xref: /openbmc/linux/net/sunrpc/svcsock.c (revision 9df839a711aee437390b16ee39cf0b5c1620be6a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svcsock.c
4  *
5  * These are the RPC server socket internals.
6  *
7  * The server scheduling algorithm does not always distribute the load
8  * evenly when servicing a single client. May need to modify the
9  * svc_xprt_enqueue procedure...
10  *
11  * TCP support is largely untested and may be a little slow. The problem
12  * is that we currently do two separate recvfrom's, one for the 4-byte
13  * record length, and the second for the actual record. This could possibly
14  * be improved by always reading a minimum size of around 100 bytes and
15  * tucking any superfluous bytes away in a temporary store. Still, that
16  * leaves write requests out in the rain. An alternative may be to peek at
17  * the first skb in the queue, and if it matches the next TCP sequence
18  * number, to extract the record marker. Yuck.
19  *
20  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/module.h>
26 #include <linux/errno.h>
27 #include <linux/fcntl.h>
28 #include <linux/net.h>
29 #include <linux/in.h>
30 #include <linux/inet.h>
31 #include <linux/udp.h>
32 #include <linux/tcp.h>
33 #include <linux/unistd.h>
34 #include <linux/slab.h>
35 #include <linux/netdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/file.h>
38 #include <linux/freezer.h>
39 #include <net/sock.h>
40 #include <net/checksum.h>
41 #include <net/ip.h>
42 #include <net/ipv6.h>
43 #include <net/udp.h>
44 #include <net/tcp.h>
45 #include <net/tcp_states.h>
46 #include <linux/uaccess.h>
47 #include <linux/highmem.h>
48 #include <asm/ioctls.h>
49 
50 #include <linux/sunrpc/types.h>
51 #include <linux/sunrpc/clnt.h>
52 #include <linux/sunrpc/xdr.h>
53 #include <linux/sunrpc/msg_prot.h>
54 #include <linux/sunrpc/svcsock.h>
55 #include <linux/sunrpc/stats.h>
56 #include <linux/sunrpc/xprt.h>
57 
58 #include <trace/events/sock.h>
59 #include <trace/events/sunrpc.h>
60 
61 #include "socklib.h"
62 #include "sunrpc.h"
63 
64 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
65 
66 
67 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
68 					 int flags);
69 static int		svc_udp_recvfrom(struct svc_rqst *);
70 static int		svc_udp_sendto(struct svc_rqst *);
71 static void		svc_sock_detach(struct svc_xprt *);
72 static void		svc_tcp_sock_detach(struct svc_xprt *);
73 static void		svc_sock_free(struct svc_xprt *);
74 
75 static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
76 					  struct net *, struct sockaddr *,
77 					  int, int);
78 #ifdef CONFIG_DEBUG_LOCK_ALLOC
79 static struct lock_class_key svc_key[2];
80 static struct lock_class_key svc_slock_key[2];
81 
82 static void svc_reclassify_socket(struct socket *sock)
83 {
84 	struct sock *sk = sock->sk;
85 
86 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
87 		return;
88 
89 	switch (sk->sk_family) {
90 	case AF_INET:
91 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
92 					      &svc_slock_key[0],
93 					      "sk_xprt.xpt_lock-AF_INET-NFSD",
94 					      &svc_key[0]);
95 		break;
96 
97 	case AF_INET6:
98 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
99 					      &svc_slock_key[1],
100 					      "sk_xprt.xpt_lock-AF_INET6-NFSD",
101 					      &svc_key[1]);
102 		break;
103 
104 	default:
105 		BUG();
106 	}
107 }
108 #else
109 static void svc_reclassify_socket(struct socket *sock)
110 {
111 }
112 #endif
113 
114 /**
115  * svc_tcp_release_rqst - Release transport-related resources
116  * @rqstp: request structure with resources to be released
117  *
118  */
119 static void svc_tcp_release_rqst(struct svc_rqst *rqstp)
120 {
121 }
122 
123 /**
124  * svc_udp_release_rqst - Release transport-related resources
125  * @rqstp: request structure with resources to be released
126  *
127  */
128 static void svc_udp_release_rqst(struct svc_rqst *rqstp)
129 {
130 	struct sk_buff *skb = rqstp->rq_xprt_ctxt;
131 
132 	if (skb) {
133 		rqstp->rq_xprt_ctxt = NULL;
134 		consume_skb(skb);
135 	}
136 }
137 
138 union svc_pktinfo_u {
139 	struct in_pktinfo pkti;
140 	struct in6_pktinfo pkti6;
141 };
142 #define SVC_PKTINFO_SPACE \
143 	CMSG_SPACE(sizeof(union svc_pktinfo_u))
144 
145 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
146 {
147 	struct svc_sock *svsk =
148 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
149 	switch (svsk->sk_sk->sk_family) {
150 	case AF_INET: {
151 			struct in_pktinfo *pki = CMSG_DATA(cmh);
152 
153 			cmh->cmsg_level = SOL_IP;
154 			cmh->cmsg_type = IP_PKTINFO;
155 			pki->ipi_ifindex = 0;
156 			pki->ipi_spec_dst.s_addr =
157 				 svc_daddr_in(rqstp)->sin_addr.s_addr;
158 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
159 		}
160 		break;
161 
162 	case AF_INET6: {
163 			struct in6_pktinfo *pki = CMSG_DATA(cmh);
164 			struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp);
165 
166 			cmh->cmsg_level = SOL_IPV6;
167 			cmh->cmsg_type = IPV6_PKTINFO;
168 			pki->ipi6_ifindex = daddr->sin6_scope_id;
169 			pki->ipi6_addr = daddr->sin6_addr;
170 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
171 		}
172 		break;
173 	}
174 }
175 
176 static int svc_sock_result_payload(struct svc_rqst *rqstp, unsigned int offset,
177 				   unsigned int length)
178 {
179 	return 0;
180 }
181 
182 /*
183  * Report socket names for nfsdfs
184  */
185 static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining)
186 {
187 	const struct sock *sk = svsk->sk_sk;
188 	const char *proto_name = sk->sk_protocol == IPPROTO_UDP ?
189 							"udp" : "tcp";
190 	int len;
191 
192 	switch (sk->sk_family) {
193 	case PF_INET:
194 		len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n",
195 				proto_name,
196 				&inet_sk(sk)->inet_rcv_saddr,
197 				inet_sk(sk)->inet_num);
198 		break;
199 #if IS_ENABLED(CONFIG_IPV6)
200 	case PF_INET6:
201 		len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n",
202 				proto_name,
203 				&sk->sk_v6_rcv_saddr,
204 				inet_sk(sk)->inet_num);
205 		break;
206 #endif
207 	default:
208 		len = snprintf(buf, remaining, "*unknown-%d*\n",
209 				sk->sk_family);
210 	}
211 
212 	if (len >= remaining) {
213 		*buf = '\0';
214 		return -ENAMETOOLONG;
215 	}
216 	return len;
217 }
218 
219 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
220 static void svc_flush_bvec(const struct bio_vec *bvec, size_t size, size_t seek)
221 {
222 	struct bvec_iter bi = {
223 		.bi_size	= size + seek,
224 	};
225 	struct bio_vec bv;
226 
227 	bvec_iter_advance(bvec, &bi, seek & PAGE_MASK);
228 	for_each_bvec(bv, bvec, bi, bi)
229 		flush_dcache_page(bv.bv_page);
230 }
231 #else
232 static inline void svc_flush_bvec(const struct bio_vec *bvec, size_t size,
233 				  size_t seek)
234 {
235 }
236 #endif
237 
238 /*
239  * Read from @rqstp's transport socket. The incoming message fills whole
240  * pages in @rqstp's rq_pages array until the last page of the message
241  * has been received into a partial page.
