xref: /openbmc/linux/net/sunrpc/svcsock.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * linux/net/sunrpc/svcsock.c
3  *
4  * These are the RPC server socket internals.
5  *
6  * The server scheduling algorithm does not always distribute the load
7  * evenly when servicing a single client. May need to modify the
8  * svc_xprt_enqueue procedure...
9  *
10  * TCP support is largely untested and may be a little slow. The problem
11  * is that we currently do two separate recvfrom's, one for the 4-byte
12  * record length, and the second for the actual record. This could possibly
13  * be improved by always reading a minimum size of around 100 bytes and
14  * tucking any superfluous bytes away in a temporary store. Still, that
15  * leaves write requests out in the rain. An alternative may be to peek at
16  * the first skb in the queue, and if it matches the next TCP sequence
17  * number, to extract the record marker. Yuck.
18  *
19  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/errno.h>
25 #include <linux/fcntl.h>
26 #include <linux/net.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/udp.h>
30 #include <linux/tcp.h>
31 #include <linux/unistd.h>
32 #include <linux/slab.h>
33 #include <linux/netdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/file.h>
36 #include <linux/freezer.h>
37 #include <net/sock.h>
38 #include <net/checksum.h>
39 #include <net/ip.h>
40 #include <net/ipv6.h>
41 #include <net/tcp.h>
42 #include <net/tcp_states.h>
43 #include <asm/uaccess.h>
44 #include <asm/ioctls.h>
45 
46 #include <linux/sunrpc/types.h>
47 #include <linux/sunrpc/clnt.h>
48 #include <linux/sunrpc/xdr.h>
49 #include <linux/sunrpc/msg_prot.h>
50 #include <linux/sunrpc/svcsock.h>
51 #include <linux/sunrpc/stats.h>
52 #include <linux/sunrpc/xprt.h>
53 
54 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
55 
56 
57 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
58 					 int *errp, int flags);
59 static void		svc_udp_data_ready(struct sock *, int);
60 static int		svc_udp_recvfrom(struct svc_rqst *);
61 static int		svc_udp_sendto(struct svc_rqst *);
62 static void		svc_sock_detach(struct svc_xprt *);
63 static void		svc_tcp_sock_detach(struct svc_xprt *);
64 static void		svc_sock_free(struct svc_xprt *);
65 
66 static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
67 					  struct net *, struct sockaddr *,
68 					  int, int);
69 #if defined(CONFIG_NFS_V4_1)
70 static struct svc_xprt *svc_bc_create_socket(struct svc_serv *, int,
71 					     struct net *, struct sockaddr *,
72 					     int, int);
73 static void svc_bc_sock_free(struct svc_xprt *xprt);
74 #endif /* CONFIG_NFS_V4_1 */
75 
76 #ifdef CONFIG_DEBUG_LOCK_ALLOC
77 static struct lock_class_key svc_key[2];
78 static struct lock_class_key svc_slock_key[2];
79 
80 static void svc_reclassify_socket(struct socket *sock)
81 {
82 	struct sock *sk = sock->sk;
83 	BUG_ON(sock_owned_by_user(sk));
84 	switch (sk->sk_family) {
85 	case AF_INET:
86 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
87 					      &svc_slock_key[0],
88 					      "sk_xprt.xpt_lock-AF_INET-NFSD",
89 					      &svc_key[0]);
90 		break;
91 
92 	case AF_INET6:
93 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
94 					      &svc_slock_key[1],
95 					      "sk_xprt.xpt_lock-AF_INET6-NFSD",
96 					      &svc_key[1]);
97 		break;
98 
99 	default:
100 		BUG();
101 	}
102 }
103 #else
104 static void svc_reclassify_socket(struct socket *sock)
105 {
106 }
107 #endif
108 
109 /*
110  * Release an skbuff after use
111  */
112 static void svc_release_skb(struct svc_rqst *rqstp)
113 {
114 	struct sk_buff *skb = rqstp->rq_xprt_ctxt;
115 
116 	if (skb) {
117 		struct svc_sock *svsk =
118 			container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
119 		rqstp->rq_xprt_ctxt = NULL;
120 
121 		dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
122 		skb_free_datagram_locked(svsk->sk_sk, skb);
123 	}
124 }
125 
126 union svc_pktinfo_u {
127 	struct in_pktinfo pkti;
128 	struct in6_pktinfo pkti6;
129 };
130 #define SVC_PKTINFO_SPACE \
131 	CMSG_SPACE(sizeof(union svc_pktinfo_u))
132 
133 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
134 {
135 	struct svc_sock *svsk =
136 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
137 	switch (svsk->sk_sk->sk_family) {
138 	case AF_INET: {
139 			struct in_pktinfo *pki = CMSG_DATA(cmh);
140 
141 			cmh->cmsg_level = SOL_IP;
142 			cmh->cmsg_type = IP_PKTINFO;
143 			pki->ipi_ifindex = 0;
144 			pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
145 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
146 		}
147 		break;
148 
149 	case AF_INET6: {
150 			struct in6_pktinfo *pki = CMSG_DATA(cmh);
151 
152 			cmh->cmsg_level = SOL_IPV6;
153 			cmh->cmsg_type = IPV6_PKTINFO;
154 			pki->ipi6_ifindex = 0;
155 			ipv6_addr_copy(&pki->ipi6_addr,
156 					&rqstp->rq_daddr.addr6);
157 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
158 		}
159 		break;
160 	}
161 }
162 
163 /*
164  * send routine intended to be shared by the fore- and back-channel
165  */
166 int svc_send_common(struct socket *sock, struct xdr_buf *xdr,
167 		    struct page *headpage, unsigned long headoffset,
168 		    struct page *tailpage, unsigned long tailoffset)
169 {
170 	int		result;
171 	int		size;
172 	struct page	**ppage = xdr->pages;
173 	size_t		base = xdr->page_base;
174 	unsigned int	pglen = xdr->page_len;
175 	unsigned int	flags = MSG_MORE;
176 	int		slen;
177 	int		len = 0;
178 
179 	slen = xdr->len;
180 
181 	/* send head */
182 	if (slen == xdr->head[0].iov_len)
183 		flags = 0;
184 	len = kernel_sendpage(sock, headpage, headoffset,
185 				  xdr->head[0].iov_len, flags);
186 	if (len != xdr->head[0].iov_len)
187 		goto out;
188 	slen -= xdr->head[0].iov_len;
189 	if (slen == 0)
190 		goto out;
191 
192 	/* send page data */
193 	size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
194 	while (pglen > 0) {
195 		if (slen == size)
196 			flags = 0;
197 		result = kernel_sendpage(sock, *ppage, base, size, flags);
198 		if (result > 0)
199 			len += result;
200 		if (result != size)
201 			goto out;
202 		slen -= size;
203 		pglen -= size;
204 		size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
205 		base = 0;
206 		ppage++;
207 	}
208 
209 	/* send tail */
210 	if (xdr->tail[0].iov_len) {
211 		result = kernel_sendpage(sock, tailpage, tailoffset,
212 				   xdr->tail[0].iov_len, 0);
213 		if (result > 0)
214 			len += result;
215 	}
216 
217 out:
218 	return len;
219 }
220 
221 
222 /*
223  * Generic sendto routine
224  */
225 static int svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
226 {
227 	struct svc_sock	*svsk =
228 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
229 	struct socket	*sock = svsk->sk_sock;
230 	union {
231 		struct cmsghdr	hdr;
232 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
233 	} buffer;
234 	struct cmsghdr *cmh = &buffer.hdr;
235 	int		len = 0;
236 	unsigned long tailoff;
237 	unsigned long headoff;
238 	RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
239 
240 	if (rqstp->rq_prot == IPPROTO_UDP) {
241 		struct msghdr msg = {
242 			.msg_name	= &rqstp->rq_addr,
243 			.msg_namelen	= rqstp->rq_addrlen,
244 			.msg_control	= cmh,
245 			.msg_controllen	= sizeof(buffer),
246 			.msg_flags	= MSG_MORE,
247 		};
248 
249 		svc_set_cmsg_data(rqstp, cmh);
250 
251 		if (sock_sendmsg(sock, &msg, 0) < 0)
252 			goto out;
253 	}
254 
255 	tailoff = ((unsigned long)xdr->tail[0].iov_base) & (PAGE_SIZE-1);
256 	headoff = 0;
257 	len = svc_send_common(sock, xdr, rqstp->rq_respages[0], headoff,
258 			       rqstp->rq_respages[0], tailoff);
259 
260 out:
261 	dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
262 		svsk, xdr->head[0].iov_base, xdr->head[0].iov_len,
263 		xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
264 
265 	return len;
266 }
267 
268 /*
269  * Report socket names for nfsdfs
270  */
271 static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining)
272 {
273 	const struct sock *sk = svsk->sk_sk;
274 	const char *proto_name = sk->sk_protocol == IPPROTO_UDP ?
