1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/svcsock.c 4 * 5 * These are the RPC server socket internals. 6 * 7 * The server scheduling algorithm does not always distribute the load 8 * evenly when servicing a single client. May need to modify the 9 * svc_xprt_enqueue procedure... 10 * 11 * TCP support is largely untested and may be a little slow. The problem 12 * is that we currently do two separate recvfrom's, one for the 4-byte 13 * record length, and the second for the actual record. This could possibly 14 * be improved by always reading a minimum size of around 100 bytes and 15 * tucking any superfluous bytes away in a temporary store. Still, that 16 * leaves write requests out in the rain. An alternative may be to peek at 17 * the first skb in the queue, and if it matches the next TCP sequence 18 * number, to extract the record marker. Yuck. 19 * 20 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/sched.h> 25 #include <linux/module.h> 26 #include <linux/errno.h> 27 #include <linux/fcntl.h> 28 #include <linux/net.h> 29 #include <linux/in.h> 30 #include <linux/inet.h> 31 #include <linux/udp.h> 32 #include <linux/tcp.h> 33 #include <linux/unistd.h> 34 #include <linux/slab.h> 35 #include <linux/netdevice.h> 36 #include <linux/skbuff.h> 37 #include <linux/file.h> 38 #include <linux/freezer.h> 39 #include <net/sock.h> 40 #include <net/checksum.h> 41 #include <net/ip.h> 42 #include <net/ipv6.h> 43 #include <net/udp.h> 44 #include <net/tcp.h> 45 #include <net/tcp_states.h> 46 #include <linux/uaccess.h> 47 #include <asm/ioctls.h> 48 49 #include <linux/sunrpc/types.h> 50 #include <linux/sunrpc/clnt.h> 51 #include <linux/sunrpc/xdr.h> 52 #include <linux/sunrpc/msg_prot.h> 53 #include <linux/sunrpc/svcsock.h> 54 #include <linux/sunrpc/stats.h> 55 #include <linux/sunrpc/xprt.h> 56 57 #include <trace/events/sunrpc.h> 58 59 #include "socklib.h" 60 #include "sunrpc.h" 61 62 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 63 64 65 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *, 66 int flags); 67 static int svc_udp_recvfrom(struct svc_rqst *); 68 static int svc_udp_sendto(struct svc_rqst *); 69 static void svc_sock_detach(struct svc_xprt *); 70 static void svc_tcp_sock_detach(struct svc_xprt *); 71 static void svc_sock_free(struct svc_xprt *); 72 73 static struct svc_xprt *svc_create_socket(struct svc_serv *, int, 74 struct net *, struct sockaddr *, 75 int, int); 76 #ifdef CONFIG_DEBUG_LOCK_ALLOC 77 static struct lock_class_key svc_key[2]; 78 static struct lock_class_key svc_slock_key[2]; 79 80 static void svc_reclassify_socket(struct socket *sock) 81 { 82 struct sock *sk = sock->sk; 83 84 if (WARN_ON_ONCE(!sock_allow_reclassification(sk))) 85 return; 86 87 switch (sk->sk_family) { 88 case AF_INET: 89 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD", 90 &svc_slock_key[0], 91 "sk_xprt.xpt_lock-AF_INET-NFSD", 92 &svc_key[0]); 93 break; 94 95 case AF_INET6: 96 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD", 97 &svc_slock_key[1], 98 "sk_xprt.xpt_lock-AF_INET6-NFSD", 99 &svc_key[1]); 100 break; 101 102 default: 103 BUG(); 104 } 105 } 106 #else 107 static void svc_reclassify_socket(struct socket *sock) 108 { 109 } 110 #endif 111 112 /** 113 * svc_tcp_release_rqst - Release transport-related resources 114 * @rqstp: request structure with resources to be released 115 * 116 */ 117 static void svc_tcp_release_rqst(struct svc_rqst *rqstp) 118 { 119 struct sk_buff *skb = rqstp->rq_xprt_ctxt; 120 121 if (skb) { 122 struct svc_sock *svsk = 123 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 124 125 rqstp->rq_xprt_ctxt = NULL; 126 skb_free_datagram_locked(svsk->sk_sk, skb); 127 } 128 } 129 130 /** 131 * svc_udp_release_rqst - Release transport-related resources 132 * @rqstp: request structure with resources to be released 133 * 134 */ 135 static void svc_udp_release_rqst(struct svc_rqst *rqstp) 136 { 137 struct sk_buff *skb = rqstp->rq_xprt_ctxt; 138 139 if (skb) { 140 rqstp->rq_xprt_ctxt = NULL; 141 consume_skb(skb); 142 } 143 } 144 145 union svc_pktinfo_u { 146 struct in_pktinfo pkti; 147 struct in6_pktinfo pkti6; 148 }; 149 #define SVC_PKTINFO_SPACE \ 150 CMSG_SPACE(sizeof(union svc_pktinfo_u)) 151 152 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh) 153 { 154 struct svc_sock *svsk = 155 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 156 switch (svsk->sk_sk->sk_family) { 157 case AF_INET: { 158 struct in_pktinfo *pki = CMSG_DATA(cmh); 159 160 cmh->cmsg_level = SOL_IP; 161 cmh->cmsg_type = IP_PKTINFO; 162 pki->ipi_ifindex = 0; 163 pki->ipi_spec_dst.s_addr = 164 svc_daddr_in(rqstp)->sin_addr.s_addr; 165 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 166 } 167 break; 168 169 case AF_INET6: { 170 struct in6_pktinfo *pki = CMSG_DATA(cmh); 171 struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp); 172 173 cmh->cmsg_level = SOL_IPV6; 174 cmh->cmsg_type = IPV6_PKTINFO; 175 pki->ipi6_ifindex = daddr->sin6_scope_id; 176 pki->ipi6_addr = daddr->sin6_addr; 177 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 178 } 179 break; 180 } 181 } 182 183 static int svc_sock_read_payload(struct svc_rqst *rqstp, unsigned int offset, 184 unsigned int length) 185 { 186 return 0; 187 } 188 189 /* 190 * Report socket names for nfsdfs 191 */ 192 static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining) 193 { 194 const struct sock *sk = svsk->sk_sk; 195 const char *proto_name = sk->sk_protocol == IPPROTO_UDP ? 