1 /* 2 * linux/net/sunrpc/svcsock.c 3 * 4 * These are the RPC server socket internals. 5 * 6 * The server scheduling algorithm does not always distribute the load 7 * evenly when servicing a single client. May need to modify the 8 * svc_xprt_enqueue procedure... 9 * 10 * TCP support is largely untested and may be a little slow. The problem 11 * is that we currently do two separate recvfrom's, one for the 4-byte 12 * record length, and the second for the actual record. This could possibly 13 * be improved by always reading a minimum size of around 100 bytes and 14 * tucking any superfluous bytes away in a temporary store. Still, that 15 * leaves write requests out in the rain. An alternative may be to peek at 16 * the first skb in the queue, and if it matches the next TCP sequence 17 * number, to extract the record marker. Yuck. 18 * 19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched.h> 24 #include <linux/errno.h> 25 #include <linux/fcntl.h> 26 #include <linux/net.h> 27 #include <linux/in.h> 28 #include <linux/inet.h> 29 #include <linux/udp.h> 30 #include <linux/tcp.h> 31 #include <linux/unistd.h> 32 #include <linux/slab.h> 33 #include <linux/netdevice.h> 34 #include <linux/skbuff.h> 35 #include <linux/file.h> 36 #include <linux/freezer.h> 37 #include <net/sock.h> 38 #include <net/checksum.h> 39 #include <net/ip.h> 40 #include <net/ipv6.h> 41 #include <net/tcp_states.h> 42 #include <asm/uaccess.h> 43 #include <asm/ioctls.h> 44 45 #include <linux/sunrpc/types.h> 46 #include <linux/sunrpc/clnt.h> 47 #include <linux/sunrpc/xdr.h> 48 #include <linux/sunrpc/svcsock.h> 49 #include <linux/sunrpc/stats.h> 50 51 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 52 53 54 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *, 55 int *errp, int flags); 56 static void svc_udp_data_ready(struct sock *, int); 57 static int svc_udp_recvfrom(struct svc_rqst *); 58 static int svc_udp_sendto(struct svc_rqst *); 59 static void svc_sock_detach(struct svc_xprt *); 60 static void svc_sock_free(struct svc_xprt *); 61 62 static struct svc_xprt *svc_create_socket(struct svc_serv *, int, 63 struct sockaddr *, int, int); 64 #ifdef CONFIG_DEBUG_LOCK_ALLOC 65 static struct lock_class_key svc_key[2]; 66 static struct lock_class_key svc_slock_key[2]; 67 68 static void svc_reclassify_socket(struct socket *sock) 69 { 70 struct sock *sk = sock->sk; 71 BUG_ON(sock_owned_by_user(sk)); 72 switch (sk->sk_family) { 73 case AF_INET: 74 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD", 75 &svc_slock_key[0], 76 "sk_xprt.xpt_lock-AF_INET-NFSD", 77 &svc_key[0]); 78 break; 79 80 case AF_INET6: 81 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD", 82 &svc_slock_key[1], 83 "sk_xprt.xpt_lock-AF_INET6-NFSD", 84 &svc_key[1]); 85 break; 86 87 default: 88 BUG(); 89 } 90 } 91 #else 92 static void svc_reclassify_socket(struct socket *sock) 93 { 94 } 95 #endif 96 97 /* 98 * Release an skbuff after use 99 */ 100 static void svc_release_skb(struct svc_rqst *rqstp) 101 { 102 struct sk_buff *skb = rqstp->rq_xprt_ctxt; 103 struct svc_deferred_req *dr = rqstp->rq_deferred; 104 105 if (skb) { 106 struct svc_sock *svsk = 107 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 108 rqstp->rq_xprt_ctxt = NULL; 109 110 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb); 111 skb_free_datagram(svsk->sk_sk, skb); 112 } 113 if (dr) { 114 rqstp->rq_deferred = NULL; 115 kfree(dr); 116 } 117 } 118 119 union svc_pktinfo_u { 120 struct in_pktinfo pkti; 121 struct in6_pktinfo pkti6; 122 }; 123 #define SVC_PKTINFO_SPACE \ 124 CMSG_SPACE(sizeof(union svc_pktinfo_u)) 125 126 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh) 127 { 128 struct svc_sock *svsk = 129 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 130 switch (svsk->sk_sk->sk_family) { 131 case AF_INET: { 132 struct in_pktinfo *pki = CMSG_DATA(cmh); 133 134 cmh->cmsg_level = SOL_IP; 135 cmh->cmsg_type = IP_PKTINFO; 136 pki->ipi_ifindex = 0; 137 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr; 138 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 139 } 140 break; 141 142 case AF_INET6: { 143 struct in6_pktinfo *pki = CMSG_DATA(cmh); 144 145 cmh->cmsg_level = SOL_IPV6; 146 cmh->cmsg_type = IPV6_PKTINFO; 147 pki->ipi6_ifindex = 0; 148 ipv6_addr_copy(&pki->ipi6_addr, 149 &rqstp->rq_daddr.addr6); 150 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 151 } 152 break; 153 } 154 return; 155 } 156 157 /* 158 * Generic sendto routine 159 */ 160 static int svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr) 161 { 162 struct svc_sock *svsk = 163 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 164 struct socket *sock = svsk->sk_sock; 165 int slen; 166 union { 167 struct cmsghdr hdr; 168 long all[SVC_PKTINFO_SPACE / sizeof(long)]; 169 } buffer; 170 struct cmsghdr *cmh = &buffer.hdr; 171 int len = 0; 172 int result; 173 int size; 174 struct page **ppage = xdr->pages; 175 size_t base = xdr->page_base; 176 unsigned int pglen = xdr->page_len; 177 unsigned int flags = MSG_MORE; 178 char buf[RPC_MAX_ADDRBUFLEN]; 179 180 slen = xdr->len; 181 182 if (rqstp->rq_prot == IPPROTO_UDP) { 183 struct msghdr msg = { 184 .msg_name = &rqstp->rq_addr, 185 .msg_namelen = rqstp->rq_addrlen, 186 .msg_control = cmh, 187 .msg_controllen = sizeof(buffer), 188 .msg_flags = MSG_MORE, 189 }; 190 191 svc_set_cmsg_data(rqstp, cmh); 192 193 if (sock_sendmsg(sock, &msg, 0) < 0) 194 goto out; 195 } 196 197 /* send head */ 198 if (slen == xdr->head[0].iov_len) 199 flags = 0; 200 len = kernel_sendpage(sock, rqstp->rq_respages[0], 0, 201 xdr->head[0].iov_len, flags); 202 if (len != xdr->head[0].iov_len) 203 goto out; 204 slen -= xdr->head[0].iov_len; 205 if (slen == 0) 206 goto out; 207 208 /* send page data */ 209 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen; 210 while (pglen > 0) { 211 if (slen == size) 212 flags = 0; 213 result = kernel_sendpage(sock, *ppage, base, size, flags); 214 if (result > 0) 215 len += result; 216 if (result != size) 217 goto out; 218 slen -= size; 219 pglen -= size; 220 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen; 221 base = 0; 222 ppage++; 223 } 224 /* send tail */ 225 if (xdr->tail[0].iov_len) { 226 result = kernel_sendpage(sock, rqstp->rq_respages[0], 227 ((unsigned long)xdr->tail[0].iov_base) 228 & (PAGE_SIZE-1), 229 xdr->tail[0].iov_len, 0); 230 231 if (result > 0) 232 len += result; 233 } 234 out: 235 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n", 236 svsk, xdr->head[0].iov_base, xdr->head[0].iov_len, 237 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf))); 238 239 return len; 240 } 241 242 /* 243 * Report socket names for nfsdfs 244 */ 245 static int one_sock_name(char *buf, struct svc_sock *svsk) 246 { 247 int len; 248 249 switch(svsk->sk_sk->sk_family) { 250 case AF_INET: 251 len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n", 252 svsk->sk_sk->sk_protocol==IPPROTO_UDP? 253 "udp" : "tcp", 254 NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr), 255 inet_sk(svsk->sk_sk)->num); 256 break; 257 default: 258 len = sprintf(buf, "*unknown-%d*\n", 259 svsk->sk_sk->sk_family); 260 } 261 return len; 262 } 263 264 int 265 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose) 266 { 267 struct svc_sock *svsk, *closesk = NULL; 268 int len = 0; 269 270 if (!serv) 271 return 0; 272 spin_lock_bh(&serv->sv_lock); 273 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) { 274 int onelen = one_sock_name(buf+len, svsk); 275 if (toclose && strcmp(toclose, buf+len) == 0) 276 closesk = svsk; 277 else 278 len += onelen; 279 } 280 spin_unlock_bh(&serv->sv_lock); 281 if (closesk) 282 /* Should unregister with portmap, but you cannot 283 * unregister just one protocol... 284 */ 285 svc_close_xprt(&closesk->sk_xprt); 286 else if (toclose) 287 return -ENOENT; 288 return len; 289 } 290 EXPORT_SYMBOL(svc_sock_names); 291 292 /* 293 * Check input queue length 294 */ 295 static int svc_recv_available(struct svc_sock *svsk) 296 { 297 struct socket *sock = svsk->sk_sock; 298 int avail, err; 299 300 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail); 301 302 return (err >= 0)? avail : err; 303 } 304 305 /* 306 * Generic recvfrom routine. 307 */ 308 static int svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, 309 int buflen) 310 { 311 struct svc_sock *svsk = 312 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 313 struct msghdr msg = { 314 .msg_flags = MSG_DONTWAIT, 315 }; 316 int len; 317 318 rqstp->rq_xprt_hlen = 0; 319 320 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen, 321 msg.msg_flags); 322 323 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n", 324 svsk, iov[0].iov_base, iov[0].iov_len, len); 325 return len; 326 } 327 328 /* 329 * Set socket snd and rcv buffer lengths 330 */ 331 static void svc_sock_setbufsize(struct socket *sock, unsigned int snd, 332 unsigned int rcv) 333 { 334 #if 0 335 mm_segment_t oldfs; 336 oldfs = get_fs(); set_fs(KERNEL_DS); 337 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF, 338 (char*)&snd, sizeof(snd)); 339 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF, 340 (char*)&rcv, sizeof(rcv)); 341 #else 342 /* sock_setsockopt limits use to sysctl_?mem_max, 343 * which isn't acceptable. Until that is made conditional 344 * on not having CAP_SYS_RESOURCE or similar, we go direct... 345 * DaveM said I could! 346 */ 347 lock_sock(sock->sk); 348 sock->sk->sk_sndbuf = snd * 2; 349 sock->sk->sk_rcvbuf = rcv * 2; 350 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK; 351 release_sock(sock->sk); 352 #endif 353 } 354 /* 355 * INET callback when data has been received on the socket. 