xref: /openbmc/linux/net/sunrpc/svcsock.c (revision 755cceab)
1 /*
2  * linux/net/sunrpc/svcsock.c
3  *
4  * These are the RPC server socket internals.
5  *
6  * The server scheduling algorithm does not always distribute the load
7  * evenly when servicing a single client. May need to modify the
8  * svc_sock_enqueue procedure...
9  *
10  * TCP support is largely untested and may be a little slow. The problem
11  * is that we currently do two separate recvfrom's, one for the 4-byte
12  * record length, and the second for the actual record. This could possibly
13  * be improved by always reading a minimum size of around 100 bytes and
14  * tucking any superfluous bytes away in a temporary store. Still, that
15  * leaves write requests out in the rain. An alternative may be to peek at
16  * the first skb in the queue, and if it matches the next TCP sequence
17  * number, to extract the record marker. Yuck.
18  *
19  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/errno.h>
25 #include <linux/fcntl.h>
26 #include <linux/net.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/udp.h>
30 #include <linux/tcp.h>
31 #include <linux/unistd.h>
32 #include <linux/slab.h>
33 #include <linux/netdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/file.h>
36 #include <linux/freezer.h>
37 #include <net/sock.h>
38 #include <net/checksum.h>
39 #include <net/ip.h>
40 #include <net/ipv6.h>
41 #include <net/tcp_states.h>
42 #include <asm/uaccess.h>
43 #include <asm/ioctls.h>
44 
45 #include <linux/sunrpc/types.h>
46 #include <linux/sunrpc/clnt.h>
47 #include <linux/sunrpc/xdr.h>
48 #include <linux/sunrpc/svcsock.h>
49 #include <linux/sunrpc/stats.h>
50 
51 /* SMP locking strategy:
52  *
53  *	svc_pool->sp_lock protects most of the fields of that pool.
54  * 	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
55  *	when both need to be taken (rare), svc_serv->sv_lock is first.
56  *	BKL protects svc_serv->sv_nrthread.
57  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
58  *             and the ->sk_info_authunix cache.
59  *	svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply.
60  *
61  *	Some flags can be set to certain values at any time
62  *	providing that certain rules are followed:
63  *
64  *	SK_CONN, SK_DATA, can be set or cleared at any time.
65  *		after a set, svc_sock_enqueue must be called.
66  *		after a clear, the socket must be read/accepted
67  *		 if this succeeds, it must be set again.
68  *	SK_CLOSE can set at any time. It is never cleared.
69  *      sk_inuse contains a bias of '1' until SK_DEAD is set.
70  *             so when sk_inuse hits zero, we know the socket is dead
71  *             and no-one is using it.
72  *      SK_DEAD can only be set while SK_BUSY is held which ensures
73  *             no other thread will be using the socket or will try to
74  *	       set SK_DEAD.
75  *
76  */
77 
78 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
79 
80 
81 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
82 					 int *errp, int flags);
83 static void		svc_delete_socket(struct svc_sock *svsk);
84 static void		svc_udp_data_ready(struct sock *, int);
85 static int		svc_udp_recvfrom(struct svc_rqst *);
86 static int		svc_udp_sendto(struct svc_rqst *);
87 static void		svc_close_socket(struct svc_sock *svsk);
88 static void		svc_sock_detach(struct svc_xprt *);
89 static void		svc_sock_free(struct svc_xprt *);
90 
91 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
92 static int svc_deferred_recv(struct svc_rqst *rqstp);
93 static struct cache_deferred_req *svc_defer(struct cache_req *req);
94 
95 /* apparently the "standard" is that clients close
96  * idle connections after 5 minutes, servers after
97  * 6 minutes
98  *   http://www.connectathon.org/talks96/nfstcp.pdf
99  */
100 static int svc_conn_age_period = 6*60;
101 
102 #ifdef CONFIG_DEBUG_LOCK_ALLOC
103 static struct lock_class_key svc_key[2];
104 static struct lock_class_key svc_slock_key[2];
105 
106 static inline void svc_reclassify_socket(struct socket *sock)
107 {
108 	struct sock *sk = sock->sk;
109 	BUG_ON(sock_owned_by_user(sk));
110 	switch (sk->sk_family) {
111 	case AF_INET:
112 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
113 		    &svc_slock_key[0], "sk_lock-AF_INET-NFSD", &svc_key[0]);
114 		break;
115 
116 	case AF_INET6:
117 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
118 		    &svc_slock_key[1], "sk_lock-AF_INET6-NFSD", &svc_key[1]);
119 		break;
120 
121 	default:
122 		BUG();
123 	}
124 }
125 #else
126 static inline void svc_reclassify_socket(struct socket *sock)
127 {
128 }
129 #endif
130 
131 static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
132 {
133 	switch (addr->sa_family) {
134 	case AF_INET:
135 		snprintf(buf, len, "%u.%u.%u.%u, port=%u",
136 			NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
137 			ntohs(((struct sockaddr_in *) addr)->sin_port));
138 		break;
139 
140 	case AF_INET6:
141 		snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
142 			NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
143 			ntohs(((struct sockaddr_in6 *) addr)->sin6_port));
144 		break;
145 
146 	default:
147 		snprintf(buf, len, "unknown address type: %d", addr->sa_family);
148 		break;
149 	}
150 	return buf;
151 }
152 
153 /**
154  * svc_print_addr - Format rq_addr field for printing
155  * @rqstp: svc_rqst struct containing address to print
156  * @buf: target buffer for formatted address
157  * @len: length of target buffer
158  *
159  */
160 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
161 {
162 	return __svc_print_addr(svc_addr(rqstp), buf, len);
163 }
164 EXPORT_SYMBOL_GPL(svc_print_addr);
165 
166 /*
167  * Queue up an idle server thread.  Must have pool->sp_lock held.
168  * Note: this is really a stack rather than a queue, so that we only
169  * use as many different threads as we need, and the rest don't pollute
170  * the cache.
171  */
172 static inline void
173 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
174 {
175 	list_add(&rqstp->rq_list, &pool->sp_threads);
176 }
177 
178 /*
179  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
180  */
181 static inline void
182 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
183 {
184 	list_del(&rqstp->rq_list);
185 }
186 
187 /*
188  * Release an skbuff after use
189  */
190 static void svc_release_skb(struct svc_rqst *rqstp)
191 {
192 	struct sk_buff *skb = rqstp->rq_xprt_ctxt;
193 	struct svc_deferred_req *dr = rqstp->rq_deferred;
194 
195 	if (skb) {
196 		rqstp->rq_xprt_ctxt = NULL;
197 
198 		dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
199 		skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
200 	}
201 	if (dr) {
202 		rqstp->rq_deferred = NULL;
203 		kfree(dr);
204 	}
205 }
206 
207 /*
208  * Any space to write?
209  */
210 static inline unsigned long
211 svc_sock_wspace(struct svc_sock *svsk)
212 {
213 	int wspace;
214 
215 	if (svsk->sk_sock->type == SOCK_STREAM)
216 		wspace = sk_stream_wspace(svsk->sk_sk);
217 	else
218 		wspace = sock_wspace(svsk->sk_sk);
219 
220 	return wspace;
221 }
222 
223 /*
224  * Queue up a socket with data pending. If there are idle nfsd
225  * processes, wake 'em up.
226  *
227  */
228 static void
229 svc_sock_enqueue(struct svc_sock *svsk)
230 {
231 	struct svc_serv	*serv = svsk->sk_server;
232 	struct svc_pool *pool;
233 	struct svc_rqst	*rqstp;
234 	int cpu;
235 
236 	if (!(svsk->sk_flags &
237 	      ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
238 		return;
239 	if (test_bit(SK_DEAD, &svsk->sk_flags))
240 		return;
241 
242 	cpu = get_cpu();
243 	pool = svc_pool_for_cpu(svsk->sk_server, cpu);
244 	put_cpu();
245 
246 	spin_lock_bh(&pool->sp_lock);
247 
248 	if (!list_empty(&pool->sp_threads) &&
249 	    !list_empty(&pool->sp_sockets))
250 		printk(KERN_ERR
251 			"svc_sock_enqueue: threads and sockets both waiting??\n");
252 
253 	if (test_bit(SK_DEAD, &svsk->sk_flags)) {
254 		/* Don't enqueue dead sockets */
255 		dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
256 		goto out_unlock;
257 	}
258 
259 	/* Mark socket as busy. It will remain in this state until the
260 	 * server has processed all pending data and put the socket back
261 	 * on the idle list.  We update SK_BUSY atomically because
262 	 * it also guards against trying to enqueue the svc_sock twice.
