xref: /openbmc/linux/net/sunrpc/svcsock.c (revision 367b8112)
1 /*
2  * linux/net/sunrpc/svcsock.c
3  *
4  * These are the RPC server socket internals.
5  *
6  * The server scheduling algorithm does not always distribute the load
7  * evenly when servicing a single client. May need to modify the
8  * svc_xprt_enqueue procedure...
9  *
10  * TCP support is largely untested and may be a little slow. The problem
11  * is that we currently do two separate recvfrom's, one for the 4-byte
12  * record length, and the second for the actual record. This could possibly
13  * be improved by always reading a minimum size of around 100 bytes and
14  * tucking any superfluous bytes away in a temporary store. Still, that
15  * leaves write requests out in the rain. An alternative may be to peek at
16  * the first skb in the queue, and if it matches the next TCP sequence
17  * number, to extract the record marker. Yuck.
18  *
19  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/errno.h>
25 #include <linux/fcntl.h>
26 #include <linux/net.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/udp.h>
30 #include <linux/tcp.h>
31 #include <linux/unistd.h>
32 #include <linux/slab.h>
33 #include <linux/netdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/file.h>
36 #include <linux/freezer.h>
37 #include <net/sock.h>
38 #include <net/checksum.h>
39 #include <net/ip.h>
40 #include <net/ipv6.h>
41 #include <net/tcp.h>
42 #include <net/tcp_states.h>
43 #include <asm/uaccess.h>
44 #include <asm/ioctls.h>
45 
46 #include <linux/sunrpc/types.h>
47 #include <linux/sunrpc/clnt.h>
48 #include <linux/sunrpc/xdr.h>
49 #include <linux/sunrpc/msg_prot.h>
50 #include <linux/sunrpc/svcsock.h>
51 #include <linux/sunrpc/stats.h>
52 
53 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
54 
55 
56 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
57 					 int *errp, int flags);
58 static void		svc_udp_data_ready(struct sock *, int);
59 static int		svc_udp_recvfrom(struct svc_rqst *);
60 static int		svc_udp_sendto(struct svc_rqst *);
61 static void		svc_sock_detach(struct svc_xprt *);
62 static void		svc_sock_free(struct svc_xprt *);
63 
64 static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
65 					  struct sockaddr *, int, int);
66 #ifdef CONFIG_DEBUG_LOCK_ALLOC
67 static struct lock_class_key svc_key[2];
68 static struct lock_class_key svc_slock_key[2];
69 
70 static void svc_reclassify_socket(struct socket *sock)
71 {
72 	struct sock *sk = sock->sk;
73 	BUG_ON(sock_owned_by_user(sk));
74 	switch (sk->sk_family) {
75 	case AF_INET:
76 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
77 					      &svc_slock_key[0],
78 					      "sk_xprt.xpt_lock-AF_INET-NFSD",
79 					      &svc_key[0]);
80 		break;
81 
82 	case AF_INET6:
83 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
84 					      &svc_slock_key[1],
85 					      "sk_xprt.xpt_lock-AF_INET6-NFSD",
86 					      &svc_key[1]);
87 		break;
88 
89 	default:
90 		BUG();
91 	}
92 }
93 #else
94 static void svc_reclassify_socket(struct socket *sock)
95 {
96 }
97 #endif
98 
99 /*
100  * Release an skbuff after use
101  */
102 static void svc_release_skb(struct svc_rqst *rqstp)
103 {
104 	struct sk_buff *skb = rqstp->rq_xprt_ctxt;
105 	struct svc_deferred_req *dr = rqstp->rq_deferred;
106 
107 	if (skb) {
108 		struct svc_sock *svsk =
109 			container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
110 		rqstp->rq_xprt_ctxt = NULL;
111 
112 		dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
113 		skb_free_datagram(svsk->sk_sk, skb);
114 	}
115 	if (dr) {
116 		rqstp->rq_deferred = NULL;
117 		kfree(dr);
118 	}
119 }
120 
121 union svc_pktinfo_u {
122 	struct in_pktinfo pkti;
123 	struct in6_pktinfo pkti6;
124 };
125 #define SVC_PKTINFO_SPACE \
126 	CMSG_SPACE(sizeof(union svc_pktinfo_u))
127 
128 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
129 {
130 	struct svc_sock *svsk =
131 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
132 	switch (svsk->sk_sk->sk_family) {
133 	case AF_INET: {
134 			struct in_pktinfo *pki = CMSG_DATA(cmh);
135 
136 			cmh->cmsg_level = SOL_IP;
137 			cmh->cmsg_type = IP_PKTINFO;
138 			pki->ipi_ifindex = 0;
139 			pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
140 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
141 		}
142 		break;
143 
144 	case AF_INET6: {
145 			struct in6_pktinfo *pki = CMSG_DATA(cmh);
146 
147 			cmh->cmsg_level = SOL_IPV6;
148 			cmh->cmsg_type = IPV6_PKTINFO;
149 			pki->ipi6_ifindex = 0;
150 			ipv6_addr_copy(&pki->ipi6_addr,
151 					&rqstp->rq_daddr.addr6);
152 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
153 		}
154 		break;
155 	}
156 	return;
157 }
158 
159 /*
160  * Generic sendto routine
161  */
162 static int svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
163 {
164 	struct svc_sock	*svsk =
165 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
166 	struct socket	*sock = svsk->sk_sock;
167 	int		slen;