275 							"udp" : "tcp";
276 	int len;
277 
278 	switch (sk->sk_family) {
279 	case PF_INET:
280 		len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n",
281 				proto_name,
282 				&inet_sk(sk)->inet_rcv_saddr,
283 				inet_sk(sk)->inet_num);
284 		break;
285 	case PF_INET6:
286 		len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n",
287 				proto_name,
288 				&inet6_sk(sk)->rcv_saddr,
289 				inet_sk(sk)->inet_num);
290 		break;
291 	default:
292 		len = snprintf(buf, remaining, "*unknown-%d*\n",
293 				sk->sk_family);
294 	}
295 
296 	if (len >= remaining) {
297 		*buf = '\0';
298 		return -ENAMETOOLONG;
299 	}
300 	return len;
301 }
302 
303 /**
304  * svc_sock_names - construct a list of listener names in a string
305  * @serv: pointer to RPC service
306  * @buf: pointer to a buffer to fill in with socket names
307  * @buflen: size of the buffer to be filled
308  * @toclose: pointer to '\0'-terminated C string containing the name
309  *		of a listener to be closed
310  *
311  * Fills in @buf with a '\n'-separated list of names of listener
312  * sockets.  If @toclose is not NULL, the socket named by @toclose
313  * is closed, and is not included in the output list.
314  *
315  * Returns positive length of the socket name string, or a negative
316  * errno value on error.
317  */
318 int svc_sock_names(struct svc_serv *serv, char *buf, const size_t buflen,
319 		   const char *toclose)
320 {
321 	struct svc_sock *svsk, *closesk = NULL;
322 	int len = 0;
323 
324 	if (!serv)
325 		return 0;
326 
327 	spin_lock_bh(&serv->sv_lock);
328 	list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) {
329 		int onelen = svc_one_sock_name(svsk, buf + len, buflen - len);
330 		if (onelen < 0) {
331 			len = onelen;
332 			break;
333 		}
334 		if (toclose && strcmp(toclose, buf + len) == 0) {
335 			closesk = svsk;
336 			svc_xprt_get(&closesk->sk_xprt);
337 		} else
338 			len += onelen;
339 	}
340 	spin_unlock_bh(&serv->sv_lock);
341 
342 	if (closesk) {
343 		/* Should unregister with portmap, but you cannot
344 		 * unregister just one protocol...
345 		 */
346 		svc_close_xprt(&closesk->sk_xprt);
347 		svc_xprt_put(&closesk->sk_xprt);
348 	} else if (toclose)
349 		return -ENOENT;
350 	return len;
351 }
352 EXPORT_SYMBOL_GPL(svc_sock_names);
353 
354 /*
355  * Check input queue length
356  */
357 static int svc_recv_available(struct svc_sock *svsk)
358 {
359 	struct socket	*sock = svsk->sk_sock;
360 	int		avail, err;
361 
362 	err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
363 
364 	return (err >= 0)? avail : err;
365 }
366 
367 /*
368  * Generic recvfrom routine.
369  */
370 static int svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr,
371 			int buflen)
372 {
373 	struct svc_sock *svsk =
374 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
375 	struct msghdr msg = {
376 		.msg_flags	= MSG_DONTWAIT,
377 	};
378 	int len;
379 
380 	rqstp->rq_xprt_hlen = 0;
381 
382 	len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
383 				msg.msg_flags);
384 
385 	dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
386 		svsk, iov[0].iov_base, iov[0].iov_len, len);
387 	return len;
388 }
389 
390 /*
391  * Set socket snd and rcv buffer lengths
392  */
393 static void svc_sock_setbufsize(struct socket *sock, unsigned int snd,
394 				unsigned int rcv)
395 {
396 #if 0
397 	mm_segment_t	oldfs;
398 	oldfs = get_fs(); set_fs(KERNEL_DS);
399 	sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
400 			(char*)&snd, sizeof(snd));
401 	sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
402 			(char*)&rcv, sizeof(rcv));
403 #else
404 	/* sock_setsockopt limits use to sysctl_?mem_max,
405 	 * which isn't acceptable.  Until that is made conditional
406 	 * on not having CAP_SYS_RESOURCE or similar, we go direct...
407 	 * DaveM said I could!
408 	 */
409 	lock_sock(sock->sk);
410 	sock->sk->sk_sndbuf = snd * 2;
411 	sock->sk->sk_rcvbuf = rcv * 2;
412 	sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
413 	sock->sk->sk_write_space(sock->sk);
414 	release_sock(sock->sk);
415 #endif
416 }
417 /*
418  * INET callback when data has been received on the socket.
419  */
420 static void svc_udp_data_ready(struct sock *sk, int count)
421 {
422 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
423 
424 	if (svsk) {
425 		dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
426 			svsk, sk, count,
427 			test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
428 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
429 		svc_xprt_enqueue(&svsk->sk_xprt);
430 	}
431 	if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk)))
432 		wake_up_interruptible(sk_sleep(sk));
433 }
434 
435 /*
436  * INET callback when space is newly available on the socket.