356 */ 357 static void svc_udp_data_ready(struct sock *sk, int count) 358 { 359 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 360 361 if (svsk) { 362 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n", 363 svsk, sk, count, 364 test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags)); 365 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 366 svc_xprt_enqueue(&svsk->sk_xprt); 367 } 368 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 369 wake_up_interruptible(sk->sk_sleep); 370 } 371 372 /* 373 * INET callback when space is newly available on the socket. 374 */ 375 static void svc_write_space(struct sock *sk) 376 { 377 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data); 378 379 if (svsk) { 380 dprintk("svc: socket %p(inet %p), write_space busy=%d\n", 381 svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags)); 382 svc_xprt_enqueue(&svsk->sk_xprt); 383 } 384 385 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) { 386 dprintk("RPC svc_write_space: someone sleeping on %p\n", 387 svsk); 388 wake_up_interruptible(sk->sk_sleep); 389 } 390 } 391 392 /* 393 * Copy the UDP datagram's destination address to the rqstp structure. 394 * The 'destination' address in this case is the address to which the 395 * peer sent the datagram, i.e. our local address. For multihomed 396 * hosts, this can change from msg to msg. Note that only the IP 397 * address changes, the port number should remain the same. 398 */ 399 static void svc_udp_get_dest_address(struct svc_rqst *rqstp, 400 struct cmsghdr *cmh) 401 { 402 struct svc_sock *svsk = 403 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 404 switch (svsk->sk_sk->sk_family) { 405 case AF_INET: { 406 struct in_pktinfo *pki = CMSG_DATA(cmh); 407 rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr; 408 break; 409 } 410 case AF_INET6: { 411 struct in6_pktinfo *pki = CMSG_DATA(cmh); 412 ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr); 413 break; 414 } 415 } 416 } 417 418 /* 419 * Receive a datagram from a UDP socket. 420 */ 421 static int svc_udp_recvfrom(struct svc_rqst *rqstp) 422 { 423 struct svc_sock *svsk = 424 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 425 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 426 struct sk_buff *skb; 427 union { 428 struct cmsghdr hdr; 429 long all[SVC_PKTINFO_SPACE / sizeof(long)]; 430 } buffer; 431 struct cmsghdr *cmh = &buffer.hdr; 432 int err, len; 433 struct msghdr msg = { 434 .msg_name = svc_addr(rqstp), 435 .msg_control = cmh, 436 .msg_controllen = sizeof(buffer), 437 .msg_flags = MSG_DONTWAIT, 438 }; 439 440 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags)) 441 /* udp sockets need large rcvbuf as all pending 442 * requests are still in that buffer. sndbuf must 443 * also be large enough that there is enough space 444 * for one reply per thread. We count all threads 445 * rather than threads in a particular pool, which 446 * provides an upper bound on the number of threads 447 * which will access the socket. 448 */ 449 svc_sock_setbufsize(svsk->sk_sock, 450 (serv->sv_nrthreads+3) * serv->sv_max_mesg, 451 (serv->sv_nrthreads+3) * serv->sv_max_mesg); 452 453 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 454 skb = NULL; 455 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL, 456 0, 0, MSG_PEEK | MSG_DONTWAIT); 457 if (err >= 0) 458 skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err); 459 460 if (skb == NULL) { 461 if (err != -EAGAIN) { 462 /* possibly an icmp error */ 463 dprintk("svc: recvfrom returned error %d\n", -err); 464 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 465 } 466 svc_xprt_received(&svsk->sk_xprt); 467 return -EAGAIN; 468 } 469 len = svc_addr_len(svc_addr(rqstp)); 470 if (len < 0) 471 return len; 472 rqstp->rq_addrlen = len; 473 if (skb->tstamp.tv64 == 0) { 474 skb->tstamp = ktime_get_real(); 475 /* Don't enable netstamp, sunrpc doesn't 476 need that much accuracy */ 477 } 478 svsk->sk_sk->sk_stamp = skb->tstamp; 479 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */ 480 481 /* 482 * Maybe more packets - kick another thread ASAP. 483 */ 484 svc_xprt_received(&svsk->sk_xprt); 485 486 len = skb->len - sizeof(struct udphdr); 487 rqstp->rq_arg.len = len; 488 489 rqstp->rq_prot = IPPROTO_UDP; 490 491 if (cmh->cmsg_level != IPPROTO_IP || 492 cmh->cmsg_type != IP_PKTINFO) { 493 if (net_ratelimit()) 494 printk("rpcsvc: received unknown control message:" 495 "%d/%d\n", 496 cmh->cmsg_level, cmh->cmsg_type); 497 skb_free_datagram(svsk->sk_sk, skb); 498 return 0; 499 } 500 svc_udp_get_dest_address(rqstp, cmh); 501 502 if (skb_is_nonlinear(skb)) { 503 /* we