xref: /openbmc/linux/net/sunrpc/svcsock.c (revision 7a836736b6537b0e2633381d743d9c1559ce243c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svcsock.c
4  *
5  * These are the RPC server socket internals.
6  *
7  * The server scheduling algorithm does not always distribute the load
8  * evenly when servicing a single client. May need to modify the
9  * svc_xprt_enqueue procedure...
10  *
11  * TCP support is largely untested and may be a little slow. The problem
12  * is that we currently do two separate recvfrom's, one for the 4-byte
13  * record length, and the second for the actual record. This could possibly
14  * be improved by always reading a minimum size of around 100 bytes and
15  * tucking any superfluous bytes away in a temporary store. Still, that
16  * leaves write requests out in the rain. An alternative may be to peek at
17  * the first skb in the queue, and if it matches the next TCP sequence
18  * number, to extract the record marker. Yuck.
19  *
20  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/module.h>
26 #include <linux/errno.h>
27 #include <linux/fcntl.h>
28 #include <linux/net.h>
29 #include <linux/in.h>
30 #include <linux/inet.h>
31 #include <linux/udp.h>
32 #include <linux/tcp.h>
33 #include <linux/unistd.h>
34 #include <linux/slab.h>
35 #include <linux/netdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/file.h>
38 #include <linux/freezer.h>
39 #include <linux/bvec.h>
40 
41 #include <net/sock.h>
42 #include <net/checksum.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/udp.h>
46 #include <net/tcp.h>
47 #include <net/tcp_states.h>
48 #include <net/tls_prot.h>
49 #include <net/handshake.h>
50 #include <linux/uaccess.h>
51 #include <linux/highmem.h>
52 #include <asm/ioctls.h>
53 #include <linux/key.h>
54 
55 #include <linux/sunrpc/types.h>
56 #include <linux/sunrpc/clnt.h>
57 #include <linux/sunrpc/xdr.h>
58 #include <linux/sunrpc/msg_prot.h>
59 #include <linux/sunrpc/svcsock.h>
60 #include <linux/sunrpc/stats.h>
61 #include <linux/sunrpc/xprt.h>
62 
63 #include <trace/events/sock.h>
64 #include <trace/events/sunrpc.h>
65 
66 #include "socklib.h"
67 #include "sunrpc.h"
68 
69 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
70 
71 /* To-do: to avoid tying up an nfsd thread while waiting for a
72  * handshake request, the request could instead be deferred.
73  */
74 enum {
75 	SVC_HANDSHAKE_TO	= 5U * HZ
76 };
77 
78 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
79 					 int flags);
80 static int		svc_udp_recvfrom(struct svc_rqst *);
81 static int		svc_udp_sendto(struct svc_rqst *);
82 static void		svc_sock_detach(struct svc_xprt *);
83 static void		svc_tcp_sock_detach(struct svc_xprt *);
84 static void		svc_sock_free(struct svc_xprt *);
85 
86 static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
87 					  struct net *, struct sockaddr *,
88 					  int, int);
89 #ifdef CONFIG_DEBUG_LOCK_ALLOC
90 static struct lock_class_key svc_key[2];
91 static struct lock_class_key svc_slock_key[2];
92 
93 static void svc_reclassify_socket(struct socket *sock)
94 {
95 	struct sock *sk = sock->sk;
96 
97 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
98 		return;
99 
100 	switch (sk->sk_family) {
101 	case AF_INET:
102 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
103 					      &svc_slock_key[0],
104 					      "sk_xprt.xpt_lock-AF_INET-NFSD",
105 					      &svc_key[0]);
106 		break;
107 
108 	case AF_INET6:
109 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
110 					      &svc_slock_key[1],
111 					      "sk_xprt.xpt_lock-AF_INET6-NFSD",
112 					      &svc_key[1]);
113 		break;
114 
115 	default:
116 		BUG();
117 	}
118 }
119 #else
120 static void svc_reclassify_socket(struct socket *sock)
121 {
122 }
123 #endif
124 
125 /**
126  * svc_tcp_release_ctxt - Release transport-related resources
127  * @xprt: the transport which owned the context
128  * @ctxt: the context from rqstp->rq_xprt_ctxt or dr->xprt_ctxt
129  *
130  */
131 static void svc_tcp_release_ctxt(struct svc_xprt *xprt, void *ctxt)
132 {
133 }
134 
135 /**
136  * svc_udp_release_ctxt - Release transport-related resources
137  * @xprt: the transport which owned the context
138  * @ctxt: the context from rqstp->rq_xprt_ctxt or dr->xprt_ctxt
139  *
140  */
141 static void svc_udp_release_ctxt(struct svc_xprt *xprt, void *ctxt)
142 {
143 	struct sk_buff *skb = ctxt;
144 
145 	if (skb)
146 		consume_skb(skb);
147 }
148 
149 union svc_pktinfo_u {
150 	struct in_pktinfo pkti;
151 	struct in6_pktinfo pkti6;
152 };
153 #define SVC_PKTINFO_SPACE \
154 	CMSG_SPACE(sizeof(union svc_pktinfo_u))
155 
156 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
157 {
158 	struct svc_sock *svsk =
159 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
160 	switch (svsk->sk_sk->sk_family) {
161 	case AF_INET: {
162 			struct in_pktinfo *pki = CMSG_DATA(cmh);
163 
164 			cmh->cmsg_level = SOL_IP;
165 			cmh->cmsg_type = IP_PKTINFO;
166 			pki->ipi_ifindex = 0;
167 			pki->ipi_spec_dst.s_addr =
168 				 svc_daddr_in(rqstp)->sin_addr.s_addr;
169 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
170 		}
171 		break;
172 
173 	case AF_INET6: {
174 			struct in6_pktinfo *pki = CMSG_DATA(cmh);
175 			struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp);
176 
177 			cmh->cmsg_level = SOL_IPV6;
178 			cmh->cmsg_type = IPV6_PKTINFO;
179 			pki->ipi6_ifindex = daddr->sin6_scope_id;
180 			pki->ipi6_addr = daddr->sin6_addr;
181 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
182 		}
183 		break;
184 	}
185 }
186 
187 static int svc_sock_result_payload(struct svc_rqst *rqstp, unsigned int offset,
188 				   unsigned int length)
189 {
190 	return 0;
191 }
192 
193 /*
194  * Report socket names for nfsdfs
195  */
196 static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining)
197 {
198 	const struct sock *sk = svsk->sk_sk;
199 	const char *proto_name = sk->sk_protocol == IPPROTO_UDP ?
200 							"udp" : "tcp";
201 	int len;
202 
203 	switch (sk->sk_family) {
204 	case PF_INET:
205 		len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n",
206 				proto_name,
207 				&inet_sk(sk)->inet_rcv_saddr,
208 				inet_sk(sk)->inet_num);
209 		break;
210 #if IS_ENABLED(CONFIG_IPV6)
211 	case PF_INET6:
212 		len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n",
213 				proto_name,
214 				&sk->sk_v6_rcv_saddr,
215 				inet_sk(sk)->inet_num);
216 		break;
217 #endif
218 	default:
219 		len = snprintf(buf, remaining, "*unknown-%d*\n",
220 				sk->sk_family);
221 	}
222 
223 	if (len >= remaining) {
224 		*buf = '\0';
225 		return -ENAMETOOLONG;
226 	}
227 	return len;
228 }
229 
230 static int
231 svc_tcp_sock_process_cmsg(struct socket *sock, struct msghdr *msg,
232 			  struct cmsghdr *cmsg, int ret)
233 {
234 	u8 content_type = tls_get_record_type(sock->sk, cmsg);
235 	u8 level, description;
236 
237 	switch (content_type) {
238 	case 0:
239 		break;
240 	case TLS_RECORD_TYPE_DATA:
241 		/* TLS sets EOR at the end of each application data
242 		 * record, even though there might be more frames
243 		 * waiting to be decrypted.