437  */
438 static void svc_write_space(struct sock *sk)
439 {
440 	struct svc_sock	*svsk = (struct svc_sock *)(sk->sk_user_data);
441 
442 	if (svsk) {
443 		dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
444 			svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
445 		svc_xprt_enqueue(&svsk->sk_xprt);
446 	}
447 
448 	if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk))) {
449 		dprintk("RPC svc_write_space: someone sleeping on %p\n",
450 		       svsk);
451 		wake_up_interruptible(sk_sleep(sk));
452 	}
453 }
454 
455 static void svc_tcp_write_space(struct sock *sk)
456 {
457 	struct socket *sock = sk->sk_socket;
458 
459 	if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && sock)
460 		clear_bit(SOCK_NOSPACE, &sock->flags);
461 	svc_write_space(sk);
462 }
463 
464 /*
465  * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo
466  */
467 static int svc_udp_get_dest_address4(struct svc_rqst *rqstp,
468 				     struct cmsghdr *cmh)
469 {
470 	struct in_pktinfo *pki = CMSG_DATA(cmh);
471 	if (cmh->cmsg_type != IP_PKTINFO)
472 		return 0;
473 	rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
474 	return 1;
475 }
476 
477 /*
478  * See net/ipv6/datagram.c : datagram_recv_ctl
479  */
480 static int svc_udp_get_dest_address6(struct svc_rqst *rqstp,
481 				     struct cmsghdr *cmh)
482 {
483 	struct in6_pktinfo *pki = CMSG_DATA(cmh);
484 	if (cmh->cmsg_type != IPV6_PKTINFO)
485 		return 0;
486 	ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
487 	return 1;
488 }
489 
490 /*
491  * Copy the UDP datagram's destination address to the rqstp structure.
492  * The 'destination' address in this case is the address to which the
493  * peer sent the datagram, i.e. our local address. For multihomed
494  * hosts, this can change from msg to msg. Note that only the IP
495  * address changes, the port number should remain the same.
496  */
497 static int svc_udp_get_dest_address(struct svc_rqst *rqstp,
498 				    struct cmsghdr *cmh)
499 {
500 	switch (cmh->cmsg_level) {
501 	case SOL_IP:
502 		return svc_udp_get_dest_address4(rqstp, cmh);
503 	case SOL_IPV6:
504 		return svc_udp_get_dest_address6(rqstp, cmh);
505 	}
506 
507 	return 0;
508 }
509 
510 /*
511  * Receive a datagram from a UDP socket.
512  */
513 static int svc_udp_recvfrom(struct svc_rqst *rqstp)
514 {
515 	struct svc_sock	*svsk =
516 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
517 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
518 	struct sk_buff	*skb;
519 	union {
520 		struct cmsghdr	hdr;
521 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
522 	} buffer;
523 	struct cmsghdr *cmh = &buffer.hdr;
524 	struct msghdr msg = {
525 		.msg_name = svc_addr(rqstp),
526 		.msg_control = cmh,
527 		.msg_controllen = sizeof(buffer),
528 		.msg_flags = MSG_DONTWAIT,
529 	};
530 	size_t len;
531 	int err;
532 
533 	if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
534 	    /* udp sockets need large rcvbuf as all pending
535 	     * requests are still in that buffer.  sndbuf must
536 	     * also be large enough that there is enough space
537 	     * for one reply per thread.  We count all threads
538 	     * rather than threads in a particular pool, which
539 	     * provides an upper bound on the number of threads
540 	     * which will access the socket.
541 	     */
542 	    svc_sock_setbufsize(svsk->sk_sock,
543 				(serv->sv_nrthreads+3) * serv->sv_max_mesg,
544 				(serv->sv_nrthreads+3) * serv->sv_max_mesg);
545 
546 	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
547 	skb = NULL;
548 	err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
549 			     0, 0, MSG_PEEK | MSG_DONTWAIT);
550 	if (err >= 0)
551 		skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
552 
553 	if (skb == NULL) {
554 		if (err != -EAGAIN) {
555 			/* possibly an icmp error */
556 			dprintk("svc: recvfrom returned error %d\n", -err);
557 			set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
558 		}
559 		return -EAGAIN;
560 	}
561 	len = svc_addr_len(svc_addr(rqstp));
562 	if (len == 0)
563 		return -EAFNOSUPPORT;
564 	rqstp->rq_addrlen = len;
565 	if (skb->tstamp.tv64 == 0) {
566 		skb->tstamp = ktime_get_real();
567 		/* Don't enable netstamp, sunrpc doesn't
568 		   need that much accuracy */
569 	}
570 	svsk->sk_sk->sk_stamp = skb->tstamp;
571 	set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
572 
573 	len  = skb->len - sizeof(struct udphdr);
574 	rqstp->rq_arg.len = len;
575 
576 	rqstp->rq_prot = IPPROTO_UDP;
577 
578 	if (!svc_udp_get_dest_address(rqstp, cmh)) {
579 		if (net_ratelimit())
580 			printk(KERN_WARNING
581 				"svc: received unknown control message %d/%d; "
582 				"dropping RPC reply datagram\n",
583 					cmh->cmsg_level, cmh->cmsg_type);
584 		skb_free_datagram_locked(svsk->sk_sk, skb);
585 		return 0;
586 	}
587 
588 	if (skb_is_nonlinear(skb)) {
589 		/* we have to copy */
590 		local_bh_disable();
591 		if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
592 			local_bh_enable();
593 			/* checksum error */
594 			skb_free_datagram_locked(svsk->sk_sk, skb);
595 			return 0;
596 		}
597 		local_bh_enable();
598 		skb_free_datagram_locked(svsk->sk_sk, skb);
599 	} else {
600 		/* we can use it in-place */
601 		rqstp->rq_arg.head[0].iov_base = skb->data +
602 			sizeof(struct udphdr);
603 		rqstp->rq_arg.head[0].iov_len = len;
604 		if (skb_checksum_complete(skb)) {
605 			skb_free_datagram_locked(svsk->sk_sk, skb);
606 			return 0;
607 		}
608 		rqstp->rq_xprt_ctxt = skb;
609 	}
610 
611 	rqstp->rq_arg.page_base = 0;
612 	if (len <= rqstp->rq_arg.head[0].iov_len) {
613 		rqstp->rq_arg.head[0].iov_len = len;
614 		rqstp->rq_arg.page_len = 0;
615 		rqstp->rq_respages = rqstp->rq_pages+1;
616 	} else {
617 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
618 		rqstp->rq_respages = rqstp->rq_pages + 1 +
619 			DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
620 	}
621 
622 	if (serv->sv_stats)
623 		serv->sv_stats->netudpcnt++;
624 
625 	return len;
626 }
627 
628 static int
629 svc_udp_sendto(struct svc_rqst *rqstp)
630 {
631 	int		error;
632 
633 	error = svc_sendto(rqstp, &rqstp->rq_res);
634 	if (error == -ECONNREFUSED)
635 		/* ICMP error on earlier request. */
636 		error = svc_sendto(rqstp, &rqstp->rq_res);
637 
638 	return error;
639 }
640 
641 static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp)
642 {
643 }
644 
645 static int svc_udp_has_wspace(struct svc_xprt *xprt)
646 {
647 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
648 	struct svc_serv	*serv = xprt->xpt_server;
649 	unsigned long required;
650 
651 	/*
652 	 * Set the SOCK_NOSPACE flag before checking the available
653 	 * sock space.