have to copy */ 504 local_bh_disable(); 505 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) { 506 local_bh_enable(); 507 /* checksum error */ 508 skb_free_datagram(svsk->sk_sk, skb); 509 return 0; 510 } 511 local_bh_enable(); 512 skb_free_datagram(svsk->sk_sk, skb); 513 } else { 514 /* we can use it in-place */ 515 rqstp->rq_arg.head[0].iov_base = skb->data + 516 sizeof(struct udphdr); 517 rqstp->rq_arg.head[0].iov_len = len; 518 if (skb_checksum_complete(skb)) { 519 skb_free_datagram(svsk->sk_sk, skb); 520 return 0; 521 } 522 rqstp->rq_xprt_ctxt = skb; 523 } 524 525 rqstp->rq_arg.page_base = 0; 526 if (len <= rqstp->rq_arg.head[0].iov_len) { 527 rqstp->rq_arg.head[0].iov_len = len; 528 rqstp->rq_arg.page_len = 0; 529 rqstp->rq_respages = rqstp->rq_pages+1; 530 } else { 531 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 532 rqstp->rq_respages = rqstp->rq_pages + 1 + 533 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE); 534 } 535 536 if (serv->sv_stats) 537 serv->sv_stats->netudpcnt++; 538 539 return len; 540 } 541 542 static int 543 svc_udp_sendto(struct svc_rqst *rqstp) 544 { 545 int error; 546 547 error = svc_sendto(rqstp, &rqstp->rq_res); 548 if (error == -ECONNREFUSED) 549 /* ICMP error on earlier request. */ 550 error = svc_sendto(rqstp, &rqstp->rq_res); 551 552 return error; 553 } 554 555 static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp) 556 { 557 } 558 559 static int svc_udp_has_wspace(struct svc_xprt *xprt) 560 { 561 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 562 struct svc_serv *serv = xprt->xpt_server; 563 unsigned long required; 564 565 /* 566 * Set the SOCK_NOSPACE flag before checking the available 567 * sock space. 568 */ 569 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 570 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg; 571 if (required*2 > sock_wspace(svsk->sk_sk)) 572 return 0; 573 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 574 return 1; 575 } 576 577 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt) 578 { 579 BUG(); 580 return NULL; 581 } 582 583 static struct svc_xprt *svc_udp_create(struct svc_serv *serv, 584 struct sockaddr *sa, int salen, 585 int flags) 586 { 587 return svc_create_socket(serv, IPPROTO_UDP, sa, salen, flags); 588 } 589 590 static struct svc_xprt_ops svc_udp_ops = { 591 .xpo_create = svc_udp_create, 592 .xpo_recvfrom = svc_udp_recvfrom, 593 .xpo_sendto = svc_udp_sendto, 594 .xpo_release_rqst = svc_release_skb, 595 .xpo_detach = svc_sock_detach, 596 .xpo_free = svc_sock_free, 597 .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr, 598 .xpo_has_wspace = svc_udp_has_wspace, 599 .xpo_accept = svc_udp_accept, 600 }; 601 602 static struct svc_xprt_class svc_udp_class = { 603 .xcl_name = "udp", 604 .xcl_owner = THIS_MODULE, 605 .xcl_ops = &svc_udp_ops, 606 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP, 607 }; 608 609 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv) 610 { 611 int one = 1; 612 mm_segment_t oldfs; 613 614 svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv); 615 clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); 616 svsk->sk_sk->sk_data_ready = svc_udp_data_ready; 617 svsk->sk_sk->sk_write_space = svc_write_space; 618 619 /* initialise setting must have enough space to 620 * receive and respond to one request. 621 * svc_udp_recvfrom will re-adjust if necessary 622 */ 623 svc_sock_setbufsize(svsk->sk_sock, 624 3 * svsk->sk_xprt.xpt_server->sv_max_mesg, 625 3 * svsk->sk_xprt.xpt_server->sv_max_mesg); 626 627 /* data might have come in before data_ready set up */ 628 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 629 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 630 631 oldfs = get_fs(); 632 set_fs(KERNEL_DS); 633 /* make sure we get destination address info */ 634 svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO, 635 (char __user *)&one, sizeof(one)); 636 set_fs(oldfs); 637 } 638 639 /* 640 * A data_ready event on a listening socket means there's a connection 641 * pending. Do not use state_change as a substitute for it. 642 */ 643 static void svc_tcp_listen_data_ready(struct sock *sk, int count_unused) 644 { 645 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 646 647 dprintk("svc: socket %p TCP (listen) state change %d\n", 648 sk, sk->sk_state); 649 650 /* 651 * This callback may called twice when a new connection 652 * is established as a child socket inherits everything 653 * from a parent LISTEN socket. 654 * 1) data_ready method of the parent socket will be called 655 * when one of child sockets become ESTABLISHED. 656 * 2) data_ready method of the child socket may be called 657 * when it receives data before the socket is accepted. 658 * In case of 2, we should ignore it silently. 