244 		 */
245 		msg->msg_flags &= ~MSG_EOR;
246 		break;
247 	case TLS_RECORD_TYPE_ALERT:
248 		tls_alert_recv(sock->sk, msg, &level, &description);
249 		ret = (level == TLS_ALERT_LEVEL_FATAL) ?
250 			-ENOTCONN : -EAGAIN;
251 		break;
252 	default:
253 		/* discard this record type */
254 		ret = -EAGAIN;
255 	}
256 	return ret;
257 }
258 
259 static int
260 svc_tcp_sock_recv_cmsg(struct svc_sock *svsk, struct msghdr *msg)
261 {
262 	union {
263 		struct cmsghdr	cmsg;
264 		u8		buf[CMSG_SPACE(sizeof(u8))];
265 	} u;
266 	struct socket *sock = svsk->sk_sock;
267 	int ret;
268 
269 	msg->msg_control = &u;
270 	msg->msg_controllen = sizeof(u);
271 	ret = sock_recvmsg(sock, msg, MSG_DONTWAIT);
272 	if (unlikely(msg->msg_controllen != sizeof(u)))
273 		ret = svc_tcp_sock_process_cmsg(sock, msg, &u.cmsg, ret);
274 	return ret;
275 }
276 
277 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
278 static void svc_flush_bvec(const struct bio_vec *bvec, size_t size, size_t seek)
279 {
280 	struct bvec_iter bi = {
281 		.bi_size	= size + seek,
282 	};
283 	struct bio_vec bv;
284 
285 	bvec_iter_advance(bvec, &bi, seek & PAGE_MASK);
286 	for_each_bvec(bv, bvec, bi, bi)
287 		flush_dcache_page(bv.bv_page);
288 }
289 #else
290 static inline void svc_flush_bvec(const struct bio_vec *bvec, size_t size,
291 				  size_t seek)
292 {
293 }
294 #endif
295 
296 /*
297  * Read from @rqstp's transport socket. The incoming message fills whole
298  * pages in @rqstp's rq_pages array until the last page of the message
299  * has been received into a partial page.
300  */
301 static ssize_t svc_tcp_read_msg(struct svc_rqst *rqstp, size_t buflen,
302 				size_t seek)
303 {
304 	struct svc_sock *svsk =
305 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
306 	struct bio_vec *bvec = rqstp->rq_bvec;
307 	struct msghdr msg = { NULL };
308 	unsigned int i;
309 	ssize_t len;
310 	size_t t;
311 
312 	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
313 
314 	for (i = 0, t = 0; t < buflen; i++, t += PAGE_SIZE)
315 		bvec_set_page(&bvec[i], rqstp->rq_pages[i], PAGE_SIZE, 0);
316 	rqstp->rq_respages = &rqstp->rq_pages[i];
317 	rqstp->rq_next_page = rqstp->rq_respages + 1;
318 
319 	iov_iter_bvec(&msg.msg_iter, ITER_DEST, bvec, i, buflen);
320 	if (seek) {
321 		iov_iter_advance(&msg.msg_iter, seek);
322 		buflen -= seek;
323 	}
324 	len = svc_tcp_sock_recv_cmsg(svsk, &msg);
325 	if (len > 0)
326 		svc_flush_bvec(bvec, len, seek);
327 
328 	/* If we read a full record, then assume there may be more
329 	 * data to read (stream based sockets only!)
330 	 */
331 	if (len == buflen)
332 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
333 
334 	return len;
335 }
336 
337 /*
338  * Set socket snd and rcv buffer lengths
339  */
340 static void svc_sock_setbufsize(struct svc_sock *svsk, unsigned int nreqs)
341 {
342 	unsigned int max_mesg = svsk->sk_xprt.xpt_server->sv_max_mesg;
343 	struct socket *sock = svsk->sk_sock;
344 
345 	nreqs = min(nreqs, INT_MAX / 2 / max_mesg);
346 
347 	lock_sock(sock->sk);
348 	sock->sk->sk_sndbuf = nreqs * max_mesg * 2;
349 	sock->sk->sk_rcvbuf = nreqs * max_mesg * 2;
350 	sock->sk->sk_write_space(sock->sk);
351 	release_sock(sock->sk);
352 }
353 
354 static void svc_sock_secure_port(struct svc_rqst *rqstp)
355 {
356 	if (svc_port_is_privileged(svc_addr(rqstp)))
357 		set_bit(RQ_SECURE, &rqstp->rq_flags);
358 	else
359 		clear_bit(RQ_SECURE, &rqstp->rq_flags);
360 }
361 
362 /*
363  * INET callback when data has been received on the socket.
364  */
365 static void svc_data_ready(struct sock *sk)
366 {
367 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
368 
369 	trace_sk_data_ready(sk);
370 
371 	if (svsk) {
372 		/* Refer to svc_setup_socket() for details. */
373 		rmb();
374 		svsk->sk_odata(sk);
375 		trace_svcsock_data_ready(&svsk->sk_xprt, 0);
376 		if (test_bit(XPT_HANDSHAKE, &svsk->sk_xprt.xpt_flags))
377 			return;
378 		if (!test_and_set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags))
379 			svc_xprt_enqueue(&svsk->sk_xprt);
380 	}
381 }
382 
383 /*
384  * INET callback when space is newly available on the socket.
385  */
386 static void svc_write_space(struct sock *sk)
387 {
388 	struct svc_sock	*svsk = (struct svc_sock *)(sk->sk_user_data);
389 
390 	if (svsk) {
391 		/* Refer to svc_setup_socket() for details. */
392 		rmb();
393 		trace_svcsock_write_space(&svsk->sk_xprt, 0);
394 		svsk->sk_owspace(sk);
395 		svc_xprt_enqueue(&svsk->sk_xprt);
396 	}
397 }
398 
399 static int svc_tcp_has_wspace(struct svc_xprt *xprt)
400 {
401 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
402 
403 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags))
404 		return 1;
405 	return !test_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
406 }
407 
408 static void svc_tcp_kill_temp_xprt(struct svc_xprt *xprt)
409 {
410 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
411 
412 	sock_no_linger(svsk->sk_sock->sk);
413 }
414 
415 /**
416  * svc_tcp_handshake_done - Handshake completion handler
417  * @data: address of xprt to wake
418  * @status: status of handshake
419  * @peerid: serial number of key containing the remote peer's identity
420  *
421  * If a security policy is specified as an export option, we don't
422  * have a specific export here to check. So we set a "TLS session
423  * is present" flag on the xprt and let an upper layer enforce local
424  * security policy.
