1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/svcsock.c 4 * 5 * These are the RPC server socket internals. 6 * 7 * The server scheduling algorithm does not always distribute the load 8 * evenly when servicing a single client. May need to modify the 9 * svc_xprt_enqueue procedure... 10 * 11 * TCP support is largely untested and may be a little slow. The problem 12 * is that we currently do two separate recvfrom's, one for the 4-byte 13 * record length, and the second for the actual record. This could possibly 14 * be improved by always reading a minimum size of around 100 bytes and 15 * tucking any superfluous bytes away in a temporary store. Still, that 16 * leaves write requests out in the rain. An alternative may be to peek at 17 * the first skb in the queue, and if it matches the next TCP sequence 18 * number, to extract the record marker. Yuck. 19 * 20 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/sched.h> 25 #include <linux/module.h> 26 #include <linux/errno.h> 27 #include <linux/fcntl.h> 28 #include <linux/net.h> 29 #include <linux/in.h> 30 #include <linux/inet.h> 31 #include <linux/udp.h> 32 #include <linux/tcp.h> 33 #include <linux/unistd.h> 34 #include <linux/slab.h> 35 #include <linux/netdevice.h> 36 #include <linux/skbuff.h> 37 #include <linux/file.h> 38 #include <linux/freezer.h> 39 #include <net/sock.h> 40 #include <net/checksum.h> 41 #include <net/ip.h> 42 #include <net/ipv6.h> 43 #include <net/udp.h> 44 #include <net/tcp.h> 45 #include <net/tcp_states.h> 46 #include <linux/uaccess.h> 47 #include <linux/highmem.h> 48 #include <asm/ioctls.h> 49 50 #include <linux/sunrpc/types.h> 51 #include <linux/sunrpc/clnt.h> 52 #include <linux/sunrpc/xdr.h> 53 #include <linux/sunrpc/msg_prot.h> 54 #include <linux/sunrpc/svcsock.h> 55 #include <linux/sunrpc/stats.h> 56 #include <linux/sunrpc/xprt.h> 57 58 #include <trace/events/sock.h> 59 #include <trace/events/sunrpc.h> 60 61 #include "socklib.h" 62 #include "sunrpc.h" 63 64 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 65 66 67 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *, 68 int flags); 69 static int svc_udp_recvfrom(struct svc_rqst *); 70 static int svc_udp_sendto(struct svc_rqst *); 71 static void svc_sock_detach(struct svc_xprt *); 72 static void svc_tcp_sock_detach(struct svc_xprt *); 73 static void svc_sock_free(struct svc_xprt *); 74 75 static struct svc_xprt *svc_create_socket(struct svc_serv *, int, 76 struct net *, struct sockaddr *, 77 int, int); 78 #ifdef CONFIG_DEBUG_LOCK_ALLOC 79 static struct lock_class_key svc_key[2]; 80 static struct lock_class_key svc_slock_key[2]; 81 82 static void svc_reclassify_socket(struct socket *sock) 83 { 84 struct sock *sk = sock->sk; 85 86 if (WARN_ON_ONCE(!sock_allow_reclassification(sk))) 87 return; 88 89 switch (sk->sk_family) { 90 case AF_INET: 91 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD", 92 &svc_slock_key[0], 93 "sk_xprt.xpt_lock-AF_INET-NFSD", 94 &svc_key[0]); 95 break; 96 97 case AF_INET6: 98 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD", 99 &svc_slock_key[1], 100 "sk_xprt.xpt_lock-AF_INET6-NFSD", 101 &svc_key[1]); 102 break; 103 104 default: 105 BUG(); 106 } 107 } 108 #else 109 static void svc_reclassify_socket(struct socket *sock) 110 { 111 } 112 #endif 113 114 /** 115 * svc_tcp_release_rqst - Release transport-related resources 116 * @rqstp: request structure with resources to be released 117 * 118 */ 119 static void svc_tcp_release_rqst(struct svc_rqst *rqstp) 120 { 121 } 122 123 /** 124 * svc_udp_release_rqst - Release transport-related resources 125 * @rqstp: request structure with resources to be released 126 * 127 */ 128 static void svc_udp_release_rqst(struct svc_rqst *rqstp) 129 { 130 struct sk_buff *skb = rqstp->rq_xprt_ctxt; 131 132 if (skb) { 133 rqstp->rq_xprt_ctxt = NULL; 134 consume_skb(skb); 135 } 136 } 137 138 union svc_pktinfo_u { 139 struct in_pktinfo pkti; 140 struct in6_pktinfo pkti6; 141 }; 142 #define SVC_PKTINFO_SPACE \ 143 CMSG_SPACE(sizeof(union svc_pktinfo_u)) 144 145 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh) 146 { 147 struct svc_sock *svsk = 148 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 149 switch (svsk->sk_sk->sk_family) { 150 case AF_INET: { 151 struct in_pktinfo *pki = CMSG_DATA(cmh); 152 153 cmh->cmsg_level = SOL_IP; 154 cmh->cmsg_type = IP_PKTINFO; 155 pki->ipi_ifindex = 0; 156 pki->ipi_spec_dst.s_addr = 157 svc_daddr_in(rqstp)->sin_addr.s_addr; 158 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 159 } 160 break; 161 162 case AF_INET6: { 163 struct in6_pktinfo *pki = CMSG_DATA(cmh); 164 struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp); 165 166 cmh->cmsg_level = SOL_IPV6; 167 cmh->cmsg_type = IPV6_PKTINFO; 168 pki->ipi6_ifindex = daddr->sin6_scope_id; 169 pki->ipi6_addr = daddr->sin6_addr; 170 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 171 } 172 break; 173 } 174 } 175 176 static int svc_sock_result_payload(struct svc_rqst *rqstp, unsigned int offset, 177 unsigned int length) 178 { 179 return 0; 180 } 181 182 /* 183 * Report socket names for nfsdfs 184 */ 185 static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining) 186 { 187 const struct sock *sk = svsk->sk_sk; 188 const char *proto_name = sk->sk_protocol == IPPROTO_UDP ? 