659 */ 660 if (sk->sk_state == TCP_LISTEN) { 661 if (svsk) { 662 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 663 svc_xprt_enqueue(&svsk->sk_xprt); 664 } else 665 printk("svc: socket %p: no user data\n", sk); 666 } 667 668 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 669 wake_up_interruptible_all(sk->sk_sleep); 670 } 671 672 /* 673 * A state change on a connected socket means it's dying or dead. 674 */ 675 static void svc_tcp_state_change(struct sock *sk) 676 { 677 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 678 679 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n", 680 sk, sk->sk_state, sk->sk_user_data); 681 682 if (!svsk) 683 printk("svc: socket %p: no user data\n", sk); 684 else { 685 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 686 svc_xprt_enqueue(&svsk->sk_xprt); 687 } 688 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 689 wake_up_interruptible_all(sk->sk_sleep); 690 } 691 692 static void svc_tcp_data_ready(struct sock *sk, int count) 693 { 694 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 695 696 dprintk("svc: socket %p TCP data ready (svsk %p)\n", 697 sk, sk->sk_user_data); 698 if (svsk) { 699 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 700 svc_xprt_enqueue(&svsk->sk_xprt); 701 } 702 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 703 wake_up_interruptible(sk->sk_sleep); 704 } 705 706 /* 707 * Accept a TCP connection 708 */ 709 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt) 710 { 711 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 712 struct sockaddr_storage addr; 713 struct sockaddr *sin = (struct sockaddr *) &addr; 714 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 715 struct socket *sock = svsk->sk_sock; 716 struct socket *newsock; 717 struct svc_sock *newsvsk; 718 int err, slen; 719 char buf[RPC_MAX_ADDRBUFLEN]; 720 721 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock); 722 if (!sock) 723 return NULL; 724 725 clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 726 err = kernel_accept(sock, &newsock, O_NONBLOCK); 727 if (err < 0) { 728 if (err == -ENOMEM) 729 printk(KERN_WARNING "%s: no more sockets!\n", 730 serv->sv_name); 731 else if (err != -EAGAIN && net_ratelimit()) 732 printk(KERN_WARNING "%s: accept failed (err %d)!\n", 733 serv->sv_name, -err); 734 return NULL; 735 } 736 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 737 738 err = kernel_getpeername(newsock, sin, &slen); 739 if (err < 0) { 740 if (net_ratelimit()) 741 printk(KERN_WARNING "%s: peername failed (err %d)!\n", 742 serv->sv_name, -err); 743 goto failed; /* aborted connection or whatever */ 744 } 745 746 /* Ideally, we would want to reject connections from unauthorized 747 * hosts here, but when we get encryption, the IP of the host won't 748 * tell us anything. For now just warn about unpriv connections. 749 */ 750 if (!svc_port_is_privileged(sin)) { 751 dprintk(KERN_WARNING 752 "%s: connect from unprivileged port: %s\n", 753 serv->sv_name, 754 __svc_print_addr(sin, buf, sizeof(buf))); 755 } 756 dprintk("%s: connect from %s\n", serv->sv_name, 757 __svc_print_addr(sin, buf, sizeof(buf))); 758 759 /* make sure that a write doesn't block forever when 760 * low on memory 761 */ 762 newsock->sk->sk_sndtimeo = HZ*30; 763 764 if (!(newsvsk = svc_setup_socket(serv, newsock, &err, 765 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY)))) 766 goto failed; 767 svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen); 768 err = kernel_getsockname(newsock, sin, &slen); 769 if (unlikely(err < 0)) { 770 dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err); 771 slen = offsetof(struct sockaddr, sa_data); 772 } 773 svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen); 774 775 if (serv->sv_stats) 776 serv->sv_stats->nettcpconn++; 777 778 return &newsvsk->sk_xprt; 779 780 failed: 781 sock_release(newsock); 782 return NULL; 783 } 784 785 /* 786 * Receive data from a TCP socket. 787 */ 788 static int svc_tcp_recvfrom(struct svc_rqst *rqstp) 789 { 790 struct svc_sock *svsk = 791 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 792 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 793 int len; 794 struct kvec *vec; 795 int pnum, vlen; 796 797 dprintk("svc: tcp_recv %p data %d conn %d close %d\n", 798 svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags), 799 test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags), 800 test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags)); 801 802 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags)) 803 /* sndbuf needs to have room for one request 804 * per thread, otherwise we can stall even when the 805 * network isn't a bottleneck. 