425  */
426 static void svc_tcp_handshake_done(void *data, int status, key_serial_t peerid)
427 {
428 	struct svc_xprt *xprt = data;
429 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
430 
431 	if (!status) {
432 		if (peerid != TLS_NO_PEERID)
433 			set_bit(XPT_PEER_AUTH, &xprt->xpt_flags);
434 		set_bit(XPT_TLS_SESSION, &xprt->xpt_flags);
435 	}
436 	clear_bit(XPT_HANDSHAKE, &xprt->xpt_flags);
437 	complete_all(&svsk->sk_handshake_done);
438 }
439 
440 /**
441  * svc_tcp_handshake - Perform a transport-layer security handshake
442  * @xprt: connected transport endpoint
443  *
444  */
445 static void svc_tcp_handshake(struct svc_xprt *xprt)
446 {
447 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
448 	struct sock *sk = svsk->sk_sock->sk;
449 	struct tls_handshake_args args = {
450 		.ta_sock	= svsk->sk_sock,
451 		.ta_done	= svc_tcp_handshake_done,
452 		.ta_data	= xprt,
453 	};
454 	int ret;
455 
456 	trace_svc_tls_upcall(xprt);
457 
458 	clear_bit(XPT_TLS_SESSION, &xprt->xpt_flags);
459 	init_completion(&svsk->sk_handshake_done);
460 
461 	ret = tls_server_hello_x509(&args, GFP_KERNEL);
462 	if (ret) {
463 		trace_svc_tls_not_started(xprt);
464 		goto out_failed;
465 	}
466 
467 	ret = wait_for_completion_interruptible_timeout(&svsk->sk_handshake_done,
468 							SVC_HANDSHAKE_TO);
469 	if (ret <= 0) {
470 		if (tls_handshake_cancel(sk)) {
471 			trace_svc_tls_timed_out(xprt);
472 			goto out_close;
473 		}
474 	}
475 
476 	if (!test_bit(XPT_TLS_SESSION, &xprt->xpt_flags)) {
477 		trace_svc_tls_unavailable(xprt);
478 		goto out_close;
479 	}
480 
481 	/* Mark the transport ready in case the remote sent RPC
482 	 * traffic before the kernel received the handshake
483 	 * completion downcall.
484 	 */
485 	set_bit(XPT_DATA, &xprt->xpt_flags);
486 	svc_xprt_enqueue(xprt);
487 	return;
488 
489 out_close:
490 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
491 out_failed:
492 	clear_bit(XPT_HANDSHAKE, &xprt->xpt_flags);
493 	set_bit(XPT_DATA, &xprt->xpt_flags);
494 	svc_xprt_enqueue(xprt);
495 }
496 
497 /*
498  * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo
499  */
500 static int svc_udp_get_dest_address4(struct svc_rqst *rqstp,
501 				     struct cmsghdr *cmh)
502 {
503 	struct in_pktinfo *pki = CMSG_DATA(cmh);
504 	struct sockaddr_in *daddr = svc_daddr_in(rqstp);
505 
506 	if (cmh->cmsg_type != IP_PKTINFO)
507 		return 0;
508 
509 	daddr->sin_family = AF_INET;
510 	daddr->sin_addr.s_addr = pki->ipi_spec_dst.s_addr;
511 	return 1;
512 }
513 
514 /*
515  * See net/ipv6/datagram.c : ip6_datagram_recv_ctl
516  */
517 static int svc_udp_get_dest_address6(struct svc_rqst *rqstp,
518 				     struct cmsghdr *cmh)
519 {
520 	struct in6_pktinfo *pki = CMSG_DATA(cmh);
521 	struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp);
522 
523 	if (cmh->cmsg_type != IPV6_PKTINFO)
524 		return 0;
525 
526 	daddr->sin6_family = AF_INET6;
527 	daddr->sin6_addr = pki->ipi6_addr;
528 	daddr->sin6_scope_id = pki->ipi6_ifindex;
529 	return 1;
530 }
531 
532 /*
533  * Copy the UDP datagram's destination address to the rqstp structure.
534  * The 'destination' address in this case is the address to which the
535  * peer sent the datagram, i.e. our local address. For multihomed
536  * hosts, this can change from msg to msg. Note that only the IP
537  * address changes, the port number should remain the same.
538  */
539 static int svc_udp_get_dest_address(struct svc_rqst *rqstp,
540 				    struct cmsghdr *cmh)
541 {
542 	switch (cmh->cmsg_level) {
543 	case SOL_IP:
544 		return svc_udp_get_dest_address4(rqstp, cmh);
545 	case SOL_IPV6:
546 		return svc_udp_get_dest_address6(rqstp, cmh);
547 	}
548 
549 	return 0;
550 }
551 
552 /**
553  * svc_udp_recvfrom - Receive a datagram from a UDP socket.
554  * @rqstp: request structure into which to receive an RPC Call
555  *
556  * Called in a loop when XPT_DATA has been set.
557  *
558  * Returns:
559  *   On success, the number of bytes in a received RPC Call, or
560  *   %0 if a complete RPC Call message was not ready to return
561  */
562 static int svc_udp_recvfrom(struct svc_rqst *rqstp)
563 {
564 	struct svc_sock	*svsk =
565 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
566 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
567 	struct sk_buff	*skb;
568 	union {
569 		struct cmsghdr	hdr;
570 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
571 	} buffer;
572 	struct cmsghdr *cmh = &buffer.hdr;
573 	struct msghdr msg = {
574 		.msg_name = svc_addr(rqstp),
575 		.msg_control = cmh,
576 		.msg_controllen = sizeof(buffer),
577 		.msg_flags = MSG_DONTWAIT,
578 	};
579 	size_t len;
580 	int err;
581 
582 	if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
583 	    /* udp sockets need large rcvbuf as all pending
584 	     * requests are still in that buffer.  sndbuf must
585 	     * also be large enough that there is enough space
586 	     * for one reply per thread.  We count all threads
587 	     * rather than threads in a particular pool, which
588 	     * provides an upper bound on the number of threads
589 	     * which will access the socket.
590 	     */
591 	    svc_sock_setbufsize(svsk, serv->sv_nrthreads + 3);
592 
593 	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
594 	err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
595 			     0, 0, MSG_PEEK | MSG_DONTWAIT);
596 	if (err < 0)
597 		goto out_recv_err;
598 	skb = skb_recv_udp(svsk->sk_sk, MSG_DONTWAIT, &err);
599 	if (!skb)
600 		goto out_recv_err;
601 
602 	len = svc_addr_len(svc_addr(rqstp));
603 	rqstp->rq_addrlen = len;
604 	if (skb->tstamp == 0) {
605 		skb->tstamp = ktime_get_real();
606 		/* Don't enable netstamp, sunrpc doesn't
607 		   need that much accuracy */
608 	}
609 	sock_write_timestamp(svsk->sk_sk, skb->tstamp);
610 	set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
611 
612 	len = skb->len;
613 	rqstp->rq_arg.len = len;
614 	trace_svcsock_udp_recv(&svsk->sk_xprt, len);
615 
616 	rqstp->rq_prot = IPPROTO_UDP;
617 
618 	if (!svc_udp_get_dest_address(rqstp, cmh))
619 		goto out_cmsg_err;
620 	rqstp->rq_daddrlen = svc_addr_len(svc_daddr(rqstp));
621 
622 	if (skb_is_nonlinear(skb)) {
623 		/* we have to copy */
624 		local_bh_disable();
625 		if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb))
626 			goto out_bh_enable;
627 		local_bh_enable();
628 		consume_skb(skb);
629 	} else {
630 		/* we can use it in-place */
631 		rqstp->rq_arg.head[0].iov_base = skb->data;
632 		rqstp->rq_arg.head[0].iov_len = len;
633 		if (skb_checksum_complete(skb))
634 			goto out_free;
635 		rqstp->rq_xprt_ctxt = skb;
636 	}
637 
638 	rqstp->rq_arg.page_base = 0;
639 	if (len <= rqstp->rq_arg.head[0].iov_len) {
640 		rqstp->rq_arg.head[0].iov_len = len;
641 		rqstp->rq_arg.page_len = 0;
642 		rqstp->rq_respages = rqstp->rq_pages+1;
643 	} else {
644 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
645 		rqstp->rq_respages = rqstp->rq_pages + 1 +
646 			DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
647 	}
648 	rqstp->rq_next_page = rqstp->rq_respages+1;
649 
650 	if (serv->sv_stats)
651 		serv->sv_stats->netudpcnt++;
652 
653 	svc_sock_secure_port(rqstp);
654 	svc_xprt_received(rqstp->rq_xprt);
655 	return len;
656 
657 out_recv_err:
658 	if (err != -EAGAIN) {
659 		/* possibly an icmp error */
660 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
661 	}
662 	trace_svcsock_udp_recv_err(&svsk->sk_xprt, err);
663 	goto out_clear_busy;
664 out_cmsg_err:
665 	net_warn_ratelimited("svc: received unknown control message %d/%d; dropping RPC reply datagram\n",
666 			     cmh->cmsg_level, cmh->cmsg_type);
667 	goto out_free;
668 out_bh_enable:
669 	local_bh_enable();
670 out_free:
671 	kfree_skb(skb);
672 out_clear_busy:
673 	svc_xprt_received(rqstp->rq_xprt);
674 	return 0;
675 }
676 
677 /**
678  * svc_udp_sendto - Send out a reply on a UDP socket
679  * @rqstp: completed svc_rqst
680  *
681  * xpt_mutex ensures @rqstp's whole message is written to the socket
682  * without interruption.