242  */
243 static ssize_t svc_tcp_read_msg(struct svc_rqst *rqstp, size_t buflen,
244 				size_t seek)
245 {
246 	struct svc_sock *svsk =
247 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
248 	struct bio_vec *bvec = rqstp->rq_bvec;
249 	struct msghdr msg = { NULL };
250 	unsigned int i;
251 	ssize_t len;
252 	size_t t;
253 
254 	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
255 
256 	for (i = 0, t = 0; t < buflen; i++, t += PAGE_SIZE)
257 		bvec_set_page(&bvec[i], rqstp->rq_pages[i], PAGE_SIZE, 0);
258 	rqstp->rq_respages = &rqstp->rq_pages[i];
259 	rqstp->rq_next_page = rqstp->rq_respages + 1;
260 
261 	iov_iter_bvec(&msg.msg_iter, ITER_DEST, bvec, i, buflen);
262 	if (seek) {
263 		iov_iter_advance(&msg.msg_iter, seek);
264 		buflen -= seek;
265 	}
266 	len = sock_recvmsg(svsk->sk_sock, &msg, MSG_DONTWAIT);
267 	if (len > 0)
268 		svc_flush_bvec(bvec, len, seek);
269 
270 	/* If we read a full record, then assume there may be more
271 	 * data to read (stream based sockets only!)
272 	 */
273 	if (len == buflen)
274 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
275 
276 	return len;
277 }
278 
279 /*
280  * Set socket snd and rcv buffer lengths
281  */
282 static void svc_sock_setbufsize(struct svc_sock *svsk, unsigned int nreqs)
283 {
284 	unsigned int max_mesg = svsk->sk_xprt.xpt_server->sv_max_mesg;
285 	struct socket *sock = svsk->sk_sock;
286 
287 	nreqs = min(nreqs, INT_MAX / 2 / max_mesg);
288 
289 	lock_sock(sock->sk);
290 	sock->sk->sk_sndbuf = nreqs * max_mesg * 2;
291 	sock->sk->sk_rcvbuf = nreqs * max_mesg * 2;
292 	sock->sk->sk_write_space(sock->sk);
293 	release_sock(sock->sk);
294 }
295 
296 static void svc_sock_secure_port(struct svc_rqst *rqstp)
297 {
298 	if (svc_port_is_privileged(svc_addr(rqstp)))
299 		set_bit(RQ_SECURE, &rqstp->rq_flags);
300 	else
301 		clear_bit(RQ_SECURE, &rqstp->rq_flags);
302 }
303 
304 /*
305  * INET callback when data has been received on the socket.
306  */
307 static void svc_data_ready(struct sock *sk)
308 {
309 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
310 
311 	trace_sk_data_ready(sk);
312 
313 	if (svsk) {
314 		/* Refer to svc_setup_socket() for details. */
315 		rmb();
316 		svsk->sk_odata(sk);
317 		trace_svcsock_data_ready(&svsk->sk_xprt, 0);
318 		if (!test_and_set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags))
319 			svc_xprt_enqueue(&svsk->sk_xprt);
320 	}
321 }
322 
323 /*
324  * INET callback when space is newly available on the socket.
325  */
326 static void svc_write_space(struct sock *sk)
327 {
328 	struct svc_sock	*svsk = (struct svc_sock *)(sk->sk_user_data);
329 
330 	if (svsk) {
331 		/* Refer to svc_setup_socket() for details. */
332 		rmb();
333 		trace_svcsock_write_space(&svsk->sk_xprt, 0);
334 		svsk->sk_owspace(sk);
335 		svc_xprt_enqueue(&svsk->sk_xprt);
336 	}
337 }
338 
339 static int svc_tcp_has_wspace(struct svc_xprt *xprt)
340 {
341 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
342 
343 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags))
344 		return 1;
345 	return !test_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
346 }
347 
348 static void svc_tcp_kill_temp_xprt(struct svc_xprt *xprt)
349 {
350 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
351 
352 	sock_no_linger(svsk->sk_sock->sk);
353 }
354 
355 /*
356  * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo
357  */
358 static int svc_udp_get_dest_address4(struct svc_rqst *rqstp,
359 				     struct cmsghdr *cmh)
360 {
361 	struct in_pktinfo *pki = CMSG_DATA(cmh);
362 	struct sockaddr_in *daddr = svc_daddr_in(rqstp);
363 
364 	if (cmh->cmsg_type != IP_PKTINFO)
365 		return 0;
366 
367 	daddr->sin_family = AF_INET;
368 	daddr->sin_addr.s_addr = pki->ipi_spec_dst.s_addr;
369 	return 1;
370 }
371 
372 /*
373  * See net/ipv6/datagram.c : ip6_datagram_recv_ctl
374  */
375 static int svc_udp_get_dest_address6(struct svc_rqst *rqstp,
376 				     struct cmsghdr *cmh)
377 {
378 	struct in6_pktinfo *pki = CMSG_DATA(cmh);
379 	struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp);
380 
381 	if (cmh->cmsg_type != IPV6_PKTINFO)
382 		return 0;
383 
384 	daddr->sin6_family = AF_INET6;
385 	daddr->sin6_addr = pki->ipi6_addr;
386 	daddr->sin6_scope_id = pki->ipi6_ifindex;
387 	return 1;
388 }
389 
390 /*
391  * Copy the UDP datagram's destination address to the rqstp structure.
392  * The 'destination' address in this case is the address to which the
393  * peer sent the datagram, i.e. our local address. For multihomed
394  * hosts, this can change from msg to msg. Note that only the IP
395  * address changes, the port number should remain the same.
396  */
397 static int svc_udp_get_dest_address(struct svc_rqst *rqstp,
398 				    struct cmsghdr *cmh)
399 {
400 	switch (cmh->cmsg_level) {
401 	case SOL_IP:
402 		return svc_udp_get_dest_address4(rqstp, cmh);
403 	case SOL_IPV6:
404 		return svc_udp_get_dest_address6(rqstp, cmh);
405 	}
406 
407 	return 0;
408 }
409 
410 /**
411  * svc_udp_recvfrom - Receive a datagram from a UDP socket.
412  * @rqstp: request structure into which to receive an RPC Call
413  *
414  * Called in a loop when XPT_DATA has been set.