806 * 807 * We count all threads rather than threads in a 808 * particular pool, which provides an upper bound 809 * on the number of threads which will access the socket. 810 * 811 * rcvbuf just needs to be able to hold a few requests. 812 * Normally they will be removed from the queue 813 * as soon a a complete request arrives. 814 */ 815 svc_sock_setbufsize(svsk->sk_sock, 816 (serv->sv_nrthreads+3) * serv->sv_max_mesg, 817 3 * serv->sv_max_mesg); 818 819 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 820 821 /* Receive data. If we haven't got the record length yet, get 822 * the next four bytes. Otherwise try to gobble up as much as 823 * possible up to the complete record length. 824 */ 825 if (svsk->sk_tcplen < 4) { 826 unsigned long want = 4 - svsk->sk_tcplen; 827 struct kvec iov; 828 829 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen; 830 iov.iov_len = want; 831 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0) 832 goto error; 833 svsk->sk_tcplen += len; 834 835 if (len < want) { 836 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n", 837 len, want); 838 svc_xprt_received(&svsk->sk_xprt); 839 return -EAGAIN; /* record header not complete */ 840 } 841 842 svsk->sk_reclen = ntohl(svsk->sk_reclen); 843 if (!(svsk->sk_reclen & 0x80000000)) { 844 /* FIXME: technically, a record can be fragmented, 845 * and non-terminal fragments will not have the top 846 * bit set in the fragment length header. 847 * But apparently no known nfs clients send fragmented 848 * records. */ 849 if (net_ratelimit()) 850 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx" 851 " (non-terminal)\n", 852 (unsigned long) svsk->sk_reclen); 853 goto err_delete; 854 } 855 svsk->sk_reclen &= 0x7fffffff; 856 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen); 857 if (svsk->sk_reclen > serv->sv_max_mesg) { 858 if (net_ratelimit()) 859 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx" 860 " (large)\n", 861 (unsigned long) svsk->sk_reclen); 862 goto err_delete; 863 } 864 } 865 866 /* Check whether enough data is available */ 867 len = svc_recv_available(svsk); 868 if (len < 0) 869 goto error; 870 871 if (len < svsk->sk_reclen) { 872 dprintk("svc: incomplete TCP record (%d of %d)\n", 873 len, svsk->sk_reclen); 874 svc_xprt_received(&svsk->sk_xprt); 875 return -EAGAIN; /* record not complete */ 876 } 877 len = svsk->sk_reclen; 878 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 879 880 vec = rqstp->rq_vec; 881 vec[0] = rqstp->rq_arg.head[0]; 882 vlen = PAGE_SIZE; 883 pnum = 1; 884 while (vlen < len) { 885 vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]); 886 vec[pnum].iov_len = PAGE_SIZE; 887 pnum++; 888 vlen += PAGE_SIZE; 889 } 890 rqstp->rq_respages = &rqstp->rq_pages[pnum]; 891 892 /* Now receive data */ 893 len = svc_recvfrom(rqstp, vec, pnum, len); 894 if (len < 0) 895 goto error; 896 897 dprintk("svc: TCP complete record (%d bytes)\n", len); 898 rqstp->rq_arg.len = len; 899 rqstp->rq_arg.page_base = 0; 900 if (len <= rqstp->rq_arg.head[0].iov_len) { 901 rqstp->rq_arg.head[0].iov_len = len; 902 rqstp->rq_arg.page_len = 0; 903 } else { 904 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 905 } 906 907 rqstp->rq_xprt_ctxt = NULL; 908 rqstp->rq_prot = IPPROTO_TCP; 909 910 /* Reset TCP read info */ 911 svsk->sk_reclen = 0; 912 svsk->sk_tcplen = 0; 913 914 svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt); 915 svc_xprt_received(&svsk->sk_xprt); 916 if (serv->sv_stats) 917 serv->sv_stats->nettcpcnt++; 918 919 return len; 920 921 err_delete: 922 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 923 return -EAGAIN; 924 925 error: 926 if (len == -EAGAIN) { 927 dprintk("RPC: TCP recvfrom got EAGAIN\n"); 928 svc_xprt_received(&svsk->sk_xprt); 929 } else { 930 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n", 931 svsk->sk_xprt.xpt_server->sv_name, -len); 932 goto err_delete; 933 } 934 935 return len; 936 } 937 938 /* 939 * Send out data on TCP socket. 940 */ 941 static int svc_tcp_sendto(struct svc_rqst *rqstp) 942 { 943 struct xdr_buf *xbufp = &rqstp->rq_res; 944 int sent; 945 __be32 reclen; 946 947 /* Set up the first element of the reply kvec. 948 * Any other kvecs that may be in use have been taken 949 * care of by the server implementation itself. 950 */ 951 reclen = htonl(0x80000000|((xbufp->len ) - 4)); 952 memcpy(xbufp->head[0].iov_base, &reclen, 4); 953 954 if (test_bit(XPT_DEAD, &rqstp->rq_xprt->xpt_flags)) 955 return -ENOTCONN; 956 957 sent = svc_sendto(rqstp, &rqstp->rq_res); 958 if (sent != xbufp->len) { 959 printk(KERN_NOTICE 960 "rpc-srv/tcp: %s: %s %d when sending %d bytes " 961 "- shutting down socket\n", 962 rqstp->rq_xprt->xpt_server->sv_name, 963 (sent<0)?"got error":"sent only", 964 sent, xbufp->len); 965 set_bit(XPT_CLOSE, &rqstp->rq_xprt->xpt_flags); 966 svc_xprt_enqueue(rqstp->rq_xprt); 967 sent = -EAGAIN; 968 } 969 return sent; 970 } 971 972 /* 973 * Setup response header. TCP has a 4B record length field. 