1 /* 2 * linux/net/sunrpc/svcsock.c 3 * 4 * These are the RPC server socket internals. 5 * 6 * The server scheduling algorithm does not always distribute the load 7 * evenly when servicing a single client. May need to modify the 8 * svc_xprt_enqueue procedure... 9 * 10 * TCP support is largely untested and may be a little slow. The problem 11 * is that we currently do two separate recvfrom's, one for the 4-byte 12 * record length, and the second for the actual record. This could possibly 13 * be improved by always reading a minimum size of around 100 bytes and 14 * tucking any superfluous bytes away in a temporary store. Still, that 15 * leaves write requests out in the rain. An alternative may be to peek at 16 * the first skb in the queue, and if it matches the next TCP sequence 17 * number, to extract the record marker. Yuck. 18 * 19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched.h> 24 #include <linux/errno.h> 25 #include <linux/fcntl.h> 26 #include <linux/net.h> 27 #include <linux/in.h> 28 #include <linux/inet.h> 29 #include <linux/udp.h> 30 #include <linux/tcp.h> 31 #include <linux/unistd.h> 32 #include <linux/slab.h> 33 #include <linux/netdevice.h> 34 #include <linux/skbuff.h> 35 #include <linux/file.h> 36 #include <linux/freezer.h> 37 #include <net/sock.h> 38 #include <net/checksum.h> 39 #include <net/ip.h> 40 #include <net/ipv6.h> 41 #include <net/tcp.h> 42 #include <net/tcp_states.h> 43 #include <asm/uaccess.h> 44 #include <asm/ioctls.h> 45 46 #include <linux/sunrpc/types.h> 47 #include <linux/sunrpc/clnt.h> 48 #include <linux/sunrpc/xdr.h> 49 #include <linux/sunrpc/msg_prot.h> 50 #include <linux/sunrpc/svcsock.h> 51 #include <linux/sunrpc/stats.h> 52 53 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 54 55 56 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *, 57 int *errp, int flags); 58 static void svc_udp_data_ready(struct sock *, int); 59 static int svc_udp_recvfrom(struct svc_rqst *); 60 static int svc_udp_sendto(struct svc_rqst *); 61 static void svc_sock_detach(struct svc_xprt *); 62 static void svc_sock_free(struct svc_xprt *); 63 64 static struct svc_xprt *svc_create_socket(struct svc_serv *, int, 65 struct sockaddr *, int, int); 66 #ifdef CONFIG_DEBUG_LOCK_ALLOC 67 static struct lock_class_key svc_key[2]; 68 static struct lock_class_key svc_slock_key[2]; 69 70 static void svc_reclassify_socket(struct socket *sock) 71 { 72 struct sock *sk = sock->sk; 73 BUG_ON(sock_owned_by_user(sk)); 74 switch (sk->sk_family) { 75 case AF_INET: 76 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD", 77 &svc_slock_key[0], 78 "sk_xprt.xpt_lock-AF_INET-NFSD", 79 &svc_key[0]); 80 break; 81 82 case AF_INET6: 83 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD", 84 &svc_slock_key[1], 85 "sk_xprt.xpt_lock-AF_INET6-NFSD", 86 &svc_key[1]); 87 break; 88 89 default: 90 BUG(); 91 } 92 } 93 #else 94 static void svc_reclassify_socket(struct socket *sock) 95 { 96 } 97 #endif 98 99 /* 100 * Release an skbuff after use 101 */ 102 static void svc_release_skb(struct svc_rqst *rqstp) 103 { 104 struct sk_buff *skb = rqstp->rq_xprt_ctxt; 105 struct svc_deferred_req *dr = rqstp->rq_deferred; 106 107 if (skb) { 108 struct svc_sock *svsk = 109 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 110 rqstp->rq_xprt_ctxt = NULL; 111 112 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb); 113 skb_free_datagram(svsk->sk_sk, skb); 114 } 115 if (dr) { 116 rqstp->rq_deferred = NULL; 117 kfree(dr); 118 } 119 } 120 121 union svc_pktinfo_u { 122 struct in_pktinfo pkti; 123 struct in6_pktinfo pkti6; 124 }; 125 #define SVC_PKTINFO_SPACE \ 126 CMSG_SPACE(sizeof(union svc_pktinfo_u)) 127 128 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh) 129 { 130 struct svc_sock *svsk = 131 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 132 switch (svsk->sk_sk->sk_family) { 133 case AF_INET: { 134 struct in_pktinfo *pki = CMSG_DATA(cmh); 135 136 cmh->cmsg_level = SOL_IP; 137 cmh->cmsg_type = IP_PKTINFO; 138 pki->ipi_ifindex = 0; 139 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr; 140 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 141 } 142 break; 143 144 case AF_INET6: { 145 struct in6_pktinfo *pki = CMSG_DATA(cmh); 146 147 cmh->cmsg_level = SOL_IPV6; 148 cmh->cmsg_type = IPV6_PKTINFO; 149 pki->ipi6_ifindex = 0; 150 ipv6_addr_copy(&pki->ipi6_addr, 151 &rqstp->rq_daddr.addr6); 152 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 153 } 154 break; 155 } 156 return; 157 } 158 159 /* 160 * Generic sendto routine 161 */ 162 static int svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr) 163 { 164 struct svc_sock *svsk = 165 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 166 struct socket *sock = svsk->sk_sock; 167 int slen; 168 union { 169 struct cmsghdr hdr; 170 long all[SVC_PKTINFO_SPACE / sizeof(long)]; 171 } buffer; 172 struct cmsghdr *cmh = &buffer.hdr; 173 int len = 0; 174 int result; 175 int size; 176 struct page **ppage = xdr->pages; 177 size_t base = xdr->page_base; 178 unsigned int pglen = xdr->page_len; 179 unsigned int flags = MSG_MORE; 180 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]); 181 182 slen = xdr->len; 183 184 if (rqstp->rq_prot == IPPROTO_UDP) { 185 struct msghdr msg = { 186 .msg_name = &rqstp->rq_addr, 187 .msg_namelen = rqstp->rq_addrlen, 188 .msg_control = cmh, 189 .msg_controllen = sizeof(buffer), 190 .msg_flags = MSG_MORE, 191 }; 192 193 svc_set_cmsg_data(rqstp, cmh); 194 195 if (sock_sendmsg(sock, &msg, 0) < 0) 196 goto out; 197 } 198 199 /* send head */ 200 if (slen == xdr->head[0].iov_len) 201 flags = 0; 202 len = kernel_sendpage(sock, rqstp->rq_respages[0], 0, 203 xdr->head[0].iov_len, flags); 204 if (len != xdr->head[0].iov_len) 205 goto out; 206 slen -= xdr->head[0].iov_len; 207 if (slen == 0) 208 goto out; 209 210 /* send page data */ 211 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen; 212 while (pglen > 0) { 213 if (slen == size) 214 flags = 0; 215 result = kernel_sendpage(sock, *ppage, base, size, flags); 216 if (result > 0) 217 len += result; 218 if (result != size) 219 goto out; 220 slen -= size; 221 pglen -= size; 222 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen; 223 base = 0; 224 ppage++; 225 } 226 /* send tail */ 227 if (xdr->tail[0].iov_len) { 228 result = kernel_sendpage(sock, rqstp->rq_respages[0], 229 ((unsigned long)xdr->tail[0].iov_base) 230 & (PAGE_SIZE-1), 231 xdr->tail[0].iov_len, 0); 232 233 if (result > 0) 234 len += result; 235 } 236 out: 237 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n", 238 svsk, xdr->head[0].iov_base, xdr->head[0].iov_len, 239 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf))); 240 241 return len; 242 } 243 244 /* 245 * Report socket names for nfsdfs 246 */ 247 static int one_sock_name(char *buf, struct svc_sock *svsk) 248 { 249 int len; 250 251 switch(svsk->sk_sk->sk_family) { 252 case AF_INET: 253 len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n", 254 svsk->sk_sk->sk_protocol==IPPROTO_UDP? 255 "udp" : "tcp", 256 NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr), 257 inet_sk(svsk->sk_sk)->num); 258 break; 259 default: 260 len = sprintf(buf, "*unknown-%d*\n", 261 svsk->sk_sk->sk_family); 262 } 263 return len; 264 } 265 266 int 267 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose) 268 { 269 struct svc_sock *svsk, *closesk = NULL; 270 int len = 0; 271 272 if (!serv) 273 return 0; 274 spin_lock_bh(&serv->sv_lock); 275 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) { 276 int onelen = one_sock_name(buf+len, svsk); 277 if (toclose && strcmp(toclose, buf+len) == 0) 278 closesk = svsk; 279 else 280 len += onelen; 281 } 282 spin_unlock_bh(&serv->sv_lock); 283 if (closesk) 284 /* Should unregister with portmap, but you cannot 285 * unregister just one protocol... 286 */ 287 svc_close_xprt(&closesk->sk_xprt); 288 else if (toclose) 289 return -ENOENT; 290 return len; 291 } 292 EXPORT_SYMBOL(svc_sock_names); 293 294 /* 295 * Check input queue length 296 */ 297 static int svc_recv_available(struct svc_sock *svsk) 298 { 299 struct socket *sock = svsk->sk_sock; 300 int avail, err; 301 302 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail); 303 304 return (err >= 0)? avail : err; 305 } 306 307 /* 308 * Generic recvfrom routine. 309 */ 310 static int svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, 311 int buflen) 312 { 313 struct svc_sock *svsk = 314 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 315 struct msghdr msg = { 316 .msg_flags = MSG_DONTWAIT, 317 }; 318 int len; 319 320 rqstp->rq_xprt_hlen = 0; 321 322 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen, 323 msg.msg_flags); 324 325 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n", 326 svsk, iov[0].iov_base, iov[0].iov_len, len); 327 return len; 328 } 329 330 /* 331 * Set socket snd and rcv buffer lengths 332 */ 333 static void svc_sock_setbufsize(struct socket *sock, unsigned int snd, 334 unsigned int rcv) 335 { 336 #if 0 337 mm_segment_t oldfs; 338 oldfs = get_fs(); set_fs(KERNEL_DS); 339 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF, 340 (char*)&snd, sizeof(snd)); 341 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF, 342 (char*)&rcv, sizeof(rcv)); 343 #else 344 /* sock_setsockopt limits use to sysctl_?mem_max, 345 * which isn't acceptable. Until that is made conditional 346 * on not having CAP_SYS_RESOURCE or similar, we go direct... 347 * DaveM said I could! 348 */ 349 lock_sock(sock->sk); 350 sock->sk->sk_sndbuf = snd * 2; 351 sock->sk->sk_rcvbuf = rcv * 2; 352 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK; 353 release_sock(sock->sk); 354 #endif 355 } 356 /* 357 * INET callback when data has been received on the socket. 