654 	 */
655 	set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
656 	required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
657 	if (required*2 > sock_wspace(svsk->sk_sk))
658 		return 0;
659 	clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
660 	return 1;
661 }
662 
663 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
664 {
665 	BUG();
666 	return NULL;
667 }
668 
669 static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
670 				       struct net *net,
671 				       struct sockaddr *sa, int salen,
672 				       int flags)
673 {
674 	return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags);
675 }
676 
677 static struct svc_xprt_ops svc_udp_ops = {
678 	.xpo_create = svc_udp_create,
679 	.xpo_recvfrom = svc_udp_recvfrom,
680 	.xpo_sendto = svc_udp_sendto,
681 	.xpo_release_rqst = svc_release_skb,
682 	.xpo_detach = svc_sock_detach,
683 	.xpo_free = svc_sock_free,
684 	.xpo_prep_reply_hdr = svc_udp_prep_reply_hdr,
685 	.xpo_has_wspace = svc_udp_has_wspace,
686 	.xpo_accept = svc_udp_accept,
687 };
688 
689 static struct svc_xprt_class svc_udp_class = {
690 	.xcl_name = "udp",
691 	.xcl_owner = THIS_MODULE,
692 	.xcl_ops = &svc_udp_ops,
693 	.xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
694 };
695 
696 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
697 {
698 	int err, level, optname, one = 1;
699 
700 	svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv);
701 	clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
702 	svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
703 	svsk->sk_sk->sk_write_space = svc_write_space;
704 
705 	/* initialise setting must have enough space to
706 	 * receive and respond to one request.
707 	 * svc_udp_recvfrom will re-adjust if necessary
708 	 */
709 	svc_sock_setbufsize(svsk->sk_sock,
710 			    3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
711 			    3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
712 
713 	/* data might have come in before data_ready set up */
714 	set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
715 	set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
716 
717 	/* make sure we get destination address info */
718 	switch (svsk->sk_sk->sk_family) {
719 	case AF_INET:
720 		level = SOL_IP;
721 		optname = IP_PKTINFO;
722 		break;
723 	case AF_INET6:
724 		level = SOL_IPV6;
725 		optname = IPV6_RECVPKTINFO;
726 		break;
727 	default:
728 		BUG();
729 	}
730 	err = kernel_setsockopt(svsk->sk_sock, level, optname,
731 					(char *)&one, sizeof(one));
732 	dprintk("svc: kernel_setsockopt returned %d\n", err);
733 }
734 
735 /*
736  * A data_ready event on a listening socket means there's a connection
737  * pending. Do not use state_change as a substitute for it.
738  */
739 static void svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
740 {
741 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
742 
743 	dprintk("svc: socket %p TCP (listen) state change %d\n",
744 		sk, sk->sk_state);
745 
746 	/*
747 	 * This callback may called twice when a new connection
748 	 * is established as a child socket inherits everything
749 	 * from a parent LISTEN socket.
750 	 * 1) data_ready method of the parent socket will be called
751 	 *    when one of child sockets become ESTABLISHED.
752 	 * 2) data_ready method of the child socket may be called
753 	 *    when it receives data before the socket is accepted.
754 	 * In case of 2, we should ignore it silently.
755 	 */
756 	if (sk->sk_state == TCP_LISTEN) {
757 		if (svsk) {
758 			set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
759 			svc_xprt_enqueue(&svsk->sk_xprt);
760 		} else
761 			printk("svc: socket %p: no user data\n", sk);
762 	}
763 
764 	if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk)))
765 		wake_up_interruptible_all(sk_sleep(sk));
766 }
767 
768 /*
769  * A state change on a connected socket means it's dying or dead.
770  */
771 static void svc_tcp_state_change(struct sock *sk)
772 {
773 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
774 
775 	dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
776 		sk, sk->sk_state, sk->sk_user_data);
777 
778 	if (!svsk)
779 		printk("svc: socket %p: no user data\n", sk);
780 	else {
781 		set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
782 		svc_xprt_enqueue(&svsk->sk_xprt);
783 	}
784 	if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk)))
785 		wake_up_interruptible_all(sk_sleep(sk));
786 }
787 
788 static void svc_tcp_data_ready(struct sock *sk, int count)
789 {
790 	struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
791 
792 	dprintk("svc: socket %p TCP data ready (svsk %p)\n",
793 		sk, sk->sk_user_data);
794 	if (svsk) {
795 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
796 		svc_xprt_enqueue(&svsk->sk_xprt);
797 	}
798 	if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk)))
799 		wake_up_interruptible(sk_sleep(sk));
800 }
801 
802 /*
803  * Accept a TCP connection
804  */
805 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
806 {
807 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
808 	struct sockaddr_storage addr;
809 	struct sockaddr	*sin = (struct sockaddr *) &addr;
810 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
811 	struct socket	*sock = svsk->sk_sock;
812 	struct socket	*newsock;
813 	struct svc_sock	*newsvsk;
814 	int		err, slen;
815 	RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
816 
817 	dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
818 	if (!sock)
819 		return NULL;
820 
821 	clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
822 	err = kernel_accept(sock, &newsock, O_NONBLOCK);
823 	if (err < 0) {
824 		if (err == -ENOMEM)
825 			printk(KERN_WARNING "%s: no more sockets!\n",
826 			       serv->sv_name);
827 		else if (err != -EAGAIN && net_ratelimit())
828 			printk(KERN_WARNING "%s: accept failed (err %d)!\n",
829 				   serv->sv_name, -err);
830 		return NULL;
831 	}
832 	set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
833 
834 	err = kernel_getpeername(newsock, sin, &slen);
835 	if (err < 0) {
836 		if (net_ratelimit())
837 			printk(KERN_WARNING "%s: peername failed (err %d)!\n",
838 				   serv->sv_name, -err);
839 		goto failed;		/* aborted connection or whatever */
840 	}
841 
842 	/* Ideally, we would want to reject connections from unauthorized
843 	 * hosts here, but when we get encryption, the IP of the host won't
844 	 * tell us anything.  For now just warn about unpriv connections.
