xref: /openbmc/linux/net/sunrpc/svcsock.c (revision 8db70d3d)
1 /*
2  * linux/net/sunrpc/svcsock.c
3  *
4  * These are the RPC server socket internals.
5  *
6  * The server scheduling algorithm does not always distribute the load
7  * evenly when servicing a single client. May need to modify the
8  * svc_xprt_enqueue procedure...
9  *
10  * TCP support is largely untested and may be a little slow. The problem
11  * is that we currently do two separate recvfrom's, one for the 4-byte
12  * record length, and the second for the actual record. This could possibly
13  * be improved by always reading a minimum size of around 100 bytes and
14  * tucking any superfluous bytes away in a temporary store. Still, that
15  * leaves write requests out in the rain. An alternative may be to peek at
16  * the first skb in the queue, and if it matches the next TCP sequence
17  * number, to extract the record marker. Yuck.
18  *
19  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/errno.h>
25 #include <linux/fcntl.h>
26 #include <linux/net.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/udp.h>
30 #include <linux/tcp.h>
31 #include <linux/unistd.h>
32 #include <linux/slab.h>
33 #include <linux/netdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/file.h>
36 #include <linux/freezer.h>
37 #include <net/sock.h>
38 #include <net/checksum.h>
39 #include <net/ip.h>
40 #include <net/ipv6.h>
41 #include <net/tcp.h>
42 #include <net/tcp_states.h>
43 #include <asm/uaccess.h>
44 #include <asm/ioctls.h>
45 
46 #include <linux/sunrpc/types.h>
47 #include <linux/sunrpc/clnt.h>
48 #include <linux/sunrpc/xdr.h>
49 #include <linux/sunrpc/msg_prot.h>
50 #include <linux/sunrpc/svcsock.h>
51 #include <linux/sunrpc/stats.h>
52 
53 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
54 
55 
56 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
57 					 int *errp, int flags);
58 static void		svc_udp_data_ready(struct sock *, int);
59 static int		svc_udp_recvfrom(struct svc_rqst *);
60 static int		svc_udp_sendto(struct svc_rqst *);
61 static void		svc_sock_detach(struct svc_xprt *);
62 static void		svc_tcp_sock_detach(struct svc_xprt *);
63 static void		svc_sock_free(struct svc_xprt *);
64 
65 static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
66 					  struct sockaddr *, int, int);
67 #ifdef CONFIG_DEBUG_LOCK_ALLOC
68 static struct lock_class_key svc_key[2];
69 static struct lock_class_key svc_slock_key[2];
70 
71 static void svc_reclassify_socket(struct socket *sock)
72 {
73 	struct sock *sk = sock->sk;
74 	BUG_ON(sock_owned_by_user(sk));
75 	switch (sk->sk_family) {
76 	case AF_INET:
77 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
78 					      &svc_slock_key[0],
79 					      "sk_xprt.xpt_lock-AF_INET-NFSD",
80 					      &svc_key[0]);
81 		break;
82 
83 	case AF_INET6:
84 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
85 					      &svc_slock_key[1],
86 					      "sk_xprt.xpt_lock-AF_INET6-NFSD",
87 					      &svc_key[1]);
88 		break;
89 
90 	default:
91 		BUG();
92 	}
93 }
94 #else
95 static void svc_reclassify_socket(struct socket *sock)
96 {
97 }
98 #endif
99 
100 /*
101  * Release an skbuff after use
102  */
103 static void svc_release_skb(struct svc_rqst *rqstp)
104 {
105 	struct sk_buff *skb = rqstp->rq_xprt_ctxt;
106 
107 	if (skb) {
108 		struct svc_sock *svsk =
109 			container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
110 		rqstp->rq_xprt_ctxt = NULL;
111 
112 		dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
113 		skb_free_datagram(svsk->sk_sk, skb);
114 	}
115 }
116 
117 union svc_pktinfo_u {
118 	struct in_pktinfo pkti;
119 	struct in6_pktinfo pkti6;
120 };
121 #define SVC_PKTINFO_SPACE \
122 	CMSG_SPACE(sizeof(union svc_pktinfo_u))
123 
124 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
125 {
126 	struct svc_sock *svsk =
127 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
128 	switch (svsk->sk_sk->sk_family) {
129 	case AF_INET: {
130 			struct in_pktinfo *pki = CMSG_DATA(cmh);
131 
132 			cmh->cmsg_level = SOL_IP;
133 			cmh->cmsg_type = IP_PKTINFO;
134 			pki->ipi_ifindex = 0;
135 			pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
136 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
137 		}
138 		break;
139 
140 	case AF_INET6: {
141 			struct in6_pktinfo *pki = CMSG_DATA(cmh);
142 
143 			cmh->cmsg_level = SOL_IPV6;
144 			cmh->cmsg_type = IPV6_PKTINFO;
145 			pki->ipi6_ifindex = 0;
146 			ipv6_addr_copy(&pki->ipi6_addr,
147 					&rqstp->rq_daddr.addr6);
148 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
149 		}
150 		break;
151 	}
152 	return;
153 }
154 
155 /*
156  * Generic sendto routine
157  */
158 static int svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
159 {
160 	struct svc_sock	*svsk =
161 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
162 	struct socket	*sock = svsk->sk_sock;
163 	int		slen;
164 	union {
165 		struct cmsghdr	hdr;
