leaves write requests out in the rain. An alternative may be to peek at 16 * the first skb in the queue, and if it matches the next TCP sequence 17 * number, to extract the record marker. Yuck. 18 * 19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched.h> 24 #include <linux/errno.h> 25 #include <linux/fcntl.h> 26 #include <linux/net.h> 27 #include <linux/in.h> 28 #include <linux/inet.h> 29 #include <linux/udp.h> 30 #include <linux/tcp.h> 31 #include <linux/unistd.h> 32 #include <linux/slab.h> 33 #include <linux/netdevice.h> 34 #include <linux/skbuff.h> 35 #include <linux/file.h> 36 #include <linux/freezer.h> 37 #include <net/sock.h> 38 #include <net/checksum.h> 39 #include <net/ip.h> 40 #include <net/ipv6.h> 41 #include <net/tcp.h> 42 #include <net/tcp_states.h> 43 #include <asm/uaccess.h> 44 #include <asm/ioctls.h> 45 46 #include <linux/sunrpc/types.h> 47 #include <linux/sunrpc/clnt.h> 48 #include <linux/sunrpc/xdr.h> 49 #include <linux/sunrpc/msg_prot.h> 50 #include <linux/sunrpc/svcsock.h> 51 #include <linux/sunrpc/stats.h> 52 #include <linux/sunrpc/xprt.h> 53 54 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 55 56 57 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *, 58 int *errp, int flags); 59 static void svc_udp_data_ready(struct sock *, int); 60 static int svc_udp_recvfrom(struct svc_rqst *); 61 static int svc_udp_sendto(struct svc_rqst *); 62 static void svc_sock_detach(struct svc_xprt *); 63 static void svc_tcp_sock_detach(struct svc_xprt *); 64 static void svc_sock_free(struct svc_xprt *); 65 66 static struct svc_xprt *svc_create_socket(struct svc_serv *, int, 67 struct net *, struct sockaddr *, 68 int, int); 69 #if defined(CONFIG_NFS_V4_1) 70 static struct svc_xprt *svc_bc_create_socket(struct svc_serv *, int, 71 struct net *, struct sockaddr *, 72 int, int); 73 static void svc_bc_sock_free(struct svc_xprt *xprt); 74 #endif /* CONFIG_NFS_V4_1 */ 75 76 #ifdef CONFIG_DEBUG_LOCK_ALLOC 77 static struct lock_class_key svc_key[2]; 78 static struct lock_class_key svc_slock_key[2]; 79 80 static void svc_reclassify_socket(struct socket *sock) 81 { 82 struct sock *sk = sock->sk; 83 BUG_ON(sock_owned_by_user(sk)); 84 switch (sk->sk_family) { 85 case AF_INET: 86 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD", 87 &svc_slock_key[0], 88 "sk_xprt.xpt_lock-AF_INET-NFSD", 89 &svc_key[0]); 90 break; 91 92 case AF_INET6: 93 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD", 94 &svc_slock_key[1], 95 "sk_xprt.xpt_lock-AF_INET6-NFSD", 96 &svc_key[1]); 97 break; 98 99 default: 100 BUG(); 101 } 102 } 103 #else 104 static void svc_reclassify_socket(struct socket *sock) 105 { 106 } 107 #endif 108 109 /* 110 * Release an skbuff after use 111 */ 112 static void svc_release_skb(struct svc_rqst *rqstp) 113 { 114 struct sk_buff *skb = rqstp->rq_xprt_ctxt; 115 116 if (skb) { 117 struct svc_sock *svsk = 118 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 119 rqstp->rq_xprt_ctxt = NULL; 120 121 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb); 122 skb_free_datagram_locked(svsk->sk_sk, skb); 123 } 124 } 125 126 union svc_pktinfo_u { 127 struct in_pktinfo pkti; 128 struct in6_pktinfo pkti6; 129 }; 130 #define SVC_PKTINFO_SPACE \ 131 CMSG_SPACE(sizeof(union svc_pktinfo_u)) 132 133 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh) 134 { 135 struct svc_sock *svsk = 136 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 137 switch (svsk->sk_sk->sk_family) { 138 case AF_INET: { 139 struct in_pktinfo *pki = CMSG_DATA(cmh); 140 141 cmh->cmsg_level = SOL_IP; 142 cmh->cmsg_type = IP_PKTINFO; 143 pki->ipi_ifindex = 0; 144 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr; 145 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 146 } 147 break; 148 149 case AF_INET6: { 150 struct in6_pktinfo *pki = CMSG_DATA(cmh); 151 152 cmh->cmsg_level = SOL_IPV6; 153 cmh->cmsg_type = IPV6_PKTINFO; 154 pki->ipi6_ifindex = 0; 155 ipv6_addr_copy(&pki->ipi6_addr, 156 &rqstp->rq_daddr.addr6); 157 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 158 } 159 break; 160 } 161 } 162 163 /* 164 * send routine intended to be shared by the fore- and back-channel 165 */ 166 int svc_send_common(struct socket *sock, struct xdr_buf *xdr, 167 struct page *headpage, unsigned long headoffset, 168 struct page *tailpage, unsigned long tailoffset) 169 { 170 int result; 171 int size; 172 struct page **ppage = xdr->pages; 173 size_t base = xdr->page_base; 174 unsigned int pglen = xdr->page_len; 175 unsigned int flags = MSG_MORE; 176 int slen; 177 int len = 0; 178 179 slen = xdr->len; 180 181 /* send head */ 182 if (slen == xdr->head[0].iov_len) 183 flags = 0; 184 len = kernel_sendpage(sock, headpage, headoffset, 185 xdr->head[0].iov_len, flags); 186 if (len != xdr->head[0].iov_len) 187 goto out; 188 slen -= xdr->head[0].iov_len; 189 if (slen == 0) 190 goto out; 191 192 /* send page data */ 193 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen; 194 while (pglen > 0) { 195 if (slen == size) 196 flags = 0; 197 result = kernel_sendpage(sock, *ppage, base, size, flags); 198 if (result > 0) 199 len += result; 200 if (result != size) 201 goto out; 202 slen -= size; 203 pglen -= size; 204 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen; 205 base = 0; 206 ppage++; 207 } 208 209 /* send tail */ 210 if (xdr->tail[0].iov_len) { 211 result = kernel_sendpage(sock, tailpage, tailoffset, 212 xdr->tail[0].iov_len, 0); 213 if (result > 0) 214 len += result; 215 } 216 217 out: 218 return len; 219 } 220 221 222 /* 223 * Generic sendto routine 224 */ 225 static int svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr) 226 { 227 struct svc_sock *svsk = 228 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 229 struct socket *sock = svsk->sk_sock; 230 union { 231 struct cmsghdr hdr; 232 long all[SVC_PKTINFO_SPACE / sizeof(long)]; 233 } buffer; 234 struct cmsghdr *cmh = &buffer.hdr; 235 int len = 0; 236 unsigned long tailoff; 237 unsigned long headoff; 238 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]); 239 240 if (rqstp->rq_prot == IPPROTO_UDP) { 241 struct msghdr msg = { 242 .msg_name = &rqstp->rq_addr, 243 .msg_namelen = rqstp->rq_addrlen, 244 .msg_control = cmh, 245 .msg_controllen = sizeof(buffer), 246 .msg_flags = MSG_MORE, 247 }; 248 249 svc_set_cmsg_data(rqstp, cmh); 250 251 if (sock_sendmsg(sock, &msg, 0) < 0) 252 goto out; 253 } 254 255 tailoff = ((unsigned long)xdr->tail[0].iov_base) & (PAGE_SIZE-1); 256 headoff = 0; 257 len = svc_send_common(sock, xdr, rqstp->rq_respages[0], headoff, 258 rqstp->rq_respages[0], tailoff); 259 260 out: 261 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n", 262 svsk, xdr->head[0].iov_base, xdr->head[0].iov_len, 263 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf))); 264 265 return len; 266 } 267 268 /* 269 * Report socket names for nfsdfs 270 */ 271 static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining) 272 { 273 const struct sock *sk = svsk->sk_sk; 274 const char *proto_name = sk->sk_protocol == IPPROTO_UDP ? 275 "udp" : "tcp"; 276 int len; 277 278 switch (sk->sk_family) { 279 case PF_INET: 280 len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n", 281 proto_name, 282 &inet_sk(sk)->inet_rcv_saddr, 283 inet_sk(sk)->inet_num); 284 break; 285 case PF_INET6: 286 len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n", 287 proto_name, 288 &inet6_sk(sk)->rcv_saddr, 289 inet_sk(sk)->inet_num); 290 break; 291 default: 292 len = snprintf(buf, remaining, "*unknown-%d*\n", 293 sk->sk_family); 294 } 295 296 if (len >= remaining) { 297 *buf = '\0'; 298 return -ENAMETOOLONG; 299 } 300 return len; 301 } 302 303 /** 304 * svc_sock_names - construct a list of listener names in a string 305 * @serv: pointer to RPC service 306 * @buf: pointer to a buffer to fill in with socket names 307 * @buflen: size of the buffer to be filled 308 * @toclose: pointer to '\0'-terminated C string containing the name 309 * of a listener to be closed 310 * 311 * Fills in @buf with a '\n'-separated list of names of listener 312 * sockets. If @toclose is not NULL, the socket named by @toclose 313 * is closed, and is not included in the output list. 314 * 315 * Returns positive length of the socket name string, or a negative 316 * errno value on error. 317 */ 318 int svc_sock_names(struct svc_serv *serv, char *buf, const size_t buflen, 319 const char *toclose) 320 { 321 struct svc_sock *svsk, *closesk = NULL; 322 int len = 0; 323 324 if (!serv) 325 return 0; 326 327 spin_lock_bh(&serv->sv_lock); 328 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) { 329 int onelen = svc_one_sock_name(svsk, buf + len, buflen - len); 330 if (onelen < 0) { 331 len = onelen; 332 break; 333 } 334 if (toclose && strcmp(toclose, buf + len) == 0) { 335 closesk = svsk; 336 svc_xprt_get(&closesk->sk_xprt); 337 } else 338 len += onelen; 339 } 340 spin_unlock_bh(&serv->sv_lock); 341 342 if (closesk) { 343 /* Should unregister with portmap, but you cannot 344 * unregister just one protocol... 345 */ 346 svc_close_xprt(&closesk->sk_xprt); 347 svc_xprt_put(&closesk->sk_xprt); 348 } else if (toclose) 349 return -ENOENT; 350 return len; 351 } 352 EXPORT_SYMBOL_GPL(svc_sock_names); 353 354 /* 355 * Check input queue length 356 */ 357 static int svc_recv_available(struct svc_sock *svsk) 358 { 359 struct socket *sock = svsk->sk_sock; 360 int avail, err; 361 362 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail); 363 364 return (err >= 0)? avail : err; 365 } 366 367 /* 368 * Generic recvfrom routine. 369 */ 370 static int svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, 371 int buflen) 372 { 373 struct svc_sock *svsk = 374 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 375 struct msghdr msg = { 376 .msg_flags = MSG_DONTWAIT, 377 }; 378 int len; 379 380 rqstp->rq_xprt_hlen = 0; 381 382 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen, 383 msg.msg_flags); 384 385 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n", 386 svsk, iov[0].iov_base, iov[0].iov_len, len); 387 return len; 388 } 389 390 /* 391 * Set socket snd and rcv buffer lengths 392 */ 393 static void svc_sock_setbufsize(struct socket *sock, unsigned int snd, 394 unsigned int rcv) 395 { 396 #if 0 397 mm_segment_t oldfs; 398 oldfs = get_fs(); set_fs(KERNEL_DS); 399 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF, 400 (char*)&snd, sizeof(snd)); 401 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF, 402 (char*)&rcv, sizeof(rcv)); 403 #else 404 /* sock_setsockopt limits use to sysctl_?mem_max, 405 * which isn't acceptable. Until that is made conditional 406 * on not having CAP_SYS_RESOURCE or similar, we go direct... 407 * DaveM said I could! 408 */ 409 lock_sock(sock->sk); 410 sock->sk->sk_sndbuf = snd * 2; 411 sock->sk->sk_rcvbuf = rcv * 2; 412 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK; 413 sock->sk->sk_write_space(sock->sk); 414 release_sock(sock->sk); 415 #endif 416 } 417 /* 418 * INET callback when data has been received on the socket. 419 */ 420 static void svc_udp_data_ready(struct sock *sk, int count) 421 { 422 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 423 424 if (svsk) { 425 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n", 426 svsk, sk, count, 427 test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags)); 428 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 429 svc_xprt_enqueue(&svsk->sk_xprt); 430 } 431 if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk))) 432 wake_up_interruptible(sk_sleep(sk)); 433 } 434 435 /* 436 * INET callback when space is newly available on the socket. 