845 	 */
846 	if (!svc_port_is_privileged(sin)) {
847 		dprintk(KERN_WARNING
848 			"%s: connect from unprivileged port: %s\n",
849 			serv->sv_name,
850 			__svc_print_addr(sin, buf, sizeof(buf)));
851 	}
852 	dprintk("%s: connect from %s\n", serv->sv_name,
853 		__svc_print_addr(sin, buf, sizeof(buf)));
854 
855 	/* make sure that a write doesn't block forever when
856 	 * low on memory
857 	 */
858 	newsock->sk->sk_sndtimeo = HZ*30;
859 
860 	if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
861 				 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
862 		goto failed;
863 	svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
864 	err = kernel_getsockname(newsock, sin, &slen);
865 	if (unlikely(err < 0)) {
866 		dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
867 		slen = offsetof(struct sockaddr, sa_data);
868 	}
869 	svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
870 
871 	if (serv->sv_stats)
872 		serv->sv_stats->nettcpconn++;
873 
874 	return &newsvsk->sk_xprt;
875 
876 failed:
877 	sock_release(newsock);
878 	return NULL;
879 }
880 
881 /*
882  * Receive data.
883  * If we haven't gotten the record length yet, get the next four bytes.
884  * Otherwise try to gobble up as much as possible up to the complete
885  * record length.
886  */
887 static int svc_tcp_recv_record(struct svc_sock *svsk, struct svc_rqst *rqstp)
888 {
889 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
890 	int len;
891 
892 	if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
893 		/* sndbuf needs to have room for one request
894 		 * per thread, otherwise we can stall even when the
895 		 * network isn't a bottleneck.
896 		 *
897 		 * We count all threads rather than threads in a
898 		 * particular pool, which provides an upper bound
899 		 * on the number of threads which will access the socket.
900 		 *
901 		 * rcvbuf just needs to be able to hold a few requests.
902 		 * Normally they will be removed from the queue
903 		 * as soon a a complete request arrives.
904 		 */
905 		svc_sock_setbufsize(svsk->sk_sock,
906 				    (serv->sv_nrthreads+3) * serv->sv_max_mesg,
907 				    3 * serv->sv_max_mesg);
908 
909 	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
910 
911 	if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) {
912 		int		want = sizeof(rpc_fraghdr) - svsk->sk_tcplen;
913 		struct kvec	iov;
914 
915 		iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
916 		iov.iov_len  = want;
917 		if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
918 			goto error;
919 		svsk->sk_tcplen += len;
920 
921 		if (len < want) {
922 			dprintk("svc: short recvfrom while reading record "
923 				"length (%d of %d)\n", len, want);
924 			goto err_again; /* record header not complete */
925 		}
926 
927 		svsk->sk_reclen = ntohl(svsk->sk_reclen);
928 		if (!(svsk->sk_reclen & RPC_LAST_STREAM_FRAGMENT)) {
929 			/* FIXME: technically, a record can be fragmented,
930 			 *  and non-terminal fragments will not have the top
931 			 *  bit set in the fragment length header.
932 			 *  But apparently no known nfs clients send fragmented
933 			 *  records. */
934 			if (net_ratelimit())
935 				printk(KERN_NOTICE "RPC: multiple fragments "
936 					"per record not supported\n");
937 			goto err_delete;
938 		}
939 
940 		svsk->sk_reclen &= RPC_FRAGMENT_SIZE_MASK;
941 		dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
942 		if (svsk->sk_reclen > serv->sv_max_mesg) {
943 			if (net_ratelimit())
944 				printk(KERN_NOTICE "RPC: "
945 					"fragment too large: 0x%08lx\n",
946 					(unsigned long)svsk->sk_reclen);
947 			goto err_delete;
948 		}
949 	}
950 
951 	/* Check whether enough data is available */
952 	len = svc_recv_available(svsk);
953 	if (len < 0)
954 		goto error;
955 
956 	if (len < svsk->sk_reclen) {
957 		dprintk("svc: incomplete TCP record (%d of %d)\n",
958 			len, svsk->sk_reclen);
959 		goto err_again;	/* record not complete */
960 	}
961 	len = svsk->sk_reclen;
962 	set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
963 
964 	return len;
965  error:
966 	if (len == -EAGAIN)
967 		dprintk("RPC: TCP recv_record got EAGAIN\n");
968 	return len;
969  err_delete:
970 	set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
971  err_again:
972 	return -EAGAIN;
973 }
974 
975 static int svc_process_calldir(struct svc_sock *svsk, struct svc_rqst *rqstp,
976 			       struct rpc_rqst **reqpp, struct kvec *vec)
977 {
978 	struct rpc_rqst *req = NULL;
979 	u32 *p;
980 	u32 xid;
981 	u32 calldir;
982 	int len;
983 
984 	len = svc_recvfrom(rqstp, vec, 1, 8);
985 	if (len < 0)
986 		goto error;
987 
988 	p = (u32 *)rqstp->rq_arg.head[0].iov_base;
989 	xid = *p++;
990 	calldir = *p;
991 
992 	if (calldir == 0) {
993 		/* REQUEST is the most common case */
994 		vec[0] = rqstp->rq_arg.head[0];
995 	} else {
996 		/* REPLY */
997 		struct rpc_xprt *bc_xprt = svsk->sk_xprt.xpt_bc_xprt;
998 
999 		if (bc_xprt)
1000 			req = xprt_lookup_rqst(bc_xprt, xid);
1001 
1002 		if (!req) {
1003 			printk(KERN_NOTICE
1004 				"%s: Got unrecognized reply: "
1005 				"calldir 0x%x xpt_bc_xprt %p xid %08x\n",
1006 				__func__, ntohl(calldir),
1007 				bc_xprt, xid);
1008 			vec[0] = rqstp->rq_arg.head[0];
1009 			goto out;
1010 		}
1011 
1012 		memcpy(&req->rq_private_buf, &req->rq_rcv_buf,
1013 		       sizeof(struct xdr_buf));
1014 		/* copy the xid and call direction */
1015 		memcpy(req->rq_private_buf.head[0].iov_base,
1016 		       rqstp->rq_arg.head[0].iov_base, 8);
1017 		vec[0] = req->rq_private_buf.head[0];
1018 	}
1019  out:
1020 	vec[0].iov_base += 8;
1021 	vec[0].iov_len -= 8;
1022 	len = svsk->sk_reclen - 8;
1023  error:
1024 	*reqpp = req;
1025 	return len;
1026 }
1027 
1028 /*
1029  * Receive data from a TCP socket.