166 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
167 	} buffer;
168 	struct cmsghdr *cmh = &buffer.hdr;
169 	int		len = 0;
170 	int		result;
171 	int		size;
172 	struct page	**ppage = xdr->pages;
173 	size_t		base = xdr->page_base;
174 	unsigned int	pglen = xdr->page_len;
175 	unsigned int	flags = MSG_MORE;
176 	RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
177 
178 	slen = xdr->len;
179 
180 	if (rqstp->rq_prot == IPPROTO_UDP) {
181 		struct msghdr msg = {
182 			.msg_name	= &rqstp->rq_addr,
183 			.msg_namelen	= rqstp->rq_addrlen,
184 			.msg_control	= cmh,
185 			.msg_controllen	= sizeof(buffer),
186 			.msg_flags	= MSG_MORE,
187 		};
188 
189 		svc_set_cmsg_data(rqstp, cmh);
190 
191 		if (sock_sendmsg(sock, &msg, 0) < 0)
192 			goto out;
193 	}
194 
195 	/* send head */
196 	if (slen == xdr->head[0].iov_len)
197 		flags = 0;
198 	len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
199 				  xdr->head[0].iov_len, flags);
200 	if (len != xdr->head[0].iov_len)
201 		goto out;
202 	slen -= xdr->head[0].iov_len;
203 	if (slen == 0)
204 		goto out;
205 
206 	/* send page data */
207 	size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
208 	while (pglen > 0) {
209 		if (slen == size)
210 			flags = 0;
211 		result = kernel_sendpage(sock, *ppage, base, size, flags);
212 		if (result > 0)
213 			len += result;
214 		if (result != size)
215 			goto out;
216 		slen -= size;
217 		pglen -= size;
218 		size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
219 		base = 0;
220 		ppage++;
221 	}
222 	/* send tail */
223 	if (xdr->tail[0].iov_len) {
224 		result = kernel_sendpage(sock, rqstp->rq_respages[0],
225 					     ((unsigned long)xdr->tail[0].iov_base)
226 						& (PAGE_SIZE-1),
227 					     xdr->tail[0].iov_len, 0);
228 
229 		if (result > 0)
230 			len += result;
231 	}
232 out:
233 	dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
234 		svsk, xdr->head[0].iov_base, xdr->head[0].iov_len,
235 		xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
236 
237 	return len;
238 }
239 
240 /*
241  * Report socket names for nfsdfs
242  */
243 static int one_sock_name(char *buf, struct svc_sock *svsk)
244 {
245 	int len;
246 
247 	switch(svsk->sk_sk->sk_family) {
248 	case AF_INET:
249 		len = sprintf(buf, "ipv4 %s %pI4 %d\n",
250 			      svsk->sk_sk->sk_protocol == IPPROTO_UDP ?
251 			      "udp" : "tcp",
252 			      &inet_sk(svsk->sk_sk)->rcv_saddr,
253 			      inet_sk(svsk->sk_sk)->num);
254 		break;
255 	default:
256 		len = sprintf(buf, "*unknown-%d*\n",
257 			       svsk->sk_sk->sk_family);
258 	}
259 	return len;
260 }
261 
262 int
263 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
264 {
265 	struct svc_sock *svsk, *closesk = NULL;
266 	int len = 0;
267 
268 	if (!serv)
269 		return 0;
270 	spin_lock_bh(&serv->sv_lock);
271 	list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) {
272 		int onelen = one_sock_name(buf+len, svsk);
273 		if (toclose && strcmp(toclose, buf+len) == 0)
274 			closesk = svsk;
275 		else
276 			len += onelen;
277 	}
278 	spin_unlock_bh(&serv->sv_lock);
279 	if (closesk)
280 		/* Should unregister with portmap, but you cannot
281 		 * unregister just one protocol...
282 		 */
283 		svc_close_xprt(&closesk->sk_xprt);
284 	else if (toclose)
285 		return -ENOENT;
286 	return len;
287 }
288 EXPORT_SYMBOL_GPL(svc_sock_names);
289 
290 /*
291  * Check input queue length
292  */
293 static int svc_recv_available(struct svc_sock *svsk)
294 {
295 	struct socket	*sock = svsk->sk_sock;
296 	int		avail, err;
297 
298 	err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
299 
300 	return (err >= 0)? avail : err;
301 }
302 
303 /*
304  * Generic recvfrom routine.
305  */
306 static int svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr,
307 			int buflen)
308 {
309 	struct svc_sock *svsk =
310 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
311 	struct msghdr msg = {
312 		.msg_flags	= MSG_DONTWAIT,
313 	};
314 	int len;
315 
316 	rqstp->rq_xprt_hlen = 0;
317 
318 	len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
319 				msg.msg_flags);
320 
321 	dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
322 		svsk, iov[0].iov_base, iov[0].iov_len, len);
323 	return len;
324 }
325 
326 /*
327  * Set socket snd and rcv buffer lengths
328  */
329 static void svc_sock_setbufsize(struct socket *sock, unsigned int snd,
330 				unsigned int rcv)
331 {
332 #if 0
333 	mm_segment_t	oldfs;
334 	oldfs = get_fs(); set_fs(KERNEL_DS);
335 	sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
336 			(char*)&snd, sizeof(snd));
337 	sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
338 			(char*)&rcv, sizeof(rcv));
339 #else
340 	/* sock_setsockopt limits use to sysctl_?mem_max,
341 	 * which isn't acceptable.  Until that is made conditional
342 	 * on not having CAP_SYS_RESOURCE or similar, we go direct...
343 	 * DaveM said I could!