437 */ 438 static void svc_write_space(struct sock *sk) 439 { 440 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data); 441 442 if (svsk) { 443 dprintk("svc: socket %p(inet %p), write_space busy=%d\n", 444 svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags)); 445 svc_xprt_enqueue(&svsk->sk_xprt); 446 } 447 448 if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk))) { 449 dprintk("RPC svc_write_space: someone sleeping on %p\n", 450 svsk); 451 wake_up_interruptible(sk_sleep(sk)); 452 } 453 } 454 455 static void svc_tcp_write_space(struct sock *sk) 456 { 457 struct socket *sock = sk->sk_socket; 458 459 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && sock) 460 clear_bit(SOCK_NOSPACE, &sock->flags); 461 svc_write_space(sk); 462 } 463 464 /* 465 * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo 466 */ 467 static int svc_udp_get_dest_address4(struct svc_rqst *rqstp, 468 struct cmsghdr *cmh) 469 { 470 struct in_pktinfo *pki = CMSG_DATA(cmh); 471 if (cmh->cmsg_type != IP_PKTINFO) 472 return 0; 473 rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr; 474 return 1; 475 } 476 477 /* 478 * See net/ipv6/datagram.c : datagram_recv_ctl 479 */ 480 static int svc_udp_get_dest_address6(struct svc_rqst *rqstp, 481 struct cmsghdr *cmh) 482 { 483 struct in6_pktinfo *pki = CMSG_DATA(cmh); 484 if (cmh->cmsg_type != IPV6_PKTINFO) 485 return 0; 486 ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr); 487 return 1; 488 } 489 490 /* 491 * Copy the UDP datagram's destination address to the rqstp structure. 492 * The 'destination' address in this case is the address to which the 493 * peer sent the datagram, i.e. our local address. For multihomed 494 * hosts, this can change from msg to msg. Note that only the IP 495 * address changes, the port number should remain the same. 496 */ 497 static int svc_udp_get_dest_address(struct svc_rqst *rqstp, 498 struct cmsghdr *cmh) 499 { 500 switch (cmh->cmsg_level) { 501 case SOL_IP: 502 return svc_udp_get_dest_address4(rqstp, cmh); 503 case SOL_IPV6: 504 return svc_udp_get_dest_address6(rqstp, cmh); 505 } 506 507 return 0; 508 } 509 510 /* 511 * Receive a datagram from a UDP socket. 512 */ 513 static int svc_udp_recvfrom(struct svc_rqst *rqstp) 514 { 515 struct svc_sock *svsk = 516 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 517 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 518 struct sk_buff *skb; 519 union { 520 struct cmsghdr hdr; 521 long all[SVC_PKTINFO_SPACE / sizeof(long)]; 522 } buffer; 523 struct cmsghdr *cmh = &buffer.hdr; 524 struct msghdr msg = { 525 .msg_name = svc_addr(rqstp), 526 .msg_control = cmh, 527 .msg_controllen = sizeof(buffer), 528 .msg_flags = MSG_DONTWAIT, 529 }; 530 size_t len; 531 int err; 532 533 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags)) 534 /* udp sockets need large rcvbuf as all pending 535 * requests are still in that buffer. sndbuf must 536 * also be large enough that there is enough space 537 * for one reply per thread. We count all threads 538 * rather than threads in a particular pool, which 539 * provides an upper bound on the number of threads 540 * which will access the socket. 541 */ 542 svc_sock_setbufsize(svsk->sk_sock, 543 (serv->sv_nrthreads+3) * serv->sv_max_mesg, 544 (serv->sv_nrthreads+3) * serv->sv_max_mesg); 545 546 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 547 skb = NULL; 548 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL, 549 0, 0, MSG_PEEK | MSG_DONTWAIT); 550 if (err >= 0) 551 skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err); 552 553 if (skb == NULL) { 554 if (err != -EAGAIN) { 555 /* possibly an icmp error */ 556 dprintk("svc: recvfrom returned error %d\n", -err); 557 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 558 } 559 return -EAGAIN; 560 } 561 len = svc_addr_len(svc_addr(rqstp)); 562 if (len == 0) 563 return -EAFNOSUPPORT; 564 rqstp->rq_addrlen = len; 565 if (skb->tstamp.tv64 == 0) { 566 skb->tstamp = ktime_get_real(); 567 /* Don't enable netstamp, sunrpc doesn't 568 need that much accuracy */ 569 } 570 svsk->sk_sk->sk_stamp = skb->tstamp; 571 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */ 572 573 len = skb->len - sizeof(struct udphdr); 574 rqstp->rq_arg.len = len; 575 576 rqstp->rq_prot = IPPROTO_UDP; 577 578 if (!svc_udp_get_dest_address(rqstp, cmh)) { 579 if (net_ratelimit()) 580 printk(KERN_WARNING 581 "svc: received unknown control message %d/%d; " 582 "dropping RPC reply datagram\n", 583 cmh->cmsg_level, cmh->cmsg_type); 584 skb_free_datagram_locked(svsk->sk_sk, skb); 585 return 0; 586 } 587 588 if (skb_is_nonlinear(skb)) { 589 /* we have to copy */ 590 local_bh_disable(); 591 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) { 592 local_bh_enable(); 593 /* checksum error */ 594 skb_free_datagram_locked(svsk->sk_sk, skb); 595 return 0; 596 } 597 local_bh_enable(); 598 skb_free_datagram_locked(svsk->sk_sk, skb); 599 } else { 600 /* we can use it in-place */ 601 rqstp->rq_arg.head[0].iov_base = skb->data + 602 sizeof(struct udphdr); 603 rqstp->rq_arg.head[0].iov_len = len; 604 if (skb_checksum_complete(skb)) { 605 skb_free_datagram_locked(svsk->sk_sk, skb); 606 return 0; 607 } 608 rqstp->rq_xprt_ctxt = skb; 609 } 610 611 rqstp->rq_arg.page_base = 0; 612 if (len <= rqstp->rq_arg.head[0].iov_len) { 613 rqstp->rq_arg.head[0].iov_len = len; 614 rqstp->rq_arg.page_len = 0; 615 rqstp->rq_respages = rqstp->rq_pages+1; 616 } else { 617 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 618 rqstp->rq_respages = rqstp->rq_pages + 1 + 619 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE); 620 } 621 622 if (serv->sv_stats) 623 serv->sv_stats->netudpcnt++; 624 625 return len; 626 } 627 628 static int 629 svc_udp_sendto(struct svc_rqst *rqstp) 630 { 631 int error; 632 633 error = svc_sendto(rqstp, &rqstp->rq_res); 634 if (error == -ECONNREFUSED) 635 /* ICMP error on earlier request. */ 636 error = svc_sendto(rqstp, &rqstp->rq_res); 637 638 return error; 639 } 640 641 static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp) 642 { 643 } 644 645 static int svc_udp_has_wspace(struct svc_xprt *xprt) 646 { 647 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 648 struct svc_serv *serv = xprt->xpt_server; 649 unsigned long required; 650 651 /* 652 * Set the SOCK_NOSPACE flag before checking the available 653 * sock space. 