196 "udp" : "tcp"; 197 int len; 198 199 switch (sk->sk_family) { 200 case PF_INET: 201 len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n", 202 proto_name, 203 &inet_sk(sk)->inet_rcv_saddr, 204 inet_sk(sk)->inet_num); 205 break; 206 #if IS_ENABLED(CONFIG_IPV6) 207 case PF_INET6: 208 len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n", 209 proto_name, 210 &sk->sk_v6_rcv_saddr, 211 inet_sk(sk)->inet_num); 212 break; 213 #endif 214 default: 215 len = snprintf(buf, remaining, "*unknown-%d*\n", 216 sk->sk_family); 217 } 218 219 if (len >= remaining) { 220 *buf = '\0'; 221 return -ENAMETOOLONG; 222 } 223 return len; 224 } 225 226 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 227 static void svc_flush_bvec(const struct bio_vec *bvec, size_t size, size_t seek) 228 { 229 struct bvec_iter bi = { 230 .bi_size = size, 231 }; 232 struct bio_vec bv; 233 234 bvec_iter_advance(bvec, &bi, seek & PAGE_MASK); 235 for_each_bvec(bv, bvec, bi, bi) 236 flush_dcache_page(bv.bv_page); 237 } 238 #else 239 static inline void svc_flush_bvec(const struct bio_vec *bvec, size_t size, 240 size_t seek) 241 { 242 } 243 #endif 244 245 /* 246 * Read from @rqstp's transport socket. The incoming message fills whole 247 * pages in @rqstp's rq_pages array until the last page of the message 248 * has been received into a partial page. 249 */ 250 static ssize_t svc_tcp_read_msg(struct svc_rqst *rqstp, size_t buflen, 251 size_t seek) 252 { 253 struct svc_sock *svsk = 254 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 255 struct bio_vec *bvec = rqstp->rq_bvec; 256 struct msghdr msg = { NULL }; 257 unsigned int i; 258 ssize_t len; 259 size_t t; 260 261 rqstp->rq_xprt_hlen = 0; 262 263 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 264 265 for (i = 0, t = 0; t < buflen; i++, t += PAGE_SIZE) { 266 bvec[i].bv_page = rqstp->rq_pages[i]; 267 bvec[i].bv_len = PAGE_SIZE; 268 bvec[i].bv_offset = 0; 269 } 270 rqstp->rq_respages = &rqstp->rq_pages[i]; 271 rqstp->rq_next_page = rqstp->rq_respages + 1; 272 273 iov_iter_bvec(&msg.msg_iter, READ, bvec, i, buflen); 274 if (seek) { 275 iov_iter_advance(&msg.msg_iter, seek); 276 buflen -= seek; 277 } 278 len = sock_recvmsg(svsk->sk_sock, &msg, MSG_DONTWAIT); 279 if (len > 0) 280 svc_flush_bvec(bvec, len, seek); 281 282 /* If we read a full record, then assume there may be more 283 * data to read (stream based sockets only!) 284 */ 285 if (len == buflen) 286 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 287 288 return len; 289 } 290 291 /* 292 * Set socket snd and rcv buffer lengths 293 */ 294 static void svc_sock_setbufsize(struct svc_sock *svsk, unsigned int nreqs) 295 { 296 unsigned int max_mesg = svsk->sk_xprt.xpt_server->sv_max_mesg; 297 struct socket *sock = svsk->sk_sock; 298 299 nreqs = min(nreqs, INT_MAX / 2 / max_mesg); 300 301 lock_sock(sock->sk); 302 sock->sk->sk_sndbuf = nreqs * max_mesg * 2; 303 sock->sk->sk_rcvbuf = nreqs * max_mesg * 2; 304 sock->sk->sk_write_space(sock->sk); 305 release_sock(sock->sk); 306 } 307 308 static void svc_sock_secure_port(struct svc_rqst *rqstp) 309 { 310 if (svc_port_is_privileged(svc_addr(rqstp))) 311 set_bit(RQ_SECURE, &rqstp->rq_flags); 312 else 313 clear_bit(RQ_SECURE, &rqstp->rq_flags); 314 } 315 316 /* 317 * INET callback when data has been received on the socket. 318 */ 319 static void svc_data_ready(struct sock *sk) 320 { 321 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 322 323 if (svsk) { 324 /* Refer to svc_setup_socket() for details. */ 325 rmb(); 326 svsk->sk_odata(sk); 327 trace_svcsock_data_ready(&svsk->sk_xprt, 0); 328 if (!test_and_set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags)) 329 svc_xprt_enqueue(&svsk->sk_xprt); 330 } 331 } 332 333 /* 334 * INET callback when space is newly available on the socket. 335 */ 336 static void svc_write_space(struct sock *sk) 337 { 338 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data); 339 340 if (svsk) { 341 /* Refer to svc_setup_socket() for details. */ 342 rmb(); 343 trace_svcsock_write_space(&svsk->sk_xprt, 0); 344 svsk->sk_owspace(sk); 345 svc_xprt_enqueue(&svsk->sk_xprt); 346 } 347 } 348 349 static int svc_tcp_has_wspace(struct svc_xprt *xprt) 350 { 351 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 352 353 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) 354 return 1; 355 return !test_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 356 } 357 358 static void svc_tcp_kill_temp_xprt(struct svc_xprt *xprt) 359 { 360 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 361 362 sock_no_linger(svsk->sk_sock->sk); 363 } 364 365 /* 366 * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo 367 */ 368 static int svc_udp_get_dest_address4(struct svc_rqst *rqstp, 369 struct cmsghdr *cmh) 370 { 371 struct in_pktinfo *pki = CMSG_DATA(cmh); 372 struct sockaddr_in *daddr = svc_daddr_in(rqstp); 373 374 if (cmh->cmsg_type != IP_PKTINFO) 375 return 0; 376 377 daddr->sin_family = AF_INET; 378 daddr->sin_addr.s_addr = pki->ipi_spec_dst.s_addr; 379 return 1; 380 } 381 382 /* 383 * See net/ipv6/datagram.c : ip6_datagram_recv_ctl 384 */ 385 static int svc_udp_get_dest_address6(struct svc_rqst *rqstp, 386 struct cmsghdr *cmh) 387 { 388 struct in6_pktinfo *pki = CMSG_DATA(cmh); 389 struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp); 390 391 if (cmh->cmsg_type != IPV6_PKTINFO) 392 return 0; 393 394 daddr->sin6_family = AF_INET6; 395 daddr->sin6_addr = pki->ipi6_addr; 396 daddr->sin6_scope_id = pki->ipi6_ifindex; 397 return 1; 398 } 399 400 /* 401 * Copy the UDP datagram's destination address to the rqstp structure. 