358 */ 359 static void svc_udp_data_ready(struct sock *sk, int count) 360 { 361 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 362 363 if (svsk) { 364 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n", 365 svsk, sk, count, 366 test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags)); 367 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 368 svc_xprt_enqueue(&svsk->sk_xprt); 369 } 370 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 371 wake_up_interruptible(sk->sk_sleep); 372 } 373 374 /* 375 * INET callback when space is newly available on the socket. 376 */ 377 static void svc_write_space(struct sock *sk) 378 { 379 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data); 380 381 if (svsk) { 382 dprintk("svc: socket %p(inet %p), write_space busy=%d\n", 383 svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags)); 384 svc_xprt_enqueue(&svsk->sk_xprt); 385 } 386 387 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) { 388 dprintk("RPC svc_write_space: someone sleeping on %p\n", 389 svsk); 390 wake_up_interruptible(sk->sk_sleep); 391 } 392 } 393 394 /* 395 * Copy the UDP datagram's destination address to the rqstp structure. 396 * The 'destination' address in this case is the address to which the 397 * peer sent the datagram, i.e. our local address. For multihomed 398 * hosts, this can change from msg to msg. Note that only the IP 399 * address changes, the port number should remain the same. 400 */ 401 static void svc_udp_get_dest_address(struct svc_rqst *rqstp, 402 struct cmsghdr *cmh) 403 { 404 struct svc_sock *svsk = 405 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 406 switch (svsk->sk_sk->sk_family) { 407 case AF_INET: { 408 struct in_pktinfo *pki = CMSG_DATA(cmh); 409 rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr; 410 break; 411 } 412 case AF_INET6: { 413 struct in6_pktinfo *pki = CMSG_DATA(cmh); 414 ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr); 415 break; 416 } 417 } 418 } 419 420 /* 421 * Receive a datagram from a UDP socket. 422 */ 423 static int svc_udp_recvfrom(struct svc_rqst *rqstp) 424 { 425 struct svc_sock *svsk = 426 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 427 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 428 struct sk_buff *skb; 429 union { 430 struct cmsghdr hdr; 431 long all[SVC_PKTINFO_SPACE / sizeof(long)]; 432 } buffer; 433 struct cmsghdr *cmh = &buffer.hdr; 434 int err, len; 435 struct msghdr msg = { 436 .msg_name = svc_addr(rqstp), 437 .msg_control = cmh, 438 .msg_controllen = sizeof(buffer), 439 .msg_flags = MSG_DONTWAIT, 440 }; 441 442 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags)) 443 /* udp sockets need large rcvbuf as all pending 444 * requests are still in that buffer. sndbuf must 445 * also be large enough that there is enough space 446 * for one reply per thread. We count all threads 447 * rather than threads in a particular pool, which 448 * provides an upper bound on the number of threads 449 * which will access the socket. 450 */ 451 svc_sock_setbufsize(svsk->sk_sock, 452 (serv->sv_nrthreads+3) * serv->sv_max_mesg, 453 (serv->sv_nrthreads+3) * serv->sv_max_mesg); 454 455 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 456 skb = NULL; 457 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL, 458 0, 0, MSG_PEEK | MSG_DONTWAIT); 459 if (err >= 0) 460 skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err); 461 462 if (skb == NULL) { 463 if (err != -EAGAIN) { 464 /* possibly an icmp error */ 465 dprintk("svc: recvfrom returned error %d\n", -err); 466 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 467 } 468 svc_xprt_received(&svsk->sk_xprt); 469 return -EAGAIN; 470 } 471 len = svc_addr_len(svc_addr(rqstp)); 472 if (len < 0) 473 return len; 474 rqstp->rq_addrlen = len; 475 if (skb->tstamp.tv64 == 0) { 476 skb->tstamp = ktime_get_real(); 477 /* Don't enable netstamp, sunrpc doesn't 478 need that much accuracy */ 479 } 480 svsk->sk_sk->sk_stamp = skb->tstamp; 481 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */ 482 483 /* 484 * Maybe more packets - kick another thread ASAP. 485 */ 486 svc_xprt_received(&svsk->sk_xprt); 487 488 len = skb->len - sizeof(struct udphdr); 489 rqstp->rq_arg.len = len; 490 491 rqstp->rq_prot = IPPROTO_UDP; 492 493 if (cmh->cmsg_level != IPPROTO_IP || 494 cmh->cmsg_type != IP_PKTINFO) { 495 if (net_ratelimit()) 496 printk("rpcsvc: received unknown control message:" 497 "%d/%d\n", 498 cmh->cmsg_level, cmh->cmsg_type); 499 skb_free_datagram(svsk->sk_sk, skb); 500 return 0; 501 } 502 svc_udp_get_dest_address(rqstp, cmh); 503 504 if (skb_is_nonlinear(skb)) { 505 /* we have to copy */ 506 local_bh_disable(); 507 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) { 508 local_bh_enable(); 