168 	union {
169 		struct cmsghdr	hdr;
170 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
171 	} buffer;
172 	struct cmsghdr *cmh = &buffer.hdr;
173 	int		len = 0;
174 	int		result;
175 	int		size;
176 	struct page	**ppage = xdr->pages;
177 	size_t		base = xdr->page_base;
178 	unsigned int	pglen = xdr->page_len;
179 	unsigned int	flags = MSG_MORE;
180 	RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
181 
182 	slen = xdr->len;
183 
184 	if (rqstp->rq_prot == IPPROTO_UDP) {
185 		struct msghdr msg = {
186 			.msg_name	= &rqstp->rq_addr,
187 			.msg_namelen	= rqstp->rq_addrlen,
188 			.msg_control	= cmh,
189 			.msg_controllen	= sizeof(buffer),
190 			.msg_flags	= MSG_MORE,
191 		};
192 
193 		svc_set_cmsg_data(rqstp, cmh);
194 
195 		if (sock_sendmsg(sock, &msg, 0) < 0)
196 			goto out;
197 	}
198 
199 	/* send head */
200 	if (slen == xdr->head[0].iov_len)
201 		flags = 0;
202 	len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
203 				  xdr->head[0].iov_len, flags);
204 	if (len != xdr->head[0].iov_len)
205 		goto out;
206 	slen -= xdr->head[0].iov_len;
207 	if (slen == 0)
208 		goto out;
209 
210 	/* send page data */
211 	size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
212 	while (pglen > 0) {
213 		if (slen == size)
214 			flags = 0;
215 		result = kernel_sendpage(sock, *ppage, base, size, flags);
216 		if (result > 0)
217 			len += result;
218 		if (result != size)
219 			goto out;
220 		slen -= size;
221 		pglen -= size;
222 		size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
223 		base = 0;
224 		ppage++;
225 	}
226 	/* send tail */
227 	if (xdr->tail[0].iov_len) {
228 		result = kernel_sendpage(sock, rqstp->rq_respages[0],
229 					     ((unsigned long)xdr->tail[0].iov_base)
230 						& (PAGE_SIZE-1),
231 					     xdr->tail[0].iov_len, 0);
232 
233 		if (result > 0)
234 			len += result;
235 	}
236 out:
237 	dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
238 		svsk, xdr->head[0].iov_base, xdr->head[0].iov_len,
239 		xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
240 
241 	return len;
242 }
243 
244 /*
245  * Report socket names for nfsdfs
246  */
247 static int one_sock_name(char *buf, struct svc_sock *svsk)
248 {
249 	int len;
250 
251 	switch(svsk->sk_sk->sk_family) {
252 	case AF_INET:
253 		len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
254 			      svsk->sk_sk->sk_protocol==IPPROTO_UDP?
255 			      "udp" : "tcp",
256 			      NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
257 			      inet_sk(svsk->sk_sk)->num);
258 		break;
259 	default:
260 		len = sprintf(buf, "*unknown-%d*\n",
261 			       svsk->sk_sk->sk_family);
262 	}
263 	return len;
264 }
265 
266 int
267 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
268 {
269 	struct svc_sock *svsk, *closesk = NULL;
270 	int len = 0;
271 
272 	if (!serv)
273 		return 0;
274 	spin_lock_bh(&serv->sv_lock);
275 	list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) {
276 		int onelen = one_sock_name(buf+len, svsk);
277 		if (toclose && strcmp(toclose, buf+len) == 0)
278 			closesk = svsk;
279 		else
280 			len += onelen;
281 	}
282 	spin_unlock_bh(&serv->sv_lock);
283 	if (closesk)
284 		/* Should unregister with portmap, but you cannot
285 		 * unregister just one protocol...
286 		 */
287 		svc_close_xprt(&closesk->sk_xprt);
288 	else if (toclose)
289 		return -ENOENT;
290 	return len;
291 }
292 EXPORT_SYMBOL(svc_sock_names);
293 
294 /*
295  * Check input queue length
296  */
297 static int svc_recv_available(struct svc_sock *svsk)
298 {
299 	struct socket	*sock = svsk->sk_sock;
300 	int		avail, err;
301 
302 	err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
303 
304 	return (err >= 0)? avail : err;
305 }
306 
307 /*
308  * Generic recvfrom routine.
309  */
310 static int svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr,
311 			int buflen)
312 {
313 	struct svc_sock *svsk =
314 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
315 	struct msghdr msg = {
316 		.msg_flags	= MSG_DONTWAIT,
317 	};
318 	int len;
319 
320 	rqstp->rq_xprt_hlen = 0;
321 
322 	len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
323 				msg.msg_flags);
324 
325 	dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
326 		svsk, iov[0].iov_base, iov[0].iov_len, len);
327 	return len;
328 }
329 
330 /*
331  * Set socket snd and rcv buffer lengths
332  */
333 static void svc_sock_setbufsize(struct socket *sock, unsigned int snd,
334 				unsigned int rcv)
335 {
336 #if 0
337 	mm_segment_t	oldfs;
338 	oldfs = get_fs(); set_fs(KERNEL_DS);
339 	sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
340 			(char*)&snd, sizeof(snd));
341 	sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
342 			(char*)&rcv, sizeof(rcv));
343 #else
344 	/* sock_setsockopt limits use to sysctl_?mem_max,
345 	 * which isn't acceptable.  Until that is made conditional
346 	 * on not having CAP_SYS_RESOURCE or similar, we go direct...