654 */ 655 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 656 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg; 657 if (required*2 > sock_wspace(svsk->sk_sk)) 658 return 0; 659 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 660 return 1; 661 } 662 663 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt) 664 { 665 BUG(); 666 return NULL; 667 } 668 669 static struct svc_xprt *svc_udp_create(struct svc_serv *serv, 670 struct net *net, 671 struct sockaddr *sa, int salen, 672 int flags) 673 { 674 return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags); 675 } 676 677 static struct svc_xprt_ops svc_udp_ops = { 678 .xpo_create = svc_udp_create, 679 .xpo_recvfrom = svc_udp_recvfrom, 680 .xpo_sendto = svc_udp_sendto, 681 .xpo_release_rqst = svc_release_skb, 682 .xpo_detach = svc_sock_detach, 683 .xpo_free = svc_sock_free, 684 .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr, 685 .xpo_has_wspace = svc_udp_has_wspace, 686 .xpo_accept = svc_udp_accept, 687 }; 688 689 static struct svc_xprt_class svc_udp_class = { 690 .xcl_name = "udp", 691 .xcl_owner = THIS_MODULE, 692 .xcl_ops = &svc_udp_ops, 693 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP, 694 }; 695 696 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv) 697 { 698 int err, level, optname, one = 1; 699 700 svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv); 701 clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); 702 svsk->sk_sk->sk_data_ready = svc_udp_data_ready; 703 svsk->sk_sk->sk_write_space = svc_write_space; 704 705 /* initialise setting must have enough space to 706 * receive and respond to one request. 707 * svc_udp_recvfrom will re-adjust if necessary 708 */ 709 svc_sock_setbufsize(svsk->sk_sock, 710 3 * svsk->sk_xprt.xpt_server->sv_max_mesg, 711 3 * svsk->sk_xprt.xpt_server->sv_max_mesg); 712 713 /* data might have come in before data_ready set up */ 714 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 715 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 716 717 /* make sure we get destination address info */ 718 switch (svsk->sk_sk->sk_family) { 719 case AF_INET: 720 level = SOL_IP; 721 optname = IP_PKTINFO; 722 break; 723 case AF_INET6: 724 level = SOL_IPV6; 725 optname = IPV6_RECVPKTINFO; 726 break; 727 default: 728 BUG(); 729 } 730 err = kernel_setsockopt(svsk->sk_sock, level, optname, 731 (char *)&one, sizeof(one)); 732 dprintk("svc: kernel_setsockopt returned %d\n", err); 733 } 734 735 /* 736 * A data_ready event on a listening socket means there's a connection 737 * pending. Do not use state_change as a substitute for it. 738 */ 739 static void svc_tcp_listen_data_ready(struct sock *sk, int count_unused) 740 { 741 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 742 743 dprintk("svc: socket %p TCP (listen) state change %d\n", 744 sk, sk->sk_state); 745 746 /* 747 * This callback may called twice when a new connection 748 * is established as a child socket inherits everything 749 * from a parent LISTEN socket. 750 * 1) data_ready method of the parent socket will be called 751 * when one of child sockets become ESTABLISHED. 752 * 2) data_ready method of the child socket may be called 753 * when it receives data before the socket is accepted. 754 * In case of 2, we should ignore it silently. 755 */ 756 if (sk->sk_state == TCP_LISTEN) { 757 if (svsk) { 758 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 759 svc_xprt_enqueue(&svsk->sk_xprt); 760 } else 761 printk("svc: socket %p: no user data\n", sk); 762 } 763 764 if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk))) 765 wake_up_interruptible_all(sk_sleep(sk)); 766 } 767 768 /* 769 * A state change on a connected socket means it's dying or dead. 770 */ 771 static void svc_tcp_state_change(struct sock *sk) 772 { 773 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 774 775 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n", 776 sk, sk->sk_state, sk->sk_user_data); 777 778 if (!svsk) 779 printk("svc: socket %p: no user data\n", sk); 780 else { 781 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 782 svc_xprt_enqueue(&svsk->sk_xprt); 783 } 784 if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk))) 785 wake_up_interruptible_all(sk_sleep(sk)); 786 } 787 788 static void svc_tcp_data_ready(struct sock *sk, int count) 789 { 790 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 791 792 dprintk("svc: socket %p TCP data ready (svsk %p)\n", 793 sk, sk->sk_user_data); 794 if (svsk) { 795 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 796 svc_xprt_enqueue(&svsk->sk_xprt); 797 } 798 if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk))) 799 wake_up_interruptible(sk_sleep(sk)); 800 } 801 802 /* 803 * Accept a TCP connection 804 */ 805 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt) 806 { 807 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 808 struct sockaddr_storage addr; 809 struct sockaddr *sin = (struct sockaddr *) &addr; 810 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 811 struct socket *sock = svsk->sk_sock; 812 struct socket *newsock; 813 struct svc_sock *newsvsk; 814 int err, slen; 815 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]); 816 817 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock); 818 if (!sock) 819 return NULL; 820 821 clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 822 err = kernel_accept(sock, &newsock, O_NONBLOCK); 823 if (err < 0) { 824 if (err == -ENOMEM) 825 printk(KERN_WARNING "%s: no more sockets!