263 	 */
264 	if (test_and_set_bit(SK_BUSY, &svsk->sk_flags)) {
265 		/* Don't enqueue socket while already enqueued */
266 		dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
267 		goto out_unlock;
268 	}
269 	BUG_ON(svsk->sk_pool != NULL);
270 	svsk->sk_pool = pool;
271 
272 	set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
273 	if (((atomic_read(&svsk->sk_reserved) + serv->sv_max_mesg)*2
274 	     > svc_sock_wspace(svsk))
275 	    && !test_bit(SK_CLOSE, &svsk->sk_flags)
276 	    && !test_bit(SK_CONN, &svsk->sk_flags)) {
277 		/* Don't enqueue while not enough space for reply */
278 		dprintk("svc: socket %p  no space, %d*2 > %ld, not enqueued\n",
279 			svsk->sk_sk, atomic_read(&svsk->sk_reserved)+serv->sv_max_mesg,
280 			svc_sock_wspace(svsk));
281 		svsk->sk_pool = NULL;
282 		clear_bit(SK_BUSY, &svsk->sk_flags);
283 		goto out_unlock;
284 	}
285 	clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
286 
287 
288 	if (!list_empty(&pool->sp_threads)) {
289 		rqstp = list_entry(pool->sp_threads.next,
290 				   struct svc_rqst,
291 				   rq_list);
292 		dprintk("svc: socket %p served by daemon %p\n",
293 			svsk->sk_sk, rqstp);
294 		svc_thread_dequeue(pool, rqstp);
295 		if (rqstp->rq_sock)
296 			printk(KERN_ERR
297 				"svc_sock_enqueue: server %p, rq_sock=%p!\n",
298 				rqstp, rqstp->rq_sock);
299 		rqstp->rq_sock = svsk;
300 		atomic_inc(&svsk->sk_inuse);
301 		rqstp->rq_reserved = serv->sv_max_mesg;
302 		atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
303 		BUG_ON(svsk->sk_pool != pool);
304 		wake_up(&rqstp->rq_wait);
305 	} else {
306 		dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
307 		list_add_tail(&svsk->sk_ready, &pool->sp_sockets);
308 		BUG_ON(svsk->sk_pool != pool);
309 	}
310 
311 out_unlock:
312 	spin_unlock_bh(&pool->sp_lock);
313 }
314 
315 /*
316  * Dequeue the first socket.  Must be called with the pool->sp_lock held.
317  */
318 static inline struct svc_sock *
319 svc_sock_dequeue(struct svc_pool *pool)
320 {
321 	struct svc_sock	*svsk;
322 
323 	if (list_empty(&pool->sp_sockets))
324 		return NULL;
325 
326 	svsk = list_entry(pool->sp_sockets.next,
327 			  struct svc_sock, sk_ready);
328 	list_del_init(&svsk->sk_ready);
329 
330 	dprintk("svc: socket %p dequeued, inuse=%d\n",
331 		svsk->sk_sk, atomic_read(&svsk->sk_inuse));
332 
333 	return svsk;
334 }
335 
336 /*
337  * Having read something from a socket, check whether it
338  * needs to be re-enqueued.
339  * Note: SK_DATA only gets cleared when a read-attempt finds
340  * no (or insufficient) data.
341  */
342 static inline void
343 svc_sock_received(struct svc_sock *svsk)
344 {
345 	svsk->sk_pool = NULL;
346 	clear_bit(SK_BUSY, &svsk->sk_flags);
347 	svc_sock_enqueue(svsk);
348 }
349 
350 
351 /**
352  * svc_reserve - change the space reserved for the reply to a request.
353  * @rqstp:  The request in question
354  * @space: new max space to reserve
355  *
356  * Each request reserves some space on the output queue of the socket
357  * to make sure the reply fits.  This function reduces that reserved
358  * space to be the amount of space used already, plus @space.
359  *
360  */
361 void svc_reserve(struct svc_rqst *rqstp, int space)
362 {
363 	space += rqstp->rq_res.head[0].iov_len;
364 
365 	if (space < rqstp->rq_reserved) {
366 		struct svc_sock *svsk = rqstp->rq_sock;
367 		atomic_sub((rqstp->rq_reserved - space), &svsk->sk_reserved);
368 		rqstp->rq_reserved = space;
369 
370 		svc_sock_enqueue(svsk);
371 	}
372 }
373 
374 /*
375  * Release a socket after use.
376  */
377 static inline void
378 svc_sock_put(struct svc_sock *svsk)
379 {
380 	if (atomic_dec_and_test(&svsk->sk_inuse)) {
381 		BUG_ON(!test_bit(SK_DEAD, &svsk->sk_flags));
382 		svsk->sk_xprt.xpt_ops->xpo_free(&svsk->sk_xprt);
383 	}
384 }
385 
386 static void
387 svc_sock_release(struct svc_rqst *rqstp)
388 {
389 	struct svc_sock	*svsk = rqstp->rq_sock;
390 
391 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
392 
393 	svc_free_res_pages(rqstp);
394 	rqstp->rq_res.page_len = 0;
395 	rqstp->rq_res.page_base = 0;
396 
397 
398 	/* Reset response buffer and release
399 	 * the reservation.
400 	 * But first, check that enough space was reserved
401 	 * for the reply, otherwise we have a bug!
402 	 */
403 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
404 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
405 		       rqstp->rq_reserved,
406 		       rqstp->rq_res.len);
407 
408 	rqstp->rq_res.head[0].iov_len = 0;
409 	svc_reserve(rqstp, 0);
410 	rqstp->rq_sock = NULL;
411 
412 	svc_sock_put(svsk);
413 }
414 
415 /*
416  * External function to wake up a server waiting for data
417  * This really only makes sense for services like lockd
418  * which have exactly one thread anyway.
419  */
420 void
421 svc_wake_up(struct svc_serv *serv)
422 {
423 	struct svc_rqst	*rqstp;
424 	unsigned int i;
425 	struct svc_pool *pool;
426 
427 	for (i = 0; i < serv->sv_nrpools; i++) {
428 		pool = &serv->sv_pools[i];
429 
430 		spin_lock_bh(&pool->sp_lock);
431 		if (!list_empty(&pool->sp_threads)) {
432 			rqstp = list_entry(pool->sp_threads.next,
433 					   struct svc_rqst,
434 					   rq_list);
435 			dprintk("svc: daemon %p woken up.\n", rqstp);
436 			/*
437 			svc_thread_dequeue(pool, rqstp);
438 			rqstp->rq_sock = NULL;
439 			 */
440 			wake_up(&rqstp->rq_wait);
441 		}
442 		spin_unlock_bh(&pool->sp_lock);
443 	}
444 }
445 
446 union svc_pktinfo_u {
447 	struct in_pktinfo pkti;
448 	struct in6_pktinfo pkti6;
449 };
450 #define SVC_PKTINFO_SPACE \
451 	CMSG_SPACE(sizeof(union svc_pktinfo_u))
452 
453 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
454 {
455 	switch (rqstp->rq_sock->sk_sk->sk_family) {
456 	case AF_INET: {
457 			struct in_pktinfo *pki = CMSG_DATA(cmh);
458 
459 			cmh->cmsg_level = SOL_IP;
460 			cmh->cmsg_type = IP_PKTINFO;
461 			pki->ipi_ifindex = 0;
462 			pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
463 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
464 		}
465 		break;
466 
467 	case AF_INET6: {
468 			struct in6_pktinfo *pki = CMSG_DATA(cmh);
469 
470 			cmh->cmsg_level = SOL_IPV6;
471 			cmh->cmsg_type = IPV6_PKTINFO;
472 			pki->ipi6_ifindex = 0;
473 			ipv6_addr_copy(&pki->ipi6_addr,
474 					&rqstp->rq_daddr.addr6);
475 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
476 		}
477 		break;
478 	}
479 	return;
480 }
481 
482 /*
483  * Generic sendto routine
484  */
485 static int
486 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
487 {
488 	struct svc_sock	*svsk = rqstp->rq_sock;
489 	struct socket	*sock = svsk->sk_sock;
490 	int		slen;
491 	union {
492 		struct cmsghdr	hdr;
493 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
494 	} buffer;
495 	struct cmsghdr *cmh = &buffer.hdr;
496 	int		len = 0;
497 	int		result;
498 	int		size;
499 	struct page	**ppage = xdr->pages;
500 	size_t		base = xdr->page_base;
501 	unsigned int	pglen = xdr->page_len;
502 	unsigned int	flags = MSG_MORE;
503 	char		buf[RPC_MAX_ADDRBUFLEN];
504 
505 	slen = xdr->len;
506 
507 	if (rqstp->rq_prot == IPPROTO_UDP) {
508 		struct msghdr msg = {
509 			.msg_name	= &rqstp->rq_addr,
510 			.msg_namelen	= rqstp->rq_addrlen,
511 			.msg_control	= cmh,
512 			.msg_controllen	= sizeof(buffer),
513 			.msg_flags	= MSG_MORE,
514 		};
515 
516 		svc_set_cmsg_data(rqstp, cmh);
517 
518 		if (sock_sendmsg(sock, &msg, 0) < 0)
519 			goto out;
520 	}
521 
522 	/* send head */
523 	if (slen == xdr->head[0].iov_len)
524 		flags = 0;
525 	len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
526 				  xdr->head[0].iov_len, flags);
527 	if (len != xdr->head[0].iov_len)
528 		goto out;
529 	slen -= xdr->head[0].iov_len;
530 	if (slen == 0)
531 		goto out;
532 
533 	/* send page data */
534 	size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
535 	while (pglen > 0) {
536 		if (slen == size)
537 			flags = 0;
538 		result = kernel_sendpage(sock, *ppage, base, size, flags);
539 		if (result > 0)
540 			len += result;
541 		if (result != size)
542 			goto out;
543 		slen -= size;
544 		pglen -= size;
545 		size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
546 		base = 0;
547 		ppage++;
548 	}
549 	/* send tail */
550 	if (xdr->tail[0].iov_len) {
551 		result = kernel_sendpage(sock, rqstp->rq_respages[0],
552 					     ((unsigned long)xdr->tail[0].iov_base)
553 						& (PAGE_SIZE-1),
554 					     xdr->tail[0].iov_len, 0);
555 
556 		if (result > 0)
557 			len += result;
558 	}
559 out:
560 	dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
561 		rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len,
562 		xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
563 
564 	return len;
565 }
566 
567 /*
568  * Report socket names for nfsdfs
569  */
570 static int one_sock_name(char *buf, struct svc_sock *svsk)
571 {
572 	int len;
573 
574 	switch(svsk->sk_sk->sk_family) {
575 	case AF_INET:
576 		len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
577 			      svsk->sk_sk->sk_protocol==IPPROTO_UDP?