1030  */
1031 static int svc_tcp_recvfrom(struct svc_rqst *rqstp)
1032 {
1033 	struct svc_sock	*svsk =
1034 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
1035 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
1036 	int		len;
1037 	struct kvec *vec;
1038 	int pnum, vlen;
1039 	struct rpc_rqst *req = NULL;
1040 
1041 	dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1042 		svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags),
1043 		test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags),
1044 		test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags));
1045 
1046 	len = svc_tcp_recv_record(svsk, rqstp);
1047 	if (len < 0)
1048 		goto error;
1049 
1050 	vec = rqstp->rq_vec;
1051 	vec[0] = rqstp->rq_arg.head[0];
1052 	vlen = PAGE_SIZE;
1053 
1054 	/*
1055 	 * We have enough data for the whole tcp record. Let's try and read the
1056 	 * first 8 bytes to get the xid and the call direction. We can use this
1057 	 * to figure out if this is a call or a reply to a callback. If
1058 	 * sk_reclen is < 8 (xid and calldir), then this is a malformed packet.
1059 	 * In that case, don't bother with the calldir and just read the data.
1060 	 * It will be rejected in svc_process.
1061 	 */
1062 	if (len >= 8) {
1063 		len = svc_process_calldir(svsk, rqstp, &req, vec);
1064 		if (len < 0)
1065 			goto err_again;
1066 		vlen -= 8;
1067 	}
1068 
1069 	pnum = 1;
1070 	while (vlen < len) {
1071 		vec[pnum].iov_base = (req) ?
1072 			page_address(req->rq_private_buf.pages[pnum - 1]) :
1073 			page_address(rqstp->rq_pages[pnum]);
1074 		vec[pnum].iov_len = PAGE_SIZE;
1075 		pnum++;
1076 		vlen += PAGE_SIZE;
1077 	}
1078 	rqstp->rq_respages = &rqstp->rq_pages[pnum];
1079 
1080 	/* Now receive data */
1081 	len = svc_recvfrom(rqstp, vec, pnum, len);
1082 	if (len < 0)
1083 		goto err_again;
1084 
1085 	/*
1086 	 * Account for the 8 bytes we read earlier
1087 	 */
1088 	len += 8;
1089 
1090 	if (req) {
1091 		xprt_complete_rqst(req->rq_task, len);
1092 		len = 0;
1093 		goto out;
1094 	}
1095 	dprintk("svc: TCP complete record (%d bytes)\n", len);
1096 	rqstp->rq_arg.len = len;
1097 	rqstp->rq_arg.page_base = 0;
1098 	if (len <= rqstp->rq_arg.head[0].iov_len) {
1099 		rqstp->rq_arg.head[0].iov_len = len;
1100 		rqstp->rq_arg.page_len = 0;
1101 	} else {
1102 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1103 	}
1104 
1105 	rqstp->rq_xprt_ctxt   = NULL;
1106 	rqstp->rq_prot	      = IPPROTO_TCP;
1107 
1108 out:
1109 	/* Reset TCP read info */
1110 	svsk->sk_reclen = 0;
1111 	svsk->sk_tcplen = 0;
1112 
1113 	svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
1114 	if (serv->sv_stats)
1115 		serv->sv_stats->nettcpcnt++;
1116 
1117 	return len;
1118 
1119 err_again:
1120 	if (len == -EAGAIN) {
1121 		dprintk("RPC: TCP recvfrom got EAGAIN\n");
1122 		return len;
1123 	}
1124 error:
1125 	if (len != -EAGAIN) {
1126 		printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1127 		       svsk->sk_xprt.xpt_server->sv_name, -len);
1128 		set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1129 	}
1130 	return -EAGAIN;
1131 }
1132 
1133 /*
1134  * Send out data on TCP socket.
1135  */
1136 static int svc_tcp_sendto(struct svc_rqst *rqstp)
1137 {
1138 	struct xdr_buf	*xbufp = &rqstp->rq_res;
1139 	int sent;
1140 	__be32 reclen;
1141 
1142 	/* Set up the first element of the reply kvec.
1143 	 * Any other kvecs that may be in use have been taken
1144 	 * care of by the server implementation itself.
1145 	 */
1146 	reclen = htonl(0x80000000|((xbufp->len ) - 4));
1147 	memcpy(xbufp->head[0].iov_base, &reclen, 4);
1148 
1149 	sent = svc_sendto(rqstp, &rqstp->rq_res);
1150 	if (sent != xbufp->len) {
1151 		printk(KERN_NOTICE
1152 		       "rpc-srv/tcp: %s: %s %d when sending %d bytes "
1153 		       "- shutting down socket\n",
1154 		       rqstp->rq_xprt->xpt_server->sv_name,
1155 		       (sent<0)?"got error":"sent only",
1156 		       sent, xbufp->len);
1157 		set_bit(XPT_CLOSE, &rqstp->rq_xprt->xpt_flags);
1158 		svc_xprt_enqueue(rqstp->rq_xprt);
1159 		sent = -EAGAIN;
1160 	}
1161 	return sent;
1162 }
1163 
1164 /*
1165  * Setup response header. TCP has a 4B record length field.
1166  */
1167 static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp)
1168 {
1169 	struct kvec *resv = &rqstp->rq_res.head[0];
1170 
1171 	/* tcp needs a space for the record length... */
1172 	svc_putnl(resv, 0);
1173 }
1174 
1175 static int svc_tcp_has_wspace(struct svc_xprt *xprt)
1176 {
1177 	struct svc_sock *svsk =	container_of(xprt, struct svc_sock, sk_xprt);
1178 	struct svc_serv *serv = svsk->sk_xprt.xpt_server;
1179 	int required;
1180 
1181 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags))
1182 		return 1;
1183 	required = atomic_read(&xprt->xpt_reserved) + serv->sv_max_mesg;
1184 	if (sk_stream_wspace(svsk->sk_sk) >= required)
1185 		return 1;
1186 	set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
1187 	return 0;
1188 }
1189 
1190 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
1191 				       struct net *net,
1192 				       struct sockaddr *sa, int salen,
1193 				       int flags)
1194 {
1195 	return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags);
1196 }
1197 
1198 #if defined(CONFIG_NFS_V4_1)
1199 static struct svc_xprt *svc_bc_create_socket(struct svc_serv *, int,
1200 					     struct net *, struct sockaddr *,
1201 					     int, int);
1202 static void svc_bc_sock_free(struct svc_xprt *xprt);
1203 
1204 static struct svc_xprt *svc_bc_tcp_create(struct svc_serv *serv,
1205 				       struct net *net,
1206 				       struct sockaddr *sa, int salen,
1207 				       int flags)
1208 {
1209 	return svc_bc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags);
1210 }
1211 
1212 static void svc_bc_tcp_sock_detach(struct svc_xprt *xprt)
1213 {
1214 }
1215 