347 	 * DaveM said I could!
348 	 */
349 	lock_sock(sock->sk);
350 	sock->sk->sk_sndbuf = snd * 2;
351 	sock->sk->sk_rcvbuf = rcv * 2;
352 	sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
353 	release_sock(sock->sk);
354 #endif
355 }
356 /*
357  * INET callback when data has been received on the socket.
358  */
359 static void svc_udp_data_ready(struct sock *sk, int count)
360 {
361 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
362 
363 	if (svsk) {
364 		dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
365 			svsk, sk, count,
366 			test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
367 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
368 		svc_xprt_enqueue(&svsk->sk_xprt);
369 	}
370 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
371 		wake_up_interruptible(sk->sk_sleep);
372 }
373 
374 /*
375  * INET callback when space is newly available on the socket.
376  */
377 static void svc_write_space(struct sock *sk)
378 {
379 	struct svc_sock	*svsk = (struct svc_sock *)(sk->sk_user_data);
380 
381 	if (svsk) {
382 		dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
383 			svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
384 		svc_xprt_enqueue(&svsk->sk_xprt);
385 	}
386 
387 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
388 		dprintk("RPC svc_write_space: someone sleeping on %p\n",
389 		       svsk);
390 		wake_up_interruptible(sk->sk_sleep);
391 	}
392 }
393 
394 /*
395  * Copy the UDP datagram's destination address to the rqstp structure.
396  * The 'destination' address in this case is the address to which the
397  * peer sent the datagram, i.e. our local address. For multihomed
398  * hosts, this can change from msg to msg. Note that only the IP
399  * address changes, the port number should remain the same.
400  */
401 static void svc_udp_get_dest_address(struct svc_rqst *rqstp,
402 				     struct cmsghdr *cmh)
403 {
404 	struct svc_sock *svsk =
405 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
406 	switch (svsk->sk_sk->sk_family) {
407 	case AF_INET: {
408 		struct in_pktinfo *pki = CMSG_DATA(cmh);
409 		rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
410 		break;
411 		}
412 	case AF_INET6: {
413 		struct in6_pktinfo *pki = CMSG_DATA(cmh);
414 		ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
415 		break;
416 		}
417 	}
418 }
419 
420 /*
421  * Receive a datagram from a UDP socket.
422  */
423 static int svc_udp_recvfrom(struct svc_rqst *rqstp)
424 {
425 	struct svc_sock	*svsk =
426 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
427 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
428 	struct sk_buff	*skb;
429 	union {
430 		struct cmsghdr	hdr;
431 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
432 	} buffer;
433 	struct cmsghdr *cmh = &buffer.hdr;
434 	int		err, len;
435 	struct msghdr msg = {
436 		.msg_name = svc_addr(rqstp),
437 		.msg_control = cmh,
438 		.msg_controllen = sizeof(buffer),
439 		.msg_flags = MSG_DONTWAIT,
440 	};
441 
442 	if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
443 	    /* udp sockets need large rcvbuf as all pending
444 	     * requests are still in that buffer.  sndbuf must
445 	     * also be large enough that there is enough space
446 	     * for one reply per thread.  We count all threads
447 	     * rather than threads in a particular pool, which
448 	     * provides an upper bound on the number of threads
449 	     * which will access the socket.
450 	     */
451 	    svc_sock_setbufsize(svsk->sk_sock,
452 				(serv->sv_nrthreads+3) * serv->sv_max_mesg,
453 				(serv->sv_nrthreads+3) * serv->sv_max_mesg);
454 
455 	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
456 	skb = NULL;
457 	err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
458 			     0, 0, MSG_PEEK | MSG_DONTWAIT);
459 	if (err >= 0)
460 		skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
461 
462 	if (skb == NULL) {
463 		if (err != -EAGAIN) {
464 			/* possibly an icmp error */
465 			dprintk("svc: recvfrom returned error %d\n", -err);
466 			set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
467 		}
468 		svc_xprt_received(&svsk->sk_xprt);
469 		return -EAGAIN;
470 	}
471 	len = svc_addr_len(svc_addr(rqstp));
472 	if (len < 0)
473 		return len;
474 	rqstp->rq_addrlen = len;
475 	if (skb->tstamp.tv64 == 0) {
476 		skb->tstamp = ktime_get_real();
477 		/* Don't enable netstamp, sunrpc doesn't
478 		   need that much accuracy */
479 	}
480 	svsk->sk_sk->sk_stamp = skb->tstamp;
481 	set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
482 
483 	/*
484 	 * Maybe more packets - kick another thread ASAP.