344 	 */
345 	lock_sock(sock->sk);
346 	sock->sk->sk_sndbuf = snd * 2;
347 	sock->sk->sk_rcvbuf = rcv * 2;
348 	release_sock(sock->sk);
349 #endif
350 }
351 /*
352  * INET callback when data has been received on the socket.
353  */
354 static void svc_udp_data_ready(struct sock *sk, int count)
355 {
356 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
357 
358 	if (svsk) {
359 		dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
360 			svsk, sk, count,
361 			test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
362 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
363 		svc_xprt_enqueue(&svsk->sk_xprt);
364 	}
365 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
366 		wake_up_interruptible(sk->sk_sleep);
367 }
368 
369 /*
370  * INET callback when space is newly available on the socket.
371  */
372 static void svc_write_space(struct sock *sk)
373 {
374 	struct svc_sock	*svsk = (struct svc_sock *)(sk->sk_user_data);
375 
376 	if (svsk) {
377 		dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
378 			svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
379 		svc_xprt_enqueue(&svsk->sk_xprt);
380 	}
381 
382 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
383 		dprintk("RPC svc_write_space: someone sleeping on %p\n",
384 		       svsk);
385 		wake_up_interruptible(sk->sk_sleep);
386 	}
387 }
388 
389 /*
390  * Copy the UDP datagram's destination address to the rqstp structure.
391  * The 'destination' address in this case is the address to which the
392  * peer sent the datagram, i.e. our local address. For multihomed
393  * hosts, this can change from msg to msg. Note that only the IP
394  * address changes, the port number should remain the same.
395  */
396 static void svc_udp_get_dest_address(struct svc_rqst *rqstp,
397 				     struct cmsghdr *cmh)
398 {
399 	struct svc_sock *svsk =
400 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
401 	switch (svsk->sk_sk->sk_family) {
402 	case AF_INET: {
403 		struct in_pktinfo *pki = CMSG_DATA(cmh);
404 		rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
405 		break;
406 		}
407 	case AF_INET6: {
408 		struct in6_pktinfo *pki = CMSG_DATA(cmh);
409 		ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
410 		break;
411 		}
412 	}
413 }
414 
415 /*
416  * Receive a datagram from a UDP socket.
417  */
418 static int svc_udp_recvfrom(struct svc_rqst *rqstp)
419 {
420 	struct svc_sock	*svsk =
421 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
422 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
423 	struct sk_buff	*skb;
424 	union {
425 		struct cmsghdr	hdr;
426 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
427 	} buffer;
428 	struct cmsghdr *cmh = &buffer.hdr;
429 	int		err, len;
430 	struct msghdr msg = {
431 		.msg_name = svc_addr(rqstp),
432 		.msg_control = cmh,
433 		.msg_controllen = sizeof(buffer),
434 		.msg_flags = MSG_DONTWAIT,
435 	};
436 
437 	if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
438 	    /* udp sockets need large rcvbuf as all pending
439 	     * requests are still in that buffer.  sndbuf must
440 	     * also be large enough that there is enough space
441 	     * for one reply per thread.  We count all threads
442 	     * rather than threads in a particular pool, which
443 	     * provides an upper bound on the number of threads
444 	     * which will access the socket.
445 	     */
446 	    svc_sock_setbufsize(svsk->sk_sock,
447 				(serv->sv_nrthreads+3) * serv->sv_max_mesg,
448 				(serv->sv_nrthreads+3) * serv->sv_max_mesg);
449 
450 	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
451 	skb = NULL;
452 	err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
453 			     0, 0, MSG_PEEK | MSG_DONTWAIT);
454 	if (err >= 0)
455 		skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
456 
457 	if (skb == NULL) {
458 		if (err != -EAGAIN) {
459 			/* possibly an icmp error */
460 			dprintk("svc: recvfrom returned error %d\n", -err);
461 			set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
462 		}
463 		svc_xprt_received(&svsk->sk_xprt);
464 		return -EAGAIN;
465 	}
466 	len = svc_addr_len(svc_addr(rqstp));
467 	if (len < 0)
468 		return len;
469 	rqstp->rq_addrlen = len;
470 	if (skb->tstamp.tv64 == 0) {
471 		skb->tstamp = ktime_get_real();
472 		/* Don't enable netstamp, sunrpc doesn't
473 		   need that much accuracy */
474 	}
475 	svsk->sk_sk->sk_stamp = skb->tstamp;
476 	set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
477 
478 	/*
479 	 * Maybe more packets - kick another thread ASAP.