415  *
416  * Returns:
417  *   On success, the number of bytes in a received RPC Call, or
418  *   %0 if a complete RPC Call message was not ready to return
419  */
420 static int svc_udp_recvfrom(struct svc_rqst *rqstp)
421 {
422 	struct svc_sock	*svsk =
423 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
424 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
425 	struct sk_buff	*skb;
426 	union {
427 		struct cmsghdr	hdr;
428 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
429 	} buffer;
430 	struct cmsghdr *cmh = &buffer.hdr;
431 	struct msghdr msg = {
432 		.msg_name = svc_addr(rqstp),
433 		.msg_control = cmh,
434 		.msg_controllen = sizeof(buffer),
435 		.msg_flags = MSG_DONTWAIT,
436 	};
437 	size_t len;
438 	int err;
439 
440 	if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
441 	    /* udp sockets need large rcvbuf as all pending
442 	     * requests are still in that buffer.  sndbuf must
443 	     * also be large enough that there is enough space
444 	     * for one reply per thread.  We count all threads
445 	     * rather than threads in a particular pool, which
446 	     * provides an upper bound on the number of threads
447 	     * which will access the socket.
448 	     */
449 	    svc_sock_setbufsize(svsk, serv->sv_nrthreads + 3);
450 
451 	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
452 	err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
453 			     0, 0, MSG_PEEK | MSG_DONTWAIT);
454 	if (err < 0)
455 		goto out_recv_err;
456 	skb = skb_recv_udp(svsk->sk_sk, MSG_DONTWAIT, &err);
457 	if (!skb)
458 		goto out_recv_err;
459 
460 	len = svc_addr_len(svc_addr(rqstp));
461 	rqstp->rq_addrlen = len;
462 	if (skb->tstamp == 0) {
463 		skb->tstamp = ktime_get_real();
464 		/* Don't enable netstamp, sunrpc doesn't
465 		   need that much accuracy */
466 	}
467 	sock_write_timestamp(svsk->sk_sk, skb->tstamp);
468 	set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
469 
470 	len = skb->len;
471 	rqstp->rq_arg.len = len;
472 	trace_svcsock_udp_recv(&svsk->sk_xprt, len);
473 
474 	rqstp->rq_prot = IPPROTO_UDP;
475 
476 	if (!svc_udp_get_dest_address(rqstp, cmh))
477 		goto out_cmsg_err;
478 	rqstp->rq_daddrlen = svc_addr_len(svc_daddr(rqstp));
479 
480 	if (skb_is_nonlinear(skb)) {
481 		/* we have to copy */
482 		local_bh_disable();
483 		if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb))
484 			goto out_bh_enable;
485 		local_bh_enable();
486 		consume_skb(skb);
487 	} else {
488 		/* we can use it in-place */
489 		rqstp->rq_arg.head[0].iov_base = skb->data;
490 		rqstp->rq_arg.head[0].iov_len = len;
491 		if (skb_checksum_complete(skb))
492 			goto out_free;
493 		rqstp->rq_xprt_ctxt = skb;
494 	}
495 
496 	rqstp->rq_arg.page_base = 0;
497 	if (len <= rqstp->rq_arg.head[0].iov_len) {
498 		rqstp->rq_arg.head[0].iov_len = len;
499 		rqstp->rq_arg.page_len = 0;
500 		rqstp->rq_respages = rqstp->rq_pages+1;
501 	} else {
502 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
503 		rqstp->rq_respages = rqstp->rq_pages + 1 +
504 			DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
505 	}
506 	rqstp->rq_next_page = rqstp->rq_respages+1;
507 
508 	if (serv->sv_stats)
509 		serv->sv_stats->netudpcnt++;
510 
511 	svc_sock_secure_port(rqstp);
512 	svc_xprt_received(rqstp->rq_xprt);
513 	return len;
514 
515 out_recv_err:
516 	if (err != -EAGAIN) {
517 		/* possibly an icmp error */
518 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
519 	}
520 	trace_svcsock_udp_recv_err(&svsk->sk_xprt, err);
521 	goto out_clear_busy;
522 out_cmsg_err:
523 	net_warn_ratelimited("svc: received unknown control message %d/%d; dropping RPC reply datagram\n",
524 			     cmh->cmsg_level, cmh->cmsg_type);
525 	goto out_free;
526 out_bh_enable:
527 	local_bh_enable();
528 out_free:
529 	kfree_skb(skb);
530 out_clear_busy:
531 	svc_xprt_received(rqstp->rq_xprt);
532 	return 0;
533 }
534 
535 /**
536  * svc_udp_sendto - Send out a reply on a UDP socket
537  * @rqstp: completed svc_rqst
538  *
539  * xpt_mutex ensures @rqstp's whole message is written to the socket
540  * without interruption.
541  *
542  * Returns the number of bytes sent, or a negative errno.
543  */
544 static int svc_udp_sendto(struct svc_rqst *rqstp)
545 {
546 	struct svc_xprt *xprt = rqstp->rq_xprt;
547 	struct svc_sock	*svsk = container_of(xprt, struct svc_sock, sk_xprt);
548 	struct xdr_buf *xdr = &rqstp->rq_res;
549 	union {
550 		struct cmsghdr	hdr;
551 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
552 	} buffer;
553 	struct cmsghdr *cmh = &buffer.hdr;
554 	struct msghdr msg = {
555 		.msg_name	= &rqstp->rq_addr,
556 		.msg_namelen	= rqstp->rq_addrlen,
557 		.msg_control	= cmh,
558 		.msg_controllen	= sizeof(buffer),
559 	};
560 	unsigned int sent;
561 	int err;
562 
563 	svc_udp_release_rqst(rqstp);
564 
565 	svc_set_cmsg_data(rqstp, cmh);
566 
567 	mutex_lock(&xprt->xpt_mutex);
568 
569 	if (svc_xprt_is_dead(xprt))
570 		goto out_notconn;
571 
572 	err = xdr_alloc_bvec(xdr, GFP_KERNEL);
573 	if (err < 0)
574 		goto out_unlock;
575 
576 	err = xprt_sock_sendmsg(svsk->sk_sock, &msg, xdr, 0, 0, &sent);
577 	if (err == -ECONNREFUSED) {
578 		/* ICMP error on earlier request. */
579 		err = xprt_sock_sendmsg(svsk->sk_sock, &msg, xdr, 0, 0, &sent);
580 	}
581 	xdr_free_bvec(xdr);
582 	trace_svcsock_udp_send(xprt, err);
583 out_unlock:
584 	mutex_unlock(&xprt->xpt_mutex);
585 	if (err < 0)
586 		return err;
587 	return sent;
588 
589 out_notconn:
590 	mutex_unlock(&xprt->xpt_mutex);
591 	return -ENOTCONN;
592 }
593 
594 static int svc_udp_has_wspace(struct svc_xprt *xprt)
595 {
596 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
597 	struct svc_serv	*serv = xprt->xpt_server;
598 	unsigned long required;
599 
600 	/*
601 	 * Set the SOCK_NOSPACE flag before checking the available
602 	 * sock space.