485 	 */
486 	svc_xprt_received(&svsk->sk_xprt);
487 
488 	len  = skb->len - sizeof(struct udphdr);
489 	rqstp->rq_arg.len = len;
490 
491 	rqstp->rq_prot = IPPROTO_UDP;
492 
493 	if (cmh->cmsg_level != IPPROTO_IP ||
494 	    cmh->cmsg_type != IP_PKTINFO) {
495 		if (net_ratelimit())
496 			printk("rpcsvc: received unknown control message:"
497 			       "%d/%d\n",
498 			       cmh->cmsg_level, cmh->cmsg_type);
499 		skb_free_datagram(svsk->sk_sk, skb);
500 		return 0;
501 	}
502 	svc_udp_get_dest_address(rqstp, cmh);
503 
504 	if (skb_is_nonlinear(skb)) {
505 		/* we have to copy */
506 		local_bh_disable();
507 		if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
508 			local_bh_enable();
509 			/* checksum error */
510 			skb_free_datagram(svsk->sk_sk, skb);
511 			return 0;
512 		}
513 		local_bh_enable();
514 		skb_free_datagram(svsk->sk_sk, skb);
515 	} else {
516 		/* we can use it in-place */
517 		rqstp->rq_arg.head[0].iov_base = skb->data +
518 			sizeof(struct udphdr);
519 		rqstp->rq_arg.head[0].iov_len = len;
520 		if (skb_checksum_complete(skb)) {
521 			skb_free_datagram(svsk->sk_sk, skb);
522 			return 0;
523 		}
524 		rqstp->rq_xprt_ctxt = skb;
525 	}
526 
527 	rqstp->rq_arg.page_base = 0;
528 	if (len <= rqstp->rq_arg.head[0].iov_len) {
529 		rqstp->rq_arg.head[0].iov_len = len;
530 		rqstp->rq_arg.page_len = 0;
531 		rqstp->rq_respages = rqstp->rq_pages+1;
532 	} else {
533 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
534 		rqstp->rq_respages = rqstp->rq_pages + 1 +
535 			DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
536 	}
537 
538 	if (serv->sv_stats)
539 		serv->sv_stats->netudpcnt++;
540 
541 	return len;
542 }
543 
544 static int
545 svc_udp_sendto(struct svc_rqst *rqstp)
546 {
547 	int		error;
548 
549 	error = svc_sendto(rqstp, &rqstp->rq_res);
550 	if (error == -ECONNREFUSED)
551 		/* ICMP error on earlier request. */
552 		error = svc_sendto(rqstp, &rqstp->rq_res);
553 
554 	return error;
555 }
556 
557 static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp)
558 {
559 }
560 
561 static int svc_udp_has_wspace(struct svc_xprt *xprt)
562 {
563 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
564 	struct svc_serv	*serv = xprt->xpt_server;
565 	unsigned long required;
566 
567 	/*
568 	 * Set the SOCK_NOSPACE flag before checking the available
569 	 * sock space.
570 	 */
571 	set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
572 	required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
573 	if (required*2 > sock_wspace(svsk->sk_sk))
574 		return 0;
575 	clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
576 	return 1;
577 }
578 
579 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
580 {
581 	BUG();
582 	return NULL;
583 }
584 
585 static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
586 				       struct sockaddr *sa, int salen,
587 				       int flags)
588 {
589 	return svc_create_socket(serv, IPPROTO_UDP, sa, salen, flags);
590 }
591 
592 static struct svc_xprt_ops svc_udp_ops = {
593 	.xpo_create = svc_udp_create,
594 	.xpo_recvfrom = svc_udp_recvfrom,
595 	.xpo_sendto = svc_udp_sendto,
596 	.xpo_release_rqst = svc_release_skb,
597 	.xpo_detach = svc_sock_detach,
598 	.xpo_free = svc_sock_free,
599 	.xpo_prep_reply_hdr = svc_udp_prep_reply_hdr,
600 	.xpo_has_wspace = svc_udp_has_wspace,
601 	.xpo_accept = svc_udp_accept,
602 };
603 
604 static struct svc_xprt_class svc_udp_class = {
605 	.xcl_name = "udp",
606 	.xcl_owner = THIS_MODULE,
607 	.xcl_ops = &svc_udp_ops,
608 	.xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
609 };
610 
611 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
612 {
613 	int one = 1;
614 	mm_segment_t oldfs;
615 
616 	svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv);
617 	clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
618 	svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
619 	svsk->sk_sk->sk_write_space = svc_write_space;
620 
621 	/* initialise setting must have enough space to
622 	 * receive and respond to one request.
623 	 * svc_udp_recvfrom will re-adjust if necessary
624 	 */
625 	svc_sock_setbufsize(svsk->sk_sock,
626 			    3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
627 			    3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
628 
629 	/* data might have come in before data_ready set up */
630 	set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
631 	set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
632 
633 	oldfs = get_fs();
634 	set_fs(KERNEL_DS);
635 	/* make sure we get destination address info */
636 	svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
637 				       (char __user *)&one, sizeof(one));
638 	set_fs(oldfs);
639 }
640 
641 /*
642  * A data_ready event on a listening socket means there's a connection
643  * pending. Do not use state_change as a substitute for it.
644  */
645 static void svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
646 {
647 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
648 
649 	dprintk("svc: socket %p TCP (listen) state change %d\n",
650 		sk, sk->sk_state);
651 
652 	/*
653 	 * This callback may called twice when a new connection
654 	 * is established as a child socket inherits everything
655 	 * from a parent LISTEN socket.
656 	 * 1) data_ready method of the parent socket will be called
657 	 *    when one of child sockets become ESTABLISHED.
658 	 * 2) data_ready method of the child socket may be called
659 	 *    when it receives data before the socket is accepted.
660 	 * In case of 2, we should ignore it silently.
661 	 */
662 	if (sk->sk_state == TCP_LISTEN) {
663 		if (svsk) {
664 			set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
665 			svc_xprt_enqueue(&svsk->sk_xprt);
666 		} else
667 			printk("svc: socket %p: no user data\n", sk);
668 	}
669 
670 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
671 		wake_up_interruptible_all(sk->sk_sleep);
672 }
673 
674 /*
675  * A state change on a connected socket means it's dying or dead.