1216 static struct svc_xprt_ops svc_tcp_bc_ops = {
1217 	.xpo_create = svc_bc_tcp_create,
1218 	.xpo_detach = svc_bc_tcp_sock_detach,
1219 	.xpo_free = svc_bc_sock_free,
1220 	.xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
1221 };
1222 
1223 static struct svc_xprt_class svc_tcp_bc_class = {
1224 	.xcl_name = "tcp-bc",
1225 	.xcl_owner = THIS_MODULE,
1226 	.xcl_ops = &svc_tcp_bc_ops,
1227 	.xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1228 };
1229 
1230 static void svc_init_bc_xprt_sock(void)
1231 {
1232 	svc_reg_xprt_class(&svc_tcp_bc_class);
1233 }
1234 
1235 static void svc_cleanup_bc_xprt_sock(void)
1236 {
1237 	svc_unreg_xprt_class(&svc_tcp_bc_class);
1238 }
1239 #else /* CONFIG_NFS_V4_1 */
1240 static void svc_init_bc_xprt_sock(void)
1241 {
1242 }
1243 
1244 static void svc_cleanup_bc_xprt_sock(void)
1245 {
1246 }
1247 #endif /* CONFIG_NFS_V4_1 */
1248 
1249 static struct svc_xprt_ops svc_tcp_ops = {
1250 	.xpo_create = svc_tcp_create,
1251 	.xpo_recvfrom = svc_tcp_recvfrom,
1252 	.xpo_sendto = svc_tcp_sendto,
1253 	.xpo_release_rqst = svc_release_skb,
1254 	.xpo_detach = svc_tcp_sock_detach,
1255 	.xpo_free = svc_sock_free,
1256 	.xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
1257 	.xpo_has_wspace = svc_tcp_has_wspace,
1258 	.xpo_accept = svc_tcp_accept,
1259 };
1260 
1261 static struct svc_xprt_class svc_tcp_class = {
1262 	.xcl_name = "tcp",
1263 	.xcl_owner = THIS_MODULE,
1264 	.xcl_ops = &svc_tcp_ops,
1265 	.xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1266 };
1267 
1268 void svc_init_xprt_sock(void)
1269 {
1270 	svc_reg_xprt_class(&svc_tcp_class);
1271 	svc_reg_xprt_class(&svc_udp_class);
1272 	svc_init_bc_xprt_sock();
1273 }
1274 
1275 void svc_cleanup_xprt_sock(void)
1276 {
1277 	svc_unreg_xprt_class(&svc_tcp_class);
1278 	svc_unreg_xprt_class(&svc_udp_class);
1279 	svc_cleanup_bc_xprt_sock();
1280 }
1281 
1282 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
1283 {
1284 	struct sock	*sk = svsk->sk_sk;
1285 
1286 	svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv);
1287 	set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
1288 	if (sk->sk_state == TCP_LISTEN) {
1289 		dprintk("setting up TCP socket for listening\n");
1290 		set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
1291 		sk->sk_data_ready = svc_tcp_listen_data_ready;
1292 		set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1293 	} else {
1294 		dprintk("setting up TCP socket for reading\n");
1295 		sk->sk_state_change = svc_tcp_state_change;
1296 		sk->sk_data_ready = svc_tcp_data_ready;
1297 		sk->sk_write_space = svc_tcp_write_space;
1298 
1299 		svsk->sk_reclen = 0;
1300 		svsk->sk_tcplen = 0;
1301 
1302 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF;
1303 
1304 		/* initialise setting must have enough space to
1305 		 * receive and respond to one request.
1306 		 * svc_tcp_recvfrom will re-adjust if necessary
1307 		 */
1308 		svc_sock_setbufsize(svsk->sk_sock,
1309 				    3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
1310 				    3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
1311 
1312 		set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1313 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1314 		if (sk->sk_state != TCP_ESTABLISHED)
1315 			set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1316 	}
1317 }
1318 
1319 void svc_sock_update_bufs(struct svc_serv *serv)
1320 {
1321 	/*
1322 	 * The number of server threads has changed. Update
1323 	 * rcvbuf and sndbuf accordingly on all sockets
1324 	 */
1325 	struct svc_sock *svsk;
1326 
1327 	spin_lock_bh(&serv->sv_lock);
1328 	list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list)
1329 		set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1330 	list_for_each_entry(svsk, &serv->sv_tempsocks, sk_xprt.xpt_list)
1331 		set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1332 	spin_unlock_bh(&serv->sv_lock);
1333 }
1334 EXPORT_SYMBOL_GPL(svc_sock_update_bufs);
1335 
1336 /*
1337  * Initialize socket for RPC use and create svc_sock struct
1338  * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1339  */
1340 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1341 						struct socket *sock,
1342 						int *errp, int flags)
1343 {
1344 	struct svc_sock	*svsk;
1345 	struct sock	*inet;
1346 	int		pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1347 
1348 	dprintk("svc: svc_setup_socket %p\n", sock);
1349 	if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1350 		*errp = -ENOMEM;
1351 		return NULL;
1352 	}
1353 
1354 	inet = sock->sk;
1355 
1356 	/* Register socket with portmapper */
1357 	if (*errp >= 0 && pmap_register)
1358 		*errp = svc_register(serv, inet->sk_family, inet->sk_protocol,
1359 				     ntohs(inet_sk(inet)->inet_sport));
1360 
1361 	if (*errp < 0) {
1362 		kfree(svsk);
1363 		return NULL;
1364 	}
1365 
1366 	inet->sk_user_data = svsk;
1367 	svsk->sk_sock = sock;
1368 	svsk->sk_sk = inet;
1369 	svsk->sk_ostate = inet->sk_state_change;
1370 	svsk->sk_odata = inet->sk_data_ready;
1371 	svsk->sk_owspace = inet->sk_write_space;
1372 
1373 	/* Initialize the socket */
1374 	if (sock->type == SOCK_DGRAM)
1375 		svc_udp_init(svsk, serv);
1376 	else
1377 		svc_tcp_init(svsk, serv);
1378 
1379 	dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1380 				svsk, svsk->sk_sk);
1381 
1382 	return svsk;
1383 }
1384 
1385 /**
1386  * svc_addsock - add a listener socket to an RPC service
1387  * @serv: pointer to RPC service to which to add a new listener
1388  * @fd: file descriptor of the new listener
1389  * @name_return: pointer to buffer to fill in with name of listener
1390  * @len: size of the buffer
1391  *
1392  * Fills in socket name and returns positive length of name if successful.
1393  * Name is terminated with '\n'.  On error, returns a negative errno
1394  * value.