402 * The 'destination' address in this case is the address to which the 403 * peer sent the datagram, i.e. our local address. For multihomed 404 * hosts, this can change from msg to msg. Note that only the IP 405 * address changes, the port number should remain the same. 406 */ 407 static int svc_udp_get_dest_address(struct svc_rqst *rqstp, 408 struct cmsghdr *cmh) 409 { 410 switch (cmh->cmsg_level) { 411 case SOL_IP: 412 return svc_udp_get_dest_address4(rqstp, cmh); 413 case SOL_IPV6: 414 return svc_udp_get_dest_address6(rqstp, cmh); 415 } 416 417 return 0; 418 } 419 420 /** 421 * svc_udp_recvfrom - Receive a datagram from a UDP socket. 422 * @rqstp: request structure into which to receive an RPC Call 423 * 424 * Called in a loop when XPT_DATA has been set. 425 * 426 * Returns: 427 * On success, the number of bytes in a received RPC Call, or 428 * %0 if a complete RPC Call message was not ready to return 429 */ 430 static int svc_udp_recvfrom(struct svc_rqst *rqstp) 431 { 432 struct svc_sock *svsk = 433 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 434 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 435 struct sk_buff *skb; 436 union { 437 struct cmsghdr hdr; 438 long all[SVC_PKTINFO_SPACE / sizeof(long)]; 439 } buffer; 440 struct cmsghdr *cmh = &buffer.hdr; 441 struct msghdr msg = { 442 .msg_name = svc_addr(rqstp), 443 .msg_control = cmh, 444 .msg_controllen = sizeof(buffer), 445 .msg_flags = MSG_DONTWAIT, 446 }; 447 size_t len; 448 int err; 449 450 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags)) 451 /* udp sockets need large rcvbuf as all pending 452 * requests are still in that buffer. sndbuf must 453 * also be large enough that there is enough space 454 * for one reply per thread. We count all threads 455 * rather than threads in a particular pool, which 456 * provides an upper bound on the number of threads 457 * which will access the socket. 458 */ 459 svc_sock_setbufsize(svsk, serv->sv_nrthreads + 3); 460 461 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 462 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL, 463 0, 0, MSG_PEEK | MSG_DONTWAIT); 464 if (err < 0) 465 goto out_recv_err; 466 skb = skb_recv_udp(svsk->sk_sk, 0, 1, &err); 467 if (!skb) 468 goto out_recv_err; 469 470 len = svc_addr_len(svc_addr(rqstp)); 471 rqstp->rq_addrlen = len; 472 if (skb->tstamp == 0) { 473 skb->tstamp = ktime_get_real(); 474 /* Don't enable netstamp, sunrpc doesn't 475 need that much accuracy */ 476 } 477 sock_write_timestamp(svsk->sk_sk, skb->tstamp); 478 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */ 479 480 len = skb->len; 481 rqstp->rq_arg.len = len; 482 trace_svcsock_udp_recv(&svsk->sk_xprt, len); 483 484 rqstp->rq_prot = IPPROTO_UDP; 485 486 if (!svc_udp_get_dest_address(rqstp, cmh)) 487 goto out_cmsg_err; 488 rqstp->rq_daddrlen = svc_addr_len(svc_daddr(rqstp)); 489 490 if (skb_is_nonlinear(skb)) { 491 /* we have to copy */ 492 local_bh_disable(); 493 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) 494 goto out_bh_enable; 495 local_bh_enable(); 496 consume_skb(skb); 497 } else { 498 /* we can use it in-place */ 499 rqstp->rq_arg.head[0].iov_base = skb->data; 500 rqstp->rq_arg.head[0].iov_len = len; 501 if (skb_checksum_complete(skb)) 502 goto out_free; 503 rqstp->rq_xprt_ctxt = skb; 504 } 505 506 rqstp->rq_arg.page_base = 0; 507 if (len <= rqstp->rq_arg.head[0].iov_len) { 508 rqstp->rq_arg.head[0].iov_len = len; 509 rqstp->rq_arg.page_len = 0; 510 rqstp->rq_respages = rqstp->rq_pages+1; 511 } else { 512 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 513 rqstp->rq_respages = rqstp->rq_pages + 1 + 514 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE); 515 } 516 rqstp->rq_next_page = rqstp->rq_respages+1; 517 518 if (serv->sv_stats) 519 serv->sv_stats->netudpcnt++; 520 521 return len; 522 523 out_recv_err: 524 if (err != -EAGAIN) { 525 /* possibly an icmp error */ 526 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 527 } 528 trace_svcsock_udp_recv_err(&svsk->sk_xprt, err); 529 return 0; 530 out_cmsg_err: 531 net_warn_ratelimited("svc: received unknown control message %d/%d; dropping RPC reply datagram\n", 532 cmh->cmsg_level, cmh->cmsg_type); 533 goto out_free; 534 out_bh_enable: 535 local_bh_enable(); 536 out_free: 537 kfree_skb(skb); 538 return 0; 539 } 540 541 /** 542 * svc_udp_sendto - Send out a reply on a UDP socket 543 * @rqstp: completed svc_rqst 544 * 545 * xpt_mutex ensures @rqstp's whole message is written to the socket 546 * without interruption. 547 * 548 * Returns the number of bytes sent, or a negative errno. 