189 "udp" : "tcp"; 190 int len; 191 192 switch (sk->sk_family) { 193 case PF_INET: 194 len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n", 195 proto_name, 196 &inet_sk(sk)->inet_rcv_saddr, 197 inet_sk(sk)->inet_num); 198 break; 199 #if IS_ENABLED(CONFIG_IPV6) 200 case PF_INET6: 201 len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n", 202 proto_name, 203 &sk->sk_v6_rcv_saddr, 204 inet_sk(sk)->inet_num); 205 break; 206 #endif 207 default: 208 len = snprintf(buf, remaining, "*unknown-%d*\n", 209 sk->sk_family); 210 } 211 212 if (len >= remaining) { 213 *buf = '\0'; 214 return -ENAMETOOLONG; 215 } 216 return len; 217 } 218 219 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 220 static void svc_flush_bvec(const struct bio_vec *bvec, size_t size, size_t seek) 221 { 222 struct bvec_iter bi = { 223 .bi_size = size + seek, 224 }; 225 struct bio_vec bv; 226 227 bvec_iter_advance(bvec, &bi, seek & PAGE_MASK); 228 for_each_bvec(bv, bvec, bi, bi) 229 flush_dcache_page(bv.bv_page); 230 } 231 #else 232 static inline void svc_flush_bvec(const struct bio_vec *bvec, size_t size, 233 size_t seek) 234 { 235 } 236 #endif 237 238 /* 239 * Read from @rqstp's transport socket. The incoming message fills whole 240 * pages in @rqstp's rq_pages array until the last page of the message 241 * has been received into a partial page. 242 */ 243 static ssize_t svc_tcp_read_msg(struct svc_rqst *rqstp, size_t buflen, 244 size_t seek) 245 { 246 struct svc_sock *svsk = 247 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 248 struct bio_vec *bvec = rqstp->rq_bvec; 249 struct msghdr msg = { NULL }; 250 unsigned int i; 251 ssize_t len; 252 size_t t; 253 254 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 255 256 for (i = 0, t = 0; t < buflen; i++, t += PAGE_SIZE) { 257 bvec[i].bv_page = rqstp->rq_pages[i]; 258 bvec[i].bv_len = PAGE_SIZE; 259 bvec[i].bv_offset = 0; 260 } 261 rqstp->rq_respages = &rqstp->rq_pages[i]; 262 rqstp->rq_next_page = rqstp->rq_respages + 1; 263 264 iov_iter_bvec(&msg.msg_iter, ITER_DEST, bvec, i, buflen); 265 if (seek) { 266 iov_iter_advance(&msg.msg_iter, seek); 267 buflen -= seek; 268 } 269 len = sock_recvmsg(svsk->sk_sock, &msg, MSG_DONTWAIT); 270 if (len > 0) 271 svc_flush_bvec(bvec, len, seek); 272 273 /* If we read a full record, then assume there may be more 274 * data to read (stream based sockets only!) 275 */ 276 if (len == buflen) 277 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 278 279 return len; 280 } 281 282 /* 283 * Set socket snd and rcv buffer lengths 284 */ 285 static void svc_sock_setbufsize(struct svc_sock *svsk, unsigned int nreqs) 286 { 287 unsigned int max_mesg = svsk->sk_xprt.xpt_server->sv_max_mesg; 288 struct socket *sock = svsk->sk_sock; 289 290 nreqs = min(nreqs, INT_MAX / 2 / max_mesg); 291 292 lock_sock(sock->sk); 293 sock->sk->sk_sndbuf = nreqs * max_mesg * 2; 294 sock->sk->sk_rcvbuf = nreqs * max_mesg * 2; 295 sock->sk->sk_write_space(sock->sk); 296 release_sock(sock->sk); 297 } 298 299 static void svc_sock_secure_port(struct svc_rqst *rqstp) 300 { 301 if (svc_port_is_privileged(svc_addr(rqstp))) 302 set_bit(RQ_SECURE, &rqstp->rq_flags); 303 else 304 clear_bit(RQ_SECURE, &rqstp->rq_flags); 305 } 306 307 /* 308 * INET callback when data has been received on the socket. 309 */ 310 static void svc_data_ready(struct sock *sk) 311 { 312 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 313 314 trace_sk_data_ready(sk); 315 316 if (svsk) { 317 /* Refer to svc_setup_socket() for details. */ 318 rmb(); 319 svsk->sk_odata(sk); 320 trace_svcsock_data_ready(&svsk->sk_xprt, 0); 321 if (!test_and_set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags)) 322 svc_xprt_enqueue(&svsk->sk_xprt); 323 } 324 } 325 326 /* 327 * INET callback when space is newly available on the socket. 328 */ 329 static void svc_write_space(struct sock *sk) 330 { 331 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data); 332 333 if (svsk) { 334 /* Refer to svc_setup_socket() for details. */ 335 rmb(); 336 trace_svcsock_write_space(&svsk->sk_xprt, 0); 337 svsk->sk_owspace(sk); 338 svc_xprt_enqueue(&svsk->sk_xprt); 339 } 340 } 341 342 static int svc_tcp_has_wspace(struct svc_xprt *xprt) 343 { 344 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 345 346 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) 347 return 1; 348 return !test_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 349 } 350 351 static void svc_tcp_kill_temp_xprt(struct svc_xprt *xprt) 352 { 353 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 354 355 sock_no_linger(svsk->sk_sock->sk); 356 } 357 358 /* 359 * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo 360 */ 361 static int svc_udp_get_dest_address4(struct svc_rqst *rqstp, 362 struct cmsghdr *cmh) 363 { 364 struct in_pktinfo *pki = CMSG_DATA(cmh); 365 struct sockaddr_in *daddr = svc_daddr_in(rqstp); 366 367 if (cmh->cmsg_type != IP_PKTINFO) 368 return 0; 369 370 daddr->sin_family = AF_INET; 371 daddr->sin_addr.s_addr = pki->ipi_spec_dst.s_addr; 372 return 1; 373 } 374 375 /* 376 * See net/ipv6/datagram.c : ip6_datagram_recv_ctl 377 */ 378 static int svc_udp_get_dest_address6(struct svc_rqst *rqstp, 379 struct cmsghdr *cmh) 380 { 381 struct in6_pktinfo *pki = CMSG_DATA(cmh); 382 struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp); 383 384 if (cmh->cmsg_type != IPV6_PKTINFO) 385 return 0; 386 387 daddr->sin6_family = AF_INET6; 388 daddr->sin6_addr = pki->ipi6_addr; 389 daddr->sin6_scope_id = pki->ipi6_ifindex; 390 return 1; 391 } 392 393 /* 394 * Copy the UDP datagram's destination address to the rqstp structure. 