683  *
684  * Returns the number of bytes sent, or a negative errno.
685  */
686 static int svc_udp_sendto(struct svc_rqst *rqstp)
687 {
688 	struct svc_xprt *xprt = rqstp->rq_xprt;
689 	struct svc_sock	*svsk = container_of(xprt, struct svc_sock, sk_xprt);
690 	struct xdr_buf *xdr = &rqstp->rq_res;
691 	union {
692 		struct cmsghdr	hdr;
693 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
694 	} buffer;
695 	struct cmsghdr *cmh = &buffer.hdr;
696 	struct msghdr msg = {
697 		.msg_name	= &rqstp->rq_addr,
698 		.msg_namelen	= rqstp->rq_addrlen,
699 		.msg_control	= cmh,
700 		.msg_flags	= MSG_SPLICE_PAGES,
701 		.msg_controllen	= sizeof(buffer),
702 	};
703 	unsigned int count;
704 	int err;
705 
706 	svc_udp_release_ctxt(xprt, rqstp->rq_xprt_ctxt);
707 	rqstp->rq_xprt_ctxt = NULL;
708 
709 	svc_set_cmsg_data(rqstp, cmh);
710 
711 	mutex_lock(&xprt->xpt_mutex);
712 
713 	if (svc_xprt_is_dead(xprt))
714 		goto out_notconn;
715 
716 	count = xdr_buf_to_bvec(rqstp->rq_bvec,
717 				ARRAY_SIZE(rqstp->rq_bvec), xdr);
718 
719 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, rqstp->rq_bvec,
720 		      count, rqstp->rq_res.len);
721 	err = sock_sendmsg(svsk->sk_sock, &msg);
722 	if (err == -ECONNREFUSED) {
723 		/* ICMP error on earlier request. */
724 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, rqstp->rq_bvec,
725 			      count, rqstp->rq_res.len);
726 		err = sock_sendmsg(svsk->sk_sock, &msg);
727 	}
728 
729 	trace_svcsock_udp_send(xprt, err);
730 
731 	mutex_unlock(&xprt->xpt_mutex);
732 	return err;
733 
734 out_notconn:
735 	mutex_unlock(&xprt->xpt_mutex);
736 	return -ENOTCONN;
737 }
738 
739 static int svc_udp_has_wspace(struct svc_xprt *xprt)
740 {
741 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
742 	struct svc_serv	*serv = xprt->xpt_server;
743 	unsigned long required;
744 
745 	/*
746 	 * Set the SOCK_NOSPACE flag before checking the available
747 	 * sock space.
748 	 */
749 	set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
750 	required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
751 	if (required*2 > sock_wspace(svsk->sk_sk))
752 		return 0;
753 	clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
754 	return 1;
755 }
756 
757 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
758 {
759 	BUG();
760 	return NULL;
761 }
762 
763 static void svc_udp_kill_temp_xprt(struct svc_xprt *xprt)
764 {
765 }
766 
767 static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
768 				       struct net *net,
769 				       struct sockaddr *sa, int salen,
770 				       int flags)
771 {
772 	return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags);
773 }
774 
775 static const struct svc_xprt_ops svc_udp_ops = {
776 	.xpo_create = svc_udp_create,
777 	.xpo_recvfrom = svc_udp_recvfrom,
778 	.xpo_sendto = svc_udp_sendto,
779 	.xpo_result_payload = svc_sock_result_payload,
780 	.xpo_release_ctxt = svc_udp_release_ctxt,
781 	.xpo_detach = svc_sock_detach,
782 	.xpo_free = svc_sock_free,
783 	.xpo_has_wspace = svc_udp_has_wspace,
784 	.xpo_accept = svc_udp_accept,
785 	.xpo_kill_temp_xprt = svc_udp_kill_temp_xprt,
786 };
787 
788 static struct svc_xprt_class svc_udp_class = {
789 	.xcl_name = "udp",
790 	.xcl_owner = THIS_MODULE,
791 	.xcl_ops = &svc_udp_ops,
792 	.xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
793 	.xcl_ident = XPRT_TRANSPORT_UDP,
794 };
795 
796 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
797 {
798 	svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_udp_class,
799 		      &svsk->sk_xprt, serv);
800 	clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
801 	svsk->sk_sk->sk_data_ready = svc_data_ready;
802 	svsk->sk_sk->sk_write_space = svc_write_space;
803 
804 	/* initialise setting must have enough space to
805 	 * receive and respond to one request.
806 	 * svc_udp_recvfrom will re-adjust if necessary
807 	 */
808 	svc_sock_setbufsize(svsk, 3);
809 
810 	/* data might have come in before data_ready set up */
811 	set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
812 	set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
813 
814 	/* make sure we get destination address info */
815 	switch (svsk->sk_sk->sk_family) {
816 	case AF_INET:
817 		ip_sock_set_pktinfo(svsk->sk_sock->sk);
818 		break;
819 	case AF_INET6:
820 		ip6_sock_set_recvpktinfo(svsk->sk_sock->sk);
821 		break;
822 	default:
823 		BUG();
824 	}
825 }
826 
827 /*
828  * A data_ready event on a listening socket means there's a connection
829  * pending. Do not use state_change as a substitute for it.
830  */
831 static void svc_tcp_listen_data_ready(struct sock *sk)
832 {
833 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
834 
835 	trace_sk_data_ready(sk);
836 
837 	/*
838 	 * This callback may called twice when a new connection
839 	 * is established as a child socket inherits everything
840 	 * from a parent LISTEN socket.
841 	 * 1) data_ready method of the parent socket will be called
842 	 *    when one of child sockets become ESTABLISHED.
843 	 * 2) data_ready method of the child socket may be called
844 	 *    when it receives data before the socket is accepted.
845 	 * In case of 2, we should ignore it silently and DO NOT
846 	 * dereference svsk.
847 	 */
848 	if (sk->sk_state != TCP_LISTEN)
849 		return;
850 
851 	if (svsk) {
852 		/* Refer to svc_setup_socket() for details. */
853 		rmb();
854 		svsk->sk_odata(sk);
855 		set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
856 		svc_xprt_enqueue(&svsk->sk_xprt);
857 	}
858 }
859 
860 /*
861  * A state change on a connected socket means it's dying or dead.