578 			      "udp" : "tcp",
579 			      NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
580 			      inet_sk(svsk->sk_sk)->num);
581 		break;
582 	default:
583 		len = sprintf(buf, "*unknown-%d*\n",
584 			       svsk->sk_sk->sk_family);
585 	}
586 	return len;
587 }
588 
589 int
590 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
591 {
592 	struct svc_sock *svsk, *closesk = NULL;
593 	int len = 0;
594 
595 	if (!serv)
596 		return 0;
597 	spin_lock_bh(&serv->sv_lock);
598 	list_for_each_entry(svsk, &serv->sv_permsocks, sk_list) {
599 		int onelen = one_sock_name(buf+len, svsk);
600 		if (toclose && strcmp(toclose, buf+len) == 0)
601 			closesk = svsk;
602 		else
603 			len += onelen;
604 	}
605 	spin_unlock_bh(&serv->sv_lock);
606 	if (closesk)
607 		/* Should unregister with portmap, but you cannot
608 		 * unregister just one protocol...
609 		 */
610 		svc_close_socket(closesk);
611 	else if (toclose)
612 		return -ENOENT;
613 	return len;
614 }
615 EXPORT_SYMBOL(svc_sock_names);
616 
617 /*
618  * Check input queue length
619  */
620 static int
621 svc_recv_available(struct svc_sock *svsk)
622 {
623 	struct socket	*sock = svsk->sk_sock;
624 	int		avail, err;
625 
626 	err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
627 
628 	return (err >= 0)? avail : err;
629 }
630 
631 /*
632  * Generic recvfrom routine.
633  */
634 static int
635 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
636 {
637 	struct svc_sock *svsk = rqstp->rq_sock;
638 	struct msghdr msg = {
639 		.msg_flags	= MSG_DONTWAIT,
640 	};
641 	struct sockaddr *sin;
642 	int len;
643 
644 	len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
645 				msg.msg_flags);
646 
647 	/* sock_recvmsg doesn't fill in the name/namelen, so we must..
648 	 */
649 	memcpy(&rqstp->rq_addr, &svsk->sk_remote, svsk->sk_remotelen);
650 	rqstp->rq_addrlen = svsk->sk_remotelen;
651 
652 	/* Destination address in request is needed for binding the
653 	 * source address in RPC callbacks later.
654 	 */
655 	sin = (struct sockaddr *)&svsk->sk_local;
656 	switch (sin->sa_family) {
657 	case AF_INET:
658 		rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
659 		break;
660 	case AF_INET6:
661 		rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
662 		break;
663 	}
664 
665 	dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
666 		svsk, iov[0].iov_base, iov[0].iov_len, len);
667 
668 	return len;
669 }
670 
671 /*
672  * Set socket snd and rcv buffer lengths
673  */
674 static inline void
675 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
676 {
677 #if 0
678 	mm_segment_t	oldfs;
679 	oldfs = get_fs(); set_fs(KERNEL_DS);
680 	sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
681 			(char*)&snd, sizeof(snd));
682 	sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
683 			(char*)&rcv, sizeof(rcv));
684 #else
685 	/* sock_setsockopt limits use to sysctl_?mem_max,
686 	 * which isn't acceptable.  Until that is made conditional
687 	 * on not having CAP_SYS_RESOURCE or similar, we go direct...
688 	 * DaveM said I could!
689 	 */
690 	lock_sock(sock->sk);
691 	sock->sk->sk_sndbuf = snd * 2;
692 	sock->sk->sk_rcvbuf = rcv * 2;
693 	sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
694 	release_sock(sock->sk);
695 #endif
696 }
697 /*
698  * INET callback when data has been received on the socket.
699  */
700 static void
701 svc_udp_data_ready(struct sock *sk, int count)
702 {
703 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
704 
705 	if (svsk) {
706 		dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
707 			svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
708 		set_bit(SK_DATA, &svsk->sk_flags);
709 		svc_sock_enqueue(svsk);
710 	}
711 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
712 		wake_up_interruptible(sk->sk_sleep);
713 }
714 
715 /*
716  * INET callback when space is newly available on the socket.
717  */
718 static void
719 svc_write_space(struct sock *sk)
720 {
721 	struct svc_sock	*svsk = (struct svc_sock *)(sk->sk_user_data);
722 
723 	if (svsk) {
724 		dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
725 			svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
726 		svc_sock_enqueue(svsk);
727 	}
728 
729 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
730 		dprintk("RPC svc_write_space: someone sleeping on %p\n",
731 		       svsk);
732 		wake_up_interruptible(sk->sk_sleep);
733 	}
734 }
735 
736 static inline void svc_udp_get_dest_address(struct svc_rqst *rqstp,
737 					    struct cmsghdr *cmh)
738 {
739 	switch (rqstp->rq_sock->sk_sk->sk_family) {
740 	case AF_INET: {
741 		struct in_pktinfo *pki = CMSG_DATA(cmh);
742 		rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
743 		break;
744 		}
745 	case AF_INET6: {
746 		struct in6_pktinfo *pki = CMSG_DATA(cmh);
747 		ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
748 		break;
749 		}
750 	}
751 }
752 
753 /*
754  * Receive a datagram from a UDP socket.
755  */
756 static int
757 svc_udp_recvfrom(struct svc_rqst *rqstp)
758 {
759 	struct svc_sock	*svsk = rqstp->rq_sock;
760 	struct svc_serv	*serv = svsk->sk_server;
761 	struct sk_buff	*skb;
762 	union {
763 		struct cmsghdr	hdr;
764 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
765 	} buffer;
766 	struct cmsghdr *cmh = &buffer.hdr;
767 	int		err, len;
768 	struct msghdr msg = {
769 		.msg_name = svc_addr(rqstp),
770 		.msg_control = cmh,
771 		.msg_controllen = sizeof(buffer),
772 		.msg_flags = MSG_DONTWAIT,
773 	};
774 
775 	if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
776 	    /* udp sockets need large rcvbuf as all pending
777 	     * requests are still in that buffer.  sndbuf must
778 	     * also be large enough that there is enough space
779 	     * for one reply per thread.  We count all threads
780 	     * rather than threads in a particular pool, which
781 	     * provides an upper bound on the number of threads
782 	     * which will access the socket.
783 	     */
784 	    svc_sock_setbufsize(svsk->sk_sock,
785 				(serv->sv_nrthreads+3) * serv->sv_max_mesg,
786 				(serv->sv_nrthreads+3) * serv->sv_max_mesg);
787 
788 	if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
789 		svc_sock_received(svsk);
790 		return svc_deferred_recv(rqstp);
791 	}
792 
793 	if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
794 		svc_delete_socket(svsk);
795 		return 0;
796 	}
797 
798 	clear_bit(SK_DATA, &svsk->sk_flags);
799 	skb = NULL;
800 	err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
801 			     0, 0, MSG_PEEK | MSG_DONTWAIT);
802 	if (err >= 0)
803 		skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
804 
805 	if (skb == NULL) {
806 		if (err != -EAGAIN) {
807 			/* possibly an icmp error */
808 			dprintk("svc: recvfrom returned error %d\n", -err);
809 			set_bit(SK_DATA, &svsk->sk_flags);
810 		}
811 		svc_sock_received(svsk);
812 		return -EAGAIN;
813 	}
814 	rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
815 	if (skb->tstamp.tv64 == 0) {
816 		skb->tstamp = ktime_get_real();
817 		/* Don't enable netstamp, sunrpc doesn't
818 		   need that much accuracy */
819 	}
820 	svsk->sk_sk->sk_stamp = skb->tstamp;
821 	set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
822 
823 	/*
824 	 * Maybe more packets - kick another thread ASAP.