676  */
677 static void svc_tcp_state_change(struct sock *sk)
678 {
679 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
680 
681 	dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
682 		sk, sk->sk_state, sk->sk_user_data);
683 
684 	if (!svsk)
685 		printk("svc: socket %p: no user data\n", sk);
686 	else {
687 		set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
688 		svc_xprt_enqueue(&svsk->sk_xprt);
689 	}
690 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
691 		wake_up_interruptible_all(sk->sk_sleep);
692 }
693 
694 static void svc_tcp_data_ready(struct sock *sk, int count)
695 {
696 	struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
697 
698 	dprintk("svc: socket %p TCP data ready (svsk %p)\n",
699 		sk, sk->sk_user_data);
700 	if (svsk) {
701 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
702 		svc_xprt_enqueue(&svsk->sk_xprt);
703 	}
704 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
705 		wake_up_interruptible(sk->sk_sleep);
706 }
707 
708 /*
709  * Accept a TCP connection
710  */
711 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
712 {
713 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
714 	struct sockaddr_storage addr;
715 	struct sockaddr	*sin = (struct sockaddr *) &addr;
716 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
717 	struct socket	*sock = svsk->sk_sock;
718 	struct socket	*newsock;
719 	struct svc_sock	*newsvsk;
720 	int		err, slen;
721 	RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
722 
723 	dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
724 	if (!sock)
725 		return NULL;
726 
727 	clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
728 	err = kernel_accept(sock, &newsock, O_NONBLOCK);
729 	if (err < 0) {
730 		if (err == -ENOMEM)
731 			printk(KERN_WARNING "%s: no more sockets!\n",
732 			       serv->sv_name);
733 		else if (err != -EAGAIN && net_ratelimit())
734 			printk(KERN_WARNING "%s: accept failed (err %d)!\n",
735 				   serv->sv_name, -err);
736 		return NULL;
737 	}
738 	set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
739 
740 	err = kernel_getpeername(newsock, sin, &slen);
741 	if (err < 0) {
742 		if (net_ratelimit())
743 			printk(KERN_WARNING "%s: peername failed (err %d)!\n",
744 				   serv->sv_name, -err);
745 		goto failed;		/* aborted connection or whatever */
746 	}
747 
748 	/* Ideally, we would want to reject connections from unauthorized
749 	 * hosts here, but when we get encryption, the IP of the host won't
750 	 * tell us anything.  For now just warn about unpriv connections.
751 	 */
752 	if (!svc_port_is_privileged(sin)) {
753 		dprintk(KERN_WARNING
754 			"%s: connect from unprivileged port: %s\n",
755 			serv->sv_name,
756 			__svc_print_addr(sin, buf, sizeof(buf)));
757 	}
758 	dprintk("%s: connect from %s\n", serv->sv_name,
759 		__svc_print_addr(sin, buf, sizeof(buf)));
760 
761 	/* make sure that a write doesn't block forever when
762 	 * low on memory
763 	 */
764 	newsock->sk->sk_sndtimeo = HZ*30;
765 
766 	if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
767 				 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
768 		goto failed;
769 	svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
770 	err = kernel_getsockname(newsock, sin, &slen);
771 	if (unlikely(err < 0)) {
772 		dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
773 		slen = offsetof(struct sockaddr, sa_data);
774 	}
775 	svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
776 
777 	if (serv->sv_stats)
778 		serv->sv_stats->nettcpconn++;
779 
780 	return &newsvsk->sk_xprt;
781 
782 failed:
783 	sock_release(newsock);
784 	return NULL;
785 }
786 
787 /*
788  * Receive data from a TCP socket.
789  */
790 static int svc_tcp_recvfrom(struct svc_rqst *rqstp)
791 {
792 	struct svc_sock	*svsk =
793 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
794 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
795 	int		len;
796 	struct kvec *vec;
797 	int pnum, vlen;
798 
799 	dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
800 		svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags),
801 		test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags),
802 		test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags));
803 
804 	if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
805 		/* sndbuf needs to have room for one request
806 		 * per thread, otherwise we can stall even when the
807 		 * network isn't a bottleneck.
808 		 *
809 		 * We count all threads rather than threads in a
810 		 * particular pool, which provides an upper bound
811 		 * on the number of threads which will access the socket.
812 		 *
813 		 * rcvbuf just needs to be able to hold a few requests.
814 		 * Normally they will be removed from the queue
815 		 * as soon a a complete request arrives.
816 		 */
817 		svc_sock_setbufsize(svsk->sk_sock,
818 				    (serv->sv_nrthreads+3) * serv->sv_max_mesg,
819 				    3 * serv->sv_max_mesg);
820 
821 	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
822 
823 	/* Receive data. If we haven't got the record length yet, get
824 	 * the next four bytes. Otherwise try to gobble up as much as
825 	 * possible up to the complete record length.
826 	 */
827 	if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) {
828 		int		want = sizeof(rpc_fraghdr) - svsk->sk_tcplen;
829 		struct kvec	iov;
830 
831 		iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
832 		iov.iov_len  = want;
833 		if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
834 			goto error;
835 		svsk->sk_tcplen += len;
836 
837 		if (len < want) {
838 			dprintk("svc: short recvfrom while reading record "
839 				"length (%d of %d)\n", len, want);
840 			svc_xprt_received(&svsk->sk_xprt);
841 			return -EAGAIN; /* record header not complete */
842 		}
843 
844 		svsk->sk_reclen = ntohl(svsk->sk_reclen);
845 		if (!(svsk->sk_reclen & RPC_LAST_STREAM_FRAGMENT)) {
846 			/* FIXME: technically, a record can be fragmented,
847 			 *  and non-terminal fragments will not have the top
848 			 *  bit set in the fragment length header.