974 */ 975 static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp) 976 { 977 struct kvec *resv = &rqstp->rq_res.head[0]; 978 979 /* tcp needs a space for the record length... */ 980 svc_putnl(resv, 0); 981 } 982 983 static int svc_tcp_has_wspace(struct svc_xprt *xprt) 984 { 985 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 986 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 987 int required; 988 int wspace; 989 990 /* 991 * Set the SOCK_NOSPACE flag before checking the available 992 * sock space. 993 */ 994 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 995 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg; 996 wspace = sk_stream_wspace(svsk->sk_sk); 997 998 if (wspace < sk_stream_min_wspace(svsk->sk_sk)) 999 return 0; 1000 if (required * 2 > wspace) 1001 return 0; 1002 1003 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 1004 return 1; 1005 } 1006 1007 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv, 1008 struct sockaddr *sa, int salen, 1009 int flags) 1010 { 1011 return svc_create_socket(serv, IPPROTO_TCP, sa, salen, flags); 1012 } 1013 1014 static struct svc_xprt_ops svc_tcp_ops = { 1015 .xpo_create = svc_tcp_create, 1016 .xpo_recvfrom = svc_tcp_recvfrom, 1017 .xpo_sendto = svc_tcp_sendto, 1018 .xpo_release_rqst = svc_release_skb, 1019 .xpo_detach = svc_sock_detach, 1020 .xpo_free = svc_sock_free, 1021 .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr, 1022 .xpo_has_wspace = svc_tcp_has_wspace, 1023 .xpo_accept = svc_tcp_accept, 1024 }; 1025 1026 static struct svc_xprt_class svc_tcp_class = { 1027 .xcl_name = "tcp", 1028 .xcl_owner = THIS_MODULE, 1029 .xcl_ops = &svc_tcp_ops, 1030 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP, 1031 }; 1032 1033 void svc_init_xprt_sock(void) 1034 { 1035 svc_reg_xprt_class(&svc_tcp_class); 1036 svc_reg_xprt_class(&svc_udp_class); 1037 } 1038 1039 void svc_cleanup_xprt_sock(void) 1040 { 1041 svc_unreg_xprt_class(&svc_tcp_class); 1042 svc_unreg_xprt_class(&svc_udp_class); 1043 } 1044 1045 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv) 1046 { 1047 struct sock *sk = svsk->sk_sk; 1048 struct tcp_sock *tp = tcp_sk(sk); 1049 1050 svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv); 1051 set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); 1052 if (sk->sk_state == TCP_LISTEN) { 1053 dprintk("setting up TCP socket for listening\n"); 1054 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags); 1055 sk->sk_data_ready = svc_tcp_listen_data_ready; 1056 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 1057 } else { 1058 dprintk("setting up TCP socket for reading\n"); 1059 sk->sk_state_change = svc_tcp_state_change; 1060 sk->sk_data_ready = svc_tcp_data_ready; 1061 sk->sk_write_space = svc_write_space; 1062 1063 svsk->sk_reclen = 0; 1064 svsk->sk_tcplen = 0; 1065 1066 tp->nonagle = 1; /* disable Nagle's algorithm */ 1067 1068 /* initialise setting must have enough space to 1069 * receive and respond to one request. 1070 * svc_tcp_recvfrom will re-adjust if necessary 1071 */ 1072 svc_sock_setbufsize(svsk->sk_sock, 1073 3 * svsk->sk_xprt.xpt_server->sv_max_mesg, 1074 3 * svsk->sk_xprt.xpt_server->sv_max_mesg); 1075 1076 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 1077 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 1078 if (sk->sk_state != TCP_ESTABLISHED) 1079 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 1080 } 1081 } 1082 1083 void svc_sock_update_bufs(struct svc_serv *serv) 1084 { 1085 /* 1086 * The number of server threads has changed. Update 1087 * rcvbuf and sndbuf accordingly on all sockets 1088 */ 1089 struct list_head *le; 1090 1091 spin_lock_bh(&serv->sv_lock); 1092 list_for_each(le, &serv->sv_permsocks) { 1093 struct svc_sock *svsk = 1094 list_entry(le, struct svc_sock, sk_xprt.xpt_list); 1095 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 1096 } 1097 list_for_each(le, &serv->sv_tempsocks) { 1098 struct svc_sock *svsk = 1099 list_entry(le, struct svc_sock, sk_xprt.xpt_list); 1100 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 1101 } 1102 spin_unlock_bh(&serv->sv_lock); 1103 } 1104 1105 /* 1106 * Initialize socket for RPC use and create svc_sock struct 1107 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF. 1108 */ 1109 static struct svc_sock *svc_setup_socket(struct svc_serv *serv, 1110 struct socket *sock, 1111 int *errp, int flags) 1112 { 1113 struct svc_sock *svsk; 1114 struct sock *inet; 1115 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS); 1116 1117 dprintk("svc: svc_setup_socket %p\n", sock); 1118 