509 /* checksum error */ 510 skb_free_datagram(svsk->sk_sk, skb); 511 return 0; 512 } 513 local_bh_enable(); 514 skb_free_datagram(svsk->sk_sk, skb); 515 } else { 516 /* we can use it in-place */ 517 rqstp->rq_arg.head[0].iov_base = skb->data + 518 sizeof(struct udphdr); 519 rqstp->rq_arg.head[0].iov_len = len; 520 if (skb_checksum_complete(skb)) { 521 skb_free_datagram(svsk->sk_sk, skb); 522 return 0; 523 } 524 rqstp->rq_xprt_ctxt = skb; 525 } 526 527 rqstp->rq_arg.page_base = 0; 528 if (len <= rqstp->rq_arg.head[0].iov_len) { 529 rqstp->rq_arg.head[0].iov_len = len; 530 rqstp->rq_arg.page_len = 0; 531 rqstp->rq_respages = rqstp->rq_pages+1; 532 } else { 533 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 534 rqstp->rq_respages = rqstp->rq_pages + 1 + 535 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE); 536 } 537 538 if (serv->sv_stats) 539 serv->sv_stats->netudpcnt++; 540 541 return len; 542 } 543 544 static int 545 svc_udp_sendto(struct svc_rqst *rqstp) 546 { 547 int error; 548 549 error = svc_sendto(rqstp, &rqstp->rq_res); 550 if (error == -ECONNREFUSED) 551 /* ICMP error on earlier request. */ 552 error = svc_sendto(rqstp, &rqstp->rq_res); 553 554 return error; 555 } 556 557 static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp) 558 { 559 } 560 561 static int svc_udp_has_wspace(struct svc_xprt *xprt) 562 { 563 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 564 struct svc_serv *serv = xprt->xpt_server; 565 unsigned long required; 566 567 /* 568 * Set the SOCK_NOSPACE flag before checking the available 569 * sock space. 570 */ 571 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 572 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg; 573 if (required*2 > sock_wspace(svsk->sk_sk)) 574 return 0; 575 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 576 return 1; 577 } 578 579 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt) 580 { 581 BUG(); 582 return NULL; 583 } 584 585 static struct svc_xprt *svc_udp_create(struct svc_serv *serv, 586 struct sockaddr *sa, int salen, 587 int flags) 588 { 589 return svc_create_socket(serv, IPPROTO_UDP, sa, salen, flags); 590 } 591 592 static struct svc_xprt_ops svc_udp_ops = { 593 .xpo_create = svc_udp_create, 594 .xpo_recvfrom = svc_udp_recvfrom, 595 .xpo_sendto = svc_udp_sendto, 596 .xpo_release_rqst = svc_release_skb, 597 .xpo_detach = svc_sock_detach, 598 .xpo_free = svc_sock_free, 599 .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr, 600 .xpo_has_wspace = svc_udp_has_wspace, 601 .xpo_accept = svc_udp_accept, 602 }; 603 604 static struct svc_xprt_class svc_udp_class = { 605 .xcl_name = "udp", 606 .xcl_owner = THIS_MODULE, 607 .xcl_ops = &svc_udp_ops, 608 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP, 609 }; 610 611 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv) 612 { 613 int one = 1; 614 mm_segment_t oldfs; 615 616 svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv); 617 clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); 618 svsk->sk_sk->sk_data_ready = svc_udp_data_ready; 619 svsk->sk_sk->sk_write_space = svc_write_space; 620 621 /* initialise setting must have enough space to 622 * receive and respond to one request. 623 * svc_udp_recvfrom will re-adjust if necessary 624 */ 625 svc_sock_setbufsize(svsk->sk_sock, 626 3 * svsk->sk_xprt.xpt_server->sv_max_mesg, 627 3 * svsk->sk_xprt.xpt_server->sv_max_mesg); 628 629 /* data might have come in before data_ready set up */ 630 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 631 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 632 633 oldfs = get_fs(); 634 set_fs(KERNEL_DS); 635 /* make sure we get destination address info */ 636 svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO, 637 (char __user *)&one, sizeof(one)); 638 set_fs(oldfs); 639 } 640 641 /* 642 * A data_ready event on a listening socket means there's a connection 643 * pending. Do not use state_change as a substitute for it. 644 */ 645 static void svc_tcp_listen_data_ready(struct sock *sk, int count_unused) 646 { 647 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 648 649 dprintk("svc: socket %p TCP (listen) state change %d\n", 650 sk, sk->sk_state); 651 652 /* 653 * This callback may called twice when a new connection 654 * is established as a child socket inherits everything 655 * from a parent LISTEN socket. 656 * 1) data_ready method of the parent socket will be called 657 * when one of child sockets become ESTABLISHED. 658 * 2) data_ready method of the child socket may be called 659 * when it receives data before the socket is accepted. 660 * In case of 2, we should ignore it silently. 