\n", 826 serv->sv_name); 827 else if (err != -EAGAIN && net_ratelimit()) 828 printk(KERN_WARNING "%s: accept failed (err %d)!\n", 829 serv->sv_name, -err); 830 return NULL; 831 } 832 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 833 834 err = kernel_getpeername(newsock, sin, &slen); 835 if (err < 0) { 836 if (net_ratelimit()) 837 printk(KERN_WARNING "%s: peername failed (err %d)!\n", 838 serv->sv_name, -err); 839 goto failed; /* aborted connection or whatever */ 840 } 841 842 /* Ideally, we would want to reject connections from unauthorized 843 * hosts here, but when we get encryption, the IP of the host won't 844 * tell us anything. For now just warn about unpriv connections. 845 */ 846 if (!svc_port_is_privileged(sin)) { 847 dprintk(KERN_WARNING 848 "%s: connect from unprivileged port: %s\n", 849 serv->sv_name, 850 __svc_print_addr(sin, buf, sizeof(buf))); 851 } 852 dprintk("%s: connect from %s\n", serv->sv_name, 853 __svc_print_addr(sin, buf, sizeof(buf))); 854 855 /* make sure that a write doesn't block forever when 856 * low on memory 857 */ 858 newsock->sk->sk_sndtimeo = HZ*30; 859 860 if (!(newsvsk = svc_setup_socket(serv, newsock, &err, 861 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY)))) 862 goto failed; 863 svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen); 864 err = kernel_getsockname(newsock, sin, &slen); 865 if (unlikely(err < 0)) { 866 dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err); 867 slen = offsetof(struct sockaddr, sa_data); 868 } 869 svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen); 870 871 if (serv->sv_stats) 872 serv->sv_stats->nettcpconn++; 873 874 return &newsvsk->sk_xprt; 875 876 failed: 877 sock_release(newsock); 878 return NULL; 879 } 880 881 /* 882 * Receive data. 883 * If we haven't gotten the record length yet, get the next four bytes. 884 * Otherwise try to gobble up as much as possible up to the complete 885 * record length. 886 */ 887 static int svc_tcp_recv_record(struct svc_sock *svsk, struct svc_rqst *rqstp) 888 { 889 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 890 int len; 891 892 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags)) 893 /* sndbuf needs to have room for one request 894 * per thread, otherwise we can stall even when the 895 * network isn't a bottleneck. 896 * 897 * We count all threads rather than threads in a 898 * particular pool, which provides an upper bound 899 * on the number of threads which will access the socket. 900 * 901 * rcvbuf just needs to be able to hold a few requests. 902 * Normally they will be removed from the queue 903 * as soon a a complete request arrives. 904 */ 905 svc_sock_setbufsize(svsk->sk_sock, 906 (serv->sv_nrthreads+3) * serv->sv_max_mesg, 907 3 * serv->sv_max_mesg); 908 909 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 910 911 if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) { 912 int want = sizeof(rpc_fraghdr) - svsk->sk_tcplen; 913 struct kvec iov; 914 915 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen; 916 iov.iov_len = want; 917 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0) 918 goto error; 919 svsk->sk_tcplen += len; 920 921 if (len < want) { 922 dprintk("svc: short recvfrom while reading record " 923 "length (%d of %d)\n", len, want); 924 goto err_again; /* record header not complete */ 925 } 926 927 svsk->sk_reclen = ntohl(svsk->sk_reclen); 928 if (!(svsk->sk_reclen & RPC_LAST_STREAM_FRAGMENT)) { 929 /* FIXME: technically, a record can be fragmented, 930 * and non-terminal fragments will not have the top 931 * bit set in the fragment length header. 932 * But apparently no known nfs clients send fragmented 933 * records. */ 934 if (net_ratelimit()) 935 printk(KERN_NOTICE "RPC: multiple fragments " 936 "per record not supported\n"); 937 goto err_delete; 938 } 939 940 svsk->sk_reclen &= RPC_FRAGMENT_SIZE_MASK; 941 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen); 942 if (svsk->sk_reclen > serv->sv_max_mesg) { 943 if (net_ratelimit()) 944 printk(KERN_NOTICE "RPC: " 945 "fragment too large: 0x%08lx\n", 946 (unsigned long)svsk->sk_reclen); 947 goto err_delete; 948 } 949 } 950 951 /* Check whether enough data is available */ 952 len = svc_recv_available(svsk); 953 if (len < 0) 954 goto error; 955 956 if (len < svsk->sk_reclen) { 957 dprintk("svc: incomplete TCP record (%d of %d)\n", 958 len, svsk->sk_reclen); 959 goto err_again; /* record not complete */ 960 } 961 len = svsk->sk_reclen; 962 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 963 964 return len; 965 error: 966 if (len == -EAGAIN) 967 dprintk("RPC: TCP recv_record got EAGAIN\n"); 968 return len; 969 err_delete: 970 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 971 err_again: 972 return -EAGAIN; 973 } 974 975 static int svc_process_calldir(struct svc_sock *svsk, struct svc_rqst *rqstp, 976 struct rpc_rqst **reqpp, struct kvec *vec) 977 { 978 struct rpc_rqst *req = NULL; 979 u32 *p; 980 u32 xid; 981 u32 calldir; 982 int len; 983 984 len = svc_recvfrom(rqstp, vec, 1, 8); 985 if (len < 0) 986 goto error; 987 988 p = (u32 *)rqstp->rq_arg.head[0].iov_base; 989 xid = *p++; 990 calldir = *p; 991 992 if (calldir == 0) { 993 /* REQUEST is the most common case */ 994 vec[0] = rqstp->rq_arg.head[0]; 995 } else { 996 /* REPLY */ 997 struct rpc_xprt *bc_xprt = svsk->sk_xprt.xpt_bc_xprt; 998 999 if (bc_xprt) 1000 req = xprt_lookup_rqst(bc_xprt, xid); 1001 1002 if (!req) { 1003 printk(KERN_NOTICE 1004 "%s: Got unrecognized reply: " 1005 "calldir 0x%x xpt_bc_xprt %p xid %08x\n", 1006 __func__, ntohl(calldir), 1007 bc_xprt, xid); 1008 vec[0] = rqstp->rq_arg.head[0]; 1009 goto out; 1010 } 1011 1012 memcpy(&req->rq_private_buf, &req->rq_rcv_buf, 1013 sizeof(struct xdr_buf)); 1014 /* copy the xid and call direction */ 1015 memcpy(req->rq_private_buf.head[0].iov_base, 1016 rqstp->rq_arg.head[0].iov_base, 8); 1017 vec[0] = req->rq_private_buf.head[0]; 1018 } 1019 out: 1020 vec[0].iov_base += 8; 1021 vec[0].iov_len -= 8; 1022 len = svsk->sk_reclen - 8; 1023 error: 1024 *reqpp = req; 1025 return len; 1026 } 1027 1028 /* 1029 * Receive data from a TCP socket. 