395 * The 'destination' address in this case is the address to which the 396 * peer sent the datagram, i.e. our local address. For multihomed 397 * hosts, this can change from msg to msg. Note that only the IP 398 * address changes, the port number should remain the same. 399 */ 400 static int svc_udp_get_dest_address(struct svc_rqst *rqstp, 401 struct cmsghdr *cmh) 402 { 403 switch (cmh->cmsg_level) { 404 case SOL_IP: 405 return svc_udp_get_dest_address4(rqstp, cmh); 406 case SOL_IPV6: 407 return svc_udp_get_dest_address6(rqstp, cmh); 408 } 409 410 return 0; 411 } 412 413 /** 414 * svc_udp_recvfrom - Receive a datagram from a UDP socket. 415 * @rqstp: request structure into which to receive an RPC Call 416 * 417 * Called in a loop when XPT_DATA has been set. 418 * 419 * Returns: 420 * On success, the number of bytes in a received RPC Call, or 421 * %0 if a complete RPC Call message was not ready to return 422 */ 423 static int svc_udp_recvfrom(struct svc_rqst *rqstp) 424 { 425 struct svc_sock *svsk = 426 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 427 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 428 struct sk_buff *skb; 429 union { 430 struct cmsghdr hdr; 431 long all[SVC_PKTINFO_SPACE / sizeof(long)]; 432 } buffer; 433 struct cmsghdr *cmh = &buffer.hdr; 434 struct msghdr msg = { 435 .msg_name = svc_addr(rqstp), 436 .msg_control = cmh, 437 .msg_controllen = sizeof(buffer), 438 .msg_flags = MSG_DONTWAIT, 439 }; 440 size_t len; 441 int err; 442 443 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags)) 444 /* udp sockets need large rcvbuf as all pending 445 * requests are still in that buffer. sndbuf must 446 * also be large enough that there is enough space 447 * for one reply per thread. We count all threads 448 * rather than threads in a particular pool, which 449 * provides an upper bound on the number of threads 450 * which will access the socket. 451 */ 452 svc_sock_setbufsize(svsk, serv->sv_nrthreads + 3); 453 454 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 455 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL, 456 0, 0, MSG_PEEK | MSG_DONTWAIT); 457 if (err < 0) 458 goto out_recv_err; 459 skb = skb_recv_udp(svsk->sk_sk, MSG_DONTWAIT, &err); 460 if (!skb) 461 goto out_recv_err; 462 463 len = svc_addr_len(svc_addr(rqstp)); 464 rqstp->rq_addrlen = len; 465 if (skb->tstamp == 0) { 466 skb->tstamp = ktime_get_real(); 467 /* Don't enable netstamp, sunrpc doesn't 468 need that much accuracy */ 469 } 470 sock_write_timestamp(svsk->sk_sk, skb->tstamp); 471 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */ 472 473 len = skb->len; 474 rqstp->rq_arg.len = len; 475 trace_svcsock_udp_recv(&svsk->sk_xprt, len); 476 477 rqstp->rq_prot = IPPROTO_UDP; 478 479 if (!svc_udp_get_dest_address(rqstp, cmh)) 480 goto out_cmsg_err; 481 rqstp->rq_daddrlen = svc_addr_len(svc_daddr(rqstp)); 482 483 if (skb_is_nonlinear(skb)) { 484 /* we have to copy */ 485 local_bh_disable(); 486 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) 487 goto out_bh_enable; 488 local_bh_enable(); 489 consume_skb(skb); 490 } else { 491 /* we can use it in-place */ 492 rqstp->rq_arg.head[0].iov_base = skb->data; 493 rqstp->rq_arg.head[0].iov_len = len; 494 if (skb_checksum_complete(skb)) 495 goto out_free; 496 rqstp->rq_xprt_ctxt = skb; 497 } 498 499 rqstp->rq_arg.page_base = 0; 500 if (len <= rqstp->rq_arg.head[0].iov_len) { 501 rqstp->rq_arg.head[0].iov_len = len; 502 rqstp->rq_arg.page_len = 0; 503 rqstp->rq_respages = rqstp->rq_pages+1; 504 } else { 505 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 506 rqstp->rq_respages = rqstp->rq_pages + 1 + 507 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE); 508 } 509 rqstp->rq_next_page = rqstp->rq_respages+1; 510 511 if (serv->sv_stats) 512 serv->sv_stats->netudpcnt++; 513 514 svc_xprt_received(rqstp->rq_xprt); 515 return len; 516 517 out_recv_err: 518 if (err != -EAGAIN) { 519 /* possibly an icmp error */ 520 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 521 } 522 trace_svcsock_udp_recv_err(&svsk->sk_xprt, err); 523 goto out_clear_busy; 524 out_cmsg_err: 525 net_warn_ratelimited("svc: received unknown control message %d/%d; dropping RPC reply datagram\n", 526 cmh->cmsg_level, cmh->cmsg_type); 527 goto out_free; 528 out_bh_enable: 529 local_bh_enable(); 530 out_free: 531 kfree_skb(skb); 532 out_clear_busy: 533 svc_xprt_received(rqstp->rq_xprt); 534 return 0; 535 } 536 537 /** 538 * svc_udp_sendto - Send out a reply on a UDP socket 539 * @rqstp: completed svc_rqst 540 * 541 * xpt_mutex ensures @rqstp's whole message is written to the socket 542 * without interruption. 543 * 544 * Returns the number of bytes sent, or a negative errno. 545 */ 546 static int svc_udp_sendto(struct svc_rqst *rqstp) 547 { 548 struct svc_xprt *xprt = rqstp->rq_xprt; 549 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 550 struct xdr_buf *xdr = &rqstp->rq_res; 551 union { 552 struct cmsghdr hdr; 553 long all[SVC_PKTINFO_SPACE / sizeof(long)]; 554 } buffer; 555 struct cmsghdr *cmh = &buffer.hdr; 556 struct msghdr msg = { 557 .msg_name = &rqstp->rq_addr, 558 .msg_namelen = rqstp->rq_addrlen, 559 .msg_control = cmh, 560 .msg_controllen = sizeof(buffer), 561 }; 562 unsigned int sent; 563 int err; 564 565 svc_udp_release_rqst(rqstp); 566 567 svc_set_cmsg_data(rqstp, cmh); 568 569 mutex_lock(&xprt->xpt_mutex); 570 571 if (svc_xprt_is_dead(xprt)) 572 goto out_notconn; 573 574 err = xdr_alloc_bvec(xdr, GFP_KERNEL); 575 if (err < 0) 576 goto out_unlock; 577 578 err = xprt_sock_sendmsg(svsk->sk_sock, &msg, xdr, 0, 0, &sent); 579 if (err == -ECONNREFUSED) { 580 /* ICMP error on earlier request. */ 581 err = xprt_sock_sendmsg(svsk->sk_sock, &msg, xdr, 0, 0, &sent); 582 } 583 xdr_free_bvec(xdr); 584 trace_svcsock_udp_send(xprt, err); 585 out_unlock: 586 mutex_unlock(&xprt->xpt_mutex); 587 if (err < 0) 588 return err; 589 return sent; 590 591 out_notconn: 592 mutex_unlock(&xprt->xpt_mutex); 593 return -ENOTCONN; 594 } 595 596 static int svc_udp_has_wspace(struct svc_xprt *xprt) 597 { 598 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 599 struct svc_serv *serv = xprt->xpt_server; 600 unsigned long required; 601 602 /* 603 * Set the SOCK_NOSPACE flag before checking the available 604 * sock space. 