825 	 */
826 	svc_sock_received(svsk);
827 
828 	len  = skb->len - sizeof(struct udphdr);
829 	rqstp->rq_arg.len = len;
830 
831 	rqstp->rq_prot = IPPROTO_UDP;
832 
833 	if (cmh->cmsg_level != IPPROTO_IP ||
834 	    cmh->cmsg_type != IP_PKTINFO) {
835 		if (net_ratelimit())
836 			printk("rpcsvc: received unknown control message:"
837 			       "%d/%d\n",
838 			       cmh->cmsg_level, cmh->cmsg_type);
839 		skb_free_datagram(svsk->sk_sk, skb);
840 		return 0;
841 	}
842 	svc_udp_get_dest_address(rqstp, cmh);
843 
844 	if (skb_is_nonlinear(skb)) {
845 		/* we have to copy */
846 		local_bh_disable();
847 		if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
848 			local_bh_enable();
849 			/* checksum error */
850 			skb_free_datagram(svsk->sk_sk, skb);
851 			return 0;
852 		}
853 		local_bh_enable();
854 		skb_free_datagram(svsk->sk_sk, skb);
855 	} else {
856 		/* we can use it in-place */
857 		rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
858 		rqstp->rq_arg.head[0].iov_len = len;
859 		if (skb_checksum_complete(skb)) {
860 			skb_free_datagram(svsk->sk_sk, skb);
861 			return 0;
862 		}
863 		rqstp->rq_xprt_ctxt = skb;
864 	}
865 
866 	rqstp->rq_arg.page_base = 0;
867 	if (len <= rqstp->rq_arg.head[0].iov_len) {
868 		rqstp->rq_arg.head[0].iov_len = len;
869 		rqstp->rq_arg.page_len = 0;
870 		rqstp->rq_respages = rqstp->rq_pages+1;
871 	} else {
872 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
873 		rqstp->rq_respages = rqstp->rq_pages + 1 +
874 			DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
875 	}
876 
877 	if (serv->sv_stats)
878 		serv->sv_stats->netudpcnt++;
879 
880 	return len;
881 }
882 
883 static int
884 svc_udp_sendto(struct svc_rqst *rqstp)
885 {
886 	int		error;
887 
888 	error = svc_sendto(rqstp, &rqstp->rq_res);
889 	if (error == -ECONNREFUSED)
890 		/* ICMP error on earlier request. */
891 		error = svc_sendto(rqstp, &rqstp->rq_res);
892 
893 	return error;
894 }
895 
896 static struct svc_xprt_ops svc_udp_ops = {
897 	.xpo_recvfrom = svc_udp_recvfrom,
898 	.xpo_sendto = svc_udp_sendto,
899 	.xpo_release_rqst = svc_release_skb,
900 	.xpo_detach = svc_sock_detach,
901 	.xpo_free = svc_sock_free,
902 };
903 
904 static struct svc_xprt_class svc_udp_class = {
905 	.xcl_name = "udp",
906 	.xcl_ops = &svc_udp_ops,
907 	.xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
908 };
909 
910 static void
911 svc_udp_init(struct svc_sock *svsk)
912 {
913 	int one = 1;
914 	mm_segment_t oldfs;
915 
916 	svc_xprt_init(&svc_udp_class, &svsk->sk_xprt);
917 	svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
918 	svsk->sk_sk->sk_write_space = svc_write_space;
919 
920 	/* initialise setting must have enough space to
921 	 * receive and respond to one request.
922 	 * svc_udp_recvfrom will re-adjust if necessary
923 	 */
924 	svc_sock_setbufsize(svsk->sk_sock,
925 			    3 * svsk->sk_server->sv_max_mesg,
926 			    3 * svsk->sk_server->sv_max_mesg);
927 
928 	set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
929 	set_bit(SK_CHNGBUF, &svsk->sk_flags);
930 
931 	oldfs = get_fs();
932 	set_fs(KERNEL_DS);
933 	/* make sure we get destination address info */
934 	svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
935 				       (char __user *)&one, sizeof(one));
936 	set_fs(oldfs);
937 }
938 
939 /*
940  * A data_ready event on a listening socket means there's a connection
941  * pending. Do not use state_change as a substitute for it.
942  */
943 static void
944 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
945 {
946 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
947 
948 	dprintk("svc: socket %p TCP (listen) state change %d\n",
949 		sk, sk->sk_state);
950 
951 	/*
952 	 * This callback may called twice when a new connection
953 	 * is established as a child socket inherits everything
954 	 * from a parent LISTEN socket.
955 	 * 1) data_ready method of the parent socket will be called
956 	 *    when one of child sockets become ESTABLISHED.
957 	 * 2) data_ready method of the child socket may be called
958 	 *    when it receives data before the socket is accepted.
959 	 * In case of 2, we should ignore it silently.
960 	 */
961 	if (sk->sk_state == TCP_LISTEN) {
962 		if (svsk) {
963 			set_bit(SK_CONN, &svsk->sk_flags);
964 			svc_sock_enqueue(svsk);
965 		} else
966 			printk("svc: socket %p: no user data\n", sk);
967 	}
968 
969 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
970 		wake_up_interruptible_all(sk->sk_sleep);
971 }
972 
973 /*
974  * A state change on a connected socket means it's dying or dead.
975  */
976 static void
977 svc_tcp_state_change(struct sock *sk)
978 {
979 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
980 
981 	dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
982 		sk, sk->sk_state, sk->sk_user_data);
983 
984 	if (!svsk)
985 		printk("svc: socket %p: no user data\n", sk);
986 	else {
987 		set_bit(SK_CLOSE, &svsk->sk_flags);
988 		svc_sock_enqueue(svsk);
989 	}
990 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
991 		wake_up_interruptible_all(sk->sk_sleep);
992 }
993 
994 static void
995 svc_tcp_data_ready(struct sock *sk, int count)
996 {
997 	struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
998 
999 	dprintk("svc: socket %p TCP data ready (svsk %p)\n",
1000 		sk, sk->sk_user_data);
1001 	if (svsk) {
1002 		set_bit(SK_DATA, &svsk->sk_flags);
1003 		svc_sock_enqueue(svsk);
1004 	}
1005 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1006 		wake_up_interruptible(sk->sk_sleep);
1007 }
1008 
1009 static inline int svc_port_is_privileged(struct sockaddr *sin)
1010 {
1011 	switch (sin->sa_family) {
1012 	case AF_INET:
1013 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
1014 			< PROT_SOCK;
1015 	case AF_INET6:
1016 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
1017 			< PROT_SOCK;
1018 	default:
1019 		return 0;
1020 	}
1021 }
1022 
1023 /*
1024  * Accept a TCP connection
1025  */
1026 static void
1027 svc_tcp_accept(struct svc_sock *svsk)
1028 {
1029 	struct sockaddr_storage addr;
1030 	struct sockaddr	*sin = (struct sockaddr *) &addr;
1031 	struct svc_serv	*serv = svsk->sk_server;
1032 	struct socket	*sock = svsk->sk_sock;
1033 	struct socket	*newsock;
1034 	struct svc_sock	*newsvsk;
1035 	int		err, slen;
1036 	char		buf[RPC_MAX_ADDRBUFLEN];
1037 
1038 	dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
1039 	if (!sock)
1040 		return;
1041 
1042 	clear_bit(SK_CONN, &svsk->sk_flags);
1043 	err = kernel_accept(sock, &newsock, O_NONBLOCK);
1044 	if (err < 0) {
1045 		if (err == -ENOMEM)
1046 			printk(KERN_WARNING "%s: no more sockets!\n",
1047 			       serv->sv_name);
1048 		else if (err != -EAGAIN && net_ratelimit())
1049 			printk(KERN_WARNING "%s: accept failed (err %d)!\n",
1050 				   serv->sv_name, -err);
1051 		return;
1052 	}
1053 
1054 	set_bit(SK_CONN, &svsk->sk_flags);
1055 	svc_sock_enqueue(svsk);
1056 
1057 	err = kernel_getpeername(newsock, sin, &slen);
1058 	if (err < 0) {
1059 		if (net_ratelimit())
1060 			printk(KERN_WARNING "%s: peername failed (err %d)!\n",
1061 				   serv->sv_name, -err);
1062 		goto failed;		/* aborted connection or whatever */
1063 	}
1064 
1065 	/* Ideally, we would want to reject connections from unauthorized
1066 	 * hosts here, but when we get encryption, the IP of the host won't
1067 	 * tell us anything.  For now just warn about unpriv connections.