661 */ 662 if (sk->sk_state == TCP_LISTEN) { 663 if (svsk) { 664 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 665 svc_xprt_enqueue(&svsk->sk_xprt); 666 } else 667 printk("svc: socket %p: no user data\n", sk); 668 } 669 670 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 671 wake_up_interruptible_all(sk->sk_sleep); 672 } 673 674 /* 675 * A state change on a connected socket means it's dying or dead. 676 */ 677 static void svc_tcp_state_change(struct sock *sk) 678 { 679 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 680 681 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n", 682 sk, sk->sk_state, sk->sk_user_data); 683 684 if (!svsk) 685 printk("svc: socket %p: no user data\n", sk); 686 else { 687 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 688 svc_xprt_enqueue(&svsk->sk_xprt); 689 } 690 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 691 wake_up_interruptible_all(sk->sk_sleep); 692 } 693 694 static void svc_tcp_data_ready(struct sock *sk, int count) 695 { 696 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 697 698 dprintk("svc: socket %p TCP data ready (svsk %p)\n", 699 sk, sk->sk_user_data); 700 if (svsk) { 701 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 702 svc_xprt_enqueue(&svsk->sk_xprt); 703 } 704 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 705 wake_up_interruptible(sk->sk_sleep); 706 } 707 708 /* 709 * Accept a TCP connection 710 */ 711 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt) 712 { 713 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 714 struct sockaddr_storage addr; 715 struct sockaddr *sin = (struct sockaddr *) &addr; 716 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 717 struct socket *sock = svsk->sk_sock; 718 struct socket *newsock; 719 struct svc_sock *newsvsk; 720 int err, slen; 721 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]); 722 723 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock); 724 if (!sock) 725 return NULL; 726 727 clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 728 err = kernel_accept(sock, &newsock, O_NONBLOCK); 729 if (err < 0) { 730 if (err == -ENOMEM) 731 printk(KERN_WARNING "%s: no more sockets!\n", 732 serv->sv_name); 733 else if (err != -EAGAIN && net_ratelimit()) 734 printk(KERN_WARNING "%s: accept failed (err %d)!\n", 735 serv->sv_name, -err); 736 return NULL; 737 } 738 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 739 740 err = kernel_getpeername(newsock, sin, &slen); 741 if (err < 0) { 742 if (net_ratelimit()) 743 printk(KERN_WARNING "%s: peername failed (err %d)!\n", 744 serv->sv_name, -err); 745 goto failed; /* aborted connection or whatever */ 746 } 747 748 /* Ideally, we would want to reject connections from unauthorized 749 * hosts here, but when we get encryption, the IP of the host won't 750 * tell us anything. For now just warn about unpriv connections. 751 */ 752 if (!svc_port_is_privileged(sin)) { 753 dprintk(KERN_WARNING 754 "%s: connect from unprivileged port: %s\n", 755 serv->sv_name, 756 __svc_print_addr(sin, buf, sizeof(buf))); 757 } 758 dprintk("%s: connect from %s\n", serv->sv_name, 759 __svc_print_addr(sin, buf, sizeof(buf))); 760 761 /* make sure that a write doesn't block forever when 762 * low on memory 763 */ 764 newsock->sk->sk_sndtimeo = HZ*30; 765 766 if (!(newsvsk = svc_setup_socket(serv, newsock, &err, 767 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY)))) 768 goto failed; 769 svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen); 770 err = kernel_getsockname(newsock, sin, &slen); 771 if (unlikely(err < 0)) { 772 dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err); 773 slen = offsetof(struct sockaddr, sa_data); 774 } 775 svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen); 776 777 if (serv->sv_stats) 778 serv->sv_stats->nettcpconn++; 779 780 return &newsvsk->sk_xprt; 781 782 failed: 783 sock_release(newsock); 784 return NULL; 785 } 786 787 /* 788 * Receive data from a TCP socket. 789 */ 790 static int svc_tcp_recvfrom(struct svc_rqst *rqstp) 791 { 792 struct svc_sock *svsk = 793 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 794 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 795 int len; 796 struct kvec *vec; 797 int pnum, vlen; 798 799 dprintk("svc: tcp_recv %p data %d conn %d close %d\n", 800 svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags), 801 test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags), 802 test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags)); 803 804 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags)) 805 /* sndbuf needs to have room for one request 806 * per thread, otherwise we can stall even when the 807 * network isn't a bottleneck. 808 * 809 * We count all threads rather than threads in a 810 * particular pool, which provides an upper bound 811 * on the number of threads which will access the socket. 812 * 813 * rcvbuf just needs to be able to hold a few requests. 814 * Normally they will be removed from the queue 815 * as soon a a complete request arrives. 