862  */
863 static void svc_tcp_state_change(struct sock *sk)
864 {
865 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
866 
867 	if (svsk) {
868 		/* Refer to svc_setup_socket() for details. */
869 		rmb();
870 		svsk->sk_ostate(sk);
871 		trace_svcsock_tcp_state(&svsk->sk_xprt, svsk->sk_sock);
872 		if (sk->sk_state != TCP_ESTABLISHED)
873 			svc_xprt_deferred_close(&svsk->sk_xprt);
874 	}
875 }
876 
877 /*
878  * Accept a TCP connection
879  */
880 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
881 {
882 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
883 	struct sockaddr_storage addr;
884 	struct sockaddr	*sin = (struct sockaddr *) &addr;
885 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
886 	struct socket	*sock = svsk->sk_sock;
887 	struct socket	*newsock;
888 	struct svc_sock	*newsvsk;
889 	int		err, slen;
890 
891 	if (!sock)
892 		return NULL;
893 
894 	clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
895 	err = kernel_accept(sock, &newsock, O_NONBLOCK);
896 	if (err < 0) {
897 		if (err != -EAGAIN)
898 			trace_svcsock_accept_err(xprt, serv->sv_name, err);
899 		return NULL;
900 	}
901 	if (IS_ERR(sock_alloc_file(newsock, O_NONBLOCK, NULL)))
902 		return NULL;
903 
904 	set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
905 
906 	err = kernel_getpeername(newsock, sin);
907 	if (err < 0) {
908 		trace_svcsock_getpeername_err(xprt, serv->sv_name, err);
909 		goto failed;		/* aborted connection or whatever */
910 	}
911 	slen = err;
912 
913 	/* Reset the inherited callbacks before calling svc_setup_socket */
914 	newsock->sk->sk_state_change = svsk->sk_ostate;
915 	newsock->sk->sk_data_ready = svsk->sk_odata;
916 	newsock->sk->sk_write_space = svsk->sk_owspace;
917 
918 	/* make sure that a write doesn't block forever when
919 	 * low on memory
920 	 */
921 	newsock->sk->sk_sndtimeo = HZ*30;
922 
923 	newsvsk = svc_setup_socket(serv, newsock,
924 				 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY));
925 	if (IS_ERR(newsvsk))
926 		goto failed;
927 	svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
928 	err = kernel_getsockname(newsock, sin);
929 	slen = err;
930 	if (unlikely(err < 0))
931 		slen = offsetof(struct sockaddr, sa_data);
932 	svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
933 
934 	if (sock_is_loopback(newsock->sk))
935 		set_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags);
936 	else
937 		clear_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags);
938 	if (serv->sv_stats)
939 		serv->sv_stats->nettcpconn++;
940 
941 	return &newsvsk->sk_xprt;
942 
943 failed:
944 	sockfd_put(newsock);
945 	return NULL;
946 }
947 
948 static size_t svc_tcp_restore_pages(struct svc_sock *svsk,
949 				    struct svc_rqst *rqstp)
950 {
951 	size_t len = svsk->sk_datalen;
952 	unsigned int i, npages;
953 
954 	if (!len)
955 		return 0;
956 	npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
957 	for (i = 0; i < npages; i++) {
958 		if (rqstp->rq_pages[i] != NULL)
959 			put_page(rqstp->rq_pages[i]);
960 		BUG_ON(svsk->sk_pages[i] == NULL);
961 		rqstp->rq_pages[i] = svsk->sk_pages[i];
962 		svsk->sk_pages[i] = NULL;
963 	}
964 	rqstp->rq_arg.head[0].iov_base = page_address(rqstp->rq_pages[0]);
965 	return len;
966 }
967 
968 static void svc_tcp_save_pages(struct svc_sock *svsk, struct svc_rqst *rqstp)
969 {
970 	unsigned int i, len, npages;
971 
972 	if (svsk->sk_datalen == 0)
973 		return;
974 	len = svsk->sk_datalen;
975 	npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
976 	for (i = 0; i < npages; i++) {
977 		svsk->sk_pages[i] = rqstp->rq_pages[i];
978 		rqstp->rq_pages[i] = NULL;
979 	}
980 }
981 
982 static void svc_tcp_clear_pages(struct svc_sock *svsk)
983 {
984 	unsigned int i, len, npages;
985 
986 	if (svsk->sk_datalen == 0)
987 		goto out;
988 	len = svsk->sk_datalen;
989 	npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
990 	for (i = 0; i < npages; i++) {
991 		if (svsk->sk_pages[i] == NULL) {
992 			WARN_ON_ONCE(1);
993 			continue;
994 		}
995 		put_page(svsk->sk_pages[i]);
996 		svsk->sk_pages[i] = NULL;
997 	}
998 out:
999 	svsk->sk_tcplen = 0;
1000 	svsk->sk_datalen = 0;
1001 }
1002 
1003 /*
1004  * Receive fragment record header into sk_marker.
1005  */
1006 static ssize_t svc_tcp_read_marker(struct svc_sock *svsk,
1007 				   struct svc_rqst *rqstp)
1008 {
1009 	ssize_t want, len;
1010 
1011 	/* If we haven't gotten the record length yet,
1012 	 * get the next four bytes.
1013 	 */
1014 	if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) {
1015 		struct msghdr	msg = { NULL };
1016 		struct kvec	iov;
1017 
1018 		want = sizeof(rpc_fraghdr) - svsk->sk_tcplen;
1019 		iov.iov_base = ((char *)&svsk->sk_marker) + svsk->sk_tcplen;
1020 		iov.iov_len  = want;
1021 		iov_iter_kvec(&msg.msg_iter, ITER_DEST, &iov, 1, want);
1022 		len = svc_tcp_sock_recv_cmsg(svsk, &msg);
1023 		if (len < 0)
1024 			return len;
1025 		svsk->sk_tcplen += len;
1026 		if (len < want) {
1027 			/* call again to read the remaining bytes */
1028 			goto err_short;
1029 		}
1030 		trace_svcsock_marker(&svsk->sk_xprt, svsk->sk_marker);
1031 		if (svc_sock_reclen(svsk) + svsk->sk_datalen >
1032 		    svsk->sk_xprt.xpt_server->sv_max_mesg)
1033 			goto err_too_large;
1034 	}
1035 	return svc_sock_reclen(svsk);
1036 
1037 err_too_large:
1038 	net_notice_ratelimited("svc: %s %s RPC fragment too large: %d\n",
1039 			       __func__, svsk->sk_xprt.xpt_server->sv_name,
1040 			       svc_sock_reclen(svsk));
1041 	svc_xprt_deferred_close(&svsk->sk_xprt);
1042 err_short:
1043 	return -EAGAIN;
1044 }
1045 
1046 static int receive_cb_reply(struct svc_sock *svsk, struct svc_rqst *rqstp)
1047 {
1048 	struct rpc_xprt *bc_xprt = svsk->sk_xprt.xpt_bc_xprt;
1049 	struct rpc_rqst *req = NULL;
1050 	struct kvec *src, *dst;
1051 	__be32 *p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
1052 	__be32 xid;
1053 	__be32 calldir;
1054 
1055 	xid = *p++;
1056 	calldir = *p;
1057 
1058 	if (!bc_xprt)
1059 		return -EAGAIN;
1060 	spin_lock(&bc_xprt->queue_lock);
1061 	req = xprt_lookup_rqst(bc_xprt, xid);
1062 	if (!req)
1063 		goto unlock_notfound;
1064 
1065 	memcpy(&req->rq_private_buf, &req->rq_rcv_buf, sizeof(struct xdr_buf));
1066 	/*
1067 	 * XXX!: cheating for now!  Only copying HEAD.