549 */ 550 static int svc_udp_sendto(struct svc_rqst *rqstp) 551 { 552 struct svc_xprt *xprt = rqstp->rq_xprt; 553 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 554 struct xdr_buf *xdr = &rqstp->rq_res; 555 union { 556 struct cmsghdr hdr; 557 long all[SVC_PKTINFO_SPACE / sizeof(long)]; 558 } buffer; 559 struct cmsghdr *cmh = &buffer.hdr; 560 struct msghdr msg = { 561 .msg_name = &rqstp->rq_addr, 562 .msg_namelen = rqstp->rq_addrlen, 563 .msg_control = cmh, 564 .msg_controllen = sizeof(buffer), 565 }; 566 unsigned int uninitialized_var(sent); 567 int err; 568 569 svc_udp_release_rqst(rqstp); 570 571 svc_set_cmsg_data(rqstp, cmh); 572 573 mutex_lock(&xprt->xpt_mutex); 574 575 if (svc_xprt_is_dead(xprt)) 576 goto out_notconn; 577 578 err = xprt_sock_sendmsg(svsk->sk_sock, &msg, xdr, 0, 0, &sent); 579 xdr_free_bvec(xdr); 580 if (err == -ECONNREFUSED) { 581 /* ICMP error on earlier request. */ 582 err = xprt_sock_sendmsg(svsk->sk_sock, &msg, xdr, 0, 0, &sent); 583 xdr_free_bvec(xdr); 584 } 585 trace_svcsock_udp_send(xprt, err); 586 587 mutex_unlock(&xprt->xpt_mutex); 588 if (err < 0) 589 return err; 590 return sent; 591 592 out_notconn: 593 mutex_unlock(&xprt->xpt_mutex); 594 return -ENOTCONN; 595 } 596 597 static int svc_udp_has_wspace(struct svc_xprt *xprt) 598 { 599 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 600 struct svc_serv *serv = xprt->xpt_server; 601 unsigned long required; 602 603 /* 604 * Set the SOCK_NOSPACE flag before checking the available 605 * sock space. 606 */ 607 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 608 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg; 609 if (required*2 > sock_wspace(svsk->sk_sk)) 610 return 0; 611 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 612 return 1; 613 } 614 615 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt) 616 { 617 BUG(); 618 return NULL; 619 } 620 621 static void svc_udp_kill_temp_xprt(struct svc_xprt *xprt) 622 { 623 } 624 625 static struct svc_xprt *svc_udp_create(struct svc_serv *serv, 626 struct net *net, 627 struct sockaddr *sa, int salen, 628 int flags) 629 { 630 return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags); 631 } 632 633 static const struct svc_xprt_ops svc_udp_ops = { 634 .xpo_create = svc_udp_create, 635 .xpo_recvfrom = svc_udp_recvfrom, 636 .xpo_sendto = svc_udp_sendto, 637 .xpo_read_payload = svc_sock_read_payload, 638 .xpo_release_rqst = svc_udp_release_rqst, 639 .xpo_detach = svc_sock_detach, 640 .xpo_free = svc_sock_free, 641 .xpo_has_wspace = svc_udp_has_wspace, 642 .xpo_accept = svc_udp_accept, 643 .xpo_secure_port = svc_sock_secure_port, 644 .xpo_kill_temp_xprt = svc_udp_kill_temp_xprt, 645 }; 646 647 static struct svc_xprt_class svc_udp_class = { 648 .xcl_name = "udp", 649 .xcl_owner = THIS_MODULE, 650 .xcl_ops = &svc_udp_ops, 651 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP, 652 .xcl_ident = XPRT_TRANSPORT_UDP, 653 }; 654 655 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv) 656 { 657 svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_udp_class, 658 &svsk->sk_xprt, serv); 659 clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); 660 svsk->sk_sk->sk_data_ready = svc_data_ready; 661 svsk->sk_sk->sk_write_space = svc_write_space; 662 663 /* initialise setting must have enough space to 664 * receive and respond to one request. 665 * svc_udp_recvfrom will re-adjust if necessary 666 */ 667 svc_sock_setbufsize(svsk, 3); 668 669 /* data might have come in before data_ready set up */ 670 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 671 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 672 673 /* make sure we get destination address info */ 674 switch (svsk->sk_sk->sk_family) { 675 case AF_INET: 676 ip_sock_set_pktinfo(svsk->sk_sock->sk); 677 break; 678 case AF_INET6: 679 ip6_sock_set_recvpktinfo(svsk->sk_sock->sk); 680 break; 681 default: 682 BUG(); 683 } 684 } 685 686 /* 687 * A data_ready event on a listening socket means there's a connection 688 * pending. Do not use state_change as a substitute for it. 689 */ 690 static void svc_tcp_listen_data_ready(struct sock *sk) 691 { 692 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 693 694 if (svsk) { 695 /* Refer to svc_setup_socket() for details. */ 696 rmb(); 697 svsk->sk_odata(sk); 698 } 699 700 /* 701 * This callback may called twice when a new connection 702 * is established as a child socket inherits everything 703 * from a parent LISTEN socket. 704 * 1) data_ready method of the parent socket will be called 705 * when one of child sockets become ESTABLISHED. 706 * 2) data_ready method of the child socket may be called 707 * when it receives data before the socket is accepted. 708 * In case of 2, we should ignore it silently. 709 */ 710 if (sk->sk_state == TCP_LISTEN) { 711 if (svsk) { 712 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 713 svc_xprt_enqueue(&svsk->sk_xprt); 714 } 715 } 716 } 717 718 /* 719 * A state change on a connected socket means it's dying or dead. 720 */ 721 static void svc_tcp_state_change(struct sock *sk) 722 { 723 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 724 725 if (svsk) { 726 /* Refer to svc_setup_socket() for details. */ 727 rmb(); 728 svsk->sk_ostate(sk); 729 trace_svcsock_tcp_state(&svsk->sk_xprt, svsk->sk_sock); 730 if (sk->sk_state != TCP_ESTABLISHED) { 731 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 732 svc_xprt_enqueue(&svsk->sk_xprt); 733 } 734 } 735 } 736 737 /* 738 * Accept a TCP connection 739 */ 740 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt) 741 { 742 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 743 struct sockaddr_storage addr; 744 struct sockaddr *sin = (struct sockaddr *) &addr; 745 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 746 struct socket *sock = svsk->sk_sock; 747 struct socket *newsock; 748 struct svc_sock *newsvsk; 749 int err, slen; 750 751 if (!sock) 752 return NULL; 753 754 clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 755 err = kernel_accept(sock, &newsock, O_NONBLOCK); 756 if (err < 0) { 757 if (err == -ENOMEM) 758 printk(KERN_WARNING "%s: no more sockets!