1395  */
1396 int svc_addsock(struct svc_serv *serv, const int fd, char *name_return,
1397 		const size_t len)
1398 {
1399 	int err = 0;
1400 	struct socket *so = sockfd_lookup(fd, &err);
1401 	struct svc_sock *svsk = NULL;
1402 
1403 	if (!so)
1404 		return err;
1405 	if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6))
1406 		err =  -EAFNOSUPPORT;
1407 	else if (so->sk->sk_protocol != IPPROTO_TCP &&
1408 	    so->sk->sk_protocol != IPPROTO_UDP)
1409 		err =  -EPROTONOSUPPORT;
1410 	else if (so->state > SS_UNCONNECTED)
1411 		err = -EISCONN;
1412 	else {
1413 		if (!try_module_get(THIS_MODULE))
1414 			err = -ENOENT;
1415 		else
1416 			svsk = svc_setup_socket(serv, so, &err,
1417 						SVC_SOCK_DEFAULTS);
1418 		if (svsk) {
1419 			struct sockaddr_storage addr;
1420 			struct sockaddr *sin = (struct sockaddr *)&addr;
1421 			int salen;
1422 			if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0)
1423 				svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
1424 			clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
1425 			spin_lock_bh(&serv->sv_lock);
1426 			list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks);
1427 			spin_unlock_bh(&serv->sv_lock);
1428 			svc_xprt_received(&svsk->sk_xprt);
1429 			err = 0;
1430 		} else
1431 			module_put(THIS_MODULE);
1432 	}
1433 	if (err) {
1434 		sockfd_put(so);
1435 		return err;
1436 	}
1437 	return svc_one_sock_name(svsk, name_return, len);
1438 }
1439 EXPORT_SYMBOL_GPL(svc_addsock);
1440 
1441 /*
1442  * Create socket for RPC service.
1443  */
1444 static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
1445 					  int protocol,
1446 					  struct net *net,
1447 					  struct sockaddr *sin, int len,
1448 					  int flags)
1449 {
1450 	struct svc_sock	*svsk;
1451 	struct socket	*sock;
1452 	int		error;
1453 	int		type;
1454 	struct sockaddr_storage addr;
1455 	struct sockaddr *newsin = (struct sockaddr *)&addr;
1456 	int		newlen;
1457 	int		family;
1458 	int		val;
1459 	RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
1460 
1461 	dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1462 			serv->sv_program->pg_name, protocol,
1463 			__svc_print_addr(sin, buf, sizeof(buf)));
1464 
1465 	if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1466 		printk(KERN_WARNING "svc: only UDP and TCP "
1467 				"sockets supported\n");
1468 		return ERR_PTR(-EINVAL);
1469 	}
1470 
1471 	type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1472 	switch (sin->sa_family) {
1473 	case AF_INET6:
1474 		family = PF_INET6;
1475 		break;
1476 	case AF_INET:
1477 		family = PF_INET;
1478 		break;
1479 	default:
1480 		return ERR_PTR(-EINVAL);
1481 	}
1482 
1483 	error = __sock_create(net, family, type, protocol, &sock, 1);
1484 	if (error < 0)
1485 		return ERR_PTR(error);
1486 
1487 	svc_reclassify_socket(sock);
1488 
1489 	/*
1490 	 * If this is an PF_INET6 listener, we want to avoid
1491 	 * getting requests from IPv4 remotes.  Those should
1492 	 * be shunted to a PF_INET listener via rpcbind.
1493 	 */
1494 	val = 1;
1495 	if (family == PF_INET6)
1496 		kernel_setsockopt(sock, SOL_IPV6, IPV6_V6ONLY,
1497 					(char *)&val, sizeof(val));
1498 
1499 	if (type == SOCK_STREAM)
1500 		sock->sk->sk_reuse = 1;		/* allow address reuse */
1501 	error = kernel_bind(sock, sin, len);
1502 	if (error < 0)
1503 		goto bummer;
1504 
1505 	newlen = len;
1506 	error = kernel_getsockname(sock, newsin, &newlen);
1507 	if (error < 0)
1508 		goto bummer;
1509 
1510 	if (protocol == IPPROTO_TCP) {
1511 		if ((error = kernel_listen(sock, 64)) < 0)
1512 			goto bummer;
1513 	}
1514 
1515 	if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1516 		svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
1517 		return (struct svc_xprt *)svsk;
1518 	}
1519 
1520 bummer:
1521 	dprintk("svc: svc_create_socket error = %d\n", -error);
1522 	sock_release(sock);
1523 	return ERR_PTR(error);
1524 }
1525 
1526 /*
1527  * Detach the svc_sock from the socket so that no
1528  * more callbacks occur.
1529  */
1530 static void svc_sock_detach(struct svc_xprt *xprt)
1531 {
1532 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1533 	struct sock *sk = svsk->sk_sk;
1534 
1535 	dprintk("svc: svc_sock_detach(%p)\n", svsk);
1536 
1537 	/* put back the old socket callbacks */
1538 	sk->sk_state_change = svsk->sk_ostate;
1539 	sk->sk_data_ready = svsk->sk_odata;
1540 	sk->sk_write_space = svsk->sk_owspace;
1541 
1542 	if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk)))
1543 		wake_up_interruptible(sk_sleep(sk));
1544 }
1545 
1546 /*
1547  * Disconnect the socket, and reset the callbacks
1548  */
1549 static void svc_tcp_sock_detach(struct svc_xprt *xprt)
1550 {
1551 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1552 
1553 	dprintk("svc: svc_tcp_sock_detach(%p)\n", svsk);
1554 
1555 	svc_sock_detach(xprt);
1556 
1557 	if (!test_bit(XPT_LISTENER, &xprt->xpt_flags))
1558 		kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR);
1559 }
1560 
1561 /*
1562  * Free the svc_sock's socket resources and the svc_sock itself.
1563  */
1564 static void svc_sock_free(struct svc_xprt *xprt)
1565 {
1566 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1567 	dprintk("svc: svc_sock_free(%p)\n", svsk);
1568 
1569 	if (svsk->sk_sock->file)
1570 		sockfd_put(svsk->sk_sock);
1571 	else
1572 		sock_release(svsk->sk_sock);
1573 	kfree(svsk);
1574 }
1575 
1576 #if defined(CONFIG_NFS_V4_1)
1577 /*
1578  * Create a back channel svc_xprt which shares the fore channel socket.
1579  */
1580 static struct svc_xprt *svc_bc_create_socket(struct svc_serv *serv,
1581 					     int protocol,
1582 					     struct net *net,
1583 					     struct sockaddr *sin, int len,
1584 					     int flags)
1585 {
1586 	struct svc_sock *svsk;
1587 	struct svc_xprt *xprt;
1588 
1589 	if (protocol != IPPROTO_TCP) {
1590 		printk(KERN_WARNING "svc: only TCP sockets"
1591 			" supported on shared back channel\n");
1592 		return ERR_PTR(-EINVAL);
1593 	}
1594 
1595 	svsk = kzalloc(sizeof(*svsk), GFP_KERNEL);
1596 	if (!svsk)
1597 		return ERR_PTR(-ENOMEM);
1598 
1599 	xprt = &svsk->sk_xprt;
1600 	svc_xprt_init(&svc_tcp_bc_class, xprt, serv);
1601 
1602 	serv->sv_bc_xprt = xprt;
1603 
1604 	return xprt;
1605 }
1606 
1607 /*
1608  * Free a back channel svc_sock.
1609  */
1610 static void svc_bc_sock_free(struct svc_xprt *xprt)
1611 {
1612 	if (xprt)
1613 		kfree(container_of(xprt, struct svc_sock, sk_xprt));
1614 }
1615 #endif /* CONFIG_NFS_V4_1 */
1616