603 	 */
604 	set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
605 	required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
606 	if (required*2 > sock_wspace(svsk->sk_sk))
607 		return 0;
608 	clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
609 	return 1;
610 }
611 
612 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
613 {
614 	BUG();
615 	return NULL;
616 }
617 
618 static void svc_udp_kill_temp_xprt(struct svc_xprt *xprt)
619 {
620 }
621 
622 static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
623 				       struct net *net,
624 				       struct sockaddr *sa, int salen,
625 				       int flags)
626 {
627 	return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags);
628 }
629 
630 static const struct svc_xprt_ops svc_udp_ops = {
631 	.xpo_create = svc_udp_create,
632 	.xpo_recvfrom = svc_udp_recvfrom,
633 	.xpo_sendto = svc_udp_sendto,
634 	.xpo_result_payload = svc_sock_result_payload,
635 	.xpo_release_rqst = svc_udp_release_rqst,
636 	.xpo_detach = svc_sock_detach,
637 	.xpo_free = svc_sock_free,
638 	.xpo_has_wspace = svc_udp_has_wspace,
639 	.xpo_accept = svc_udp_accept,
640 	.xpo_kill_temp_xprt = svc_udp_kill_temp_xprt,
641 };
642 
643 static struct svc_xprt_class svc_udp_class = {
644 	.xcl_name = "udp",
645 	.xcl_owner = THIS_MODULE,
646 	.xcl_ops = &svc_udp_ops,
647 	.xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
648 	.xcl_ident = XPRT_TRANSPORT_UDP,
649 };
650 
651 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
652 {
653 	svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_udp_class,
654 		      &svsk->sk_xprt, serv);
655 	clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
656 	svsk->sk_sk->sk_data_ready = svc_data_ready;
657 	svsk->sk_sk->sk_write_space = svc_write_space;
658 
659 	/* initialise setting must have enough space to
660 	 * receive and respond to one request.
661 	 * svc_udp_recvfrom will re-adjust if necessary
662 	 */
663 	svc_sock_setbufsize(svsk, 3);
664 
665 	/* data might have come in before data_ready set up */
666 	set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
667 	set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
668 
669 	/* make sure we get destination address info */
670 	switch (svsk->sk_sk->sk_family) {
671 	case AF_INET:
672 		ip_sock_set_pktinfo(svsk->sk_sock->sk);
673 		break;
674 	case AF_INET6:
675 		ip6_sock_set_recvpktinfo(svsk->sk_sock->sk);
676 		break;
677 	default:
678 		BUG();
679 	}
680 }
681 
682 /*
683  * A data_ready event on a listening socket means there's a connection
684  * pending. Do not use state_change as a substitute for it.
685  */
686 static void svc_tcp_listen_data_ready(struct sock *sk)
687 {
688 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
689 
690 	trace_sk_data_ready(sk);
691 
692 	if (svsk) {
693 		/* Refer to svc_setup_socket() for details. */
694 		rmb();
695 		svsk->sk_odata(sk);
696 	}
697 
698 	/*
699 	 * This callback may called twice when a new connection
700 	 * is established as a child socket inherits everything
701 	 * from a parent LISTEN socket.
702 	 * 1) data_ready method of the parent socket will be called
703 	 *    when one of child sockets become ESTABLISHED.
704 	 * 2) data_ready method of the child socket may be called
705 	 *    when it receives data before the socket is accepted.
706 	 * In case of 2, we should ignore it silently.
707 	 */
708 	if (sk->sk_state == TCP_LISTEN) {
709 		if (svsk) {
710 			set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
711 			svc_xprt_enqueue(&svsk->sk_xprt);
712 		}
713 	}
714 }
715 
716 /*
717  * A state change on a connected socket means it's dying or dead.
718  */
719 static void svc_tcp_state_change(struct sock *sk)
720 {
721 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
722 
723 	if (svsk) {
724 		/* Refer to svc_setup_socket() for details. */
725 		rmb();
726 		svsk->sk_ostate(sk);
727 		trace_svcsock_tcp_state(&svsk->sk_xprt, svsk->sk_sock);
728 		if (sk->sk_state != TCP_ESTABLISHED)
729 			svc_xprt_deferred_close(&svsk->sk_xprt);
730 	}
731 }
732 
733 /*
734  * Accept a TCP connection
735  */
736 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
737 {
738 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
739 	struct sockaddr_storage addr;
740 	struct sockaddr	*sin = (struct sockaddr *) &addr;
741 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
742 	struct socket	*sock = svsk->sk_sock;
743 	struct socket	*newsock;
744 	struct svc_sock	*newsvsk;
745 	int		err, slen;
746 
747 	if (!sock)
748 		return NULL;
749 
750 	clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
751 	err = kernel_accept(sock, &newsock, O_NONBLOCK);
752 	if (err < 0) {
753 		if (err == -ENOMEM)
754 			printk(KERN_WARNING "%s: no more sockets!\n",
755 			       serv->sv_name);
756 		else if (err != -EAGAIN)
757 			net_warn_ratelimited("%s: accept failed (err %d)!\n",
758 					     serv->sv_name, -err);
759 		trace_svcsock_accept_err(xprt, serv->sv_name, err);
760 		return NULL;
761 	}
762 	set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
763 
764 	err = kernel_getpeername(newsock, sin);
765 	if (err < 0) {
766 		trace_svcsock_getpeername_err(xprt, serv->sv_name, err);
767 		goto failed;		/* aborted connection or whatever */
768 	}
769 	slen = err;
770 
771 	/* Reset the inherited callbacks before calling svc_setup_socket */
772 	newsock->sk->sk_state_change = svsk->sk_ostate;
773 	newsock->sk->sk_data_ready = svsk->sk_odata;
774 	newsock->sk->sk_write_space = svsk->sk_owspace;
775 
776 	/* make sure that a write doesn't block forever when
777 	 * low on memory
778 	 */
779 	newsock->sk->sk_sndtimeo = HZ*30;
780 
781 	newsvsk = svc_setup_socket(serv, newsock,
782 				 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY));
783 	if (IS_ERR(newsvsk))
784 		goto failed;
785 	svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
786 	err = kernel_getsockname(newsock, sin);
787 	slen = err;
788 	if (unlikely(err < 0))
789 		slen = offsetof(struct sockaddr, sa_data);
790 	svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
791 
792 	if (sock_is_loopback(newsock->sk))
793 		set_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags);
794 	else
795 		clear_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags);
796 	if (serv->sv_stats)
797 		serv->sv_stats->nettcpconn++;
798 
799 	return &newsvsk->sk_xprt;
800 
801 failed:
802 	sock_release(newsock);
803 	return NULL;
804 }
805 
806 static size_t svc_tcp_restore_pages(struct svc_sock *svsk,
807 				    struct svc_rqst *rqstp)
808 {
809 	size_t len = svsk->sk_datalen;
810 	unsigned int i, npages;
811 
812 	if (!len)
813 		return 0;
814 	npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
815 	for (i = 0; i < npages; i++) {
816 		if (rqstp->rq_pages[i] != NULL)
817 			put_page(rqstp->rq_pages[i]);
818 		BUG_ON(svsk->sk_pages[i] == NULL);
819 		rqstp->rq_pages[i] = svsk->sk_pages[i];
820 		svsk->sk_pages[i] = NULL;
821 	}
822 	rqstp->rq_arg.head[0].iov_base = page_address(rqstp->rq_pages[0]);
823 	return len;
824 }
825 
826 static void svc_tcp_save_pages(struct svc_sock *svsk, struct svc_rqst *rqstp)
827 {
828 	unsigned int i, len, npages;
829 
830 	if (svsk->sk_datalen == 0)
831 		return;
832 	len = svsk->sk_datalen;
833 	npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
834 	for (i = 0; i < npages; i++) {
835 		svsk->sk_pages[i] = rqstp->rq_pages[i];
836 		rqstp->rq_pages[i] = NULL;
837 	}
838 }
839 
840 static void svc_tcp_clear_pages(struct svc_sock *svsk)
841 {
842 	unsigned int i, len, npages;
843 
844 	if (svsk->sk_datalen == 0)
845 		goto out;
846 	len = svsk->sk_datalen;
847 	npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
848 	for (i = 0; i < npages; i++) {
849 		if (svsk->sk_pages[i] == NULL) {
850 			WARN_ON_ONCE(1);
851 			continue;
852 		}
853 		put_page(svsk->sk_pages[i]);
854 		svsk->sk_pages[i] = NULL;
855 	}
856 out:
857 	svsk->sk_tcplen = 0;
858 	svsk->sk_datalen = 0;
859 }
860 
861 /*
862  * Receive fragment record header into sk_marker.