\n", 759 serv->sv_name); 760 else if (err != -EAGAIN) 761 net_warn_ratelimited("%s: accept failed (err %d)!\n", 762 serv->sv_name, -err); 763 trace_svcsock_accept_err(xprt, serv->sv_name, err); 764 return NULL; 765 } 766 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 767 768 err = kernel_getpeername(newsock, sin); 769 if (err < 0) { 770 trace_svcsock_getpeername_err(xprt, serv->sv_name, err); 771 goto failed; /* aborted connection or whatever */ 772 } 773 slen = err; 774 775 /* Reset the inherited callbacks before calling svc_setup_socket */ 776 newsock->sk->sk_state_change = svsk->sk_ostate; 777 newsock->sk->sk_data_ready = svsk->sk_odata; 778 newsock->sk->sk_write_space = svsk->sk_owspace; 779 780 /* make sure that a write doesn't block forever when 781 * low on memory 782 */ 783 newsock->sk->sk_sndtimeo = HZ*30; 784 785 newsvsk = svc_setup_socket(serv, newsock, 786 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY)); 787 if (IS_ERR(newsvsk)) 788 goto failed; 789 svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen); 790 err = kernel_getsockname(newsock, sin); 791 slen = err; 792 if (unlikely(err < 0)) 793 slen = offsetof(struct sockaddr, sa_data); 794 svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen); 795 796 if (sock_is_loopback(newsock->sk)) 797 set_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags); 798 else 799 clear_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags); 800 if (serv->sv_stats) 801 serv->sv_stats->nettcpconn++; 802 803 return &newsvsk->sk_xprt; 804 805 failed: 806 sock_release(newsock); 807 return NULL; 808 } 809 810 static size_t svc_tcp_restore_pages(struct svc_sock *svsk, 811 struct svc_rqst *rqstp) 812 { 813 size_t len = svsk->sk_datalen; 814 unsigned int i, npages; 815 816 if (!len) 817 return 0; 818 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 819 for (i = 0; i < npages; i++) { 820 if (rqstp->rq_pages[i] != NULL) 821 put_page(rqstp->rq_pages[i]); 822 BUG_ON(svsk->sk_pages[i] == NULL); 823 rqstp->rq_pages[i] = svsk->sk_pages[i]; 824 svsk->sk_pages[i] = NULL; 825 } 826 rqstp->rq_arg.head[0].iov_base = page_address(rqstp->rq_pages[0]); 827 return len; 828 } 829 830 static void svc_tcp_save_pages(struct svc_sock *svsk, struct svc_rqst *rqstp) 831 { 832 unsigned int i, len, npages; 833 834 if (svsk->sk_datalen == 0) 835 return; 836 len = svsk->sk_datalen; 837 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 838 for (i = 0; i < npages; i++) { 839 svsk->sk_pages[i] = rqstp->rq_pages[i]; 840 rqstp->rq_pages[i] = NULL; 841 } 842 } 843 844 static void svc_tcp_clear_pages(struct svc_sock *svsk) 845 { 846 unsigned int i, len, npages; 847 848 if (svsk->sk_datalen == 0) 849 goto out; 850 len = svsk->sk_datalen; 851 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 852 for (i = 0; i < npages; i++) { 853 if (svsk->sk_pages[i] == NULL) { 854 WARN_ON_ONCE(1); 855 continue; 856 } 857 put_page(svsk->sk_pages[i]); 858 svsk->sk_pages[i] = NULL; 859 } 860 out: 861 svsk->sk_tcplen = 0; 862 svsk->sk_datalen = 0; 863 } 864 865 /* 866 * Receive fragment record header into sk_marker. 867 */ 868 static ssize_t svc_tcp_read_marker(struct svc_sock *svsk, 869 struct svc_rqst *rqstp) 870 { 871 ssize_t want, len; 872 873 /* If we haven't gotten the record length yet, 874 * get the next four bytes. 875 */ 876 if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) { 877 struct msghdr msg = { NULL }; 878 struct kvec iov; 879 880 want = sizeof(rpc_fraghdr) - svsk->sk_tcplen; 881 iov.iov_base = ((char *)&svsk->sk_marker) + svsk->sk_tcplen; 882 iov.iov_len = want; 883 iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, want); 884 len = sock_recvmsg(svsk->sk_sock, &msg, MSG_DONTWAIT); 885 if (len < 0) 886 return len; 887 svsk->sk_tcplen += len; 888 if (len < want) { 889 /* call again to read the remaining bytes */ 890 goto err_short; 891 } 892 trace_svcsock_marker(&svsk->sk_xprt, svsk->sk_marker); 893 if (svc_sock_reclen(svsk) + svsk->sk_datalen > 894 svsk->sk_xprt.xpt_server->sv_max_mesg) 895 goto err_too_large; 896 } 897 return svc_sock_reclen(svsk); 898 899 err_too_large: 900 net_notice_ratelimited("svc: %s %s RPC fragment too large: %d\n", 901 __func__, svsk->sk_xprt.xpt_server->sv_name, 902 svc_sock_reclen(svsk)); 903 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 904 err_short: 905 return -EAGAIN; 906 } 907 908 static int receive_cb_reply(struct svc_sock *svsk, struct svc_rqst *rqstp) 909 { 910 struct rpc_xprt *bc_xprt = svsk->sk_xprt.xpt_bc_xprt; 911 struct rpc_rqst *req = NULL; 912 struct kvec *src, *dst; 913 __be32 *p = (__be32 *)rqstp->rq_arg.head[0].iov_base; 914 __be32 xid; 915 __be32 calldir; 916 917 xid = *p++; 918 calldir = *p; 919 920 if (!bc_xprt) 921 return -EAGAIN; 922 spin_lock(&bc_xprt->queue_lock); 923 req = xprt_lookup_rqst(bc_xprt, xid); 924 if (!req) 925 goto unlock_notfound; 926 927 memcpy(&req->rq_private_buf, &req->rq_rcv_buf, sizeof(struct xdr_buf)); 928 /* 929 * XXX!: cheating for now! Only copying HEAD. 930 * But we know this is good enough for now (in fact, for any 931 * callback reply in the forseeable future). 