480 	 */
481 	svc_xprt_received(&svsk->sk_xprt);
482 
483 	len  = skb->len - sizeof(struct udphdr);
484 	rqstp->rq_arg.len = len;
485 
486 	rqstp->rq_prot = IPPROTO_UDP;
487 
488 	if (cmh->cmsg_level != IPPROTO_IP ||
489 	    cmh->cmsg_type != IP_PKTINFO) {
490 		if (net_ratelimit())
491 			printk("rpcsvc: received unknown control message:"
492 			       "%d/%d\n",
493 			       cmh->cmsg_level, cmh->cmsg_type);
494 		skb_free_datagram(svsk->sk_sk, skb);
495 		return 0;
496 	}
497 	svc_udp_get_dest_address(rqstp, cmh);
498 
499 	if (skb_is_nonlinear(skb)) {
500 		/* we have to copy */
501 		local_bh_disable();
502 		if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
503 			local_bh_enable();
504 			/* checksum error */
505 			skb_free_datagram(svsk->sk_sk, skb);
506 			return 0;
507 		}
508 		local_bh_enable();
509 		skb_free_datagram(svsk->sk_sk, skb);
510 	} else {
511 		/* we can use it in-place */
512 		rqstp->rq_arg.head[0].iov_base = skb->data +
513 			sizeof(struct udphdr);
514 		rqstp->rq_arg.head[0].iov_len = len;
515 		if (skb_checksum_complete(skb)) {
516 			skb_free_datagram(svsk->sk_sk, skb);
517 			return 0;
518 		}
519 		rqstp->rq_xprt_ctxt = skb;
520 	}
521 
522 	rqstp->rq_arg.page_base = 0;
523 	if (len <= rqstp->rq_arg.head[0].iov_len) {
524 		rqstp->rq_arg.head[0].iov_len = len;
525 		rqstp->rq_arg.page_len = 0;
526 		rqstp->rq_respages = rqstp->rq_pages+1;
527 	} else {
528 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
529 		rqstp->rq_respages = rqstp->rq_pages + 1 +
530 			DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
531 	}
532 
533 	if (serv->sv_stats)
534 		serv->sv_stats->netudpcnt++;
535 
536 	return len;
537 }
538 
539 static int
540 svc_udp_sendto(struct svc_rqst *rqstp)
541 {
542 	int		error;
543 
544 	error = svc_sendto(rqstp, &rqstp->rq_res);
545 	if (error == -ECONNREFUSED)
546 		/* ICMP error on earlier request. */
547 		error = svc_sendto(rqstp, &rqstp->rq_res);
548 
549 	return error;
550 }
551 
552 static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp)
553 {
554 }
555 
556 static int svc_udp_has_wspace(struct svc_xprt *xprt)
557 {
558 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
559 	struct svc_serv	*serv = xprt->xpt_server;
560 	unsigned long required;
561 
562 	/*
563 	 * Set the SOCK_NOSPACE flag before checking the available
564 	 * sock space.
565 	 */
566 	set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
567 	required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
568 	if (required*2 > sock_wspace(svsk->sk_sk))
569 		return 0;
570 	clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
571 	return 1;
572 }
573 
574 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
575 {
576 	BUG();
577 	return NULL;
578 }
579 
580 static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
581 				       struct sockaddr *sa, int salen,
582 				       int flags)
583 {
584 	return svc_create_socket(serv, IPPROTO_UDP, sa, salen, flags);
585 }
586 
587 static struct svc_xprt_ops svc_udp_ops = {
588 	.xpo_create = svc_udp_create,
589 	.xpo_recvfrom = svc_udp_recvfrom,
590 	.xpo_sendto = svc_udp_sendto,
591 	.xpo_release_rqst = svc_release_skb,
592 	.xpo_detach = svc_sock_detach,
593 	.xpo_free = svc_sock_free,
594 	.xpo_prep_reply_hdr = svc_udp_prep_reply_hdr,
595 	.xpo_has_wspace = svc_udp_has_wspace,
596 	.xpo_accept = svc_udp_accept,
597 };
598 
599 static struct svc_xprt_class svc_udp_class = {
600 	.xcl_name = "udp",
601 	.xcl_owner = THIS_MODULE,
602 	.xcl_ops = &svc_udp_ops,
603 	.xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
604 };
605 
606 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
607 {
608 	int one = 1;
609 	mm_segment_t oldfs;
610 
611 	svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv);
612 	clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
613 	svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
614 	svsk->sk_sk->sk_write_space = svc_write_space;
615 
616 	/* initialise setting must have enough space to
617 	 * receive and respond to one request.
618 	 * svc_udp_recvfrom will re-adjust if necessary
619 	 */
620 	svc_sock_setbufsize(svsk->sk_sock,
621 			    3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
622 			    3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
623 
624 	/* data might have come in before data_ready set up */
625 	set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
626 	set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
627 
628 	oldfs = get_fs();
629 	set_fs(KERNEL_DS);
630 	/* make sure we get destination address info */
631 	svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
632 				       (char __user *)&one, sizeof(one));
633 	set_fs(oldfs);
634 }
635 
636 /*
637  * A data_ready event on a listening socket means there's a connection
638  * pending. Do not use state_change as a substitute for it.
639  */
640 static void svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
641 {
642 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
643 
644 	dprintk("svc: socket %p TCP (listen) state change %d\n",
645 		sk, sk->sk_state);
646 
647 	/*
648 	 * This callback may called twice when a new connection
649 	 * is established as a child socket inherits everything
650 	 * from a parent LISTEN socket.
651 	 * 1) data_ready method of the parent socket will be called
652 	 *    when one of child sockets become ESTABLISHED.
653 	 * 2) data_ready method of the child socket may be called
654 	 *    when it receives data before the socket is accepted.
655 	 * In case of 2, we should ignore it silently.
656 	 */
657 	if (sk->sk_state == TCP_LISTEN) {
658 		if (svsk) {
659 			set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
660 			svc_xprt_enqueue(&svsk->sk_xprt);
661 		} else
662 			printk("svc: socket %p: no user data\n", sk);
663 	}
664 
665 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
666 		wake_up_interruptible_all(sk->sk_sleep);
667 }
668 
669 /*
670  * A state change on a connected socket means it's dying or dead.