816 */ 817 svc_sock_setbufsize(svsk->sk_sock, 818 (serv->sv_nrthreads+3) * serv->sv_max_mesg, 819 3 * serv->sv_max_mesg); 820 821 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 822 823 /* Receive data. If we haven't got the record length yet, get 824 * the next four bytes. Otherwise try to gobble up as much as 825 * possible up to the complete record length. 826 */ 827 if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) { 828 int want = sizeof(rpc_fraghdr) - svsk->sk_tcplen; 829 struct kvec iov; 830 831 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen; 832 iov.iov_len = want; 833 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0) 834 goto error; 835 svsk->sk_tcplen += len; 836 837 if (len < want) { 838 dprintk("svc: short recvfrom while reading record " 839 "length (%d of %d)\n", len, want); 840 svc_xprt_received(&svsk->sk_xprt); 841 return -EAGAIN; /* record header not complete */ 842 } 843 844 svsk->sk_reclen = ntohl(svsk->sk_reclen); 845 if (!(svsk->sk_reclen & RPC_LAST_STREAM_FRAGMENT)) { 846 /* FIXME: technically, a record can be fragmented, 847 * and non-terminal fragments will not have the top 848 * bit set in the fragment length header. 849 * But apparently no known nfs clients send fragmented 850 * records. */ 851 if (net_ratelimit()) 852 printk(KERN_NOTICE "RPC: multiple fragments " 853 "per record not supported\n"); 854 goto err_delete; 855 } 856 svsk->sk_reclen &= RPC_FRAGMENT_SIZE_MASK; 857 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen); 858 if (svsk->sk_reclen > serv->sv_max_mesg) { 859 if (net_ratelimit()) 860 printk(KERN_NOTICE "RPC: " 861 "fragment too large: 0x%08lx\n", 862 (unsigned long)svsk->sk_reclen); 863 goto err_delete; 864 } 865 } 866 867 /* Check whether enough data is available */ 868 len = svc_recv_available(svsk); 869 if (len < 0) 870 goto error; 871 872 if (len < svsk->sk_reclen) { 873 dprintk("svc: incomplete TCP record (%d of %d)\n", 874 len, svsk->sk_reclen); 875 svc_xprt_received(&svsk->sk_xprt); 876 return -EAGAIN; /* record not complete */ 877 } 878 len = svsk->sk_reclen; 879 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 880 881 vec = rqstp->rq_vec; 882 vec[0] = rqstp->rq_arg.head[0]; 883 vlen = PAGE_SIZE; 884 pnum = 1; 885 while (vlen < len) { 886 vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]); 887 vec[pnum].iov_len = PAGE_SIZE; 888 pnum++; 889 vlen += PAGE_SIZE; 890 } 891 rqstp->rq_respages = &rqstp->rq_pages[pnum]; 892 893 /* Now receive data */ 894 len = svc_recvfrom(rqstp, vec, pnum, len); 895 if (len < 0) 896 goto error; 897 898 dprintk("svc: TCP complete record (%d bytes)\n", len); 899 rqstp->rq_arg.len = len; 900 rqstp->rq_arg.page_base = 0; 901 if (len <= rqstp->rq_arg.head[0].iov_len) { 902 rqstp->rq_arg.head[0].iov_len = len; 903 rqstp->rq_arg.page_len = 0; 904 } else { 905 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 906 } 907 908 rqstp->rq_xprt_ctxt = NULL; 909 rqstp->rq_prot = IPPROTO_TCP; 910 911 /* Reset TCP read info */ 912 svsk->sk_reclen = 0; 913 svsk->sk_tcplen = 0; 914 915 svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt); 916 svc_xprt_received(&svsk->sk_xprt); 917 if (serv->sv_stats) 918 serv->sv_stats->nettcpcnt++; 919 920 return len; 921 922 err_delete: 923 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 924 return -EAGAIN; 925 926 error: 927 if (len == -EAGAIN) { 928 dprintk("RPC: TCP recvfrom got EAGAIN\n"); 929 svc_xprt_received(&svsk->sk_xprt); 930 } else { 931 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n", 932 svsk->sk_xprt.xpt_server->sv_name, -len); 933 goto err_delete; 934 } 935 936 return len; 937 } 938 939 /* 940 * Send out data on TCP socket. 941 */ 942 static int svc_tcp_sendto(struct svc_rqst *rqstp) 943 { 944 struct xdr_buf *xbufp = &rqstp->rq_res; 945 int sent; 946 __be32 reclen; 947 948 /* Set up the first element of the reply kvec. 949 * Any other kvecs that may be in use have been taken 950 * care of by the server implementation itself. 951 */ 952 reclen = htonl(0x80000000|((xbufp->len ) - 4)); 953 memcpy(xbufp->head[0].iov_base, &reclen, 4); 954 955 if (test_bit(XPT_DEAD, &rqstp->rq_xprt->xpt_flags)) 956 return -ENOTCONN; 957 958 sent = svc_sendto(rqstp, &rqstp->rq_res); 959 if (sent != xbufp->len) { 960 printk(KERN_NOTICE 961 "rpc-srv/tcp: %s: %s %d when sending %d bytes " 962 "- shutting down socket\n", 963 rqstp->rq_xprt->xpt_server->sv_name, 964 (sent<0)?"got error":"sent only", 965 sent, xbufp->len); 966 set_bit(XPT_CLOSE, &rqstp->rq_xprt->xpt_flags); 967 svc_xprt_enqueue(rqstp->rq_xprt); 968 sent = -EAGAIN; 969 } 970 return sent; 971 } 972 973 /* 974 * Setup response header. TCP has a 4B record length field. 