932 */ 933 dst = &req->rq_private_buf.head[0]; 934 src = &rqstp->rq_arg.head[0]; 935 if (dst->iov_len < src->iov_len) 936 goto unlock_eagain; /* whatever; just giving up. */ 937 memcpy(dst->iov_base, src->iov_base, src->iov_len); 938 xprt_complete_rqst(req->rq_task, rqstp->rq_arg.len); 939 rqstp->rq_arg.len = 0; 940 spin_unlock(&bc_xprt->queue_lock); 941 return 0; 942 unlock_notfound: 943 printk(KERN_NOTICE 944 "%s: Got unrecognized reply: " 945 "calldir 0x%x xpt_bc_xprt %p xid %08x\n", 946 __func__, ntohl(calldir), 947 bc_xprt, ntohl(xid)); 948 unlock_eagain: 949 spin_unlock(&bc_xprt->queue_lock); 950 return -EAGAIN; 951 } 952 953 static void svc_tcp_fragment_received(struct svc_sock *svsk) 954 { 955 /* If we have more data, signal svc_xprt_enqueue() to try again */ 956 svsk->sk_tcplen = 0; 957 svsk->sk_marker = xdr_zero; 958 } 959 960 /** 961 * svc_tcp_recvfrom - Receive data from a TCP socket 962 * @rqstp: request structure into which to receive an RPC Call 963 * 964 * Called in a loop when XPT_DATA has been set. 965 * 966 * Read the 4-byte stream record marker, then use the record length 967 * in that marker to set up exactly the resources needed to receive 968 * the next RPC message into @rqstp. 969 * 970 * Returns: 971 * On success, the number of bytes in a received RPC Call, or 972 * %0 if a complete RPC Call message was not ready to return 973 * 974 * The zero return case handles partial receives and callback Replies. 975 * The state of a partial receive is preserved in the svc_sock for 976 * the next call to svc_tcp_recvfrom. 977 */ 978 static int svc_tcp_recvfrom(struct svc_rqst *rqstp) 979 { 980 struct svc_sock *svsk = 981 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 982 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 983 size_t want, base; 984 ssize_t len; 985 __be32 *p; 986 __be32 calldir; 987 988 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 989 len = svc_tcp_read_marker(svsk, rqstp); 990 if (len < 0) 991 goto error; 992 993 base = svc_tcp_restore_pages(svsk, rqstp); 994 want = len - (svsk->sk_tcplen - sizeof(rpc_fraghdr)); 995 len = svc_tcp_read_msg(rqstp, base + want, base); 996 if (len >= 0) { 997 trace_svcsock_tcp_recv(&svsk->sk_xprt, len); 998 svsk->sk_tcplen += len; 999 svsk->sk_datalen += len; 1000 } 1001 if (len != want || !svc_sock_final_rec(svsk)) 1002 goto err_incomplete; 1003 if (svsk->sk_datalen < 8) 1004 goto err_nuts; 1005 1006 rqstp->rq_arg.len = svsk->sk_datalen; 1007 rqstp->rq_arg.page_base = 0; 1008 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) { 1009 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len; 1010 rqstp->rq_arg.page_len = 0; 1011 } else 1012 rqstp->rq_arg.page_len = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1013 1014 rqstp->rq_xprt_ctxt = NULL; 1015 rqstp->rq_prot = IPPROTO_TCP; 1016 if (test_bit(XPT_LOCAL, &svsk->sk_xprt.xpt_flags)) 1017 set_bit(RQ_LOCAL, &rqstp->rq_flags); 1018 else 1019 clear_bit(RQ_LOCAL, &rqstp->rq_flags); 1020 1021 p = (__be32 *)rqstp->rq_arg.head[0].iov_base; 1022 calldir = p[1]; 1023 if (calldir) 1024 len = receive_cb_reply(svsk, rqstp); 1025 1026 /* Reset TCP read info */ 1027 svsk->sk_datalen = 0; 1028 svc_tcp_fragment_received(svsk); 1029 1030 if (len < 0) 1031 goto error; 1032 1033 svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt); 1034 if (serv->sv_stats) 1035 serv->sv_stats->nettcpcnt++; 1036 1037 return rqstp->rq_arg.len; 1038 1039 err_incomplete: 1040 svc_tcp_save_pages(svsk, rqstp); 1041 if (len < 0 && len != -EAGAIN) 1042 goto err_delete; 1043 if (len == want) 1044 svc_tcp_fragment_received(svsk); 1045 else 1046 trace_svcsock_tcp_recv_short(&svsk->sk_xprt, 1047 svc_sock_reclen(svsk), 1048 svsk->sk_tcplen - sizeof(rpc_fraghdr)); 1049 goto err_noclose; 1050 error: 1051 if (len != -EAGAIN) 1052 goto err_delete; 1053 trace_svcsock_tcp_recv_eagain(&svsk->sk_xprt, 0); 1054 return 0; 1055 err_nuts: 1056 svsk->sk_datalen = 0; 1057 err_delete: 1058 trace_svcsock_tcp_recv_err(&svsk->sk_xprt, len); 1059 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 1060 err_noclose: 1061 return 0; /* record not complete */ 1062 } 1063 1064 /** 1065 * svc_tcp_sendto - Send out a reply on a TCP socket 1066 * @rqstp: completed svc_rqst 1067 * 1068 * xpt_mutex ensures @rqstp's whole message is written to the socket 1069 * without interruption. 1070 * 1071 * Returns the number of bytes sent, or a negative errno. 