1068 	 */
1069 	if (!svc_port_is_privileged(sin)) {
1070 		dprintk(KERN_WARNING
1071 			"%s: connect from unprivileged port: %s\n",
1072 			serv->sv_name,
1073 			__svc_print_addr(sin, buf, sizeof(buf)));
1074 	}
1075 	dprintk("%s: connect from %s\n", serv->sv_name,
1076 		__svc_print_addr(sin, buf, sizeof(buf)));
1077 
1078 	/* make sure that a write doesn't block forever when
1079 	 * low on memory
1080 	 */
1081 	newsock->sk->sk_sndtimeo = HZ*30;
1082 
1083 	if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
1084 				 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
1085 		goto failed;
1086 	memcpy(&newsvsk->sk_remote, sin, slen);
1087 	newsvsk->sk_remotelen = slen;
1088 	err = kernel_getsockname(newsock, sin, &slen);
1089 	if (unlikely(err < 0)) {
1090 		dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
1091 		slen = offsetof(struct sockaddr, sa_data);
1092 	}
1093 	memcpy(&newsvsk->sk_local, sin, slen);
1094 
1095 	svc_sock_received(newsvsk);
1096 
1097 	/* make sure that we don't have too many active connections.
1098 	 * If we have, something must be dropped.
1099 	 *
1100 	 * There's no point in trying to do random drop here for
1101 	 * DoS prevention. The NFS clients does 1 reconnect in 15
1102 	 * seconds. An attacker can easily beat that.
1103 	 *
1104 	 * The only somewhat efficient mechanism would be if drop
1105 	 * old connections from the same IP first. But right now
1106 	 * we don't even record the client IP in svc_sock.
1107 	 */
1108 	if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
1109 		struct svc_sock *svsk = NULL;
1110 		spin_lock_bh(&serv->sv_lock);
1111 		if (!list_empty(&serv->sv_tempsocks)) {
1112 			if (net_ratelimit()) {
1113 				/* Try to help the admin */
1114 				printk(KERN_NOTICE "%s: too many open TCP "
1115 					"sockets, consider increasing the "
1116 					"number of nfsd threads\n",
1117 						   serv->sv_name);
1118 				printk(KERN_NOTICE
1119 				       "%s: last TCP connect from %s\n",
1120 				       serv->sv_name, __svc_print_addr(sin,
1121 							buf, sizeof(buf)));
1122 			}
1123 			/*
1124 			 * Always select the oldest socket. It's not fair,
1125 			 * but so is life
1126 			 */
1127 			svsk = list_entry(serv->sv_tempsocks.prev,
1128 					  struct svc_sock,
1129 					  sk_list);
1130 			set_bit(SK_CLOSE, &svsk->sk_flags);
1131 			atomic_inc(&svsk->sk_inuse);
1132 		}
1133 		spin_unlock_bh(&serv->sv_lock);
1134 
1135 		if (svsk) {
1136 			svc_sock_enqueue(svsk);
1137 			svc_sock_put(svsk);
1138 		}
1139 
1140 	}
1141 
1142 	if (serv->sv_stats)
1143 		serv->sv_stats->nettcpconn++;
1144 
1145 	return;
1146 
1147 failed:
1148 	sock_release(newsock);
1149 	return;
1150 }
1151 
1152 /*
1153  * Receive data from a TCP socket.
1154  */
1155 static int
1156 svc_tcp_recvfrom(struct svc_rqst *rqstp)
1157 {
1158 	struct svc_sock	*svsk = rqstp->rq_sock;
1159 	struct svc_serv	*serv = svsk->sk_server;
1160 	int		len;
1161 	struct kvec *vec;
1162 	int pnum, vlen;
1163 
1164 	dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1165 		svsk, test_bit(SK_DATA, &svsk->sk_flags),
1166 		test_bit(SK_CONN, &svsk->sk_flags),
1167 		test_bit(SK_CLOSE, &svsk->sk_flags));
1168 
1169 	if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
1170 		svc_sock_received(svsk);
1171 		return svc_deferred_recv(rqstp);
1172 	}
1173 
1174 	if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
1175 		svc_delete_socket(svsk);
1176 		return 0;
1177 	}
1178 
1179 	if (svsk->sk_sk->sk_state == TCP_LISTEN) {
1180 		svc_tcp_accept(svsk);
1181 		svc_sock_received(svsk);
1182 		return 0;
1183 	}
1184 
1185 	if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
1186 		/* sndbuf needs to have room for one request
1187 		 * per thread, otherwise we can stall even when the
1188 		 * network isn't a bottleneck.
1189 		 *
1190 		 * We count all threads rather than threads in a
1191 		 * particular pool, which provides an upper bound
1192 		 * on the number of threads which will access the socket.
1193 		 *
1194 		 * rcvbuf just needs to be able to hold a few requests.
1195 		 * Normally they will be removed from the queue
1196 		 * as soon a a complete request arrives.
1197 		 */
1198 		svc_sock_setbufsize(svsk->sk_sock,
1199 				    (serv->sv_nrthreads+3) * serv->sv_max_mesg,
1200 				    3 * serv->sv_max_mesg);
1201 
1202 	clear_bit(SK_DATA, &svsk->sk_flags);
1203 
1204 	/* Receive data. If we haven't got the record length yet, get
1205 	 * the next four bytes. Otherwise try to gobble up as much as
1206 	 * possible up to the complete record length.
1207 	 */
1208 	if (svsk->sk_tcplen < 4) {
1209 		unsigned long	want = 4 - svsk->sk_tcplen;
1210 		struct kvec	iov;
1211 
1212 		iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1213 		iov.iov_len  = want;
1214 		if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1215 			goto error;
1216 		svsk->sk_tcplen += len;
1217 
1218 		if (len < want) {
1219 			dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1220 				len, want);
1221 			svc_sock_received(svsk);
1222 			return -EAGAIN; /* record header not complete */
1223 		}
1224 
1225 		svsk->sk_reclen = ntohl(svsk->sk_reclen);
1226 		if (!(svsk->sk_reclen & 0x80000000)) {
1227 			/* FIXME: technically, a record can be fragmented,
1228 			 *  and non-terminal fragments will not have the top
1229 			 *  bit set in the fragment length header.
1230 			 *  But apparently no known nfs clients send fragmented
1231 			 *  records. */
1232 			if (net_ratelimit())
1233 				printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1234 				       " (non-terminal)\n",
1235 				       (unsigned long) svsk->sk_reclen);
1236 			goto err_delete;
1237 		}
1238 		svsk->sk_reclen &= 0x7fffffff;
1239 		dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1240 		if (svsk->sk_reclen > serv->sv_max_mesg) {
1241 			if (net_ratelimit())
1242 				printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1243 				       " (large)\n",
1244 				       (unsigned long) svsk->sk_reclen);
1245 			goto err_delete;
1246 		}
1247 	}
1248 
1249 	/* Check whether enough data is available */
1250 	len = svc_recv_available(svsk);
1251 	if (len < 0)
1252 		goto error;
1253 
1254 	if (len < svsk->sk_reclen) {
1255 		dprintk("svc: incomplete TCP record (%d of %d)\n",
1256 			len, svsk->sk_reclen);
1257 		svc_sock_received(svsk);
1258 		return -EAGAIN;	/* record not complete */
1259 	}
1260 	len = svsk->sk_reclen;
1261 	set_bit(SK_DATA, &svsk->sk_flags);
1262 
1263 	vec = rqstp->rq_vec;
1264 	vec[0] = rqstp->rq_arg.head[0];
1265 	vlen = PAGE_SIZE;
1266 	pnum = 1;
1267 	while (vlen < len) {
1268 		vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
1269 		vec[pnum].iov_len = PAGE_SIZE;
1270 		pnum++;
1271 		vlen += PAGE_SIZE;
1272 	}
1273 	rqstp->rq_respages = &rqstp->rq_pages[pnum];
1274 
1275 	/* Now receive data */
1276 	len = svc_recvfrom(rqstp, vec, pnum, len);
1277 	if (len < 0)
1278 		goto error;
1279 
1280 	dprintk("svc: TCP complete record (%d bytes)\n", len);
1281 	rqstp->rq_arg.len = len;
1282 	rqstp->rq_arg.page_base = 0;
1283 	if (len <= rqstp->rq_arg.head[0].iov_len) {
1284 		rqstp->rq_arg.head[0].iov_len = len;
1285 		rqstp->rq_arg.page_len = 0;
1286 	} else {
1287 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1288 	}
1289 
1290 	rqstp->rq_xprt_ctxt   = NULL;
1291 	rqstp->rq_prot	      = IPPROTO_TCP;
1292 
1293 	/* Reset TCP read info */
1294 	svsk->sk_reclen = 0;
1295 	svsk->sk_tcplen = 0;
1296 
1297 	svc_sock_received(svsk);
1298 	if (serv->sv_stats)
1299 		serv->sv_stats->nettcpcnt++;
1300 
1301 	return len;
1302 
1303  err_delete:
1304 	svc_delete_socket(svsk);
1305 	return -EAGAIN;
1306 
1307  error:
1308 	if (len == -EAGAIN) {
1309 		dprintk("RPC: TCP recvfrom got EAGAIN\n");
1310 		svc_sock_received(svsk);
1311 	} else {
1312 		printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1313 					svsk->sk_server->sv_name, -len);
1314 		goto err_delete;
1315 	}
1316 
1317 	return len;
1318 }
1319 
1320 /*
1321  * Send out data on TCP socket.