1030 */ 1031 static int svc_tcp_recvfrom(struct svc_rqst *rqstp) 1032 { 1033 struct svc_sock *svsk = 1034 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 1035 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 1036 int len; 1037 struct kvec *vec; 1038 int pnum, vlen; 1039 struct rpc_rqst *req = NULL; 1040 1041 dprintk("svc: tcp_recv %p data %d conn %d close %d\n", 1042 svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags), 1043 test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags), 1044 test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags)); 1045 1046 len = svc_tcp_recv_record(svsk, rqstp); 1047 if (len < 0) 1048 goto error; 1049 1050 vec = rqstp->rq_vec; 1051 vec[0] = rqstp->rq_arg.head[0]; 1052 vlen = PAGE_SIZE; 1053 1054 /* 1055 * We have enough data for the whole tcp record. Let's try and read the 1056 * first 8 bytes to get the xid and the call direction. We can use this 1057 * to figure out if this is a call or a reply to a callback. If 1058 * sk_reclen is < 8 (xid and calldir), then this is a malformed packet. 1059 * In that case, don't bother with the calldir and just read the data. 1060 * It will be rejected in svc_process. 1061 */ 1062 if (len >= 8) { 1063 len = svc_process_calldir(svsk, rqstp, &req, vec); 1064 if (len < 0) 1065 goto err_again; 1066 vlen -= 8; 1067 } 1068 1069 pnum = 1; 1070 while (vlen < len) { 1071 vec[pnum].iov_base = (req) ? 1072 page_address(req->rq_private_buf.pages[pnum - 1]) : 1073 page_address(rqstp->rq_pages[pnum]); 1074 vec[pnum].iov_len = PAGE_SIZE; 1075 pnum++; 1076 vlen += PAGE_SIZE; 1077 } 1078 rqstp->rq_respages = &rqstp->rq_pages[pnum]; 1079 1080 /* Now receive data */ 1081 len = svc_recvfrom(rqstp, vec, pnum, len); 1082 if (len < 0) 1083 goto err_again; 1084 1085 /* 1086 * Account for the 8 bytes we read earlier 1087 */ 1088 len += 8; 1089 1090 if (req) { 1091 xprt_complete_rqst(req->rq_task, len); 1092 len = 0; 1093 goto out; 1094 } 1095 dprintk("svc: TCP complete record (%d bytes)\n", len); 1096 rqstp->rq_arg.len = len; 1097 rqstp->rq_arg.page_base = 0; 1098 if (len <= rqstp->rq_arg.head[0].iov_len) { 1099 rqstp->rq_arg.head[0].iov_len = len; 1100 rqstp->rq_arg.page_len = 0; 1101 } else { 1102 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 1103 } 1104 1105 rqstp->rq_xprt_ctxt = NULL; 1106 rqstp->rq_prot = IPPROTO_TCP; 1107 1108 out: 1109 /* Reset TCP read info */ 1110 svsk->sk_reclen = 0; 1111 svsk->sk_tcplen = 0; 1112 1113 svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt); 1114 if (serv->sv_stats) 1115 serv->sv_stats->nettcpcnt++; 1116 1117 return len; 1118 1119 err_again: 1120 if (len == -EAGAIN) { 1121 dprintk("RPC: TCP recvfrom got EAGAIN\n"); 1122 return len; 1123 } 1124 error: 1125 if (len != -EAGAIN) { 1126 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n", 1127 svsk->sk_xprt.xpt_server->sv_name, -len); 1128 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 1129 } 1130 return -EAGAIN; 1131 } 1132 1133 /* 1134 * Send out data on TCP socket. 1135 */ 1136 static int svc_tcp_sendto(struct svc_rqst *rqstp) 1137 { 1138 struct xdr_buf *xbufp = &rqstp->rq_res; 1139 int sent; 1140 __be32 reclen; 1141 1142 /* Set up the first element of the reply kvec. 1143 * Any other kvecs that may be in use have been taken 1144 * care of by the server implementation itself. 1145 */ 1146 reclen = htonl(0x80000000|((xbufp->len ) - 4)); 1147 memcpy(xbufp->head[0].iov_base, &reclen, 4); 1148 1149 sent = svc_sendto(rqstp, &rqstp->rq_res); 1150 if (sent != xbufp->len) { 1151 printk(KERN_NOTICE 1152 "rpc-srv/tcp: %s: %s %d when sending %d bytes " 1153 "- shutting down socket\n", 1154 rqstp->rq_xprt->xpt_server->sv_name, 1155 (sent<0)?"got error":"sent only", 1156 sent, xbufp->len); 1157 set_bit(XPT_CLOSE, &rqstp->rq_xprt->xpt_flags); 1158 svc_xprt_enqueue(rqstp->rq_xprt); 1159 sent = -EAGAIN; 1160 } 1161 return sent; 1162 } 1163 1164 /* 1165 * Setup response header. TCP has a 4B record length field. 1166 */ 1167 static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp) 1168 { 1169 struct kvec *resv = &rqstp->rq_res.head[0]; 1170 1171 /* tcp needs a space for the record length... */ 1172 svc_putnl(resv, 0); 1173 } 1174 1175 static int svc_tcp_has_wspace(struct svc_xprt *xprt) 1176 { 1177 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1178 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 1179 int required; 1180 1181 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) 1182 return 1; 1183 required = atomic_read(&xprt->xpt_reserved) + serv->sv_max_mesg; 1184 if (sk_stream_wspace(svsk->sk_sk) >= required) 1185 return 1; 1186 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 1187 return 0; 1188 } 1189 1190 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv, 1191 struct net *net, 1192 struct sockaddr *sa, int salen, 1193 int flags) 1194 { 1195 return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags); 1196 } 1197 1198 #if defined(CONFIG_NFS_V4_1) 1199 static struct svc_xprt *svc_bc_create_socket(struct svc_serv *, int, 1200 struct net *, struct sockaddr *, 1201 int, int); 1202 static void svc_bc_sock_free(struct svc_xprt *xprt); 1203 1204 static struct svc_xprt *svc_bc_tcp_create(struct svc_serv *serv, 1205 struct net *net, 1206 struct sockaddr *sa, int salen, 1207 int flags) 1208 { 1209 return svc_bc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags); 1210 } 1211 1212 static void svc_bc_tcp_sock_detach(struct svc_xprt *xprt) 1213 { 1214 } 1215 1216 static struct svc_xprt_ops svc_tcp_bc_ops = { 1217 .xpo_create = svc_bc_tcp_create, 1218 .xpo_detach = svc_bc_tcp_sock_detach, 1219 .xpo_free = svc_bc_sock_free, 1220 .