1068 	 * But we know this is good enough for now (in fact, for any
1069 	 * callback reply in the forseeable future).
1070 	 */
1071 	dst = &req->rq_private_buf.head[0];
1072 	src = &rqstp->rq_arg.head[0];
1073 	if (dst->iov_len < src->iov_len)
1074 		goto unlock_eagain; /* whatever; just giving up. */
1075 	memcpy(dst->iov_base, src->iov_base, src->iov_len);
1076 	xprt_complete_rqst(req->rq_task, rqstp->rq_arg.len);
1077 	rqstp->rq_arg.len = 0;
1078 	spin_unlock(&bc_xprt->queue_lock);
1079 	return 0;
1080 unlock_notfound:
1081 	printk(KERN_NOTICE
1082 		"%s: Got unrecognized reply: "
1083 		"calldir 0x%x xpt_bc_xprt %p xid %08x\n",
1084 		__func__, ntohl(calldir),
1085 		bc_xprt, ntohl(xid));
1086 unlock_eagain:
1087 	spin_unlock(&bc_xprt->queue_lock);
1088 	return -EAGAIN;
1089 }
1090 
1091 static void svc_tcp_fragment_received(struct svc_sock *svsk)
1092 {
1093 	/* If we have more data, signal svc_xprt_enqueue() to try again */
1094 	svsk->sk_tcplen = 0;
1095 	svsk->sk_marker = xdr_zero;
1096 
1097 	smp_wmb();
1098 	tcp_set_rcvlowat(svsk->sk_sk, 1);
1099 }
1100 
1101 /**
1102  * svc_tcp_recvfrom - Receive data from a TCP socket
1103  * @rqstp: request structure into which to receive an RPC Call
1104  *
1105  * Called in a loop when XPT_DATA has been set.
1106  *
1107  * Read the 4-byte stream record marker, then use the record length
1108  * in that marker to set up exactly the resources needed to receive
1109  * the next RPC message into @rqstp.
1110  *
1111  * Returns:
1112  *   On success, the number of bytes in a received RPC Call, or
1113  *   %0 if a complete RPC Call message was not ready to return
1114  *
1115  * The zero return case handles partial receives and callback Replies.
1116  * The state of a partial receive is preserved in the svc_sock for
1117  * the next call to svc_tcp_recvfrom.
1118  */
1119 static int svc_tcp_recvfrom(struct svc_rqst *rqstp)
1120 {
1121 	struct svc_sock	*svsk =
1122 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
1123 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
1124 	size_t want, base;
1125 	ssize_t len;
1126 	__be32 *p;
1127 	__be32 calldir;
1128 
1129 	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1130 	len = svc_tcp_read_marker(svsk, rqstp);
1131 	if (len < 0)
1132 		goto error;
1133 
1134 	base = svc_tcp_restore_pages(svsk, rqstp);
1135 	want = len - (svsk->sk_tcplen - sizeof(rpc_fraghdr));
1136 	len = svc_tcp_read_msg(rqstp, base + want, base);
1137 	if (len >= 0) {
1138 		trace_svcsock_tcp_recv(&svsk->sk_xprt, len);
1139 		svsk->sk_tcplen += len;
1140 		svsk->sk_datalen += len;
1141 	}
1142 	if (len != want || !svc_sock_final_rec(svsk))
1143 		goto err_incomplete;
1144 	if (svsk->sk_datalen < 8)
1145 		goto err_nuts;
1146 
1147 	rqstp->rq_arg.len = svsk->sk_datalen;
1148 	rqstp->rq_arg.page_base = 0;
1149 	if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1150 		rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1151 		rqstp->rq_arg.page_len = 0;
1152 	} else
1153 		rqstp->rq_arg.page_len = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1154 
1155 	rqstp->rq_xprt_ctxt   = NULL;
1156 	rqstp->rq_prot	      = IPPROTO_TCP;
1157 	if (test_bit(XPT_LOCAL, &svsk->sk_xprt.xpt_flags))
1158 		set_bit(RQ_LOCAL, &rqstp->rq_flags);
1159 	else
1160 		clear_bit(RQ_LOCAL, &rqstp->rq_flags);
1161 
1162 	p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
1163 	calldir = p[1];
1164 	if (calldir)
1165 		len = receive_cb_reply(svsk, rqstp);
1166 
1167 	/* Reset TCP read info */
1168 	svsk->sk_datalen = 0;
1169 	svc_tcp_fragment_received(svsk);
1170 
1171 	if (len < 0)
1172 		goto error;
1173 
1174 	svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
1175 	if (serv->sv_stats)
1176 		serv->sv_stats->nettcpcnt++;
1177 
1178 	svc_sock_secure_port(rqstp);
1179 	svc_xprt_received(rqstp->rq_xprt);
1180 	return rqstp->rq_arg.len;
1181 
1182 err_incomplete:
1183 	svc_tcp_save_pages(svsk, rqstp);
1184 	if (len < 0 && len != -EAGAIN)
1185 		goto err_delete;
1186 	if (len == want)
1187 		svc_tcp_fragment_received(svsk);
1188 	else {
1189 		/* Avoid more ->sk_data_ready() calls until the rest
1190 		 * of the message has arrived. This reduces service
1191 		 * thread wake-ups on large incoming messages. */
1192 		tcp_set_rcvlowat(svsk->sk_sk,
1193 				 svc_sock_reclen(svsk) - svsk->sk_tcplen);
1194 
1195 		trace_svcsock_tcp_recv_short(&svsk->sk_xprt,
1196 				svc_sock_reclen(svsk),
1197 				svsk->sk_tcplen - sizeof(rpc_fraghdr));
1198 	}
1199 	goto err_noclose;
1200 error:
1201 	if (len != -EAGAIN)
1202 		goto err_delete;
1203 	trace_svcsock_tcp_recv_eagain(&svsk->sk_xprt, 0);
1204 	goto err_noclose;
1205 err_nuts:
1206 	svsk->sk_datalen = 0;
1207 err_delete:
1208 	trace_svcsock_tcp_recv_err(&svsk->sk_xprt, len);
1209 	svc_xprt_deferred_close(&svsk->sk_xprt);
1210 err_noclose:
1211 	svc_xprt_received(rqstp->rq_xprt);
1212 	return 0;	/* record not complete */
1213 }
1214 
1215 /*
1216  * MSG_SPLICE_PAGES is used exclusively to reduce the number of
1217  * copy operations in this path. Therefore the caller must ensure
1218  * that the pages backing @xdr are unchanging.
1219  */
1220 static int svc_tcp_sendmsg(struct svc_sock *svsk, struct svc_rqst *rqstp,
1221 			   rpc_fraghdr marker, unsigned int *sentp)
1222 {
1223 	struct msghdr msg = {
1224 		.msg_flags	= MSG_SPLICE_PAGES,
1225 	};
1226 	unsigned int count;
1227 	void *buf;
1228 	int ret;
1229 
1230 	*sentp = 0;
1231 
1232 	/* The stream record marker is copied into a temporary page
1233 	 * fragment buffer so that it can be included in rq_bvec.