1322  */
1323 static int
1324 svc_tcp_sendto(struct svc_rqst *rqstp)
1325 {
1326 	struct xdr_buf	*xbufp = &rqstp->rq_res;
1327 	int sent;
1328 	__be32 reclen;
1329 
1330 	/* Set up the first element of the reply kvec.
1331 	 * Any other kvecs that may be in use have been taken
1332 	 * care of by the server implementation itself.
1333 	 */
1334 	reclen = htonl(0x80000000|((xbufp->len ) - 4));
1335 	memcpy(xbufp->head[0].iov_base, &reclen, 4);
1336 
1337 	if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1338 		return -ENOTCONN;
1339 
1340 	sent = svc_sendto(rqstp, &rqstp->rq_res);
1341 	if (sent != xbufp->len) {
1342 		printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1343 		       rqstp->rq_sock->sk_server->sv_name,
1344 		       (sent<0)?"got error":"sent only",
1345 		       sent, xbufp->len);
1346 		set_bit(SK_CLOSE, &rqstp->rq_sock->sk_flags);
1347 		svc_sock_enqueue(rqstp->rq_sock);
1348 		sent = -EAGAIN;
1349 	}
1350 	return sent;
1351 }
1352 
1353 static struct svc_xprt_ops svc_tcp_ops = {
1354 	.xpo_recvfrom = svc_tcp_recvfrom,
1355 	.xpo_sendto = svc_tcp_sendto,
1356 	.xpo_release_rqst = svc_release_skb,
1357 	.xpo_detach = svc_sock_detach,
1358 	.xpo_free = svc_sock_free,
1359 };
1360 
1361 static struct svc_xprt_class svc_tcp_class = {
1362 	.xcl_name = "tcp",
1363 	.xcl_ops = &svc_tcp_ops,
1364 	.xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1365 };
1366 
1367 void svc_init_xprt_sock(void)
1368 {
1369 	svc_reg_xprt_class(&svc_tcp_class);
1370 	svc_reg_xprt_class(&svc_udp_class);
1371 }
1372 
1373 void svc_cleanup_xprt_sock(void)
1374 {
1375 	svc_unreg_xprt_class(&svc_tcp_class);
1376 	svc_unreg_xprt_class(&svc_udp_class);
1377 }
1378 
1379 static void
1380 svc_tcp_init(struct svc_sock *svsk)
1381 {
1382 	struct sock	*sk = svsk->sk_sk;
1383 	struct tcp_sock *tp = tcp_sk(sk);
1384 
1385 	svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt);
1386 
1387 	if (sk->sk_state == TCP_LISTEN) {
1388 		dprintk("setting up TCP socket for listening\n");
1389 		sk->sk_data_ready = svc_tcp_listen_data_ready;
1390 		set_bit(SK_CONN, &svsk->sk_flags);
1391 	} else {
1392 		dprintk("setting up TCP socket for reading\n");
1393 		sk->sk_state_change = svc_tcp_state_change;
1394 		sk->sk_data_ready = svc_tcp_data_ready;
1395 		sk->sk_write_space = svc_write_space;
1396 
1397 		svsk->sk_reclen = 0;
1398 		svsk->sk_tcplen = 0;
1399 
1400 		tp->nonagle = 1;        /* disable Nagle's algorithm */
1401 
1402 		/* initialise setting must have enough space to
1403 		 * receive and respond to one request.
1404 		 * svc_tcp_recvfrom will re-adjust if necessary
1405 		 */
1406 		svc_sock_setbufsize(svsk->sk_sock,
1407 				    3 * svsk->sk_server->sv_max_mesg,
1408 				    3 * svsk->sk_server->sv_max_mesg);
1409 
1410 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1411 		set_bit(SK_DATA, &svsk->sk_flags);
1412 		if (sk->sk_state != TCP_ESTABLISHED)
1413 			set_bit(SK_CLOSE, &svsk->sk_flags);
1414 	}
1415 }
1416 
1417 void
1418 svc_sock_update_bufs(struct svc_serv *serv)
1419 {
1420 	/*
1421 	 * The number of server threads has changed. Update
1422 	 * rcvbuf and sndbuf accordingly on all sockets
1423 	 */
1424 	struct list_head *le;
1425 
1426 	spin_lock_bh(&serv->sv_lock);
1427 	list_for_each(le, &serv->sv_permsocks) {
1428 		struct svc_sock *svsk =
1429 			list_entry(le, struct svc_sock, sk_list);
1430 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1431 	}
1432 	list_for_each(le, &serv->sv_tempsocks) {
1433 		struct svc_sock *svsk =
1434 			list_entry(le, struct svc_sock, sk_list);
1435 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1436 	}
1437 	spin_unlock_bh(&serv->sv_lock);
1438 }
1439 
1440 /*
1441  * Receive the next request on any socket.  This code is carefully
1442  * organised not to touch any cachelines in the shared svc_serv
1443  * structure, only cachelines in the local svc_pool.
1444  */
1445 int
1446 svc_recv(struct svc_rqst *rqstp, long timeout)
1447 {
1448 	struct svc_sock		*svsk = NULL;
1449 	struct svc_serv		*serv = rqstp->rq_server;
1450 	struct svc_pool		*pool = rqstp->rq_pool;
1451 	int			len, i;
1452 	int 			pages;
1453 	struct xdr_buf		*arg;
1454 	DECLARE_WAITQUEUE(wait, current);
1455 
1456 	dprintk("svc: server %p waiting for data (to = %ld)\n",
1457 		rqstp, timeout);
1458 
1459 	if (rqstp->rq_sock)
1460 		printk(KERN_ERR
1461 			"svc_recv: service %p, socket not NULL!\n",
1462 			 rqstp);
1463 	if (waitqueue_active(&rqstp->rq_wait))
1464 		printk(KERN_ERR
1465 			"svc_recv: service %p, wait queue active!\n",
1466 			 rqstp);
1467 
1468 
1469 	/* now allocate needed pages.  If we get a failure, sleep briefly */
1470 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
1471 	for (i=0; i < pages ; i++)
1472 		while (rqstp->rq_pages[i] == NULL) {
1473 			struct page *p = alloc_page(GFP_KERNEL);
1474 			if (!p)
1475 				schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1476 			rqstp->rq_pages[i] = p;
1477 		}
1478 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
1479 	BUG_ON(pages >= RPCSVC_MAXPAGES);
1480 
1481 	/* Make arg->head point to first page and arg->pages point to rest */
1482 	arg = &rqstp->rq_arg;
1483 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
1484 	arg->head[0].iov_len = PAGE_SIZE;
1485 	arg->pages = rqstp->rq_pages + 1;
1486 	arg->page_base = 0;
1487 	/* save at least one page for response */
1488 	arg->page_len = (pages-2)*PAGE_SIZE;
1489 	arg->len = (pages-1)*PAGE_SIZE;
1490 	arg->tail[0].iov_len = 0;
1491 
1492 	try_to_freeze();
1493 	cond_resched();
1494 	if (signalled())
1495 		return -EINTR;
1496 
1497 	spin_lock_bh(&pool->sp_lock);
1498 	if ((svsk = svc_sock_dequeue(pool)) != NULL) {
1499 		rqstp->rq_sock = svsk;
1500 		atomic_inc(&svsk->sk_inuse);
1501 		rqstp->rq_reserved = serv->sv_max_mesg;
1502 		atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
1503 	} else {
1504 		/* No data pending. Go to sleep */
1505 		svc_thread_enqueue(pool, rqstp);
1506 
1507 		/*
1508 		 * We have to be able to interrupt this wait
1509 		 * to bring down the daemons ...
1510 		 */
1511 		set_current_state(TASK_INTERRUPTIBLE);
1512 		add_wait_queue(&rqstp->rq_wait, &wait);
1513 		spin_unlock_bh(&pool->sp_lock);
1514 
1515 		schedule_timeout(timeout);
1516 
1517 		try_to_freeze();
1518 
1519 		spin_lock_bh(&pool->sp_lock);
1520 		remove_wait_queue(&rqstp->rq_wait, &wait);
1521 
1522 		if (!(svsk = rqstp->rq_sock)) {
1523 			svc_thread_dequeue(pool, rqstp);
1524 			spin_unlock_bh(&pool->sp_lock);
1525 			dprintk("svc: server %p, no data yet\n", rqstp);
1526 			return signalled()? -EINTR : -EAGAIN;
1527 		}
1528 	}
1529 	spin_unlock_bh(&pool->sp_lock);
1530 
1531 	dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1532 		 rqstp, pool->sp_id, svsk, atomic_read(&svsk->sk_inuse));
1533 	len = svsk->sk_xprt.xpt_ops->xpo_recvfrom(rqstp);
1534 	dprintk("svc: got len=%d\n", len);
1535 
1536 	/* No data, incomplete (TCP) read, or accept() */
1537 	if (len == 0 || len == -EAGAIN) {
1538 		rqstp->rq_res.len = 0;
1539 		svc_sock_release(rqstp);
1540 		return -EAGAIN;
1541 	}
1542 	svsk->sk_lastrecv = get_seconds();
1543 	clear_bit(SK_OLD, &svsk->sk_flags);
1544 
1545 	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
1546 	rqstp->rq_chandle.defer = svc_defer;
1547 
1548 	if (serv->sv_stats)
1549 		serv->sv_stats->netcnt++;
1550 	return len;
1551 }
1552 
1553 /*
1554  * Drop request
1555  */
1556 void
1557 svc_drop(struct svc_rqst *rqstp)
1558 {
1559 	dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1560 	svc_sock_release(rqstp);
1561 }
1562 
1563 /*
1564  * Return reply to client.