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr, 1221 }; 1222 1223 static struct svc_xprt_class svc_tcp_bc_class = { 1224 .xcl_name = "tcp-bc", 1225 .xcl_owner = THIS_MODULE, 1226 .xcl_ops = &svc_tcp_bc_ops, 1227 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP, 1228 }; 1229 1230 static void svc_init_bc_xprt_sock(void) 1231 { 1232 svc_reg_xprt_class(&svc_tcp_bc_class); 1233 } 1234 1235 static void svc_cleanup_bc_xprt_sock(void) 1236 { 1237 svc_unreg_xprt_class(&svc_tcp_bc_class); 1238 } 1239 #else /* CONFIG_NFS_V4_1 */ 1240 static void svc_init_bc_xprt_sock(void) 1241 { 1242 } 1243 1244 static void svc_cleanup_bc_xprt_sock(void) 1245 { 1246 } 1247 #endif /* CONFIG_NFS_V4_1 */ 1248 1249 static struct svc_xprt_ops svc_tcp_ops = { 1250 .xpo_create = svc_tcp_create, 1251 .xpo_recvfrom = svc_tcp_recvfrom, 1252 .xpo_sendto = svc_tcp_sendto, 1253 .xpo_release_rqst = svc_release_skb, 1254 .xpo_detach = svc_tcp_sock_detach, 1255 .xpo_free = svc_sock_free, 1256 .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr, 1257 .xpo_has_wspace = svc_tcp_has_wspace, 1258 .xpo_accept = svc_tcp_accept, 1259 }; 1260 1261 static struct svc_xprt_class svc_tcp_class = { 1262 .xcl_name = "tcp", 1263 .xcl_owner = THIS_MODULE, 1264 .xcl_ops = &svc_tcp_ops, 1265 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP, 1266 }; 1267 1268 void svc_init_xprt_sock(void) 1269 { 1270 svc_reg_xprt_class(&svc_tcp_class); 1271 svc_reg_xprt_class(&svc_udp_class); 1272 svc_init_bc_xprt_sock(); 1273 } 1274 1275 void svc_cleanup_xprt_sock(void) 1276 { 1277 svc_unreg_xprt_class(&svc_tcp_class); 1278 svc_unreg_xprt_class(&svc_udp_class); 1279 svc_cleanup_bc_xprt_sock(); 1280 } 1281 1282 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv) 1283 { 1284 struct sock *sk = svsk->sk_sk; 1285 1286 svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv); 1287 set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); 1288 if (sk->sk_state == TCP_LISTEN) { 1289 dprintk("setting up TCP socket for listening\n"); 1290 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags); 1291 sk->sk_data_ready = svc_tcp_listen_data_ready; 1292 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 1293 } else { 1294 dprintk("setting up TCP socket for reading\n"); 1295 sk->sk_state_change = svc_tcp_state_change; 1296 sk->sk_data_ready = svc_tcp_data_ready; 1297 sk->sk_write_space = svc_tcp_write_space; 1298 1299 svsk->sk_reclen = 0; 1300 svsk->sk_tcplen = 0; 1301 1302 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF; 1303 1304 /* initialise setting must have enough space to 1305 * receive and respond to one request. 1306 * svc_tcp_recvfrom will re-adjust if necessary 1307 */ 1308 svc_sock_setbufsize(svsk->sk_sock, 1309 3 * svsk->sk_xprt.xpt_server->sv_max_mesg, 1310 3 * svsk->sk_xprt.xpt_server->sv_max_mesg); 1311 1312 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 1313 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 1314 if (sk->sk_state != TCP_ESTABLISHED) 1315 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 1316 } 1317 } 1318 1319 void svc_sock_update_bufs(struct svc_serv *serv) 1320 { 1321 /* 1322 * The number of server threads has changed. Update 1323 * rcvbuf and sndbuf accordingly on all sockets 1324 */ 1325 struct svc_sock *svsk; 1326 1327 spin_lock_bh(&serv->sv_lock); 1328 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) 1329 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 1330 list_for_each_entry(svsk, &serv->sv_tempsocks, sk_xprt.xpt_list) 1331 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 1332 spin_unlock_bh(&serv->sv_lock); 1333 } 1334 EXPORT_SYMBOL_GPL(svc_sock_update_bufs); 1335 1336 /* 1337 * Initialize socket for RPC use and create svc_sock struct 1338 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF. 1339 */ 1340 static struct svc_sock *svc_setup_socket(struct svc_serv *serv, 1341 struct socket *sock, 1342 int *errp, int flags) 1343 { 1344 struct svc_sock *svsk; 1345 struct sock *inet; 1346 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS); 1347 1348 dprintk("svc: svc_setup_socket %p\n", sock); 1349 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) { 1350 *errp = -ENOMEM; 1351 return NULL; 1352 } 1353 1354 inet = sock->sk; 1355 1356 /* Register socket with portmapper */ 1357 if (*errp >= 0 && pmap_register) 1358 *errp = svc_register(serv, inet->sk_family, inet->sk_protocol, 1359 ntohs(inet_sk(inet)->inet_sport)); 1360 1361 if (*errp < 0) { 1362 kfree(svsk); 1363 return NULL; 1364 } 1365 1366 inet->sk_user_data = svsk; 1367 svsk->sk_sock = sock; 1368 svsk->sk_sk = inet; 1369 svsk->sk_ostate = inet->sk_state_change; 1370 svsk->sk_odata = inet->sk_data_ready; 1371 svsk->sk_owspace = inet->sk_write_space; 1372 1373 /* Initialize the socket */ 1374 if (sock->type == SOCK_DGRAM) 1375 svc_udp_init(svsk, serv); 1376 else 1377 svc_tcp_init(svsk, serv); 1378 1379 dprintk("svc: svc_setup_socket created %p (inet %p)\n", 1380 svsk, svsk->sk_sk); 1381 1382 return svsk; 1383 } 1384 1385 /** 1386 * svc_addsock - add a listener socket to an RPC service 1387 * @serv: pointer to RPC service to which to add a new listener 1388 * @fd: file descriptor of the new listener 1389 * @name_return: pointer to buffer to fill in with name of listener 1390 * @len: size of the buffer 1391 * 1392 * Fills in socket name and returns positive length of name if successful. 1393 * Name is terminated with '\n'. On error, returns a negative errno 1394 * value. 