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) { 1119 *errp = -ENOMEM; 1120 return NULL; 1121 } 1122 1123 inet = sock->sk; 1124 1125 /* Register socket with portmapper */ 1126 if (*errp >= 0 && pmap_register) 1127 *errp = svc_register(serv, inet->sk_protocol, 1128 ntohs(inet_sk(inet)->sport)); 1129 1130 if (*errp < 0) { 1131 kfree(svsk); 1132 return NULL; 1133 } 1134 1135 inet->sk_user_data = svsk; 1136 svsk->sk_sock = sock; 1137 svsk->sk_sk = inet; 1138 svsk->sk_ostate = inet->sk_state_change; 1139 svsk->sk_odata = inet->sk_data_ready; 1140 svsk->sk_owspace = inet->sk_write_space; 1141 1142 /* Initialize the socket */ 1143 if (sock->type == SOCK_DGRAM) 1144 svc_udp_init(svsk, serv); 1145 else 1146 svc_tcp_init(svsk, serv); 1147 1148 dprintk("svc: svc_setup_socket created %p (inet %p)\n", 1149 svsk, svsk->sk_sk); 1150 1151 return svsk; 1152 } 1153 1154 int svc_addsock(struct svc_serv *serv, 1155 int fd, 1156 char *name_return, 1157 int *proto) 1158 { 1159 int err = 0; 1160 struct socket *so = sockfd_lookup(fd, &err); 1161 struct svc_sock *svsk = NULL; 1162 1163 if (!so) 1164 return err; 1165 if (so->sk->sk_family != AF_INET) 1166 err = -EAFNOSUPPORT; 1167 else if (so->sk->sk_protocol != IPPROTO_TCP && 1168 so->sk->sk_protocol != IPPROTO_UDP) 1169 err = -EPROTONOSUPPORT; 1170 else if (so->state > SS_UNCONNECTED) 1171 err = -EISCONN; 1172 else { 1173 svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS); 1174 if (svsk) { 1175 struct sockaddr_storage addr; 1176 struct sockaddr *sin = (struct sockaddr *)&addr; 1177 int salen; 1178 if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0) 1179 svc_xprt_set_local(&svsk->sk_xprt, sin, salen); 1180 clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags); 1181 spin_lock_bh(&serv->sv_lock); 1182 list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks); 1183 spin_unlock_bh(&serv->sv_lock); 1184 svc_xprt_received(&svsk->sk_xprt); 1185 err = 0; 1186 } 1187 } 1188 if (err) { 1189 sockfd_put(so); 1190 return err; 1191 } 1192 if (proto) *proto = so->sk->sk_protocol; 1193 return one_sock_name(name_return, svsk); 1194 } 1195 EXPORT_SYMBOL_GPL(svc_addsock); 1196 1197 /* 1198 * Create socket for RPC service. 1199 */ 1200 static struct svc_xprt *svc_create_socket(struct svc_serv *serv, 1201 int protocol, 1202 struct sockaddr *sin, int len, 1203 int flags) 1204 { 1205 struct svc_sock *svsk; 1206 struct socket *sock; 1207 int error; 1208 int type; 1209 char buf[RPC_MAX_ADDRBUFLEN]; 1210 struct sockaddr_storage addr; 1211 struct sockaddr *newsin = (struct sockaddr *)&addr; 1212 int newlen; 1213 1214 dprintk("svc: svc_create_socket(%s, %d, %s)\n", 1215 serv->sv_program->pg_name, protocol, 1216 __svc_print_addr(sin, buf, sizeof(buf))); 1217 1218 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) { 1219 printk(KERN_WARNING "svc: only UDP and TCP " 1220 "sockets supported\n"); 1221 return ERR_PTR(-EINVAL); 1222 } 1223 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM; 1224 1225 error = sock_create_kern(sin->sa_family, type, protocol, &sock); 1226 if (error < 0) 1227 return ERR_PTR(error); 1228 1229 svc_reclassify_socket(sock); 1230 1231 if (type == SOCK_STREAM) 1232 sock->sk->sk_reuse = 1; /* allow address reuse */ 1233 error = kernel_bind(sock, sin, len); 1234 if (error < 0) 1235 goto bummer; 1236 1237 newlen = len; 1238 error = kernel_getsockname(sock, newsin, &newlen); 1239 if (error < 0) 1240 goto bummer; 1241 1242 if (protocol == IPPROTO_TCP) { 1243 if ((error = kernel_listen(sock, 64)) < 0) 1244 goto bummer; 1245 } 1246 1247 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) { 1248 svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen); 1249 return (struct svc_xprt *)svsk; 1250 } 1251 1252 bummer: 1253 dprintk("svc: svc_create_socket error = %d\n", -error); 1254 sock_release(sock); 1255 return ERR_PTR(error); 1256 } 1257 1258 /* 1259 * Detach the svc_sock from the socket so that no 1260 * more callbacks occur. 1261 */ 1262 static void svc_sock_detach(struct svc_xprt *xprt) 1263 { 1264 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1265 struct sock *sk = svsk->sk_sk; 1266 1267 dprintk("svc: svc_sock_detach(%p)\n", svsk); 1268 1269 /* put back the old socket callbacks */ 1270 sk->sk_state_change = svsk->sk_ostate; 1271 sk->sk_data_ready = svsk->sk_odata; 1272 sk->sk_write_space = svsk->sk_owspace; 1273 } 1274 1275 /* 1276 * Free the svc_sock's socket resources and the svc_sock itself. 1277 */ 1278 static void svc_sock_free(struct svc_xprt *xprt) 1279 { 1280 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1281 dprintk("svc: svc_sock_free(%p)\n", svsk); 1282 1283 if (svsk->sk_sock->file) 1284 sockfd_put(svsk->sk_sock); 1285 else 1286 sock_release(svsk->sk_sock); 1287 kfree(svsk); 1288 } 1289