849 			 *  But apparently no known nfs clients send fragmented
850 			 *  records. */
851 			if (net_ratelimit())
852 				printk(KERN_NOTICE "RPC: multiple fragments "
853 					"per record not supported\n");
854 			goto err_delete;
855 		}
856 		svsk->sk_reclen &= RPC_FRAGMENT_SIZE_MASK;
857 		dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
858 		if (svsk->sk_reclen > serv->sv_max_mesg) {
859 			if (net_ratelimit())
860 				printk(KERN_NOTICE "RPC: "
861 					"fragment too large: 0x%08lx\n",
862 					(unsigned long)svsk->sk_reclen);
863 			goto err_delete;
864 		}
865 	}
866 
867 	/* Check whether enough data is available */
868 	len = svc_recv_available(svsk);
869 	if (len < 0)
870 		goto error;
871 
872 	if (len < svsk->sk_reclen) {
873 		dprintk("svc: incomplete TCP record (%d of %d)\n",
874 			len, svsk->sk_reclen);
875 		svc_xprt_received(&svsk->sk_xprt);
876 		return -EAGAIN;	/* record not complete */
877 	}
878 	len = svsk->sk_reclen;
879 	set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
880 
881 	vec = rqstp->rq_vec;
882 	vec[0] = rqstp->rq_arg.head[0];
883 	vlen = PAGE_SIZE;
884 	pnum = 1;
885 	while (vlen < len) {
886 		vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
887 		vec[pnum].iov_len = PAGE_SIZE;
888 		pnum++;
889 		vlen += PAGE_SIZE;
890 	}
891 	rqstp->rq_respages = &rqstp->rq_pages[pnum];
892 
893 	/* Now receive data */
894 	len = svc_recvfrom(rqstp, vec, pnum, len);
895 	if (len < 0)
896 		goto error;
897 
898 	dprintk("svc: TCP complete record (%d bytes)\n", len);
899 	rqstp->rq_arg.len = len;
900 	rqstp->rq_arg.page_base = 0;
901 	if (len <= rqstp->rq_arg.head[0].iov_len) {
902 		rqstp->rq_arg.head[0].iov_len = len;
903 		rqstp->rq_arg.page_len = 0;
904 	} else {
905 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
906 	}
907 
908 	rqstp->rq_xprt_ctxt   = NULL;
909 	rqstp->rq_prot	      = IPPROTO_TCP;
910 
911 	/* Reset TCP read info */
912 	svsk->sk_reclen = 0;
913 	svsk->sk_tcplen = 0;
914 
915 	svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
916 	svc_xprt_received(&svsk->sk_xprt);
917 	if (serv->sv_stats)
918 		serv->sv_stats->nettcpcnt++;
919 
920 	return len;
921 
922  err_delete:
923 	set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
924 	return -EAGAIN;
925 
926  error:
927 	if (len == -EAGAIN) {
928 		dprintk("RPC: TCP recvfrom got EAGAIN\n");
929 		svc_xprt_received(&svsk->sk_xprt);
930 	} else {
931 		printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
932 		       svsk->sk_xprt.xpt_server->sv_name, -len);
933 		goto err_delete;
934 	}
935 
936 	return len;
937 }
938 
939 /*
940  * Send out data on TCP socket.
941  */
942 static int svc_tcp_sendto(struct svc_rqst *rqstp)
943 {
944 	struct xdr_buf	*xbufp = &rqstp->rq_res;
945 	int sent;
946 	__be32 reclen;
947 
948 	/* Set up the first element of the reply kvec.
949 	 * Any other kvecs that may be in use have been taken
950 	 * care of by the server implementation itself.
951 	 */
952 	reclen = htonl(0x80000000|((xbufp->len ) - 4));
953 	memcpy(xbufp->head[0].iov_base, &reclen, 4);
954 
955 	if (test_bit(XPT_DEAD, &rqstp->rq_xprt->xpt_flags))
956 		return -ENOTCONN;
957 
958 	sent = svc_sendto(rqstp, &rqstp->rq_res);
959 	if (sent != xbufp->len) {
960 		printk(KERN_NOTICE
961 		       "rpc-srv/tcp: %s: %s %d when sending %d bytes "
962 		       "- shutting down socket\n",
963 		       rqstp->rq_xprt->xpt_server->sv_name,
964 		       (sent<0)?"got error":"sent only",
965 		       sent, xbufp->len);
966 		set_bit(XPT_CLOSE, &rqstp->rq_xprt->xpt_flags);
967 		svc_xprt_enqueue(rqstp->rq_xprt);
968 		sent = -EAGAIN;
969 	}
970 	return sent;
971 }
972 
973 /*
974  * Setup response header. TCP has a 4B record length field.
975  */
976 static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp)
977 {
978 	struct kvec *resv = &rqstp->rq_res.head[0];
979 
980 	/* tcp needs a space for the record length... */
981 	svc_putnl(resv, 0);
982 }
983 
984 static int svc_tcp_has_wspace(struct svc_xprt *xprt)
985 {
986 	struct svc_sock *svsk =	container_of(xprt, struct svc_sock, sk_xprt);
987 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
988 	int required;
989 	int wspace;
990 
991 	/*
992 	 * Set the SOCK_NOSPACE flag before checking the available
993 	 * sock space.