605 */ 606 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 607 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg; 608 if (required*2 > sock_wspace(svsk->sk_sk)) 609 return 0; 610 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 611 return 1; 612 } 613 614 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt) 615 { 616 BUG(); 617 return NULL; 618 } 619 620 static void svc_udp_kill_temp_xprt(struct svc_xprt *xprt) 621 { 622 } 623 624 static struct svc_xprt *svc_udp_create(struct svc_serv *serv, 625 struct net *net, 626 struct sockaddr *sa, int salen, 627 int flags) 628 { 629 return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags); 630 } 631 632 static const struct svc_xprt_ops svc_udp_ops = { 633 .xpo_create = svc_udp_create, 634 .xpo_recvfrom = svc_udp_recvfrom, 635 .xpo_sendto = svc_udp_sendto, 636 .xpo_result_payload = svc_sock_result_payload, 637 .xpo_release_rqst = svc_udp_release_rqst, 638 .xpo_detach = svc_sock_detach, 639 .xpo_free = svc_sock_free, 640 .xpo_has_wspace = svc_udp_has_wspace, 641 .xpo_accept = svc_udp_accept, 642 .xpo_secure_port = svc_sock_secure_port, 643 .xpo_kill_temp_xprt = svc_udp_kill_temp_xprt, 644 }; 645 646 static struct svc_xprt_class svc_udp_class = { 647 .xcl_name = "udp", 648 .xcl_owner = THIS_MODULE, 649 .xcl_ops = &svc_udp_ops, 650 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP, 651 .xcl_ident = XPRT_TRANSPORT_UDP, 652 }; 653 654 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv) 655 { 656 svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_udp_class, 657 &svsk->sk_xprt, serv); 658 clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); 659 svsk->sk_sk->sk_data_ready = svc_data_ready; 660 svsk->sk_sk->sk_write_space = svc_write_space; 661 662 /* initialise setting must have enough space to 663 * receive and respond to one request. 664 * svc_udp_recvfrom will re-adjust if necessary 665 */ 666 svc_sock_setbufsize(svsk, 3); 667 668 /* data might have come in before data_ready set up */ 669 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 670 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 671 672 /* make sure we get destination address info */ 673 switch (svsk->sk_sk->sk_family) { 674 case AF_INET: 675 ip_sock_set_pktinfo(svsk->sk_sock->sk); 676 break; 677 case AF_INET6: 678 ip6_sock_set_recvpktinfo(svsk->sk_sock->sk); 679 break; 680 default: 681 BUG(); 682 } 683 } 684 685 /* 686 * A data_ready event on a listening socket means there's a connection 687 * pending. Do not use state_change as a substitute for it. 688 */ 689 static void svc_tcp_listen_data_ready(struct sock *sk) 690 { 691 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 692 693 trace_sk_data_ready(sk); 694 695 if (svsk) { 696 /* Refer to svc_setup_socket() for details. */ 697 rmb(); 698 svsk->sk_odata(sk); 699 } 700 701 /* 702 * This callback may called twice when a new connection 703 * is established as a child socket inherits everything 704 * from a parent LISTEN socket. 705 * 1) data_ready method of the parent socket will be called 706 * when one of child sockets become ESTABLISHED. 707 * 2) data_ready method of the child socket may be called 708 * when it receives data before the socket is accepted. 709 * In case of 2, we should ignore it silently. 710 */ 711 if (sk->sk_state == TCP_LISTEN) { 712 if (svsk) { 713 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 714 svc_xprt_enqueue(&svsk->sk_xprt); 715 } 716 } 717 } 718 719 /* 720 * A state change on a connected socket means it's dying or dead. 721 */ 722 static void svc_tcp_state_change(struct sock *sk) 723 { 724 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 725 726 if (svsk) { 727 /* Refer to svc_setup_socket() for details. */ 728 rmb(); 729 svsk->sk_ostate(sk); 730 trace_svcsock_tcp_state(&svsk->sk_xprt, svsk->sk_sock); 731 if (sk->sk_state != TCP_ESTABLISHED) 732 svc_xprt_deferred_close(&svsk->sk_xprt); 733 } 734 } 735 736 /* 737 * Accept a TCP connection 738 */ 739 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt) 740 { 741 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 742 struct sockaddr_storage addr; 743 struct sockaddr *sin = (struct sockaddr *) &addr; 744 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 745 struct socket *sock = svsk->sk_sock; 746 struct socket *newsock; 747 struct svc_sock *newsvsk; 748 int err, slen; 749 750 if (!sock) 751 return NULL; 752 753 clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 754 err = kernel_accept(sock, &newsock, O_NONBLOCK); 755 if (err < 0) { 756 if (err == -ENOMEM) 757 printk(KERN_WARNING "%s: no more sockets!\n", 758 serv->sv_name); 759 else if (err != -EAGAIN) 760 net_warn_ratelimited("%s: accept failed (err %d)!