671  */
672 static void svc_tcp_state_change(struct sock *sk)
673 {
674 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
675 
676 	dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
677 		sk, sk->sk_state, sk->sk_user_data);
678 
679 	if (!svsk)
680 		printk("svc: socket %p: no user data\n", sk);
681 	else {
682 		set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
683 		svc_xprt_enqueue(&svsk->sk_xprt);
684 	}
685 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
686 		wake_up_interruptible_all(sk->sk_sleep);
687 }
688 
689 static void svc_tcp_data_ready(struct sock *sk, int count)
690 {
691 	struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
692 
693 	dprintk("svc: socket %p TCP data ready (svsk %p)\n",
694 		sk, sk->sk_user_data);
695 	if (svsk) {
696 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
697 		svc_xprt_enqueue(&svsk->sk_xprt);
698 	}
699 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
700 		wake_up_interruptible(sk->sk_sleep);
701 }
702 
703 /*
704  * Accept a TCP connection
705  */
706 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
707 {
708 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
709 	struct sockaddr_storage addr;
710 	struct sockaddr	*sin = (struct sockaddr *) &addr;
711 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
712 	struct socket	*sock = svsk->sk_sock;
713 	struct socket	*newsock;
714 	struct svc_sock	*newsvsk;
715 	int		err, slen;
716 	RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
717 
718 	dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
719 	if (!sock)
720 		return NULL;
721 
722 	clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
723 	err = kernel_accept(sock, &newsock, O_NONBLOCK);
724 	if (err < 0) {
725 		if (err == -ENOMEM)
726 			printk(KERN_WARNING "%s: no more sockets!\n",
727 			       serv->sv_name);
728 		else if (err != -EAGAIN && net_ratelimit())
729 			printk(KERN_WARNING "%s: accept failed (err %d)!\n",
730 				   serv->sv_name, -err);
731 		return NULL;
732 	}
733 	set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
734 
735 	err = kernel_getpeername(newsock, sin, &slen);
736 	if (err < 0) {
737 		if (net_ratelimit())
738 			printk(KERN_WARNING "%s: peername failed (err %d)!\n",
739 				   serv->sv_name, -err);
740 		goto failed;		/* aborted connection or whatever */
741 	}
742 
743 	/* Ideally, we would want to reject connections from unauthorized
744 	 * hosts here, but when we get encryption, the IP of the host won't
745 	 * tell us anything.  For now just warn about unpriv connections.
746 	 */
747 	if (!svc_port_is_privileged(sin)) {
748 		dprintk(KERN_WARNING
749 			"%s: connect from unprivileged port: %s\n",
750 			serv->sv_name,
751 			__svc_print_addr(sin, buf, sizeof(buf)));
752 	}
753 	dprintk("%s: connect from %s\n", serv->sv_name,
754 		__svc_print_addr(sin, buf, sizeof(buf)));
755 
756 	/* make sure that a write doesn't block forever when
757 	 * low on memory
758 	 */
759 	newsock->sk->sk_sndtimeo = HZ*30;
760 
761 	if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
762 				 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
763 		goto failed;
764 	svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
765 	err = kernel_getsockname(newsock, sin, &slen);
766 	if (unlikely(err < 0)) {
767 		dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
768 		slen = offsetof(struct sockaddr, sa_data);
769 	}
770 	svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
771 
772 	if (serv->sv_stats)
773 		serv->sv_stats->nettcpconn++;
774 
775 	return &newsvsk->sk_xprt;
776 
777 failed:
778 	sock_release(newsock);
779 	return NULL;
780 }
781 
782 /*
783  * Receive data from a TCP socket.
784  */
785 static int svc_tcp_recvfrom(struct svc_rqst *rqstp)
786 {
787 	struct svc_sock	*svsk =
788 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
789 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
790 	int		len;
791 	struct kvec *vec;
792 	int pnum, vlen;
793 
794 	dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
795 		svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags),
796 		test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags),
797 		test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags));
798 
799 	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
800 
801 	/* Receive data. If we haven't got the record length yet, get
802 	 * the next four bytes. Otherwise try to gobble up as much as
803 	 * possible up to the complete record length.
804 	 */
805 	if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) {
806 		int		want = sizeof(rpc_fraghdr) - svsk->sk_tcplen;
807 		struct kvec	iov;
808 
809 		iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
810 		iov.iov_len  = want;
811 		if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
812 			goto error;
813 		svsk->sk_tcplen += len;
814 
815 		if (len < want) {
816 			dprintk("svc: short recvfrom while reading record "
817 				"length (%d of %d)\n", len, want);
818 			svc_xprt_received(&svsk->sk_xprt);
819 			return -EAGAIN; /* record header not complete */
820 		}
821 
822 		svsk->sk_reclen = ntohl(svsk->sk_reclen);
823 		if (!(svsk->sk_reclen & RPC_LAST_STREAM_FRAGMENT)) {
824 			/* FIXME: technically, a record can be fragmented,
825 			 *  and non-terminal fragments will not have the top
826 			 *  bit set in the fragment length header.