1395 */ 1396 int svc_addsock(struct svc_serv *serv, const int fd, char *name_return, 1397 const size_t len) 1398 { 1399 int err = 0; 1400 struct socket *so = sockfd_lookup(fd, &err); 1401 struct svc_sock *svsk = NULL; 1402 1403 if (!so) 1404 return err; 1405 if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6)) 1406 err = -EAFNOSUPPORT; 1407 else if (so->sk->sk_protocol != IPPROTO_TCP && 1408 so->sk->sk_protocol != IPPROTO_UDP) 1409 err = -EPROTONOSUPPORT; 1410 else if (so->state > SS_UNCONNECTED) 1411 err = -EISCONN; 1412 else { 1413 if (!try_module_get(THIS_MODULE)) 1414 err = -ENOENT; 1415 else 1416 svsk = svc_setup_socket(serv, so, &err, 1417 SVC_SOCK_DEFAULTS); 1418 if (svsk) { 1419 struct sockaddr_storage addr; 1420 struct sockaddr *sin = (struct sockaddr *)&addr; 1421 int salen; 1422 if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0) 1423 svc_xprt_set_local(&svsk->sk_xprt, sin, salen); 1424 clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags); 1425 spin_lock_bh(&serv->sv_lock); 1426 list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks); 1427 spin_unlock_bh(&serv->sv_lock); 1428 svc_xprt_received(&svsk->sk_xprt); 1429 err = 0; 1430 } else 1431 module_put(THIS_MODULE); 1432 } 1433 if (err) { 1434 sockfd_put(so); 1435 return err; 1436 } 1437 return svc_one_sock_name(svsk, name_return, len); 1438 } 1439 EXPORT_SYMBOL_GPL(svc_addsock); 1440 1441 /* 1442 * Create socket for RPC service. 1443 */ 1444 static struct svc_xprt *svc_create_socket(struct svc_serv *serv, 1445 int protocol, 1446 struct net *net, 1447 struct sockaddr *sin, int len, 1448 int flags) 1449 { 1450 struct svc_sock *svsk; 1451 struct socket *sock; 1452 int error; 1453 int type; 1454 struct sockaddr_storage addr; 1455 struct sockaddr *newsin = (struct sockaddr *)&addr; 1456 int newlen; 1457 int family; 1458 int val; 1459 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]); 1460 1461 dprintk("svc: svc_create_socket(%s, %d, %s)\n", 1462 serv->sv_program->pg_name, protocol, 1463 __svc_print_addr(sin, buf, sizeof(buf))); 1464 1465 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) { 1466 printk(KERN_WARNING "svc: only UDP and TCP " 1467 "sockets supported\n"); 1468 return ERR_PTR(-EINVAL); 1469 } 1470 1471 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM; 1472 switch (sin->sa_family) { 1473 case AF_INET6: 1474 family = PF_INET6; 1475 break; 1476 case AF_INET: 1477 family = PF_INET; 1478 break; 1479 default: 1480 return ERR_PTR(-EINVAL); 1481 } 1482 1483 error = __sock_create(net, family, type, protocol, &sock, 1); 1484 if (error < 0) 1485 return ERR_PTR(error); 1486 1487 svc_reclassify_socket(sock); 1488 1489 /* 1490 * If this is an PF_INET6 listener, we want to avoid 1491 * getting requests from IPv4 remotes. Those should 1492 * be shunted to a PF_INET listener via rpcbind. 1493 */ 1494 val = 1; 1495 if (family == PF_INET6) 1496 kernel_setsockopt(sock, SOL_IPV6, IPV6_V6ONLY, 1497 (char *)&val, sizeof(val)); 1498 1499 if (type == SOCK_STREAM) 1500 sock->sk->sk_reuse = 1; /* allow address reuse */ 1501 error = kernel_bind(sock, sin, len); 1502 if (error < 0) 1503 goto bummer; 1504 1505 newlen = len; 1506 error = kernel_getsockname(sock, newsin, &newlen); 1507 if (error < 0) 1508 goto bummer; 1509 1510 if (protocol == IPPROTO_TCP) { 1511 if ((error = kernel_listen(sock, 64)) < 0) 1512 goto bummer; 1513 } 1514 1515 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) { 1516 svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen); 1517 return (struct svc_xprt *)svsk; 1518 } 1519 1520 bummer: 1521 dprintk("svc: svc_create_socket error = %d\n", -error); 1522 sock_release(sock); 1523 return ERR_PTR(error); 1524 } 1525 1526 /* 1527 * Detach the svc_sock from the socket so that no 1528 * more callbacks occur. 1529 */ 1530 static void svc_sock_detach(struct svc_xprt *xprt) 1531 { 1532 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1533 struct sock *sk = svsk->sk_sk; 1534 1535 dprintk("svc: svc_sock_detach(%p)\n", svsk); 1536 1537 /* put back the old socket callbacks */ 1538 sk->sk_state_change = svsk->sk_ostate; 1539 sk->sk_data_ready = svsk->sk_odata; 1540 sk->sk_write_space = svsk->sk_owspace; 1541 1542 if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk))) 1543 wake_up_interruptible(sk_sleep(sk)); 1544 } 1545 1546 /* 1547 * Disconnect the socket, and reset the callbacks 1548 */ 1549 static void svc_tcp_sock_detach(struct svc_xprt *xprt) 1550 { 1551 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1552 1553 dprintk("svc: svc_tcp_sock_detach(%p)\n", svsk); 1554 1555 svc_sock_detach(xprt); 1556 1557 if (!test_bit(XPT_LISTENER, &xprt->xpt_flags)) 1558 kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR); 1559 } 1560 1561 /* 1562 * Free the svc_sock's socket resources and the svc_sock itself. 1563 */ 1564 static void svc_sock_free(struct svc_xprt *xprt) 1565 { 1566 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1567 dprintk("svc: svc_sock_free(%p)\n", svsk); 1568 1569 if (svsk->sk_sock->file) 1570 sockfd_put(svsk->sk_sock); 1571 else 1572 sock_release(svsk->sk_sock); 1573 kfree(svsk); 1574 } 1575 1576 #if defined(CONFIG_NFS_V4_1) 1577 /* 1578 * Create a back channel svc_xprt which shares the fore channel socket. 1579 */ 1580 static struct svc_xprt *svc_bc_create_socket(struct svc_serv *serv, 1581 int protocol, 1582 struct net *net, 1583 struct sockaddr *sin, int len, 1584 int flags) 1585 { 1586 struct svc_sock *svsk; 1587 struct svc_xprt *xprt; 1588 1589 if (protocol != IPPROTO_TCP) { 1590 printk(KERN_WARNING "svc: only TCP sockets" 1591 " supported on shared back channel\n"); 1592 return ERR_PTR(-EINVAL); 1593 } 1594 1595 svsk = kzalloc(sizeof(*svsk), GFP_KERNEL); 1596 if (!svsk) 1597 return ERR_PTR(-ENOMEM); 1598 1599 xprt = &svsk->sk_xprt; 1600 svc_xprt_init(&svc_tcp_bc_class, xprt, serv); 1601 1602 serv->sv_bc_xprt = xprt; 1603 1604 return xprt; 1605 } 1606 1607 /* 1608 * Free a back channel svc_sock. 1609 */ 1610 static void svc_bc_sock_free(struct svc_xprt *xprt) 1611 { 1612 if (xprt) 1613 kfree(container_of(xprt, struct svc_sock, sk_xprt)); 1614 } 1615 #endif /* CONFIG_NFS_V4_1 */ 1616