\n", 761 serv->sv_name, -err); 762 trace_svcsock_accept_err(xprt, serv->sv_name, err); 763 return NULL; 764 } 765 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 766 767 err = kernel_getpeername(newsock, sin); 768 if (err < 0) { 769 trace_svcsock_getpeername_err(xprt, serv->sv_name, err); 770 goto failed; /* aborted connection or whatever */ 771 } 772 slen = err; 773 774 /* Reset the inherited callbacks before calling svc_setup_socket */ 775 newsock->sk->sk_state_change = svsk->sk_ostate; 776 newsock->sk->sk_data_ready = svsk->sk_odata; 777 newsock->sk->sk_write_space = svsk->sk_owspace; 778 779 /* make sure that a write doesn't block forever when 780 * low on memory 781 */ 782 newsock->sk->sk_sndtimeo = HZ*30; 783 784 newsvsk = svc_setup_socket(serv, newsock, 785 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY)); 786 if (IS_ERR(newsvsk)) 787 goto failed; 788 svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen); 789 err = kernel_getsockname(newsock, sin); 790 slen = err; 791 if (unlikely(err < 0)) 792 slen = offsetof(struct sockaddr, sa_data); 793 svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen); 794 795 if (sock_is_loopback(newsock->sk)) 796 set_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags); 797 else 798 clear_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags); 799 if (serv->sv_stats) 800 serv->sv_stats->nettcpconn++; 801 802 return &newsvsk->sk_xprt; 803 804 failed: 805 sock_release(newsock); 806 return NULL; 807 } 808 809 static size_t svc_tcp_restore_pages(struct svc_sock *svsk, 810 struct svc_rqst *rqstp) 811 { 812 size_t len = svsk->sk_datalen; 813 unsigned int i, npages; 814 815 if (!len) 816 return 0; 817 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 818 for (i = 0; i < npages; i++) { 819 if (rqstp->rq_pages[i] != NULL) 820 put_page(rqstp->rq_pages[i]); 821 BUG_ON(svsk->sk_pages[i] == NULL); 822 rqstp->rq_pages[i] = svsk->sk_pages[i]; 823 svsk->sk_pages[i] = NULL; 824 } 825 rqstp->rq_arg.head[0].iov_base = page_address(rqstp->rq_pages[0]); 826 return len; 827 } 828 829 static void svc_tcp_save_pages(struct svc_sock *svsk, struct svc_rqst *rqstp) 830 { 831 unsigned int i, len, npages; 832 833 if (svsk->sk_datalen == 0) 834 return; 835 len = svsk->sk_datalen; 836 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 837 for (i = 0; i < npages; i++) { 838 svsk->sk_pages[i] = rqstp->rq_pages[i]; 839 rqstp->rq_pages[i] = NULL; 840 } 841 } 842 843 static void svc_tcp_clear_pages(struct svc_sock *svsk) 844 { 845 unsigned int i, len, npages; 846 847 if (svsk->sk_datalen == 0) 848 goto out; 849 len = svsk->sk_datalen; 850 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 851 for (i = 0; i < npages; i++) { 852 if (svsk->sk_pages[i] == NULL) { 853 WARN_ON_ONCE(1); 854 continue; 855 } 856 put_page(svsk->sk_pages[i]); 857 svsk->sk_pages[i] = NULL; 858 } 859 out: 860 svsk->sk_tcplen = 0; 861 svsk->sk_datalen = 0; 862 } 863 864 /* 865 * Receive fragment record header into sk_marker. 866 */ 867 static ssize_t svc_tcp_read_marker(struct svc_sock *svsk, 868 struct svc_rqst *rqstp) 869 { 870 ssize_t want, len; 871 872 /* If we haven't gotten the record length yet, 873 * get the next four bytes. 874 */ 875 if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) { 876 struct msghdr msg = { NULL }; 877 struct kvec iov; 878 879 want = sizeof(rpc_fraghdr) - svsk->sk_tcplen; 880 iov.iov_base = ((char *)&svsk->sk_marker) + svsk->sk_tcplen; 881 iov.iov_len = want; 882 iov_iter_kvec(&msg.msg_iter, ITER_DEST, &iov, 1, want); 883 len = sock_recvmsg(svsk->sk_sock, &msg, MSG_DONTWAIT); 884 if (len < 0) 885 return len; 886 svsk->sk_tcplen += len; 887 if (len < want) { 888 /* call again to read the remaining bytes */ 889 goto err_short; 890 } 891 trace_svcsock_marker(&svsk->sk_xprt, svsk->sk_marker); 892 if (svc_sock_reclen(svsk) + svsk->sk_datalen > 893 svsk->sk_xprt.xpt_server->sv_max_mesg) 894 goto err_too_large; 895 } 896 return svc_sock_reclen(svsk); 897 898 err_too_large: 899 net_notice_ratelimited("svc: %s %s RPC fragment too large: %d\n", 900 __func__, svsk->sk_xprt.xpt_server->sv_name, 901 svc_sock_reclen(svsk)); 902 svc_xprt_deferred_close(&svsk->sk_xprt); 903 err_short: 904 return -EAGAIN; 905 } 906 907 static int receive_cb_reply(struct svc_sock *svsk, struct svc_rqst *rqstp) 908 { 909 struct rpc_xprt *bc_xprt = svsk->sk_xprt.xpt_bc_xprt; 910 struct rpc_rqst *req = NULL; 911 struct kvec *src, *dst; 912 __be32 *p = (__be32 *)rqstp->rq_arg.head[0].iov_base; 913 __be32 xid; 914 __be32 calldir; 915 916 xid = *p++; 917 calldir = *p; 918 919 if (!bc_xprt) 920 return -EAGAIN; 921 spin_lock(&bc_xprt->queue_lock); 922 req = xprt_lookup_rqst(bc_xprt, xid); 923 if (!req) 924 goto unlock_notfound; 925 926 memcpy(&req->rq_private_buf, &req->rq_rcv_buf, sizeof(struct xdr_buf)); 927 /* 928 * XXX!: cheating for now! Only copying HEAD. 929 * But we know this is good enough for now (in fact, for any 930 * callback reply in the forseeable future). 931 */ 932 dst = &req->rq_private_buf.head[0]; 933 src = &rqstp->rq_arg.head[0]; 934 if (dst->iov_len < src->iov_len) 935 goto unlock_eagain; /* whatever; just giving up. */ 936 memcpy(dst->iov_base, src->iov_base, src->iov_len); 937 xprt_complete_rqst(req->rq_task, rqstp->rq_arg.len); 938 rqstp->rq_arg.len = 0; 939 spin_unlock(&bc_xprt->queue_lock); 940 return 0; 941 unlock_notfound: 942 printk(KERN_NOTICE 943 "%s: Got unrecognized reply: " 944 "calldir 0x%x xpt_bc_xprt %p xid %08x\n", 945 __func__, ntohl(calldir), 946 bc_xprt, ntohl(xid)); 947 unlock_eagain: 948 spin_unlock(&bc_xprt->queue_lock); 949 return -EAGAIN; 950 } 951 952 static void svc_tcp_fragment_received(struct svc_sock *svsk) 953 { 954 /* If we have more data, signal svc_xprt_enqueue() to try again */ 955 svsk->sk_tcplen = 0; 956 svsk->sk_marker = xdr_zero; 957 } 958 959 /** 960 * svc_tcp_recvfrom - Receive data from a TCP socket 961 * @rqstp: request structure into which to receive an RPC Call 962 * 963 * Called in a loop when XPT_DATA has been set. 964 * 965 * Read the 4-byte stream record marker, then use the record length 966 * in that marker to set up exactly the resources needed to receive 967 * the next RPC message into @rqstp. 