827 			 *  But apparently no known nfs clients send fragmented
828 			 *  records. */
829 			if (net_ratelimit())
830 				printk(KERN_NOTICE "RPC: multiple fragments "
831 					"per record not supported\n");
832 			goto err_delete;
833 		}
834 		svsk->sk_reclen &= RPC_FRAGMENT_SIZE_MASK;
835 		dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
836 		if (svsk->sk_reclen > serv->sv_max_mesg) {
837 			if (net_ratelimit())
838 				printk(KERN_NOTICE "RPC: "
839 					"fragment too large: 0x%08lx\n",
840 					(unsigned long)svsk->sk_reclen);
841 			goto err_delete;
842 		}
843 	}
844 
845 	/* Check whether enough data is available */
846 	len = svc_recv_available(svsk);
847 	if (len < 0)
848 		goto error;
849 
850 	if (len < svsk->sk_reclen) {
851 		dprintk("svc: incomplete TCP record (%d of %d)\n",
852 			len, svsk->sk_reclen);
853 		svc_xprt_received(&svsk->sk_xprt);
854 		return -EAGAIN;	/* record not complete */
855 	}
856 	len = svsk->sk_reclen;
857 	set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
858 
859 	vec = rqstp->rq_vec;
860 	vec[0] = rqstp->rq_arg.head[0];
861 	vlen = PAGE_SIZE;
862 	pnum = 1;
863 	while (vlen < len) {
864 		vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
865 		vec[pnum].iov_len = PAGE_SIZE;
866 		pnum++;
867 		vlen += PAGE_SIZE;
868 	}
869 	rqstp->rq_respages = &rqstp->rq_pages[pnum];
870 
871 	/* Now receive data */
872 	len = svc_recvfrom(rqstp, vec, pnum, len);
873 	if (len < 0)
874 		goto error;
875 
876 	dprintk("svc: TCP complete record (%d bytes)\n", len);
877 	rqstp->rq_arg.len = len;
878 	rqstp->rq_arg.page_base = 0;
879 	if (len <= rqstp->rq_arg.head[0].iov_len) {
880 		rqstp->rq_arg.head[0].iov_len = len;
881 		rqstp->rq_arg.page_len = 0;
882 	} else {
883 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
884 	}
885 
886 	rqstp->rq_xprt_ctxt   = NULL;
887 	rqstp->rq_prot	      = IPPROTO_TCP;
888 
889 	/* Reset TCP read info */
890 	svsk->sk_reclen = 0;
891 	svsk->sk_tcplen = 0;
892 
893 	svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
894 	svc_xprt_received(&svsk->sk_xprt);
895 	if (serv->sv_stats)
896 		serv->sv_stats->nettcpcnt++;
897 
898 	return len;
899 
900  err_delete:
901 	set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
902 	return -EAGAIN;
903 
904  error:
905 	if (len == -EAGAIN) {
906 		dprintk("RPC: TCP recvfrom got EAGAIN\n");
907 		svc_xprt_received(&svsk->sk_xprt);
908 	} else {
909 		printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
910 		       svsk->sk_xprt.xpt_server->sv_name, -len);
911 		goto err_delete;
912 	}
913 
914 	return len;
915 }
916 
917 /*
918  * Send out data on TCP socket.
919  */
920 static int svc_tcp_sendto(struct svc_rqst *rqstp)
921 {
922 	struct xdr_buf	*xbufp = &rqstp->rq_res;
923 	int sent;
924 	__be32 reclen;
925 
926 	/* Set up the first element of the reply kvec.
927 	 * Any other kvecs that may be in use have been taken
928 	 * care of by the server implementation itself.
929 	 */
930 	reclen = htonl(0x80000000|((xbufp->len ) - 4));
931 	memcpy(xbufp->head[0].iov_base, &reclen, 4);
932 
933 	if (test_bit(XPT_DEAD, &rqstp->rq_xprt->xpt_flags))
934 		return -ENOTCONN;
935 
936 	sent = svc_sendto(rqstp, &rqstp->rq_res);
937 	if (sent != xbufp->len) {
938 		printk(KERN_NOTICE
939 		       "rpc-srv/tcp: %s: %s %d when sending %d bytes "
940 		       "- shutting down socket\n",
941 		       rqstp->rq_xprt->xpt_server->sv_name,
942 		       (sent<0)?"got error":"sent only",
943 		       sent, xbufp->len);
944 		set_bit(XPT_CLOSE, &rqstp->rq_xprt->xpt_flags);
945 		svc_xprt_enqueue(rqstp->rq_xprt);
946 		sent = -EAGAIN;
947 	}
948 	return sent;
949 }
950 
951 /*
952  * Setup response header. TCP has a 4B record length field.
953  */
954 static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp)
955 {
956 	struct kvec *resv = &rqstp->rq_res.head[0];
957 
958 	/* tcp needs a space for the record length... */
959 	svc_putnl(resv, 0);
960 }
961 
962 static int svc_tcp_has_wspace(struct svc_xprt *xprt)
963 {
964 	struct svc_sock *svsk =	container_of(xprt, struct svc_sock, sk_xprt);
965 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
966 	int required;
967 	int wspace;
968 
969 	/*
970 	 * Set the SOCK_NOSPACE flag before checking the available
971 	 * sock space.