863  */
864 static ssize_t svc_tcp_read_marker(struct svc_sock *svsk,
865 				   struct svc_rqst *rqstp)
866 {
867 	ssize_t want, len;
868 
869 	/* If we haven't gotten the record length yet,
870 	 * get the next four bytes.
871 	 */
872 	if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) {
873 		struct msghdr	msg = { NULL };
874 		struct kvec	iov;
875 
876 		want = sizeof(rpc_fraghdr) - svsk->sk_tcplen;
877 		iov.iov_base = ((char *)&svsk->sk_marker) + svsk->sk_tcplen;
878 		iov.iov_len  = want;
879 		iov_iter_kvec(&msg.msg_iter, ITER_DEST, &iov, 1, want);
880 		len = sock_recvmsg(svsk->sk_sock, &msg, MSG_DONTWAIT);
881 		if (len < 0)
882 			return len;
883 		svsk->sk_tcplen += len;
884 		if (len < want) {
885 			/* call again to read the remaining bytes */
886 			goto err_short;
887 		}
888 		trace_svcsock_marker(&svsk->sk_xprt, svsk->sk_marker);
889 		if (svc_sock_reclen(svsk) + svsk->sk_datalen >
890 		    svsk->sk_xprt.xpt_server->sv_max_mesg)
891 			goto err_too_large;
892 	}
893 	return svc_sock_reclen(svsk);
894 
895 err_too_large:
896 	net_notice_ratelimited("svc: %s %s RPC fragment too large: %d\n",
897 			       __func__, svsk->sk_xprt.xpt_server->sv_name,
898 			       svc_sock_reclen(svsk));
899 	svc_xprt_deferred_close(&svsk->sk_xprt);
900 err_short:
901 	return -EAGAIN;
902 }
903 
904 static int receive_cb_reply(struct svc_sock *svsk, struct svc_rqst *rqstp)
905 {
906 	struct rpc_xprt *bc_xprt = svsk->sk_xprt.xpt_bc_xprt;
907 	struct rpc_rqst *req = NULL;
908 	struct kvec *src, *dst;
909 	__be32 *p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
910 	__be32 xid;
911 	__be32 calldir;
912 
913 	xid = *p++;
914 	calldir = *p;
915 
916 	if (!bc_xprt)
917 		return -EAGAIN;
918 	spin_lock(&bc_xprt->queue_lock);
919 	req = xprt_lookup_rqst(bc_xprt, xid);
920 	if (!req)
921 		goto unlock_notfound;
922 
923 	memcpy(&req->rq_private_buf, &req->rq_rcv_buf, sizeof(struct xdr_buf));
924 	/*
925 	 * XXX!: cheating for now!  Only copying HEAD.
926 	 * But we know this is good enough for now (in fact, for any
927 	 * callback reply in the forseeable future).
928 	 */
929 	dst = &req->rq_private_buf.head[0];
930 	src = &rqstp->rq_arg.head[0];
931 	if (dst->iov_len < src->iov_len)
932 		goto unlock_eagain; /* whatever; just giving up. */
933 	memcpy(dst->iov_base, src->iov_base, src->iov_len);
934 	xprt_complete_rqst(req->rq_task, rqstp->rq_arg.len);
935 	rqstp->rq_arg.len = 0;
936 	spin_unlock(&bc_xprt->queue_lock);
937 	return 0;
938 unlock_notfound:
939 	printk(KERN_NOTICE
940 		"%s: Got unrecognized reply: "
941 		"calldir 0x%x xpt_bc_xprt %p xid %08x\n",
942 		__func__, ntohl(calldir),
943 		bc_xprt, ntohl(xid));
944 unlock_eagain:
945 	spin_unlock(&bc_xprt->queue_lock);
946 	return -EAGAIN;
947 }
948 
949 static void svc_tcp_fragment_received(struct svc_sock *svsk)
950 {
951 	/* If we have more data, signal svc_xprt_enqueue() to try again */
952 	svsk->sk_tcplen = 0;
953 	svsk->sk_marker = xdr_zero;
954 }
955 
956 /**
957  * svc_tcp_recvfrom - Receive data from a TCP socket
958  * @rqstp: request structure into which to receive an RPC Call
959  *
960  * Called in a loop when XPT_DATA has been set.
961  *
962  * Read the 4-byte stream record marker, then use the record length
963  * in that marker to set up exactly the resources needed to receive
964  * the next RPC message into @rqstp.
965  *
966  * Returns:
967  *   On success, the number of bytes in a received RPC Call, or
968  *   %0 if a complete RPC Call message was not ready to return
969  *
970  * The zero return case handles partial receives and callback Replies.
971  * The state of a partial receive is preserved in the svc_sock for
972  * the next call to svc_tcp_recvfrom.