975 */ 976 static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp) 977 { 978 struct kvec *resv = &rqstp->rq_res.head[0]; 979 980 /* tcp needs a space for the record length... */ 981 svc_putnl(resv, 0); 982 } 983 984 static int svc_tcp_has_wspace(struct svc_xprt *xprt) 985 { 986 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 987 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 988 int required; 989 int wspace; 990 991 /* 992 * Set the SOCK_NOSPACE flag before checking the available 993 * sock space. 994 */ 995 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 996 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg; 997 wspace = sk_stream_wspace(svsk->sk_sk); 998 999 if (wspace < sk_stream_min_wspace(svsk->sk_sk)) 1000 return 0; 1001 if (required * 2 > wspace) 1002 return 0; 1003 1004 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 1005 return 1; 1006 } 1007 1008 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv, 1009 struct sockaddr *sa, int salen, 1010 int flags) 1011 { 1012 return svc_create_socket(serv, IPPROTO_TCP, sa, salen, flags); 1013 } 1014 1015 static struct svc_xprt_ops svc_tcp_ops = { 1016 .xpo_create = svc_tcp_create, 1017 .xpo_recvfrom = svc_tcp_recvfrom, 1018 .xpo_sendto = svc_tcp_sendto, 1019 .xpo_release_rqst = svc_release_skb, 1020 .xpo_detach = svc_sock_detach, 1021 .xpo_free = svc_sock_free, 1022 .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr, 1023 .xpo_has_wspace = svc_tcp_has_wspace, 1024 .xpo_accept = svc_tcp_accept, 1025 }; 1026 1027 static struct svc_xprt_class svc_tcp_class = { 1028 .xcl_name = "tcp", 1029 .xcl_owner = THIS_MODULE, 1030 .xcl_ops = &svc_tcp_ops, 1031 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP, 1032 }; 1033 1034 void svc_init_xprt_sock(void) 1035 { 1036 svc_reg_xprt_class(&svc_tcp_class); 1037 svc_reg_xprt_class(&svc_udp_class); 1038 } 1039 1040 void svc_cleanup_xprt_sock(void) 1041 { 1042 svc_unreg_xprt_class(&svc_tcp_class); 1043 svc_unreg_xprt_class(&svc_udp_class); 1044 } 1045 1046 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv) 1047 { 1048 struct sock *sk = svsk->sk_sk; 1049 1050 svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv); 1051 set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); 1052 if (sk->sk_state == TCP_LISTEN) { 1053 dprintk("setting up TCP socket for listening\n"); 1054 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags); 1055 sk->sk_data_ready = svc_tcp_listen_data_ready; 1056 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 1057 } else { 1058 dprintk("setting up TCP socket for reading\n"); 1059 sk->sk_state_change = svc_tcp_state_change; 1060 sk->sk_data_ready = svc_tcp_data_ready; 1061 sk->sk_write_space = svc_write_space; 1062 1063 svsk->sk_reclen = 0; 1064 svsk->sk_tcplen = 0; 1065 1066 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF; 1067 1068 /* initialise setting must have enough space to 1069 * receive and respond to one request. 1070 * svc_tcp_recvfrom will re-adjust if necessary 1071 */ 1072 svc_sock_setbufsize(svsk->sk_sock, 1073 3 * svsk->sk_xprt.xpt_server->sv_max_mesg, 1074 3 * svsk->sk_xprt.xpt_server->sv_max_mesg); 1075 1076 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 1077 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 1078 if (sk->sk_state != TCP_ESTABLISHED) 1079 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 1080 } 1081 } 1082 1083 void svc_sock_update_bufs(struct svc_serv *serv) 1084 { 1085 /* 1086 * The number of server threads has changed. Update 1087 * rcvbuf and sndbuf accordingly on all sockets 1088 */ 1089 struct list_head *le; 1090 1091 spin_lock_bh(&serv->sv_lock); 1092 list_for_each(le, &serv->sv_permsocks) { 1093 struct svc_sock *svsk = 1094 list_entry(le, struct svc_sock, sk_xprt.xpt_list); 1095 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 1096 } 1097 list_for_each(le, &serv->sv_tempsocks) { 1098 struct svc_sock *svsk = 1099 list_entry(le, struct svc_sock, sk_xprt.xpt_list); 1100 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 1101 } 1102 spin_unlock_bh(&serv->sv_lock); 1103 } 1104 EXPORT_SYMBOL(svc_sock_update_bufs); 1105 1106 /* 1107 * Initialize socket for RPC use and create svc_sock struct 1108 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF. 1109 */ 1110 static struct svc_sock *svc_setup_socket(struct svc_serv *serv, 1111 struct socket *sock, 1112 int *errp, int flags) 1113 { 1114 struct svc_sock *svsk; 1115 struct sock *inet; 1116 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS); 1117 int val; 1118 1119 dprintk("svc: svc_setup_socket %p\n", sock); 1120 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) { 1121 *errp = -ENOMEM; 1122 return NULL; 1123 } 1124 1125 inet = sock->sk; 1126 1127 /* Register socket with portmapper */ 1128 if (*errp >= 0 && pmap_register) 1129 *errp = svc_register(serv, inet->sk_protocol, 1130 ntohs(inet_sk(inet)->sport)); 1131 1132 if (*errp < 0) { 1133 kfree(svsk); 1134 return NULL; 1135 } 1136 1137 inet->sk_user_data = svsk; 1138 svsk->sk_sock = sock; 1139 svsk->sk_sk = inet; 1140 svsk->sk_ostate = inet->sk_state_change; 1141 svsk->sk_odata = inet->sk_data_ready; 1142 svsk->sk_owspace = inet->sk_write_space; 1143 1144 /* Initialize the socket */ 1145 if (sock->type == SOCK_DGRAM) 1146 svc_udp_init(svsk, serv); 1147 else 1148 svc_tcp_init(svsk, serv); 1149 1150 /* 1151 * We start one listener per sv_serv. We want AF_INET 1152 * requests to be automatically shunted to our AF_INET6 1153 * listener using a mapped IPv4 address. Make sure 1154 * no-one starts an equivalent IPv4 listener, which 1155 * would steal our incoming connections. 