968 * 969 * Returns: 970 * On success, the number of bytes in a received RPC Call, or 971 * %0 if a complete RPC Call message was not ready to return 972 * 973 * The zero return case handles partial receives and callback Replies. 974 * The state of a partial receive is preserved in the svc_sock for 975 * the next call to svc_tcp_recvfrom. 976 */ 977 static int svc_tcp_recvfrom(struct svc_rqst *rqstp) 978 { 979 struct svc_sock *svsk = 980 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 981 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 982 size_t want, base; 983 ssize_t len; 984 __be32 *p; 985 __be32 calldir; 986 987 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 988 len = svc_tcp_read_marker(svsk, rqstp); 989 if (len < 0) 990 goto error; 991 992 base = svc_tcp_restore_pages(svsk, rqstp); 993 want = len - (svsk->sk_tcplen - sizeof(rpc_fraghdr)); 994 len = svc_tcp_read_msg(rqstp, base + want, base); 995 if (len >= 0) { 996 trace_svcsock_tcp_recv(&svsk->sk_xprt, len); 997 svsk->sk_tcplen += len; 998 svsk->sk_datalen += len; 999 } 1000 if (len != want || !svc_sock_final_rec(svsk)) 1001 goto err_incomplete; 1002 if (svsk->sk_datalen < 8) 1003 goto err_nuts; 1004 1005 rqstp->rq_arg.len = svsk->sk_datalen; 1006 rqstp->rq_arg.page_base = 0; 1007 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) { 1008 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len; 1009 rqstp->rq_arg.page_len = 0; 1010 } else 1011 rqstp->rq_arg.page_len = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1012 1013 rqstp->rq_xprt_ctxt = NULL; 1014 rqstp->rq_prot = IPPROTO_TCP; 1015 if (test_bit(XPT_LOCAL, &svsk->sk_xprt.xpt_flags)) 1016 set_bit(RQ_LOCAL, &rqstp->rq_flags); 1017 else 1018 clear_bit(RQ_LOCAL, &rqstp->rq_flags); 1019 1020 p = (__be32 *)rqstp->rq_arg.head[0].iov_base; 1021 calldir = p[1]; 1022 if (calldir) 1023 len = receive_cb_reply(svsk, rqstp); 1024 1025 /* Reset TCP read info */ 1026 svsk->sk_datalen = 0; 1027 svc_tcp_fragment_received(svsk); 1028 1029 if (len < 0) 1030 goto error; 1031 1032 svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt); 1033 if (serv->sv_stats) 1034 serv->sv_stats->nettcpcnt++; 1035 1036 svc_xprt_received(rqstp->rq_xprt); 1037 return rqstp->rq_arg.len; 1038 1039 err_incomplete: 1040 svc_tcp_save_pages(svsk, rqstp); 1041 if (len < 0 && len != -EAGAIN) 1042 goto err_delete; 1043 if (len == want) 1044 svc_tcp_fragment_received(svsk); 1045 else 1046 trace_svcsock_tcp_recv_short(&svsk->sk_xprt, 1047 svc_sock_reclen(svsk), 1048 svsk->sk_tcplen - sizeof(rpc_fraghdr)); 1049 goto err_noclose; 1050 error: 1051 if (len != -EAGAIN) 1052 goto err_delete; 1053 trace_svcsock_tcp_recv_eagain(&svsk->sk_xprt, 0); 1054 goto err_noclose; 1055 err_nuts: 1056 svsk->sk_datalen = 0; 1057 err_delete: 1058 trace_svcsock_tcp_recv_err(&svsk->sk_xprt, len); 1059 svc_xprt_deferred_close(&svsk->sk_xprt); 1060 err_noclose: 1061 svc_xprt_received(rqstp->rq_xprt); 1062 return 0; /* record not complete */ 1063 } 1064 1065 static int svc_tcp_send_kvec(struct socket *sock, const struct kvec *vec, 1066 int flags) 1067 { 1068 return kernel_sendpage(sock, virt_to_page(vec->iov_base), 1069 offset_in_page(vec->iov_base), 1070 vec->iov_len, flags); 1071 } 1072 1073 /* 1074 * kernel_sendpage() is used exclusively to reduce the number of 1075 * copy operations in this path. Therefore the caller must ensure 1076 * that the pages backing @xdr are unchanging. 1077 * 1078 * In addition, the logic assumes that * .bv_len is never larger 1079 * than PAGE_SIZE. 1080 */ 1081 static int svc_tcp_sendmsg(struct socket *sock, struct xdr_buf *xdr, 1082 rpc_fraghdr marker, unsigned int *sentp) 1083 { 1084 const struct kvec *head = xdr->head; 1085 const struct kvec *tail = xdr->tail; 1086 struct kvec rm = { 1087 .iov_base = &marker, 1088 .iov_len = sizeof(marker), 1089 }; 1090 struct msghdr msg = { 1091 .msg_flags = 0, 1092 }; 1093 int ret; 1094 1095 *sentp = 0; 1096 ret = xdr_alloc_bvec(xdr, GFP_KERNEL); 1097 if (ret < 0) 1098 return ret; 1099 1100 ret = kernel_sendmsg(sock, &msg, &rm, 1, rm.iov_len); 1101 if (ret < 0) 1102 return ret; 1103 *sentp += ret; 1104 if (ret != rm.iov_len) 1105 return -EAGAIN; 1106 1107 ret = svc_tcp_send_kvec(sock, head, 0); 1108 if (ret < 0) 1109 return ret; 1110 *sentp += ret; 1111 if (ret != head->iov_len) 1112 goto out; 1113 1114 if (xdr->page_len) { 1115 unsigned int offset, len, remaining; 1116 struct bio_vec *bvec; 1117 1118 bvec = xdr->bvec + (xdr->page_base >> PAGE_SHIFT); 1119 offset = offset_in_page(xdr->page_base); 1120 remaining = xdr->page_len; 1121 while (remaining > 0) { 1122 len = min(remaining, bvec->bv_len - offset); 1123 ret = kernel_sendpage(sock, bvec->bv_page, 1124 bvec->bv_offset + offset, 1125 len, 0); 1126 if (ret < 0) 1127 return ret; 1128 *sentp += ret; 1129 if (ret != len) 1130 goto out; 1131 remaining -= len; 1132 offset = 0; 1133 bvec++; 1134 } 1135 } 1136 1137 if (tail->iov_len) { 1138 ret = svc_tcp_send_kvec(sock, tail, 0); 1139 if (ret < 0) 1140 return ret; 1141 *sentp += ret; 1142 } 1143 1144 out: 1145 return 0; 1146 } 1147 1148 /** 1149 * svc_tcp_sendto - Send out a reply on a TCP socket 1150 * @rqstp: completed svc_rqst 1151 * 1152 * xpt_mutex ensures @rqstp's whole message is written to the socket 1153 * without interruption. 1154 * 1155 * Returns the number of bytes sent, or a negative errno. 