973  */
974 static int svc_tcp_recvfrom(struct svc_rqst *rqstp)
975 {
976 	struct svc_sock	*svsk =
977 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
978 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
979 	size_t want, base;
980 	ssize_t len;
981 	__be32 *p;
982 	__be32 calldir;
983 
984 	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
985 	len = svc_tcp_read_marker(svsk, rqstp);
986 	if (len < 0)
987 		goto error;
988 
989 	base = svc_tcp_restore_pages(svsk, rqstp);
990 	want = len - (svsk->sk_tcplen - sizeof(rpc_fraghdr));
991 	len = svc_tcp_read_msg(rqstp, base + want, base);
992 	if (len >= 0) {
993 		trace_svcsock_tcp_recv(&svsk->sk_xprt, len);
994 		svsk->sk_tcplen += len;
995 		svsk->sk_datalen += len;
996 	}
997 	if (len != want || !svc_sock_final_rec(svsk))
998 		goto err_incomplete;
999 	if (svsk->sk_datalen < 8)
1000 		goto err_nuts;
1001 
1002 	rqstp->rq_arg.len = svsk->sk_datalen;
1003 	rqstp->rq_arg.page_base = 0;
1004 	if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1005 		rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1006 		rqstp->rq_arg.page_len = 0;
1007 	} else
1008 		rqstp->rq_arg.page_len = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1009 
1010 	rqstp->rq_xprt_ctxt   = NULL;
1011 	rqstp->rq_prot	      = IPPROTO_TCP;
1012 	if (test_bit(XPT_LOCAL, &svsk->sk_xprt.xpt_flags))
1013 		set_bit(RQ_LOCAL, &rqstp->rq_flags);
1014 	else
1015 		clear_bit(RQ_LOCAL, &rqstp->rq_flags);
1016 
1017 	p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
1018 	calldir = p[1];
1019 	if (calldir)
1020 		len = receive_cb_reply(svsk, rqstp);
1021 
1022 	/* Reset TCP read info */
1023 	svsk->sk_datalen = 0;
1024 	svc_tcp_fragment_received(svsk);
1025 
1026 	if (len < 0)
1027 		goto error;
1028 
1029 	svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
1030 	if (serv->sv_stats)
1031 		serv->sv_stats->nettcpcnt++;
1032 
1033 	svc_sock_secure_port(rqstp);
1034 	svc_xprt_received(rqstp->rq_xprt);
1035 	return rqstp->rq_arg.len;
1036 
1037 err_incomplete:
1038 	svc_tcp_save_pages(svsk, rqstp);
1039 	if (len < 0 && len != -EAGAIN)
1040 		goto err_delete;
1041 	if (len == want)
1042 		svc_tcp_fragment_received(svsk);
1043 	else
1044 		trace_svcsock_tcp_recv_short(&svsk->sk_xprt,
1045 				svc_sock_reclen(svsk),
1046 				svsk->sk_tcplen - sizeof(rpc_fraghdr));
1047 	goto err_noclose;
1048 error:
1049 	if (len != -EAGAIN)
1050 		goto err_delete;
1051 	trace_svcsock_tcp_recv_eagain(&svsk->sk_xprt, 0);
1052 	goto err_noclose;
1053 err_nuts:
1054 	svsk->sk_datalen = 0;
1055 err_delete:
1056 	trace_svcsock_tcp_recv_err(&svsk->sk_xprt, len);
1057 	svc_xprt_deferred_close(&svsk->sk_xprt);
1058 err_noclose:
1059 	svc_xprt_received(rqstp->rq_xprt);
1060 	return 0;	/* record not complete */
1061 }
1062 
1063 static int svc_tcp_send_kvec(struct socket *sock, const struct kvec *vec,
1064 			      int flags)
1065 {
1066 	return kernel_sendpage(sock, virt_to_page(vec->iov_base),
1067 			       offset_in_page(vec->iov_base),
1068 			       vec->iov_len, flags);
1069 }
1070 
1071 /*
1072  * kernel_sendpage() is used exclusively to reduce the number of
1073  * copy operations in this path. Therefore the caller must ensure
1074  * that the pages backing @xdr are unchanging.
1075  *
1076  * In addition, the logic assumes that * .bv_len is never larger
1077  * than PAGE_SIZE.
1078  */
1079 static int svc_tcp_sendmsg(struct socket *sock, struct xdr_buf *xdr,
1080 			   rpc_fraghdr marker, unsigned int *sentp)
1081 {
1082 	const struct kvec *head = xdr->head;
1083 	const struct kvec *tail = xdr->tail;
1084 	struct kvec rm = {
1085 		.iov_base	= &marker,
1086 		.iov_len	= sizeof(marker),
1087 	};
1088 	struct msghdr msg = {
1089 		.msg_flags	= 0,
1090 	};
1091 	int ret;
1092 
1093 	*sentp = 0;
1094 	ret = xdr_alloc_bvec(xdr, GFP_KERNEL);
1095 	if (ret < 0)
1096 		return ret;
1097 
1098 	ret = kernel_sendmsg(sock, &msg, &rm, 1, rm.iov_len);
1099 	if (ret < 0)
1100 		return ret;
1101 	*sentp += ret;
1102 	if (ret != rm.iov_len)
1103 		return -EAGAIN;
1104 
1105 	ret = svc_tcp_send_kvec(sock, head, 0);
1106 	if (ret < 0)
1107 		return ret;
1108 	*sentp += ret;
1109 	if (ret != head->iov_len)
1110 		goto out;
1111 
1112 	if (xdr->page_len) {
1113 		unsigned int offset, len, remaining;
1114 		struct bio_vec *bvec;
1115 
1116 		bvec = xdr->bvec + (xdr->page_base >> PAGE_SHIFT);
1117 		offset = offset_in_page(xdr->page_base);
1118 		remaining = xdr->page_len;
1119 		while (remaining > 0) {
1120 			len = min(remaining, bvec->bv_len - offset);
1121 			ret = kernel_sendpage(sock, bvec->bv_page,
1122 					      bvec->bv_offset + offset,
1123 					      len, 0);
1124 			if (ret < 0)
1125 				return ret;
1126 			*sentp += ret;
1127 			if (ret != len)
1128 				goto out;
1129 			remaining -= len;
1130 			offset = 0;
1131 			bvec++;
1132 		}
1133 	}
1134 
1135 	if (tail->iov_len) {
1136 		ret = svc_tcp_send_kvec(sock, tail, 0);
1137 		if (ret < 0)
1138 			return ret;
1139 		*sentp += ret;
1140 	}
1141 
1142 out:
1143 	return 0;
1144 }
1145 
1146 /**
1147  * svc_tcp_sendto - Send out a reply on a TCP socket
1148  * @rqstp: completed svc_rqst
1149  *
1150  * xpt_mutex ensures @rqstp's whole message is written to the socket
1151  * without interruption.
1152  *
1153  * Returns the number of bytes sent, or a negative errno.