972 	 */
973 	set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
974 	required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
975 	wspace = sk_stream_wspace(svsk->sk_sk);
976 
977 	if (wspace < sk_stream_min_wspace(svsk->sk_sk))
978 		return 0;
979 	if (required * 2 > wspace)
980 		return 0;
981 
982 	clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
983 	return 1;
984 }
985 
986 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
987 				       struct sockaddr *sa, int salen,
988 				       int flags)
989 {
990 	return svc_create_socket(serv, IPPROTO_TCP, sa, salen, flags);
991 }
992 
993 static struct svc_xprt_ops svc_tcp_ops = {
994 	.xpo_create = svc_tcp_create,
995 	.xpo_recvfrom = svc_tcp_recvfrom,
996 	.xpo_sendto = svc_tcp_sendto,
997 	.xpo_release_rqst = svc_release_skb,
998 	.xpo_detach = svc_tcp_sock_detach,
999 	.xpo_free = svc_sock_free,
1000 	.xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
1001 	.xpo_has_wspace = svc_tcp_has_wspace,
1002 	.xpo_accept = svc_tcp_accept,
1003 };
1004 
1005 static struct svc_xprt_class svc_tcp_class = {
1006 	.xcl_name = "tcp",
1007 	.xcl_owner = THIS_MODULE,
1008 	.xcl_ops = &svc_tcp_ops,
1009 	.xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1010 };
1011 
1012 void svc_init_xprt_sock(void)
1013 {
1014 	svc_reg_xprt_class(&svc_tcp_class);
1015 	svc_reg_xprt_class(&svc_udp_class);
1016 }
1017 
1018 void svc_cleanup_xprt_sock(void)
1019 {
1020 	svc_unreg_xprt_class(&svc_tcp_class);
1021 	svc_unreg_xprt_class(&svc_udp_class);
1022 }
1023 
1024 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
1025 {
1026 	struct sock	*sk = svsk->sk_sk;
1027 
1028 	svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv);
1029 	set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
1030 	if (sk->sk_state == TCP_LISTEN) {
1031 		dprintk("setting up TCP socket for listening\n");
1032 		set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
1033 		sk->sk_data_ready = svc_tcp_listen_data_ready;
1034 		set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1035 	} else {
1036 		dprintk("setting up TCP socket for reading\n");
1037 		sk->sk_state_change = svc_tcp_state_change;
1038 		sk->sk_data_ready = svc_tcp_data_ready;
1039 		sk->sk_write_space = svc_write_space;
1040 
1041 		svsk->sk_reclen = 0;
1042 		svsk->sk_tcplen = 0;
1043 
1044 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF;
1045 
1046 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1047 		if (sk->sk_state != TCP_ESTABLISHED)
1048 			set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1049 	}
1050 }
1051 
1052 void svc_sock_update_bufs(struct svc_serv *serv)
1053 {
1054 	/*
1055 	 * The number of server threads has changed. Update
1056 	 * rcvbuf and sndbuf accordingly on all sockets
1057 	 */
1058 	struct list_head *le;
1059 
1060 	spin_lock_bh(&serv->sv_lock);
1061 	list_for_each(le, &serv->sv_permsocks) {
1062 		struct svc_sock *svsk =
1063 			list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1064 		set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1065 	}
1066 	list_for_each(le, &serv->sv_tempsocks) {
1067 		struct svc_sock *svsk =
1068 			list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1069 		set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1070 	}
1071 	spin_unlock_bh(&serv->sv_lock);
1072 }
1073 EXPORT_SYMBOL_GPL(svc_sock_update_bufs);
1074 
1075 /*
1076  * Initialize socket for RPC use and create svc_sock struct
1077  * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1078  */
1079 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1080 						struct socket *sock,
1081 						int *errp, int flags)
1082 {
1083 	struct svc_sock	*svsk;
1084 	struct sock	*inet;
1085 	int		pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1086 
1087 	dprintk("svc: svc_setup_socket %p\n", sock);
1088 	if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1089 		*errp = -ENOMEM;
1090 		return NULL;
1091 	}
1092 
1093 	inet = sock->sk;
1094 
1095 	/* Register socket with portmapper */
1096 	if (*errp >= 0 && pmap_register)
1097 		*errp = svc_register(serv, inet->sk_family, inet->sk_protocol,
1098 				     ntohs(inet_sk(inet)->sport));
1099 
1100 	if (*errp < 0) {
1101 		kfree(svsk);
1102 		return NULL;
1103 	}
1104 
1105 	inet->sk_user_data = svsk;
1106 	svsk->sk_sock = sock;
1107 	svsk->sk_sk = inet;
1108 	svsk->sk_ostate = inet->sk_state_change;
1109 	svsk->sk_odata = inet->sk_data_ready;
1110 	svsk->sk_owspace = inet->sk_write_space;
1111 
1112 	/* Initialize the socket */
1113 	if (sock->type == SOCK_DGRAM)
1114 		svc_udp_init(svsk, serv);
1115 	else {
1116 		/* initialise setting must have enough space to
1117 		 * receive and respond to one request.
1118 		 */
1119 		svc_sock_setbufsize(svsk->sk_sock, 4 * serv->sv_max_mesg,
1120 					4 * serv->sv_max_mesg);
1121 		svc_tcp_init(svsk, serv);
1122 	}
1123 
1124 	dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1125 				svsk, svsk->sk_sk);
1126 
1127 	return svsk;
1128 }
1129 
1130 int svc_addsock(struct svc_serv *serv,
1131 		int fd,
1132 		char *name_return)
1133 {
1134 	int err = 0;
1135 	struct socket *so = sockfd_lookup(fd, &err);
1136 	struct svc_sock *svsk = NULL;
1137 
1138 	if (!so)
1139 		return err;
1140 	if (so->sk->sk_family != AF_INET)
1141 		err =  -EAFNOSUPPORT;
1142 	else if (so->sk->sk_protocol != IPPROTO_TCP &&
1143 	    so->sk->sk_protocol != IPPROTO_UDP)
1144 		err =  -EPROTONOSUPPORT;
1145 	else if (so->state > SS_UNCONNECTED)
1146 		err = -EISCONN;
1147 	else {
1148 		if (!try_module_get(THIS_MODULE))
1149 			err = -ENOENT;
1150 		else
1151 			svsk = svc_setup_socket(serv, so, &err,
1152 						SVC_SOCK_DEFAULTS);
1153 		if (svsk) {
1154 			struct sockaddr_storage addr;
1155 			struct sockaddr *sin = (struct sockaddr *)&addr;
1156 			int salen;
1157 			if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0)
1158 				svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
1159 			clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
1160 			spin_lock_bh(&serv->sv_lock);
1161 			list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks);
1162 			spin_unlock_bh(&serv->sv_lock);
1163 			svc_xprt_received(&svsk->sk_xprt);
1164 			err = 0;
1165 		} else
1166 			module_put(THIS_MODULE);
1167 	}
1168 	if (err) {
1169 		sockfd_put(so);
1170 		return err;
1171 	}
1172 	return one_sock_name(name_return, svsk);
1173 }
1174 EXPORT_SYMBOL_GPL(svc_addsock);
1175 
1176 /*
1177  * Create socket for RPC service.