1234 	 */
1235 	buf = page_frag_alloc(&svsk->sk_frag_cache, sizeof(marker),
1236 			      GFP_KERNEL);
1237 	if (!buf)
1238 		return -ENOMEM;
1239 	memcpy(buf, &marker, sizeof(marker));
1240 	bvec_set_virt(rqstp->rq_bvec, buf, sizeof(marker));
1241 
1242 	count = xdr_buf_to_bvec(rqstp->rq_bvec + 1,
1243 				ARRAY_SIZE(rqstp->rq_bvec) - 1, &rqstp->rq_res);
1244 
1245 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, rqstp->rq_bvec,
1246 		      1 + count, sizeof(marker) + rqstp->rq_res.len);
1247 	ret = sock_sendmsg(svsk->sk_sock, &msg);
1248 	page_frag_free(buf);
1249 	if (ret < 0)
1250 		return ret;
1251 	*sentp += ret;
1252 	return 0;
1253 }
1254 
1255 /**
1256  * svc_tcp_sendto - Send out a reply on a TCP socket
1257  * @rqstp: completed svc_rqst
1258  *
1259  * xpt_mutex ensures @rqstp's whole message is written to the socket
1260  * without interruption.
1261  *
1262  * Returns the number of bytes sent, or a negative errno.
1263  */
1264 static int svc_tcp_sendto(struct svc_rqst *rqstp)
1265 {
1266 	struct svc_xprt *xprt = rqstp->rq_xprt;
1267 	struct svc_sock	*svsk = container_of(xprt, struct svc_sock, sk_xprt);
1268 	struct xdr_buf *xdr = &rqstp->rq_res;
1269 	rpc_fraghdr marker = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT |
1270 					 (u32)xdr->len);
1271 	unsigned int sent;
1272 	int err;
1273 
1274 	svc_tcp_release_ctxt(xprt, rqstp->rq_xprt_ctxt);
1275 	rqstp->rq_xprt_ctxt = NULL;
1276 
1277 	mutex_lock(&xprt->xpt_mutex);
1278 	if (svc_xprt_is_dead(xprt))
1279 		goto out_notconn;
1280 	err = svc_tcp_sendmsg(svsk, rqstp, marker, &sent);
1281 	trace_svcsock_tcp_send(xprt, err < 0 ? (long)err : sent);
1282 	if (err < 0 || sent != (xdr->len + sizeof(marker)))
1283 		goto out_close;
1284 	mutex_unlock(&xprt->xpt_mutex);
1285 	return sent;
1286 
1287 out_notconn:
1288 	mutex_unlock(&xprt->xpt_mutex);
1289 	return -ENOTCONN;
1290 out_close:
1291 	pr_notice("rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1292 		  xprt->xpt_server->sv_name,
1293 		  (err < 0) ? "got error" : "sent",
1294 		  (err < 0) ? err : sent, xdr->len);
1295 	svc_xprt_deferred_close(xprt);
1296 	mutex_unlock(&xprt->xpt_mutex);
1297 	return -EAGAIN;
1298 }
1299 
1300 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
1301 				       struct net *net,
1302 				       struct sockaddr *sa, int salen,
1303 				       int flags)
1304 {
1305 	return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags);
1306 }
1307 
1308 static const struct svc_xprt_ops svc_tcp_ops = {
1309 	.xpo_create = svc_tcp_create,
1310 	.xpo_recvfrom = svc_tcp_recvfrom,
1311 	.xpo_sendto = svc_tcp_sendto,
1312 	.xpo_result_payload = svc_sock_result_payload,
1313 	.xpo_release_ctxt = svc_tcp_release_ctxt,
1314 	.xpo_detach = svc_tcp_sock_detach,
1315 	.xpo_free = svc_sock_free,
1316 	.xpo_has_wspace = svc_tcp_has_wspace,
1317 	.xpo_accept = svc_tcp_accept,
1318 	.xpo_kill_temp_xprt = svc_tcp_kill_temp_xprt,
1319 	.xpo_handshake = svc_tcp_handshake,
1320 };
1321 
1322 static struct svc_xprt_class svc_tcp_class = {
1323 	.xcl_name = "tcp",
1324 	.xcl_owner = THIS_MODULE,
1325 	.xcl_ops = &svc_tcp_ops,
1326 	.xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1327 	.xcl_ident = XPRT_TRANSPORT_TCP,
1328 };
1329 
1330 void svc_init_xprt_sock(void)
1331 {
1332 	svc_reg_xprt_class(&svc_tcp_class);
1333 	svc_reg_xprt_class(&svc_udp_class);
1334 }
1335 
1336 void svc_cleanup_xprt_sock(void)
1337 {
1338 	svc_unreg_xprt_class(&svc_tcp_class);
1339 	svc_unreg_xprt_class(&svc_udp_class);
1340 }
1341 
1342 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
1343 {
1344 	struct sock	*sk = svsk->sk_sk;
1345 
1346 	svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_tcp_class,
1347 		      &svsk->sk_xprt, serv);
1348 	set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
1349 	set_bit(XPT_CONG_CTRL, &svsk->sk_xprt.xpt_flags);
1350 	if (sk->sk_state == TCP_LISTEN) {
1351 		strcpy(svsk->sk_xprt.xpt_remotebuf, "listener");
1352 		set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
1353 		sk->sk_data_ready = svc_tcp_listen_data_ready;
1354 		set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1355 	} else {
1356 		sk->sk_state_change = svc_tcp_state_change;
1357 		sk->sk_data_ready = svc_data_ready;
1358 		sk->sk_write_space = svc_write_space;
1359 
1360 		svsk->sk_marker = xdr_zero;
1361 		svsk->sk_tcplen = 0;
1362 		svsk->sk_datalen = 0;
1363 		memset(&svsk->sk_pages[0], 0, sizeof(svsk->sk_pages));
1364 
1365 		tcp_sock_set_nodelay(sk);
1366 
1367 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1368 		switch (sk->sk_state) {
1369 		case TCP_SYN_RECV:
1370 		case TCP_ESTABLISHED:
1371 			break;
1372 		default:
1373 			svc_xprt_deferred_close(&svsk->sk_xprt);
1374 		}
1375 	}
1376 }
1377 
1378 void svc_sock_update_bufs(struct svc_serv *serv)
1379 {
1380 	/*
1381 	 * The number of server threads has changed. Update
1382 	 * rcvbuf and sndbuf accordingly on all sockets
1383 	 */
1384 	struct svc_sock *svsk;
1385 
1386 	spin_lock_bh(&serv->sv_lock);
1387 	list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list)
1388 		set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1389 	spin_unlock_bh(&serv->sv_lock);
1390 }
1391 EXPORT_SYMBOL_GPL(svc_sock_update_bufs);
1392 
1393 /*
1394  * Initialize socket for RPC use and create svc_sock struct
1395  */
1396 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1397 						struct socket *sock,
1398 						int flags)
1399 {
1400 	struct svc_sock	*svsk;
1401 	struct sock	*inet;
1402 	int		pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1403 
1404 	svsk = kzalloc(sizeof(*svsk), GFP_KERNEL);
1405 	if (!svsk)
1406 		return ERR_PTR(-ENOMEM);
1407 
1408 	inet = sock->sk;
1409 
1410 	if (pmap_register) {
1411 		int err;
1412 
1413 		err = svc_register(serv, sock_net(sock->sk), inet->sk_family,
1414 				     inet->sk_protocol,
1415 				     ntohs(inet_sk(inet)->inet_sport));
1416 		if (err < 0) {
1417 			kfree(svsk);
1418 			return ERR_PTR(err);
1419 		}
1420 	}
1421 
1422 	svsk->sk_sock = sock;
1423 	svsk->sk_sk = inet;
1424 	svsk->sk_ostate = inet->sk_state_change;
1425 	svsk->sk_odata = inet->sk_data_ready;
1426 	svsk->sk_owspace = inet->sk_write_space;
1427 	/*
1428 	 * This barrier is necessary in order to prevent race condition
1429 	 * with svc_data_ready(), svc_tcp_listen_data_ready(), and others
1430 	 * when calling callbacks above.