1154  */
1155 static int svc_tcp_sendto(struct svc_rqst *rqstp)
1156 {
1157 	struct svc_xprt *xprt = rqstp->rq_xprt;
1158 	struct svc_sock	*svsk = container_of(xprt, struct svc_sock, sk_xprt);
1159 	struct xdr_buf *xdr = &rqstp->rq_res;
1160 	rpc_fraghdr marker = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT |
1161 					 (u32)xdr->len);
1162 	unsigned int sent;
1163 	int err;
1164 
1165 	svc_tcp_release_rqst(rqstp);
1166 
1167 	atomic_inc(&svsk->sk_sendqlen);
1168 	mutex_lock(&xprt->xpt_mutex);
1169 	if (svc_xprt_is_dead(xprt))
1170 		goto out_notconn;
1171 	tcp_sock_set_cork(svsk->sk_sk, true);
1172 	err = svc_tcp_sendmsg(svsk->sk_sock, xdr, marker, &sent);
1173 	xdr_free_bvec(xdr);
1174 	trace_svcsock_tcp_send(xprt, err < 0 ? (long)err : sent);
1175 	if (err < 0 || sent != (xdr->len + sizeof(marker)))
1176 		goto out_close;
1177 	if (atomic_dec_and_test(&svsk->sk_sendqlen))
1178 		tcp_sock_set_cork(svsk->sk_sk, false);
1179 	mutex_unlock(&xprt->xpt_mutex);
1180 	return sent;
1181 
1182 out_notconn:
1183 	atomic_dec(&svsk->sk_sendqlen);
1184 	mutex_unlock(&xprt->xpt_mutex);
1185 	return -ENOTCONN;
1186 out_close:
1187 	pr_notice("rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1188 		  xprt->xpt_server->sv_name,
1189 		  (err < 0) ? "got error" : "sent",
1190 		  (err < 0) ? err : sent, xdr->len);
1191 	svc_xprt_deferred_close(xprt);
1192 	atomic_dec(&svsk->sk_sendqlen);
1193 	mutex_unlock(&xprt->xpt_mutex);
1194 	return -EAGAIN;
1195 }
1196 
1197 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
1198 				       struct net *net,
1199 				       struct sockaddr *sa, int salen,
1200 				       int flags)
1201 {
1202 	return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags);
1203 }
1204 
1205 static const struct svc_xprt_ops svc_tcp_ops = {
1206 	.xpo_create = svc_tcp_create,
1207 	.xpo_recvfrom = svc_tcp_recvfrom,
1208 	.xpo_sendto = svc_tcp_sendto,
1209 	.xpo_result_payload = svc_sock_result_payload,
1210 	.xpo_release_rqst = svc_tcp_release_rqst,
1211 	.xpo_detach = svc_tcp_sock_detach,
1212 	.xpo_free = svc_sock_free,
1213 	.xpo_has_wspace = svc_tcp_has_wspace,
1214 	.xpo_accept = svc_tcp_accept,
1215 	.xpo_kill_temp_xprt = svc_tcp_kill_temp_xprt,
1216 };
1217 
1218 static struct svc_xprt_class svc_tcp_class = {
1219 	.xcl_name = "tcp",
1220 	.xcl_owner = THIS_MODULE,
1221 	.xcl_ops = &svc_tcp_ops,
1222 	.xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1223 	.xcl_ident = XPRT_TRANSPORT_TCP,
1224 };
1225 
1226 void svc_init_xprt_sock(void)
1227 {
1228 	svc_reg_xprt_class(&svc_tcp_class);
1229 	svc_reg_xprt_class(&svc_udp_class);
1230 }
1231 
1232 void svc_cleanup_xprt_sock(void)
1233 {
1234 	svc_unreg_xprt_class(&svc_tcp_class);
1235 	svc_unreg_xprt_class(&svc_udp_class);
1236 }
1237 
1238 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
1239 {
1240 	struct sock	*sk = svsk->sk_sk;
1241 
1242 	svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_tcp_class,
1243 		      &svsk->sk_xprt, serv);
1244 	set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
1245 	set_bit(XPT_CONG_CTRL, &svsk->sk_xprt.xpt_flags);
1246 	if (sk->sk_state == TCP_LISTEN) {
1247 		strcpy(svsk->sk_xprt.xpt_remotebuf, "listener");
1248 		set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
1249 		sk->sk_data_ready = svc_tcp_listen_data_ready;
1250 		set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1251 	} else {
1252 		sk->sk_state_change = svc_tcp_state_change;
1253 		sk->sk_data_ready = svc_data_ready;
1254 		sk->sk_write_space = svc_write_space;
1255 
1256 		svsk->sk_marker = xdr_zero;
1257 		svsk->sk_tcplen = 0;
1258 		svsk->sk_datalen = 0;
1259 		memset(&svsk->sk_pages[0], 0, sizeof(svsk->sk_pages));
1260 
1261 		tcp_sock_set_nodelay(sk);
1262 
1263 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1264 		switch (sk->sk_state) {
1265 		case TCP_SYN_RECV:
1266 		case TCP_ESTABLISHED:
1267 			break;
1268 		default:
1269 			svc_xprt_deferred_close(&svsk->sk_xprt);
1270 		}
1271 	}
1272 }
1273 
1274 void svc_sock_update_bufs(struct svc_serv *serv)
1275 {
1276 	/*
1277 	 * The number of server threads has changed. Update
1278 	 * rcvbuf and sndbuf accordingly on all sockets
1279 	 */
1280 	struct svc_sock *svsk;
1281 
1282 	spin_lock_bh(&serv->sv_lock);
1283 	list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list)
1284 		set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1285 	spin_unlock_bh(&serv->sv_lock);
1286 }
1287 EXPORT_SYMBOL_GPL(svc_sock_update_bufs);
1288 
1289 /*
1290  * Initialize socket for RPC use and create svc_sock struct
1291  */
1292 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1293 						struct socket *sock,
1294 						int flags)
1295 {
1296 	struct svc_sock	*svsk;
1297 	struct sock	*inet;
1298 	int		pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1299 	int		err = 0;
1300 
1301 	svsk = kzalloc(sizeof(*svsk), GFP_KERNEL);
1302 	if (!svsk)
1303 		return ERR_PTR(-ENOMEM);
1304 
1305 	inet = sock->sk;
1306 
1307 	/* Register socket with portmapper */
1308 	if (pmap_register)
1309 		err = svc_register(serv, sock_net(sock->sk), inet->sk_family,
1310 				     inet->sk_protocol,
1311 				     ntohs(inet_sk(inet)->inet_sport));
1312 
1313 	if (err < 0) {
1314 		kfree(svsk);
1315 		return ERR_PTR(err);
1316 	}
1317 
1318 	svsk->sk_sock = sock;
1319 	svsk->sk_sk = inet;
1320 	svsk->sk_ostate = inet->sk_state_change;
1321 	svsk->sk_odata = inet->sk_data_ready;
1322 	svsk->sk_owspace = inet->sk_write_space;
1323 	/*
1324 	 * This barrier is necessary in order to prevent race condition
1325 	 * with svc_data_ready(), svc_listen_data_ready() and others
1326 	 * when calling callbacks above.