994 	 */
995 	set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
996 	required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
997 	wspace = sk_stream_wspace(svsk->sk_sk);
998 
999 	if (wspace < sk_stream_min_wspace(svsk->sk_sk))
1000 		return 0;
1001 	if (required * 2 > wspace)
1002 		return 0;
1003 
1004 	clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
1005 	return 1;
1006 }
1007 
1008 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
1009 				       struct sockaddr *sa, int salen,
1010 				       int flags)
1011 {
1012 	return svc_create_socket(serv, IPPROTO_TCP, sa, salen, flags);
1013 }
1014 
1015 static struct svc_xprt_ops svc_tcp_ops = {
1016 	.xpo_create = svc_tcp_create,
1017 	.xpo_recvfrom = svc_tcp_recvfrom,
1018 	.xpo_sendto = svc_tcp_sendto,
1019 	.xpo_release_rqst = svc_release_skb,
1020 	.xpo_detach = svc_sock_detach,
1021 	.xpo_free = svc_sock_free,
1022 	.xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
1023 	.xpo_has_wspace = svc_tcp_has_wspace,
1024 	.xpo_accept = svc_tcp_accept,
1025 };
1026 
1027 static struct svc_xprt_class svc_tcp_class = {
1028 	.xcl_name = "tcp",
1029 	.xcl_owner = THIS_MODULE,
1030 	.xcl_ops = &svc_tcp_ops,
1031 	.xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1032 };
1033 
1034 void svc_init_xprt_sock(void)
1035 {
1036 	svc_reg_xprt_class(&svc_tcp_class);
1037 	svc_reg_xprt_class(&svc_udp_class);
1038 }
1039 
1040 void svc_cleanup_xprt_sock(void)
1041 {
1042 	svc_unreg_xprt_class(&svc_tcp_class);
1043 	svc_unreg_xprt_class(&svc_udp_class);
1044 }
1045 
1046 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
1047 {
1048 	struct sock	*sk = svsk->sk_sk;
1049 
1050 	svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv);
1051 	set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
1052 	if (sk->sk_state == TCP_LISTEN) {
1053 		dprintk("setting up TCP socket for listening\n");
1054 		set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
1055 		sk->sk_data_ready = svc_tcp_listen_data_ready;
1056 		set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1057 	} else {
1058 		dprintk("setting up TCP socket for reading\n");
1059 		sk->sk_state_change = svc_tcp_state_change;
1060 		sk->sk_data_ready = svc_tcp_data_ready;
1061 		sk->sk_write_space = svc_write_space;
1062 
1063 		svsk->sk_reclen = 0;
1064 		svsk->sk_tcplen = 0;
1065 
1066 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF;
1067 
1068 		/* initialise setting must have enough space to
1069 		 * receive and respond to one request.
1070 		 * svc_tcp_recvfrom will re-adjust if necessary
1071 		 */
1072 		svc_sock_setbufsize(svsk->sk_sock,
1073 				    3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
1074 				    3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
1075 
1076 		set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1077 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1078 		if (sk->sk_state != TCP_ESTABLISHED)
1079 			set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1080 	}
1081 }
1082 
1083 void svc_sock_update_bufs(struct svc_serv *serv)
1084 {
1085 	/*
1086 	 * The number of server threads has changed. Update
1087 	 * rcvbuf and sndbuf accordingly on all sockets
1088 	 */
1089 	struct list_head *le;
1090 
1091 	spin_lock_bh(&serv->sv_lock);
1092 	list_for_each(le, &serv->sv_permsocks) {
1093 		struct svc_sock *svsk =
1094 			list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1095 		set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1096 	}
1097 	list_for_each(le, &serv->sv_tempsocks) {
1098 		struct svc_sock *svsk =
1099 			list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1100 		set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1101 	}
1102 	spin_unlock_bh(&serv->sv_lock);
1103 }
1104 EXPORT_SYMBOL(svc_sock_update_bufs);
1105 
1106 /*
1107  * Initialize socket for RPC use and create svc_sock struct
1108  * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1109  */
1110 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1111 						struct socket *sock,
1112 						int *errp, int flags)
1113 {
1114 	struct svc_sock	*svsk;
1115 	struct sock	*inet;
1116 	int		pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1117 	int		val;
1118 
1119 	dprintk("svc: svc_setup_socket %p\n", sock);
1120 	if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1121 		*errp = -ENOMEM;
1122 		return NULL;
1123 	}
1124 
1125 	inet = sock->sk;
1126 
1127 	/* Register socket with portmapper */
1128 	if (*errp >= 0 && pmap_register)
1129 		*errp = svc_register(serv, inet->sk_protocol,
1130 				     ntohs(inet_sk(inet)->sport));
1131 
1132 	if (*errp < 0) {
1133 		kfree(svsk);
1134 		return NULL;
1135 	}
1136 
1137 	inet->sk_user_data = svsk;
1138 	svsk->sk_sock = sock;
1139 	svsk->sk_sk = inet;
1140 	svsk->sk_ostate = inet->sk_state_change;
1141 	svsk->sk_odata = inet->sk_data_ready;
1142 	svsk->sk_owspace = inet->sk_write_space;
1143 
1144 	/* Initialize the socket */
1145 	if (sock->type == SOCK_DGRAM)
1146 		svc_udp_init(svsk, serv);
1147 	else
1148 		svc_tcp_init(svsk, serv);
1149 
1150 	/*
1151 	 * We start one listener per sv_serv.  We want AF_INET
1152 	 * requests to be automatically shunted to our AF_INET6
1153 	 * listener using a mapped IPv4 address.  Make sure
1154 	 * no-one starts an equivalent IPv4 listener, which
1155 	 * would steal our incoming connections.