1072 */ 1073 static int svc_tcp_sendto(struct svc_rqst *rqstp) 1074 { 1075 struct svc_xprt *xprt = rqstp->rq_xprt; 1076 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1077 struct xdr_buf *xdr = &rqstp->rq_res; 1078 rpc_fraghdr marker = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT | 1079 (u32)xdr->len); 1080 struct msghdr msg = { 1081 .msg_flags = 0, 1082 }; 1083 unsigned int uninitialized_var(sent); 1084 int err; 1085 1086 svc_tcp_release_rqst(rqstp); 1087 1088 mutex_lock(&xprt->xpt_mutex); 1089 if (svc_xprt_is_dead(xprt)) 1090 goto out_notconn; 1091 err = xprt_sock_sendmsg(svsk->sk_sock, &msg, xdr, 0, marker, &sent); 1092 xdr_free_bvec(xdr); 1093 trace_svcsock_tcp_send(xprt, err < 0 ? err : sent); 1094 if (err < 0 || sent != (xdr->len + sizeof(marker))) 1095 goto out_close; 1096 mutex_unlock(&xprt->xpt_mutex); 1097 return sent; 1098 1099 out_notconn: 1100 mutex_unlock(&xprt->xpt_mutex); 1101 return -ENOTCONN; 1102 out_close: 1103 pr_notice("rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n", 1104 xprt->xpt_server->sv_name, 1105 (err < 0) ? "got error" : "sent", 1106 (err < 0) ? err : sent, xdr->len); 1107 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1108 svc_xprt_enqueue(xprt); 1109 mutex_unlock(&xprt->xpt_mutex); 1110 return -EAGAIN; 1111 } 1112 1113 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv, 1114 struct net *net, 1115 struct sockaddr *sa, int salen, 1116 int flags) 1117 { 1118 return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags); 1119 } 1120 1121 static const struct svc_xprt_ops svc_tcp_ops = { 1122 .xpo_create = svc_tcp_create, 1123 .xpo_recvfrom = svc_tcp_recvfrom, 1124 .xpo_sendto = svc_tcp_sendto, 1125 .xpo_read_payload = svc_sock_read_payload, 1126 .xpo_release_rqst = svc_tcp_release_rqst, 1127 .xpo_detach = svc_tcp_sock_detach, 1128 .xpo_free = svc_sock_free, 1129 .xpo_has_wspace = svc_tcp_has_wspace, 1130 .xpo_accept = svc_tcp_accept, 1131 .xpo_secure_port = svc_sock_secure_port, 1132 .xpo_kill_temp_xprt = svc_tcp_kill_temp_xprt, 1133 }; 1134 1135 static struct svc_xprt_class svc_tcp_class = { 1136 .xcl_name = "tcp", 1137 .xcl_owner = THIS_MODULE, 1138 .xcl_ops = &svc_tcp_ops, 1139 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP, 1140 .xcl_ident = XPRT_TRANSPORT_TCP, 1141 }; 1142 1143 void svc_init_xprt_sock(void) 1144 { 1145 svc_reg_xprt_class(&svc_tcp_class); 1146 svc_reg_xprt_class(&svc_udp_class); 1147 } 1148 1149 void svc_cleanup_xprt_sock(void) 1150 { 1151 svc_unreg_xprt_class(&svc_tcp_class); 1152 svc_unreg_xprt_class(&svc_udp_class); 1153 } 1154 1155 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv) 1156 { 1157 struct sock *sk = svsk->sk_sk; 1158 1159 svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_tcp_class, 1160 &svsk->sk_xprt, serv); 1161 set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); 1162 set_bit(XPT_CONG_CTRL, &svsk->sk_xprt.xpt_flags); 1163 if (sk->sk_state == TCP_LISTEN) { 1164 strcpy(svsk->sk_xprt.xpt_remotebuf, "listener"); 1165 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags); 1166 sk->sk_data_ready = svc_tcp_listen_data_ready; 1167 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 1168 } else { 1169 sk->sk_state_change = svc_tcp_state_change; 1170 sk->sk_data_ready = svc_data_ready; 1171 sk->sk_write_space = svc_write_space; 1172 1173 svsk->sk_marker = xdr_zero; 1174 svsk->sk_tcplen = 0; 1175 svsk->sk_datalen = 0; 1176 memset(&svsk->sk_pages[0], 0, sizeof(svsk->sk_pages)); 1177 1178 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF; 1179 1180 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 1181 switch (sk->sk_state) { 1182 case TCP_SYN_RECV: 1183 case TCP_ESTABLISHED: 1184 break; 1185 default: 1186 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 1187 } 1188 } 1189 } 1190 1191 void svc_sock_update_bufs(struct svc_serv *serv) 1192 { 1193 /* 1194 * The number of server threads has changed. Update 1195 * rcvbuf and sndbuf accordingly on all sockets 1196 */ 1197 struct svc_sock *svsk; 1198 1199 spin_lock_bh(&serv->sv_lock); 1200 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) 1201 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 1202 spin_unlock_bh(&serv->sv_lock); 1203 } 1204 EXPORT_SYMBOL_GPL(svc_sock_update_bufs); 1205 1206 /* 1207 * Initialize socket for RPC use and create svc_sock struct 1208 */ 1209 static struct svc_sock *svc_setup_socket(struct svc_serv *serv, 1210 struct socket *sock, 1211 int flags) 1212 { 1213 struct svc_sock *svsk; 1214 struct sock *inet; 1215 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS); 1216 int err = 0; 1217 1218 svsk = kzalloc(sizeof(*svsk), GFP_KERNEL); 1219 if (!svsk) 1220 return ERR_PTR(-ENOMEM); 1221 1222 inet = sock->sk; 1223 1224 /* Register socket with portmapper */ 1225 if (pmap_register) 1226 err = svc_register(serv, sock_net(sock->sk), inet->sk_family, 1227 inet->sk_protocol, 1228 ntohs(inet_sk(inet)->inet_sport)); 1229 1230 if (err < 0) { 1231 kfree(svsk); 1232 return ERR_PTR(err); 1233 } 1234 1235 svsk->sk_sock = sock; 1236 svsk->sk_sk = inet; 1237 svsk->sk_ostate = inet->sk_state_change; 1238 svsk->sk_odata = inet->sk_data_ready; 1239 svsk->sk_owspace = inet->sk_write_space; 1240 /* 1241 * This barrier is necessary in order to prevent race condition 1242 * with svc_data_ready(), svc_listen_data_ready() and others 1243 * when calling callbacks above. 