1156 */ 1157 static int svc_tcp_sendto(struct svc_rqst *rqstp) 1158 { 1159 struct svc_xprt *xprt = rqstp->rq_xprt; 1160 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1161 struct xdr_buf *xdr = &rqstp->rq_res; 1162 rpc_fraghdr marker = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT | 1163 (u32)xdr->len); 1164 unsigned int sent; 1165 int err; 1166 1167 svc_tcp_release_rqst(rqstp); 1168 1169 atomic_inc(&svsk->sk_sendqlen); 1170 mutex_lock(&xprt->xpt_mutex); 1171 if (svc_xprt_is_dead(xprt)) 1172 goto out_notconn; 1173 tcp_sock_set_cork(svsk->sk_sk, true); 1174 err = svc_tcp_sendmsg(svsk->sk_sock, xdr, marker, &sent); 1175 xdr_free_bvec(xdr); 1176 trace_svcsock_tcp_send(xprt, err < 0 ? (long)err : sent); 1177 if (err < 0 || sent != (xdr->len + sizeof(marker))) 1178 goto out_close; 1179 if (atomic_dec_and_test(&svsk->sk_sendqlen)) 1180 tcp_sock_set_cork(svsk->sk_sk, false); 1181 mutex_unlock(&xprt->xpt_mutex); 1182 return sent; 1183 1184 out_notconn: 1185 atomic_dec(&svsk->sk_sendqlen); 1186 mutex_unlock(&xprt->xpt_mutex); 1187 return -ENOTCONN; 1188 out_close: 1189 pr_notice("rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n", 1190 xprt->xpt_server->sv_name, 1191 (err < 0) ? "got error" : "sent", 1192 (err < 0) ? err : sent, xdr->len); 1193 svc_xprt_deferred_close(xprt); 1194 atomic_dec(&svsk->sk_sendqlen); 1195 mutex_unlock(&xprt->xpt_mutex); 1196 return -EAGAIN; 1197 } 1198 1199 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv, 1200 struct net *net, 1201 struct sockaddr *sa, int salen, 1202 int flags) 1203 { 1204 return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags); 1205 } 1206 1207 static const struct svc_xprt_ops svc_tcp_ops = { 1208 .xpo_create = svc_tcp_create, 1209 .xpo_recvfrom = svc_tcp_recvfrom, 1210 .xpo_sendto = svc_tcp_sendto, 1211 .xpo_result_payload = svc_sock_result_payload, 1212 .xpo_release_rqst = svc_tcp_release_rqst, 1213 .xpo_detach = svc_tcp_sock_detach, 1214 .xpo_free = svc_sock_free, 1215 .xpo_has_wspace = svc_tcp_has_wspace, 1216 .xpo_accept = svc_tcp_accept, 1217 .xpo_secure_port = svc_sock_secure_port, 1218 .xpo_kill_temp_xprt = svc_tcp_kill_temp_xprt, 1219 }; 1220 1221 static struct svc_xprt_class svc_tcp_class = { 1222 .xcl_name = "tcp", 1223 .xcl_owner = THIS_MODULE, 1224 .xcl_ops = &svc_tcp_ops, 1225 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP, 1226 .xcl_ident = XPRT_TRANSPORT_TCP, 1227 }; 1228 1229 void svc_init_xprt_sock(void) 1230 { 1231 svc_reg_xprt_class(&svc_tcp_class); 1232 svc_reg_xprt_class(&svc_udp_class); 1233 } 1234 1235 void svc_cleanup_xprt_sock(void) 1236 { 1237 svc_unreg_xprt_class(&svc_tcp_class); 1238 svc_unreg_xprt_class(&svc_udp_class); 1239 } 1240 1241 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv) 1242 { 1243 struct sock *sk = svsk->sk_sk; 1244 1245 svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_tcp_class, 1246 &svsk->sk_xprt, serv); 1247 set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); 1248 set_bit(XPT_CONG_CTRL, &svsk->sk_xprt.xpt_flags); 1249 if (sk->sk_state == TCP_LISTEN) { 1250 strcpy(svsk->sk_xprt.xpt_remotebuf, "listener"); 1251 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags); 1252 sk->sk_data_ready = svc_tcp_listen_data_ready; 1253 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 1254 } else { 1255 sk->sk_state_change = svc_tcp_state_change; 1256 sk->sk_data_ready = svc_data_ready; 1257 sk->sk_write_space = svc_write_space; 1258 1259 svsk->sk_marker = xdr_zero; 1260 svsk->sk_tcplen = 0; 1261 svsk->sk_datalen = 0; 1262 memset(&svsk->sk_pages[0], 0, sizeof(svsk->sk_pages)); 1263 1264 tcp_sock_set_nodelay(sk); 1265 1266 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 1267 switch (sk->sk_state) { 1268 case TCP_SYN_RECV: 1269 case TCP_ESTABLISHED: 1270 break; 1271 default: 1272 svc_xprt_deferred_close(&svsk->sk_xprt); 1273 } 1274 } 1275 } 1276 1277 void svc_sock_update_bufs(struct svc_serv *serv) 1278 { 1279 /* 1280 * The number of server threads has changed. Update 1281 * rcvbuf and sndbuf accordingly on all sockets 1282 */ 1283 struct svc_sock *svsk; 1284 1285 spin_lock_bh(&serv->sv_lock); 1286 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) 1287 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 1288 spin_unlock_bh(&serv->sv_lock); 1289 } 1290 EXPORT_SYMBOL_GPL(svc_sock_update_bufs); 1291 1292 /* 1293 * Initialize socket for RPC use and create svc_sock struct 1294 */ 1295 static struct svc_sock *svc_setup_socket(struct svc_serv *serv, 1296 struct socket *sock, 1297 int flags) 1298 { 1299 struct svc_sock *svsk; 1300 struct sock *inet; 1301 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS); 1302 int err = 0; 1303 1304 svsk = kzalloc(sizeof(*svsk), GFP_KERNEL); 1305 if (!svsk) 1306 return ERR_PTR(-ENOMEM); 1307 1308 inet = sock->sk; 1309 1310 /* Register socket with portmapper */ 1311 if (pmap_register) 1312 err = svc_register(serv, sock_net(sock->sk), inet->sk_family, 1313 inet->sk_protocol, 1314 ntohs(inet_sk(inet)->inet_sport)); 1315 1316 if (err < 0) { 1317 kfree(svsk); 1318 return ERR_PTR(err); 1319 } 1320 1321 svsk->sk_sock = sock; 1322 svsk->sk_sk = inet; 1323 svsk->sk_ostate = inet->sk_state_change; 1324 svsk->sk_odata = inet->sk_data_ready; 1325 svsk->sk_owspace = inet->sk_write_space; 1326 /* 1327 * This barrier is necessary in order to prevent race condition 1328 * with svc_data_ready(), svc_listen_data_ready() and others 1329 * when calling callbacks above. 