1156 */ 1157 val = 0; 1158 if (serv->sv_family == AF_INET6) 1159 kernel_setsockopt(sock, SOL_IPV6, IPV6_V6ONLY, 1160 (char *)&val, sizeof(val)); 1161 1162 dprintk("svc: svc_setup_socket created %p (inet %p)\n", 1163 svsk, svsk->sk_sk); 1164 1165 return svsk; 1166 } 1167 1168 int svc_addsock(struct svc_serv *serv, 1169 int fd, 1170 char *name_return) 1171 { 1172 int err = 0; 1173 struct socket *so = sockfd_lookup(fd, &err); 1174 struct svc_sock *svsk = NULL; 1175 1176 if (!so) 1177 return err; 1178 if (so->sk->sk_family != AF_INET) 1179 err = -EAFNOSUPPORT; 1180 else if (so->sk->sk_protocol != IPPROTO_TCP && 1181 so->sk->sk_protocol != IPPROTO_UDP) 1182 err = -EPROTONOSUPPORT; 1183 else if (so->state > SS_UNCONNECTED) 1184 err = -EISCONN; 1185 else { 1186 svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS); 1187 if (svsk) { 1188 struct sockaddr_storage addr; 1189 struct sockaddr *sin = (struct sockaddr *)&addr; 1190 int salen; 1191 if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0) 1192 svc_xprt_set_local(&svsk->sk_xprt, sin, salen); 1193 clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags); 1194 spin_lock_bh(&serv->sv_lock); 1195 list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks); 1196 spin_unlock_bh(&serv->sv_lock); 1197 svc_xprt_received(&svsk->sk_xprt); 1198 err = 0; 1199 } 1200 } 1201 if (err) { 1202 sockfd_put(so); 1203 return err; 1204 } 1205 return one_sock_name(name_return, svsk); 1206 } 1207 EXPORT_SYMBOL_GPL(svc_addsock); 1208 1209 /* 1210 * Create socket for RPC service. 1211 */ 1212 static struct svc_xprt *svc_create_socket(struct svc_serv *serv, 1213 int protocol, 1214 struct sockaddr *sin, int len, 1215 int flags) 1216 { 1217 struct svc_sock *svsk; 1218 struct socket *sock; 1219 int error; 1220 int type; 1221 struct sockaddr_storage addr; 1222 struct sockaddr *newsin = (struct sockaddr *)&addr; 1223 int newlen; 1224 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]); 1225 1226 dprintk("svc: svc_create_socket(%s, %d, %s)\n", 1227 serv->sv_program->pg_name, protocol, 1228 __svc_print_addr(sin, buf, sizeof(buf))); 1229 1230 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) { 1231 printk(KERN_WARNING "svc: only UDP and TCP " 1232 "sockets supported\n"); 1233 return ERR_PTR(-EINVAL); 1234 } 1235 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM; 1236 1237 error = sock_create_kern(sin->sa_family, type, protocol, &sock); 1238 if (error < 0) 1239 return ERR_PTR(error); 1240 1241 svc_reclassify_socket(sock); 1242 1243 if (type == SOCK_STREAM) 1244 sock->sk->sk_reuse = 1; /* allow address reuse */ 1245 error = kernel_bind(sock, sin, len); 1246 if (error < 0) 1247 goto bummer; 1248 1249 newlen = len; 1250 error = kernel_getsockname(sock, newsin, &newlen); 1251 if (error < 0) 1252 goto bummer; 1253 1254 if (protocol == IPPROTO_TCP) { 1255 if ((error = kernel_listen(sock, 64)) < 0) 1256 goto bummer; 1257 } 1258 1259 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) { 1260 svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen); 1261 return (struct svc_xprt *)svsk; 1262 } 1263 1264 bummer: 1265 dprintk("svc: svc_create_socket error = %d\n", -error); 1266 sock_release(sock); 1267 return ERR_PTR(error); 1268 } 1269 1270 /* 1271 * Detach the svc_sock from the socket so that no 1272 * more callbacks occur. 1273 */ 1274 static void svc_sock_detach(struct svc_xprt *xprt) 1275 { 1276 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1277 struct sock *sk = svsk->sk_sk; 1278 1279 dprintk("svc: svc_sock_detach(%p)\n", svsk); 1280 1281 /* put back the old socket callbacks */ 1282 sk->sk_state_change = svsk->sk_ostate; 1283 sk->sk_data_ready = svsk->sk_odata; 1284 sk->sk_write_space = svsk->sk_owspace; 1285 } 1286 1287 /* 1288 * Free the svc_sock's socket resources and the svc_sock itself. 1289 */ 1290 static void svc_sock_free(struct svc_xprt *xprt) 1291 { 1292 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1293 dprintk("svc: svc_sock_free(%p)\n", svsk); 1294 1295 if (svsk->sk_sock->file) 1296 sockfd_put(svsk->sk_sock); 1297 else 1298 sock_release(svsk->sk_sock); 1299 kfree(svsk); 1300 } 1301