1565  */
1566 int
1567 svc_send(struct svc_rqst *rqstp)
1568 {
1569 	struct svc_sock	*svsk;
1570 	int		len;
1571 	struct xdr_buf	*xb;
1572 
1573 	if ((svsk = rqstp->rq_sock) == NULL) {
1574 		printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1575 				__FILE__, __LINE__);
1576 		return -EFAULT;
1577 	}
1578 
1579 	/* release the receive skb before sending the reply */
1580 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
1581 
1582 	/* calculate over-all length */
1583 	xb = & rqstp->rq_res;
1584 	xb->len = xb->head[0].iov_len +
1585 		xb->page_len +
1586 		xb->tail[0].iov_len;
1587 
1588 	/* Grab svsk->sk_mutex to serialize outgoing data. */
1589 	mutex_lock(&svsk->sk_mutex);
1590 	if (test_bit(SK_DEAD, &svsk->sk_flags))
1591 		len = -ENOTCONN;
1592 	else
1593 		len = svsk->sk_xprt.xpt_ops->xpo_sendto(rqstp);
1594 	mutex_unlock(&svsk->sk_mutex);
1595 	svc_sock_release(rqstp);
1596 
1597 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1598 		return 0;
1599 	return len;
1600 }
1601 
1602 /*
1603  * Timer function to close old temporary sockets, using
1604  * a mark-and-sweep algorithm.
1605  */
1606 static void
1607 svc_age_temp_sockets(unsigned long closure)
1608 {
1609 	struct svc_serv *serv = (struct svc_serv *)closure;
1610 	struct svc_sock *svsk;
1611 	struct list_head *le, *next;
1612 	LIST_HEAD(to_be_aged);
1613 
1614 	dprintk("svc_age_temp_sockets\n");
1615 
1616 	if (!spin_trylock_bh(&serv->sv_lock)) {
1617 		/* busy, try again 1 sec later */
1618 		dprintk("svc_age_temp_sockets: busy\n");
1619 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
1620 		return;
1621 	}
1622 
1623 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
1624 		svsk = list_entry(le, struct svc_sock, sk_list);
1625 
1626 		if (!test_and_set_bit(SK_OLD, &svsk->sk_flags))
1627 			continue;
1628 		if (atomic_read(&svsk->sk_inuse) > 1 || test_bit(SK_BUSY, &svsk->sk_flags))
1629 			continue;
1630 		atomic_inc(&svsk->sk_inuse);
1631 		list_move(le, &to_be_aged);
1632 		set_bit(SK_CLOSE, &svsk->sk_flags);
1633 		set_bit(SK_DETACHED, &svsk->sk_flags);
1634 	}
1635 	spin_unlock_bh(&serv->sv_lock);
1636 
1637 	while (!list_empty(&to_be_aged)) {
1638 		le = to_be_aged.next;
1639 		/* fiddling the sk_list node is safe 'cos we're SK_DETACHED */
1640 		list_del_init(le);
1641 		svsk = list_entry(le, struct svc_sock, sk_list);
1642 
1643 		dprintk("queuing svsk %p for closing, %lu seconds old\n",
1644 			svsk, get_seconds() - svsk->sk_lastrecv);
1645 
1646 		/* a thread will dequeue and close it soon */
1647 		svc_sock_enqueue(svsk);
1648 		svc_sock_put(svsk);
1649 	}
1650 
1651 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1652 }
1653 
1654 /*
1655  * Initialize socket for RPC use and create svc_sock struct
1656  * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1657  */
1658 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1659 						struct socket *sock,
1660 						int *errp, int flags)
1661 {
1662 	struct svc_sock	*svsk;
1663 	struct sock	*inet;
1664 	int		pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1665 	int		is_temporary = flags & SVC_SOCK_TEMPORARY;
1666 
1667 	dprintk("svc: svc_setup_socket %p\n", sock);
1668 	if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1669 		*errp = -ENOMEM;
1670 		return NULL;
1671 	}
1672 
1673 	inet = sock->sk;
1674 
1675 	/* Register socket with portmapper */
1676 	if (*errp >= 0 && pmap_register)
1677 		*errp = svc_register(serv, inet->sk_protocol,
1678 				     ntohs(inet_sk(inet)->sport));
1679 
1680 	if (*errp < 0) {
1681 		kfree(svsk);
1682 		return NULL;
1683 	}
1684 
1685 	set_bit(SK_BUSY, &svsk->sk_flags);
1686 	inet->sk_user_data = svsk;
1687 	svsk->sk_sock = sock;
1688 	svsk->sk_sk = inet;
1689 	svsk->sk_ostate = inet->sk_state_change;
1690 	svsk->sk_odata = inet->sk_data_ready;
1691 	svsk->sk_owspace = inet->sk_write_space;
1692 	svsk->sk_server = serv;
1693 	atomic_set(&svsk->sk_inuse, 1);
1694 	svsk->sk_lastrecv = get_seconds();
1695 	spin_lock_init(&svsk->sk_lock);
1696 	INIT_LIST_HEAD(&svsk->sk_deferred);
1697 	INIT_LIST_HEAD(&svsk->sk_ready);
1698 	mutex_init(&svsk->sk_mutex);
1699 
1700 	/* Initialize the socket */
1701 	if (sock->type == SOCK_DGRAM)
1702 		svc_udp_init(svsk);
1703 	else
1704 		svc_tcp_init(svsk);
1705 
1706 	spin_lock_bh(&serv->sv_lock);
1707 	if (is_temporary) {
1708 		set_bit(SK_TEMP, &svsk->sk_flags);
1709 		list_add(&svsk->sk_list, &serv->sv_tempsocks);
1710 		serv->sv_tmpcnt++;
1711 		if (serv->sv_temptimer.function == NULL) {
1712 			/* setup timer to age temp sockets */
1713 			setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
1714 					(unsigned long)serv);
1715 			mod_timer(&serv->sv_temptimer,
1716 					jiffies + svc_conn_age_period * HZ);
1717 		}
1718 	} else {
1719 		clear_bit(SK_TEMP, &svsk->sk_flags);
1720 		list_add(&svsk->sk_list, &serv->sv_permsocks);
1721 	}
1722 	spin_unlock_bh(&serv->sv_lock);
1723 
1724 	dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1725 				svsk, svsk->sk_sk);
1726 
1727 	return svsk;
1728 }
1729 
1730 int svc_addsock(struct svc_serv *serv,
1731 		int fd,
1732 		char *name_return,
1733 		int *proto)
1734 {
1735 	int err = 0;
1736 	struct socket *so = sockfd_lookup(fd, &err);
1737 	struct svc_sock *svsk = NULL;
1738 
1739 	if (!so)
1740 		return err;
1741 	if (so->sk->sk_family != AF_INET)
1742 		err =  -EAFNOSUPPORT;
1743 	else if (so->sk->sk_protocol != IPPROTO_TCP &&
1744 	    so->sk->sk_protocol != IPPROTO_UDP)
1745 		err =  -EPROTONOSUPPORT;
1746 	else if (so->state > SS_UNCONNECTED)
1747 		err = -EISCONN;
1748 	else {
1749 		svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
1750 		if (svsk) {
1751 			svc_sock_received(svsk);
1752 			err = 0;
1753 		}
1754 	}
1755 	if (err) {
1756 		sockfd_put(so);
1757 		return err;
1758 	}
1759 	if (proto) *proto = so->sk->sk_protocol;
1760 	return one_sock_name(name_return, svsk);
1761 }
1762 EXPORT_SYMBOL_GPL(svc_addsock);
1763 
1764 /*
1765  * Create socket for RPC service.