1330 */ 1331 wmb(); 1332 inet->sk_user_data = svsk; 1333 1334 /* Initialize the socket */ 1335 if (sock->type == SOCK_DGRAM) 1336 svc_udp_init(svsk, serv); 1337 else 1338 svc_tcp_init(svsk, serv); 1339 1340 trace_svcsock_new_socket(sock); 1341 return svsk; 1342 } 1343 1344 bool svc_alien_sock(struct net *net, int fd) 1345 { 1346 int err; 1347 struct socket *sock = sockfd_lookup(fd, &err); 1348 bool ret = false; 1349 1350 if (!sock) 1351 goto out; 1352 if (sock_net(sock->sk) != net) 1353 ret = true; 1354 sockfd_put(sock); 1355 out: 1356 return ret; 1357 } 1358 EXPORT_SYMBOL_GPL(svc_alien_sock); 1359 1360 /** 1361 * svc_addsock - add a listener socket to an RPC service 1362 * @serv: pointer to RPC service to which to add a new listener 1363 * @fd: file descriptor of the new listener 1364 * @name_return: pointer to buffer to fill in with name of listener 1365 * @len: size of the buffer 1366 * @cred: credential 1367 * 1368 * Fills in socket name and returns positive length of name if successful. 1369 * Name is terminated with '\n'. On error, returns a negative errno 1370 * value. 1371 */ 1372 int svc_addsock(struct svc_serv *serv, const int fd, char *name_return, 1373 const size_t len, const struct cred *cred) 1374 { 1375 int err = 0; 1376 struct socket *so = sockfd_lookup(fd, &err); 1377 struct svc_sock *svsk = NULL; 1378 struct sockaddr_storage addr; 1379 struct sockaddr *sin = (struct sockaddr *)&addr; 1380 int salen; 1381 1382 if (!so) 1383 return err; 1384 err = -EAFNOSUPPORT; 1385 if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6)) 1386 goto out; 1387 err = -EPROTONOSUPPORT; 1388 if (so->sk->sk_protocol != IPPROTO_TCP && 1389 so->sk->sk_protocol != IPPROTO_UDP) 1390 goto out; 1391 err = -EISCONN; 1392 if (so->state > SS_UNCONNECTED) 1393 goto out; 1394 err = -ENOENT; 1395 if (!try_module_get(THIS_MODULE)) 1396 goto out; 1397 svsk = svc_setup_socket(serv, so, SVC_SOCK_DEFAULTS); 1398 if (IS_ERR(svsk)) { 1399 module_put(THIS_MODULE); 1400 err = PTR_ERR(svsk); 1401 goto out; 1402 } 1403 salen = kernel_getsockname(svsk->sk_sock, sin); 1404 if (salen >= 0) 1405 svc_xprt_set_local(&svsk->sk_xprt, sin, salen); 1406 svsk->sk_xprt.xpt_cred = get_cred(cred); 1407 svc_add_new_perm_xprt(serv, &svsk->sk_xprt); 1408 return svc_one_sock_name(svsk, name_return, len); 1409 out: 1410 sockfd_put(so); 1411 return err; 1412 } 1413 EXPORT_SYMBOL_GPL(svc_addsock); 1414 1415 /* 1416 * Create socket for RPC service. 1417 */ 1418 static struct svc_xprt *svc_create_socket(struct svc_serv *serv, 1419 int protocol, 1420 struct net *net, 1421 struct sockaddr *sin, int len, 1422 int flags) 1423 { 1424 struct svc_sock *svsk; 1425 struct socket *sock; 1426 int error; 1427 int type; 1428 struct sockaddr_storage addr; 1429 struct sockaddr *newsin = (struct sockaddr *)&addr; 1430 int newlen; 1431 int family; 1432 1433 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) { 1434 printk(KERN_WARNING "svc: only UDP and TCP " 1435 "sockets supported\n"); 1436 return ERR_PTR(-EINVAL); 1437 } 1438 1439 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM; 1440 switch (sin->sa_family) { 1441 case AF_INET6: 1442 family = PF_INET6; 1443 break; 1444 case AF_INET: 1445 family = PF_INET; 1446 break; 1447 default: 1448 return ERR_PTR(-EINVAL); 1449 } 1450 1451 error = __sock_create(net, family, type, protocol, &sock, 1); 1452 if (error < 0) 1453 return ERR_PTR(error); 1454 1455 svc_reclassify_socket(sock); 1456 1457 /* 1458 * If this is an PF_INET6 listener, we want to avoid 1459 * getting requests from IPv4 remotes. Those should 1460 * be shunted to a PF_INET listener via rpcbind. 1461 */ 1462 if (family == PF_INET6) 1463 ip6_sock_set_v6only(sock->sk); 1464 if (type == SOCK_STREAM) 1465 sock->sk->sk_reuse = SK_CAN_REUSE; /* allow address reuse */ 1466 error = kernel_bind(sock, sin, len); 1467 if (error < 0) 1468 goto bummer; 1469 1470 error = kernel_getsockname(sock, newsin); 1471 if (error < 0) 1472 goto bummer; 1473 newlen = error; 1474 1475 if (protocol == IPPROTO_TCP) { 1476 if ((error = kernel_listen(sock, 64)) < 0) 1477 goto bummer; 1478 } 1479 1480 svsk = svc_setup_socket(serv, sock, flags); 1481 if (IS_ERR(svsk)) { 1482 error = PTR_ERR(svsk); 1483 goto bummer; 1484 } 1485 svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen); 1486 return (struct svc_xprt *)svsk; 1487 bummer: 1488 sock_release(sock); 1489 return ERR_PTR(error); 1490 } 1491 1492 /* 1493 * Detach the svc_sock from the socket so that no 1494 * more callbacks occur. 1495 */ 1496 static void svc_sock_detach(struct svc_xprt *xprt) 1497 { 1498 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1499 struct sock *sk = svsk->sk_sk; 1500 1501 /* put back the old socket callbacks */ 1502 lock_sock(sk); 1503 sk->sk_state_change = svsk->sk_ostate; 1504 sk->sk_data_ready = svsk->sk_odata; 1505 sk->sk_write_space = svsk->sk_owspace; 1506 sk->sk_user_data = NULL; 1507 release_sock(sk); 1508 } 1509 1510 /* 1511 * Disconnect the socket, and reset the callbacks 1512 */ 1513 static void svc_tcp_sock_detach(struct svc_xprt *xprt) 1514 { 1515 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1516 1517 svc_sock_detach(xprt); 1518 1519 if (!test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 1520 svc_tcp_clear_pages(svsk); 1521 kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR); 1522 } 1523 } 1524 1525 /* 1526 * Free the svc_sock's socket resources and the svc_sock itself. 1527 */ 1528 static void svc_sock_free(struct svc_xprt *xprt) 1529 { 1530 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1531 1532 if (svsk->sk_sock->file) 1533 sockfd_put(svsk->sk_sock); 1534 else 1535 sock_release(svsk->sk_sock); 1536 kfree(svsk); 1537 } 1538