1431 	 */
1432 	wmb();
1433 	inet->sk_user_data = svsk;
1434 
1435 	/* Initialize the socket */
1436 	if (sock->type == SOCK_DGRAM)
1437 		svc_udp_init(svsk, serv);
1438 	else
1439 		svc_tcp_init(svsk, serv);
1440 
1441 	trace_svcsock_new(svsk, sock);
1442 	return svsk;
1443 }
1444 
1445 /**
1446  * svc_addsock - add a listener socket to an RPC service
1447  * @serv: pointer to RPC service to which to add a new listener
1448  * @net: caller's network namespace
1449  * @fd: file descriptor of the new listener
1450  * @name_return: pointer to buffer to fill in with name of listener
1451  * @len: size of the buffer
1452  * @cred: credential
1453  *
1454  * Fills in socket name and returns positive length of name if successful.
1455  * Name is terminated with '\n'.  On error, returns a negative errno
1456  * value.
1457  */
1458 int svc_addsock(struct svc_serv *serv, struct net *net, const int fd,
1459 		char *name_return, const size_t len, const struct cred *cred)
1460 {
1461 	int err = 0;
1462 	struct socket *so = sockfd_lookup(fd, &err);
1463 	struct svc_sock *svsk = NULL;
1464 	struct sockaddr_storage addr;
1465 	struct sockaddr *sin = (struct sockaddr *)&addr;
1466 	int salen;
1467 
1468 	if (!so)
1469 		return err;
1470 	err = -EINVAL;
1471 	if (sock_net(so->sk) != net)
1472 		goto out;
1473 	err = -EAFNOSUPPORT;
1474 	if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6))
1475 		goto out;
1476 	err =  -EPROTONOSUPPORT;
1477 	if (so->sk->sk_protocol != IPPROTO_TCP &&
1478 	    so->sk->sk_protocol != IPPROTO_UDP)
1479 		goto out;
1480 	err = -EISCONN;
1481 	if (so->state > SS_UNCONNECTED)
1482 		goto out;
1483 	err = -ENOENT;
1484 	if (!try_module_get(THIS_MODULE))
1485 		goto out;
1486 	svsk = svc_setup_socket(serv, so, SVC_SOCK_DEFAULTS);
1487 	if (IS_ERR(svsk)) {
1488 		module_put(THIS_MODULE);
1489 		err = PTR_ERR(svsk);
1490 		goto out;
1491 	}
1492 	salen = kernel_getsockname(svsk->sk_sock, sin);
1493 	if (salen >= 0)
1494 		svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
1495 	svsk->sk_xprt.xpt_cred = get_cred(cred);
1496 	svc_add_new_perm_xprt(serv, &svsk->sk_xprt);
1497 	return svc_one_sock_name(svsk, name_return, len);
1498 out:
1499 	sockfd_put(so);
1500 	return err;
1501 }
1502 EXPORT_SYMBOL_GPL(svc_addsock);
1503 
1504 /*
1505  * Create socket for RPC service.
1506  */
1507 static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
1508 					  int protocol,
1509 					  struct net *net,
1510 					  struct sockaddr *sin, int len,
1511 					  int flags)
1512 {
1513 	struct svc_sock	*svsk;
1514 	struct socket	*sock;
1515 	int		error;
1516 	int		type;
1517 	struct sockaddr_storage addr;
1518 	struct sockaddr *newsin = (struct sockaddr *)&addr;
1519 	int		newlen;
1520 	int		family;
1521 
1522 	if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1523 		printk(KERN_WARNING "svc: only UDP and TCP "
1524 				"sockets supported\n");
1525 		return ERR_PTR(-EINVAL);
1526 	}
1527 
1528 	type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1529 	switch (sin->sa_family) {
1530 	case AF_INET6:
1531 		family = PF_INET6;
1532 		break;
1533 	case AF_INET:
1534 		family = PF_INET;
1535 		break;
1536 	default:
1537 		return ERR_PTR(-EINVAL);
1538 	}
1539 
1540 	error = __sock_create(net, family, type, protocol, &sock, 1);
1541 	if (error < 0)
1542 		return ERR_PTR(error);
1543 
1544 	svc_reclassify_socket(sock);
1545 
1546 	/*
1547 	 * If this is an PF_INET6 listener, we want to avoid
1548 	 * getting requests from IPv4 remotes.  Those should
1549 	 * be shunted to a PF_INET listener via rpcbind.
1550 	 */
1551 	if (family == PF_INET6)
1552 		ip6_sock_set_v6only(sock->sk);
1553 	if (type == SOCK_STREAM)
1554 		sock->sk->sk_reuse = SK_CAN_REUSE; /* allow address reuse */
1555 	error = kernel_bind(sock, sin, len);
1556 	if (error < 0)
1557 		goto bummer;
1558 
1559 	error = kernel_getsockname(sock, newsin);
1560 	if (error < 0)
1561 		goto bummer;
1562 	newlen = error;
1563 
1564 	if (protocol == IPPROTO_TCP) {
1565 		if ((error = kernel_listen(sock, 64)) < 0)
1566 			goto bummer;
1567 	}
1568 
1569 	svsk = svc_setup_socket(serv, sock, flags);
1570 	if (IS_ERR(svsk)) {
1571 		error = PTR_ERR(svsk);
1572 		goto bummer;
1573 	}
1574 	svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
1575 	return (struct svc_xprt *)svsk;
1576 bummer:
1577 	sock_release(sock);
1578 	return ERR_PTR(error);
1579 }
1580 
1581 /*
1582  * Detach the svc_sock from the socket so that no
1583  * more callbacks occur.
1584  */
1585 static void svc_sock_detach(struct svc_xprt *xprt)
1586 {
1587 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1588 	struct sock *sk = svsk->sk_sk;
1589 
1590 	/* put back the old socket callbacks */
1591 	lock_sock(sk);
1592 	sk->sk_state_change = svsk->sk_ostate;
1593 	sk->sk_data_ready = svsk->sk_odata;
1594 	sk->sk_write_space = svsk->sk_owspace;
1595 	sk->sk_user_data = NULL;
1596 	release_sock(sk);
1597 }
1598 
1599 /*
1600  * Disconnect the socket, and reset the callbacks
1601  */
1602 static void svc_tcp_sock_detach(struct svc_xprt *xprt)
1603 {
1604 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1605 
1606 	tls_handshake_close(svsk->sk_sock);
1607 
1608 	svc_sock_detach(xprt);
1609 
1610 	if (!test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
1611 		svc_tcp_clear_pages(svsk);
1612 		kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR);
1613 	}
1614 }
1615 
1616 /*
1617  * Free the svc_sock's socket resources and the svc_sock itself.
1618  */
1619 static void svc_sock_free(struct svc_xprt *xprt)
1620 {
1621 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1622 	struct page_frag_cache *pfc = &svsk->sk_frag_cache;
1623 	struct socket *sock = svsk->sk_sock;
1624 
1625 	trace_svcsock_free(svsk, sock);
1626 
1627 	tls_handshake_cancel(sock->sk);
1628 	if (sock->file)
1629 		sockfd_put(sock);
1630 	else
1631 		sock_release(sock);
1632 	if (pfc->va)
1633 		__page_frag_cache_drain(virt_to_head_page(pfc->va),
1634 					pfc->pagecnt_bias);
1635 	kfree(svsk);
1636 }
1637