1244 */ 1245 wmb(); 1246 inet->sk_user_data = svsk; 1247 1248 /* Initialize the socket */ 1249 if (sock->type == SOCK_DGRAM) 1250 svc_udp_init(svsk, serv); 1251 else 1252 svc_tcp_init(svsk, serv); 1253 1254 trace_svcsock_new_socket(sock); 1255 return svsk; 1256 } 1257 1258 bool svc_alien_sock(struct net *net, int fd) 1259 { 1260 int err; 1261 struct socket *sock = sockfd_lookup(fd, &err); 1262 bool ret = false; 1263 1264 if (!sock) 1265 goto out; 1266 if (sock_net(sock->sk) != net) 1267 ret = true; 1268 sockfd_put(sock); 1269 out: 1270 return ret; 1271 } 1272 EXPORT_SYMBOL_GPL(svc_alien_sock); 1273 1274 /** 1275 * svc_addsock - add a listener socket to an RPC service 1276 * @serv: pointer to RPC service to which to add a new listener 1277 * @fd: file descriptor of the new listener 1278 * @name_return: pointer to buffer to fill in with name of listener 1279 * @len: size of the buffer 1280 * @cred: credential 1281 * 1282 * Fills in socket name and returns positive length of name if successful. 1283 * Name is terminated with '\n'. On error, returns a negative errno 1284 * value. 1285 */ 1286 int svc_addsock(struct svc_serv *serv, const int fd, char *name_return, 1287 const size_t len, const struct cred *cred) 1288 { 1289 int err = 0; 1290 struct socket *so = sockfd_lookup(fd, &err); 1291 struct svc_sock *svsk = NULL; 1292 struct sockaddr_storage addr; 1293 struct sockaddr *sin = (struct sockaddr *)&addr; 1294 int salen; 1295 1296 if (!so) 1297 return err; 1298 err = -EAFNOSUPPORT; 1299 if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6)) 1300 goto out; 1301 err = -EPROTONOSUPPORT; 1302 if (so->sk->sk_protocol != IPPROTO_TCP && 1303 so->sk->sk_protocol != IPPROTO_UDP) 1304 goto out; 1305 err = -EISCONN; 1306 if (so->state > SS_UNCONNECTED) 1307 goto out; 1308 err = -ENOENT; 1309 if (!try_module_get(THIS_MODULE)) 1310 goto out; 1311 svsk = svc_setup_socket(serv, so, SVC_SOCK_DEFAULTS); 1312 if (IS_ERR(svsk)) { 1313 module_put(THIS_MODULE); 1314 err = PTR_ERR(svsk); 1315 goto out; 1316 } 1317 salen = kernel_getsockname(svsk->sk_sock, sin); 1318 if (salen >= 0) 1319 svc_xprt_set_local(&svsk->sk_xprt, sin, salen); 1320 svsk->sk_xprt.xpt_cred = get_cred(cred); 1321 svc_add_new_perm_xprt(serv, &svsk->sk_xprt); 1322 return svc_one_sock_name(svsk, name_return, len); 1323 out: 1324 sockfd_put(so); 1325 return err; 1326 } 1327 EXPORT_SYMBOL_GPL(svc_addsock); 1328 1329 /* 1330 * Create socket for RPC service. 1331 */ 1332 static struct svc_xprt *svc_create_socket(struct svc_serv *serv, 1333 int protocol, 1334 struct net *net, 1335 struct sockaddr *sin, int len, 1336 int flags) 1337 { 1338 struct svc_sock *svsk; 1339 struct socket *sock; 1340 int error; 1341 int type; 1342 struct sockaddr_storage addr; 1343 struct sockaddr *newsin = (struct sockaddr *)&addr; 1344 int newlen; 1345 int family; 1346 1347 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) { 1348 printk(KERN_WARNING "svc: only UDP and TCP " 1349 "sockets supported\n"); 1350 return ERR_PTR(-EINVAL); 1351 } 1352 1353 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM; 1354 switch (sin->sa_family) { 1355 case AF_INET6: 1356 family = PF_INET6; 1357 break; 1358 case AF_INET: 1359 family = PF_INET; 1360 break; 1361 default: 1362 return ERR_PTR(-EINVAL); 1363 } 1364 1365 error = __sock_create(net, family, type, protocol, &sock, 1); 1366 if (error < 0) 1367 return ERR_PTR(error); 1368 1369 svc_reclassify_socket(sock); 1370 1371 /* 1372 * If this is an PF_INET6 listener, we want to avoid 1373 * getting requests from IPv4 remotes. Those should 1374 * be shunted to a PF_INET listener via rpcbind. 1375 */ 1376 if (family == PF_INET6) 1377 ip6_sock_set_v6only(sock->sk); 1378 if (type == SOCK_STREAM) 1379 sock->sk->sk_reuse = SK_CAN_REUSE; /* allow address reuse */ 1380 error = kernel_bind(sock, sin, len); 1381 if (error < 0) 1382 goto bummer; 1383 1384 error = kernel_getsockname(sock, newsin); 1385 if (error < 0) 1386 goto bummer; 1387 newlen = error; 1388 1389 if (protocol == IPPROTO_TCP) { 1390 if ((error = kernel_listen(sock, 64)) < 0) 1391 goto bummer; 1392 } 1393 1394 svsk = svc_setup_socket(serv, sock, flags); 1395 if (IS_ERR(svsk)) { 1396 error = PTR_ERR(svsk); 1397 goto bummer; 1398 } 1399 svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen); 1400 return (struct svc_xprt *)svsk; 1401 bummer: 1402 sock_release(sock); 1403 return ERR_PTR(error); 1404 } 1405 1406 /* 1407 * Detach the svc_sock from the socket so that no 1408 * more callbacks occur. 1409 */ 1410 static void svc_sock_detach(struct svc_xprt *xprt) 1411 { 1412 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1413 struct sock *sk = svsk->sk_sk; 1414 1415 /* put back the old socket callbacks */ 1416 lock_sock(sk); 1417 sk->sk_state_change = svsk->sk_ostate; 1418 sk->sk_data_ready = svsk->sk_odata; 1419 sk->sk_write_space = svsk->sk_owspace; 1420 sk->sk_user_data = NULL; 1421 release_sock(sk); 1422 } 1423 1424 /* 1425 * Disconnect the socket, and reset the callbacks 1426 */ 1427 static void svc_tcp_sock_detach(struct svc_xprt *xprt) 1428 { 1429 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1430 1431 svc_sock_detach(xprt); 1432 1433 if (!test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 1434 svc_tcp_clear_pages(svsk); 1435 kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR); 1436 } 1437 } 1438 1439 /* 1440 * Free the svc_sock's socket resources and the svc_sock itself. 1441 */ 1442 static void svc_sock_free(struct svc_xprt *xprt) 1443 { 1444 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1445 1446 if (svsk->sk_sock->file) 1447 sockfd_put(svsk->sk_sock); 1448 else 1449 sock_release(svsk->sk_sock); 1450 kfree(svsk); 1451 } 1452