1178  */
1179 static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
1180 					  int protocol,
1181 					  struct sockaddr *sin, int len,
1182 					  int flags)
1183 {
1184 	struct svc_sock	*svsk;
1185 	struct socket	*sock;
1186 	int		error;
1187 	int		type;
1188 	struct sockaddr_storage addr;
1189 	struct sockaddr *newsin = (struct sockaddr *)&addr;
1190 	int		newlen;
1191 	int		family;
1192 	int		val;
1193 	RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
1194 
1195 	dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1196 			serv->sv_program->pg_name, protocol,
1197 			__svc_print_addr(sin, buf, sizeof(buf)));
1198 
1199 	if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1200 		printk(KERN_WARNING "svc: only UDP and TCP "
1201 				"sockets supported\n");
1202 		return ERR_PTR(-EINVAL);
1203 	}
1204 
1205 	type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1206 	switch (sin->sa_family) {
1207 	case AF_INET6:
1208 		family = PF_INET6;
1209 		break;
1210 	case AF_INET:
1211 		family = PF_INET;
1212 		break;
1213 	default:
1214 		return ERR_PTR(-EINVAL);
1215 	}
1216 
1217 	error = sock_create_kern(family, type, protocol, &sock);
1218 	if (error < 0)
1219 		return ERR_PTR(error);
1220 
1221 	svc_reclassify_socket(sock);
1222 
1223 	/*
1224 	 * If this is an PF_INET6 listener, we want to avoid
1225 	 * getting requests from IPv4 remotes.  Those should
1226 	 * be shunted to a PF_INET listener via rpcbind.
1227 	 */
1228 	val = 1;
1229 	if (family == PF_INET6)
1230 		kernel_setsockopt(sock, SOL_IPV6, IPV6_V6ONLY,
1231 					(char *)&val, sizeof(val));
1232 
1233 	if (type == SOCK_STREAM)
1234 		sock->sk->sk_reuse = 1;		/* allow address reuse */
1235 	error = kernel_bind(sock, sin, len);
1236 	if (error < 0)
1237 		goto bummer;
1238 
1239 	newlen = len;
1240 	error = kernel_getsockname(sock, newsin, &newlen);
1241 	if (error < 0)
1242 		goto bummer;
1243 
1244 	if (protocol == IPPROTO_TCP) {
1245 		if ((error = kernel_listen(sock, 64)) < 0)
1246 			goto bummer;
1247 	}
1248 
1249 	if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1250 		svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
1251 		return (struct svc_xprt *)svsk;
1252 	}
1253 
1254 bummer:
1255 	dprintk("svc: svc_create_socket error = %d\n", -error);
1256 	sock_release(sock);
1257 	return ERR_PTR(error);
1258 }
1259 
1260 /*
1261  * Detach the svc_sock from the socket so that no
1262  * more callbacks occur.
1263  */
1264 static void svc_sock_detach(struct svc_xprt *xprt)
1265 {
1266 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1267 	struct sock *sk = svsk->sk_sk;
1268 
1269 	dprintk("svc: svc_sock_detach(%p)\n", svsk);
1270 
1271 	/* put back the old socket callbacks */
1272 	sk->sk_state_change = svsk->sk_ostate;
1273 	sk->sk_data_ready = svsk->sk_odata;
1274 	sk->sk_write_space = svsk->sk_owspace;
1275 
1276 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1277 		wake_up_interruptible(sk->sk_sleep);
1278 }
1279 
1280 /*
1281  * Disconnect the socket, and reset the callbacks
1282  */
1283 static void svc_tcp_sock_detach(struct svc_xprt *xprt)
1284 {
1285 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1286 
1287 	dprintk("svc: svc_tcp_sock_detach(%p)\n", svsk);
1288 
1289 	svc_sock_detach(xprt);
1290 
1291 	if (!test_bit(XPT_LISTENER, &xprt->xpt_flags))
1292 		kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR);
1293 }
1294 
1295 /*
1296  * Free the svc_sock's socket resources and the svc_sock itself.
1297  */
1298 static void svc_sock_free(struct svc_xprt *xprt)
1299 {
1300 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1301 	dprintk("svc: svc_sock_free(%p)\n", svsk);
1302 
1303 	if (svsk->sk_sock->file)
1304 		sockfd_put(svsk->sk_sock);
1305 	else
1306 		sock_release(svsk->sk_sock);
1307 	kfree(svsk);
1308 }
1309