1766  */
1767 static int svc_create_socket(struct svc_serv *serv, int protocol,
1768 				struct sockaddr *sin, int len, int flags)
1769 {
1770 	struct svc_sock	*svsk;
1771 	struct socket	*sock;
1772 	int		error;
1773 	int		type;
1774 	char		buf[RPC_MAX_ADDRBUFLEN];
1775 
1776 	dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1777 			serv->sv_program->pg_name, protocol,
1778 			__svc_print_addr(sin, buf, sizeof(buf)));
1779 
1780 	if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1781 		printk(KERN_WARNING "svc: only UDP and TCP "
1782 				"sockets supported\n");
1783 		return -EINVAL;
1784 	}
1785 	type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1786 
1787 	error = sock_create_kern(sin->sa_family, type, protocol, &sock);
1788 	if (error < 0)
1789 		return error;
1790 
1791 	svc_reclassify_socket(sock);
1792 
1793 	if (type == SOCK_STREAM)
1794 		sock->sk->sk_reuse = 1;		/* allow address reuse */
1795 	error = kernel_bind(sock, sin, len);
1796 	if (error < 0)
1797 		goto bummer;
1798 
1799 	if (protocol == IPPROTO_TCP) {
1800 		if ((error = kernel_listen(sock, 64)) < 0)
1801 			goto bummer;
1802 	}
1803 
1804 	if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1805 		svc_sock_received(svsk);
1806 		return ntohs(inet_sk(svsk->sk_sk)->sport);
1807 	}
1808 
1809 bummer:
1810 	dprintk("svc: svc_create_socket error = %d\n", -error);
1811 	sock_release(sock);
1812 	return error;
1813 }
1814 
1815 /*
1816  * Detach the svc_sock from the socket so that no
1817  * more callbacks occur.
1818  */
1819 static void svc_sock_detach(struct svc_xprt *xprt)
1820 {
1821 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1822 	struct sock *sk = svsk->sk_sk;
1823 
1824 	dprintk("svc: svc_sock_detach(%p)\n", svsk);
1825 
1826 	/* put back the old socket callbacks */
1827 	sk->sk_state_change = svsk->sk_ostate;
1828 	sk->sk_data_ready = svsk->sk_odata;
1829 	sk->sk_write_space = svsk->sk_owspace;
1830 }
1831 
1832 /*
1833  * Free the svc_sock's socket resources and the svc_sock itself.
1834  */
1835 static void svc_sock_free(struct svc_xprt *xprt)
1836 {
1837 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1838 	dprintk("svc: svc_sock_free(%p)\n", svsk);
1839 
1840 	if (svsk->sk_info_authunix != NULL)
1841 		svcauth_unix_info_release(svsk->sk_info_authunix);
1842 	if (svsk->sk_sock->file)
1843 		sockfd_put(svsk->sk_sock);
1844 	else
1845 		sock_release(svsk->sk_sock);
1846 	kfree(svsk);
1847 }
1848 
1849 /*
1850  * Remove a dead socket
1851  */
1852 static void
1853 svc_delete_socket(struct svc_sock *svsk)
1854 {
1855 	struct svc_serv	*serv;
1856 	struct sock	*sk;
1857 
1858 	dprintk("svc: svc_delete_socket(%p)\n", svsk);
1859 
1860 	serv = svsk->sk_server;
1861 	sk = svsk->sk_sk;
1862 
1863 	svsk->sk_xprt.xpt_ops->xpo_detach(&svsk->sk_xprt);
1864 
1865 	spin_lock_bh(&serv->sv_lock);
1866 
1867 	if (!test_and_set_bit(SK_DETACHED, &svsk->sk_flags))
1868 		list_del_init(&svsk->sk_list);
1869 	/*
1870 	 * We used to delete the svc_sock from whichever list
1871 	 * it's sk_ready node was on, but we don't actually
1872 	 * need to.  This is because the only time we're called
1873 	 * while still attached to a queue, the queue itself
1874 	 * is about to be destroyed (in svc_destroy).
1875 	 */
1876 	if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags)) {
1877 		BUG_ON(atomic_read(&svsk->sk_inuse)<2);
1878 		atomic_dec(&svsk->sk_inuse);
1879 		if (test_bit(SK_TEMP, &svsk->sk_flags))
1880 			serv->sv_tmpcnt--;
1881 	}
1882 
1883 	spin_unlock_bh(&serv->sv_lock);
1884 }
1885 
1886 static void svc_close_socket(struct svc_sock *svsk)
1887 {
1888 	set_bit(SK_CLOSE, &svsk->sk_flags);
1889 	if (test_and_set_bit(SK_BUSY, &svsk->sk_flags))
1890 		/* someone else will have to effect the close */
1891 		return;
1892 
1893 	atomic_inc(&svsk->sk_inuse);
1894 	svc_delete_socket(svsk);
1895 	clear_bit(SK_BUSY, &svsk->sk_flags);
1896 	svc_sock_put(svsk);
1897 }
1898 
1899 void svc_force_close_socket(struct svc_sock *svsk)
1900 {
1901 	set_bit(SK_CLOSE, &svsk->sk_flags);
1902 	if (test_bit(SK_BUSY, &svsk->sk_flags)) {
1903 		/* Waiting to be processed, but no threads left,
1904 		 * So just remove it from the waiting list
1905 		 */
1906 		list_del_init(&svsk->sk_ready);
1907 		clear_bit(SK_BUSY, &svsk->sk_flags);
1908 	}
1909 	svc_close_socket(svsk);
1910 }
1911 
1912 /**
1913  * svc_makesock - Make a socket for nfsd and lockd
1914  * @serv: RPC server structure
1915  * @protocol: transport protocol to use
1916  * @port: port to use
1917  * @flags: requested socket characteristics
1918  *
1919  */
1920 int svc_makesock(struct svc_serv *serv, int protocol, unsigned short port,
1921 			int flags)
1922 {
1923 	struct sockaddr_in sin = {
1924 		.sin_family		= AF_INET,
1925 		.sin_addr.s_addr	= INADDR_ANY,
1926 		.sin_port		= htons(port),
1927 	};
1928 
1929 	dprintk("svc: creating socket proto = %d\n", protocol);
1930 	return svc_create_socket(serv, protocol, (struct sockaddr *) &sin,
1931 							sizeof(sin), flags);
1932 }
1933 
1934 /*
1935  * Handle defer and revisit of requests
1936  */
1937 
1938 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1939 {
1940 	struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1941 	struct svc_sock *svsk;
1942 
1943 	if (too_many) {
1944 		svc_sock_put(dr->svsk);
1945 		kfree(dr);
1946 		return;
1947 	}
1948 	dprintk("revisit queued\n");
1949 	svsk = dr->svsk;
1950 	dr->svsk = NULL;
1951 	spin_lock(&svsk->sk_lock);
1952 	list_add(&dr->handle.recent, &svsk->sk_deferred);
1953 	spin_unlock(&svsk->sk_lock);
1954 	set_bit(SK_DEFERRED, &svsk->sk_flags);
1955 	svc_sock_enqueue(svsk);
1956 	svc_sock_put(svsk);
1957 }
1958 
1959 static struct cache_deferred_req *
1960 svc_defer(struct cache_req *req)
1961 {
1962 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1963 	int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1964 	struct svc_deferred_req *dr;
1965 
1966 	if (rqstp->rq_arg.page_len)
1967 		return NULL; /* if more than a page, give up FIXME */
1968 	if (rqstp->rq_deferred) {
1969 		dr = rqstp->rq_deferred;
1970 		rqstp->rq_deferred = NULL;
1971 	} else {
1972 		int skip  = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1973 		/* FIXME maybe discard if size too large */
1974 		dr = kmalloc(size, GFP_KERNEL);
1975 		if (dr == NULL)
1976 			return NULL;
1977 
1978 		dr->handle.owner = rqstp->rq_server;
1979 		dr->prot = rqstp->rq_prot;
1980 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1981 		dr->addrlen = rqstp->rq_addrlen;
1982 		dr->daddr = rqstp->rq_daddr;
1983 		dr->argslen = rqstp->rq_arg.len >> 2;
1984 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1985 	}
1986 	atomic_inc(&rqstp->rq_sock->sk_inuse);
1987 	dr->svsk = rqstp->rq_sock;
1988 
1989 	dr->handle.revisit = svc_revisit;
1990 	return &dr->handle;
1991 }
1992 
1993 /*
1994  * recv data from a deferred request into an active one
1995  */
1996 static int svc_deferred_recv(struct svc_rqst *rqstp)
1997 {
1998 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1999 
2000 	rqstp->rq_arg.head[0].iov_base = dr->args;
2001 	rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
2002 	rqstp->rq_arg.page_len = 0;
2003 	rqstp->rq_arg.len = dr->argslen<<2;
2004 	rqstp->rq_prot        = dr->prot;
2005 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
2006 	rqstp->rq_addrlen     = dr->addrlen;
2007 	rqstp->rq_daddr       = dr->daddr;
2008 	rqstp->rq_respages    = rqstp->rq_pages;
2009 	return dr->argslen<<2;
2010 }
2011 
2012 
2013 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
2014 {
2015 	struct svc_deferred_req *dr = NULL;
2016 
2017 	if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
2018 		return NULL;
2019 	spin_lock(&svsk->sk_lock);
2020 	clear_bit(SK_DEFERRED, &svsk->sk_flags);
2021 	if (!list_empty(&svsk->sk_deferred)) {
2022 		dr = list_entry(svsk->sk_deferred.next,
2023 				struct svc_deferred_req,
2024 				handle.recent);
2025 		list_del_init(&dr->handle.recent);
2026 		set_bit(SK_DEFERRED, &svsk->sk_flags);
2027 	}
2028 	spin_unlock(&svsk->sk_lock);
2029 	return dr;
2030 }
2031