1327 	 */
1328 	wmb();
1329 	inet->sk_user_data = svsk;
1330 
1331 	/* Initialize the socket */
1332 	if (sock->type == SOCK_DGRAM)
1333 		svc_udp_init(svsk, serv);
1334 	else
1335 		svc_tcp_init(svsk, serv);
1336 
1337 	trace_svcsock_new_socket(sock);
1338 	return svsk;
1339 }
1340 
1341 bool svc_alien_sock(struct net *net, int fd)
1342 {
1343 	int err;
1344 	struct socket *sock = sockfd_lookup(fd, &err);
1345 	bool ret = false;
1346 
1347 	if (!sock)
1348 		goto out;
1349 	if (sock_net(sock->sk) != net)
1350 		ret = true;
1351 	sockfd_put(sock);
1352 out:
1353 	return ret;
1354 }
1355 EXPORT_SYMBOL_GPL(svc_alien_sock);
1356 
1357 /**
1358  * svc_addsock - add a listener socket to an RPC service
1359  * @serv: pointer to RPC service to which to add a new listener
1360  * @fd: file descriptor of the new listener
1361  * @name_return: pointer to buffer to fill in with name of listener
1362  * @len: size of the buffer
1363  * @cred: credential
1364  *
1365  * Fills in socket name and returns positive length of name if successful.
1366  * Name is terminated with '\n'.  On error, returns a negative errno
1367  * value.
1368  */
1369 int svc_addsock(struct svc_serv *serv, const int fd, char *name_return,
1370 		const size_t len, const struct cred *cred)
1371 {
1372 	int err = 0;
1373 	struct socket *so = sockfd_lookup(fd, &err);
1374 	struct svc_sock *svsk = NULL;
1375 	struct sockaddr_storage addr;
1376 	struct sockaddr *sin = (struct sockaddr *)&addr;
1377 	int salen;
1378 
1379 	if (!so)
1380 		return err;
1381 	err = -EAFNOSUPPORT;
1382 	if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6))
1383 		goto out;
1384 	err =  -EPROTONOSUPPORT;
1385 	if (so->sk->sk_protocol != IPPROTO_TCP &&
1386 	    so->sk->sk_protocol != IPPROTO_UDP)
1387 		goto out;
1388 	err = -EISCONN;
1389 	if (so->state > SS_UNCONNECTED)
1390 		goto out;
1391 	err = -ENOENT;
1392 	if (!try_module_get(THIS_MODULE))
1393 		goto out;
1394 	svsk = svc_setup_socket(serv, so, SVC_SOCK_DEFAULTS);
1395 	if (IS_ERR(svsk)) {
1396 		module_put(THIS_MODULE);
1397 		err = PTR_ERR(svsk);
1398 		goto out;
1399 	}
1400 	salen = kernel_getsockname(svsk->sk_sock, sin);
1401 	if (salen >= 0)
1402 		svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
1403 	svsk->sk_xprt.xpt_cred = get_cred(cred);
1404 	svc_add_new_perm_xprt(serv, &svsk->sk_xprt);
1405 	return svc_one_sock_name(svsk, name_return, len);
1406 out:
1407 	sockfd_put(so);
1408 	return err;
1409 }
1410 EXPORT_SYMBOL_GPL(svc_addsock);
1411 
1412 /*
1413  * Create socket for RPC service.
1414  */
1415 static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
1416 					  int protocol,
1417 					  struct net *net,
1418 					  struct sockaddr *sin, int len,
1419 					  int flags)
1420 {
1421 	struct svc_sock	*svsk;
1422 	struct socket	*sock;
1423 	int		error;
1424 	int		type;
1425 	struct sockaddr_storage addr;
1426 	struct sockaddr *newsin = (struct sockaddr *)&addr;
1427 	int		newlen;
1428 	int		family;
1429 
1430 	if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1431 		printk(KERN_WARNING "svc: only UDP and TCP "
1432 				"sockets supported\n");
1433 		return ERR_PTR(-EINVAL);
1434 	}
1435 
1436 	type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1437 	switch (sin->sa_family) {
1438 	case AF_INET6:
1439 		family = PF_INET6;
1440 		break;
1441 	case AF_INET:
1442 		family = PF_INET;
1443 		break;
1444 	default:
1445 		return ERR_PTR(-EINVAL);
1446 	}
1447 
1448 	error = __sock_create(net, family, type, protocol, &sock, 1);
1449 	if (error < 0)
1450 		return ERR_PTR(error);
1451 
1452 	svc_reclassify_socket(sock);
1453 
1454 	/*
1455 	 * If this is an PF_INET6 listener, we want to avoid
1456 	 * getting requests from IPv4 remotes.  Those should
1457 	 * be shunted to a PF_INET listener via rpcbind.
1458 	 */
1459 	if (family == PF_INET6)
1460 		ip6_sock_set_v6only(sock->sk);
1461 	if (type == SOCK_STREAM)
1462 		sock->sk->sk_reuse = SK_CAN_REUSE; /* allow address reuse */
1463 	error = kernel_bind(sock, sin, len);
1464 	if (error < 0)
1465 		goto bummer;
1466 
1467 	error = kernel_getsockname(sock, newsin);
1468 	if (error < 0)
1469 		goto bummer;
1470 	newlen = error;
1471 
1472 	if (protocol == IPPROTO_TCP) {
1473 		if ((error = kernel_listen(sock, 64)) < 0)
1474 			goto bummer;
1475 	}
1476 
1477 	svsk = svc_setup_socket(serv, sock, flags);
1478 	if (IS_ERR(svsk)) {
1479 		error = PTR_ERR(svsk);
1480 		goto bummer;
1481 	}
1482 	svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
1483 	return (struct svc_xprt *)svsk;
1484 bummer:
1485 	sock_release(sock);
1486 	return ERR_PTR(error);
1487 }
1488 
1489 /*
1490  * Detach the svc_sock from the socket so that no
1491  * more callbacks occur.
1492  */
1493 static void svc_sock_detach(struct svc_xprt *xprt)
1494 {
1495 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1496 	struct sock *sk = svsk->sk_sk;
1497 
1498 	/* put back the old socket callbacks */
1499 	lock_sock(sk);
1500 	sk->sk_state_change = svsk->sk_ostate;
1501 	sk->sk_data_ready = svsk->sk_odata;
1502 	sk->sk_write_space = svsk->sk_owspace;
1503 	sk->sk_user_data = NULL;
1504 	release_sock(sk);
1505 }
1506 
1507 /*
1508  * Disconnect the socket, and reset the callbacks
1509  */
1510 static void svc_tcp_sock_detach(struct svc_xprt *xprt)
1511 {
1512 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1513 
1514 	svc_sock_detach(xprt);
1515 
1516 	if (!test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
1517 		svc_tcp_clear_pages(svsk);
1518 		kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR);
1519 	}
1520 }
1521 
1522 /*
1523  * Free the svc_sock's socket resources and the svc_sock itself.
1524  */
1525 static void svc_sock_free(struct svc_xprt *xprt)
1526 {
1527 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1528 
1529 	if (svsk->sk_sock->file)
1530 		sockfd_put(svsk->sk_sock);
1531 	else
1532 		sock_release(svsk->sk_sock);
1533 	kfree(svsk);
1534 }
1535