1156 	 */
1157 	val = 0;
1158 	if (serv->sv_family == AF_INET6)
1159 		kernel_setsockopt(sock, SOL_IPV6, IPV6_V6ONLY,
1160 					(char *)&val, sizeof(val));
1161 
1162 	dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1163 				svsk, svsk->sk_sk);
1164 
1165 	return svsk;
1166 }
1167 
1168 int svc_addsock(struct svc_serv *serv,
1169 		int fd,
1170 		char *name_return)
1171 {
1172 	int err = 0;
1173 	struct socket *so = sockfd_lookup(fd, &err);
1174 	struct svc_sock *svsk = NULL;
1175 
1176 	if (!so)
1177 		return err;
1178 	if (so->sk->sk_family != AF_INET)
1179 		err =  -EAFNOSUPPORT;
1180 	else if (so->sk->sk_protocol != IPPROTO_TCP &&
1181 	    so->sk->sk_protocol != IPPROTO_UDP)
1182 		err =  -EPROTONOSUPPORT;
1183 	else if (so->state > SS_UNCONNECTED)
1184 		err = -EISCONN;
1185 	else {
1186 		svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
1187 		if (svsk) {
1188 			struct sockaddr_storage addr;
1189 			struct sockaddr *sin = (struct sockaddr *)&addr;
1190 			int salen;
1191 			if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0)
1192 				svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
1193 			clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
1194 			spin_lock_bh(&serv->sv_lock);
1195 			list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks);
1196 			spin_unlock_bh(&serv->sv_lock);
1197 			svc_xprt_received(&svsk->sk_xprt);
1198 			err = 0;
1199 		}
1200 	}
1201 	if (err) {
1202 		sockfd_put(so);
1203 		return err;
1204 	}
1205 	return one_sock_name(name_return, svsk);
1206 }
1207 EXPORT_SYMBOL_GPL(svc_addsock);
1208 
1209 /*
1210  * Create socket for RPC service.
1211  */
1212 static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
1213 					  int protocol,
1214 					  struct sockaddr *sin, int len,
1215 					  int flags)
1216 {
1217 	struct svc_sock	*svsk;
1218 	struct socket	*sock;
1219 	int		error;
1220 	int		type;
1221 	struct sockaddr_storage addr;
1222 	struct sockaddr *newsin = (struct sockaddr *)&addr;
1223 	int		newlen;
1224 	RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
1225 
1226 	dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1227 			serv->sv_program->pg_name, protocol,
1228 			__svc_print_addr(sin, buf, sizeof(buf)));
1229 
1230 	if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1231 		printk(KERN_WARNING "svc: only UDP and TCP "
1232 				"sockets supported\n");
1233 		return ERR_PTR(-EINVAL);
1234 	}
1235 	type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1236 
1237 	error = sock_create_kern(sin->sa_family, type, protocol, &sock);
1238 	if (error < 0)
1239 		return ERR_PTR(error);
1240 
1241 	svc_reclassify_socket(sock);
1242 
1243 	if (type == SOCK_STREAM)
1244 		sock->sk->sk_reuse = 1;		/* allow address reuse */
1245 	error = kernel_bind(sock, sin, len);
1246 	if (error < 0)
1247 		goto bummer;
1248 
1249 	newlen = len;
1250 	error = kernel_getsockname(sock, newsin, &newlen);
1251 	if (error < 0)
1252 		goto bummer;
1253 
1254 	if (protocol == IPPROTO_TCP) {
1255 		if ((error = kernel_listen(sock, 64)) < 0)
1256 			goto bummer;
1257 	}
1258 
1259 	if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1260 		svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
1261 		return (struct svc_xprt *)svsk;
1262 	}
1263 
1264 bummer:
1265 	dprintk("svc: svc_create_socket error = %d\n", -error);
1266 	sock_release(sock);
1267 	return ERR_PTR(error);
1268 }
1269 
1270 /*
1271  * Detach the svc_sock from the socket so that no
1272  * more callbacks occur.
1273  */
1274 static void svc_sock_detach(struct svc_xprt *xprt)
1275 {
1276 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1277 	struct sock *sk = svsk->sk_sk;
1278 
1279 	dprintk("svc: svc_sock_detach(%p)\n", svsk);
1280 
1281 	/* put back the old socket callbacks */
1282 	sk->sk_state_change = svsk->sk_ostate;
1283 	sk->sk_data_ready = svsk->sk_odata;
1284 	sk->sk_write_space = svsk->sk_owspace;
1285 }
1286 
1287 /*
1288  * Free the svc_sock's socket resources and the svc_sock itself.
1289  */
1290 static void svc_sock_free(struct svc_xprt *xprt)
1291 {
1292 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1293 	dprintk("svc: svc_sock_free(%p)\n", svsk);
1294 
1295 	if (svsk->sk_sock->file)
1296 		sockfd_put(svsk->sk_sock);
1297 	else
1298 		sock_release(svsk->sk_sock);
1299 	kfree(svsk);
1300 }
1301