xref: /openbmc/linux/net/sunrpc/svcsock.c (revision 360d8738)
1 /*
2  * linux/net/sunrpc/svcsock.c
3  *
4  * These are the RPC server socket internals.
5  *
6  * The server scheduling algorithm does not always distribute the load
7  * evenly when servicing a single client. May need to modify the
8  * svc_sock_enqueue procedure...
9  *
10  * TCP support is largely untested and may be a little slow. The problem
11  * is that we currently do two separate recvfrom's, one for the 4-byte
12  * record length, and the second for the actual record. This could possibly
13  * be improved by always reading a minimum size of around 100 bytes and
14  * tucking any superfluous bytes away in a temporary store. Still, that
15  * leaves write requests out in the rain. An alternative may be to peek at
16  * the first skb in the queue, and if it matches the next TCP sequence
17  * number, to extract the record marker. Yuck.
18  *
19  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/errno.h>
25 #include <linux/fcntl.h>
26 #include <linux/net.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/udp.h>
30 #include <linux/tcp.h>
31 #include <linux/unistd.h>
32 #include <linux/slab.h>
33 #include <linux/netdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/file.h>
36 #include <linux/freezer.h>
37 #include <net/sock.h>
38 #include <net/checksum.h>
39 #include <net/ip.h>
40 #include <net/ipv6.h>
41 #include <net/tcp_states.h>
42 #include <asm/uaccess.h>
43 #include <asm/ioctls.h>
44 
45 #include <linux/sunrpc/types.h>
46 #include <linux/sunrpc/clnt.h>
47 #include <linux/sunrpc/xdr.h>
48 #include <linux/sunrpc/svcsock.h>
49 #include <linux/sunrpc/stats.h>
50 
51 /* SMP locking strategy:
52  *
53  *	svc_pool->sp_lock protects most of the fields of that pool.
54  * 	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
55  *	when both need to be taken (rare), svc_serv->sv_lock is first.
56  *	BKL protects svc_serv->sv_nrthread.
57  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
58  *             and the ->sk_info_authunix cache.
59  *	svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply.
60  *
61  *	Some flags can be set to certain values at any time
62  *	providing that certain rules are followed:
63  *
64  *	SK_CONN, SK_DATA, can be set or cleared at any time.
65  *		after a set, svc_sock_enqueue must be called.
66  *		after a clear, the socket must be read/accepted
67  *		 if this succeeds, it must be set again.
68  *	SK_CLOSE can set at any time. It is never cleared.
69  *      sk_inuse contains a bias of '1' until SK_DEAD is set.
70  *             so when sk_inuse hits zero, we know the socket is dead
71  *             and no-one is using it.
72  *      SK_DEAD can only be set while SK_BUSY is held which ensures
73  *             no other thread will be using the socket or will try to
74  *	       set SK_DEAD.
75  *
76  */
77 
78 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
79 
80 
81 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
82 					 int *errp, int flags);
83 static void		svc_delete_socket(struct svc_sock *svsk);
84 static void		svc_udp_data_ready(struct sock *, int);
85 static int		svc_udp_recvfrom(struct svc_rqst *);
86 static int		svc_udp_sendto(struct svc_rqst *);
87 static void		svc_close_socket(struct svc_sock *svsk);
88 
89 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
90 static int svc_deferred_recv(struct svc_rqst *rqstp);
91 static struct cache_deferred_req *svc_defer(struct cache_req *req);
92 
93 /* apparently the "standard" is that clients close
94  * idle connections after 5 minutes, servers after
95  * 6 minutes
96  *   http://www.connectathon.org/talks96/nfstcp.pdf
97  */
98 static int svc_conn_age_period = 6*60;
99 
100 #ifdef CONFIG_DEBUG_LOCK_ALLOC
101 static struct lock_class_key svc_key[2];
102 static struct lock_class_key svc_slock_key[2];
103 
104 static inline void svc_reclassify_socket(struct socket *sock)
105 {
106 	struct sock *sk = sock->sk;
107 	BUG_ON(sock_owned_by_user(sk));
108 	switch (sk->sk_family) {
109 	case AF_INET:
110 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
111 		    &svc_slock_key[0], "sk_lock-AF_INET-NFSD", &svc_key[0]);
112 		break;
113 
114 	case AF_INET6:
115 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
116 		    &svc_slock_key[1], "sk_lock-AF_INET6-NFSD", &svc_key[1]);
117 		break;
118 
119 	default:
120 		BUG();
121 	}
122 }
123 #else
124 static inline void svc_reclassify_socket(struct socket *sock)
125 {
126 }
127 #endif
128 
129 static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
130 {
131 	switch (addr->sa_family) {
132 	case AF_INET:
133 		snprintf(buf, len, "%u.%u.%u.%u, port=%u",
134 			NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
135 			ntohs(((struct sockaddr_in *) addr)->sin_port));
136 		break;
137 
138 	case AF_INET6:
139 		snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
140 			NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
141 			ntohs(((struct sockaddr_in6 *) addr)->sin6_port));
142 		break;
143 
144 	default:
145 		snprintf(buf, len, "unknown address type: %d", addr->sa_family);
146 		break;
147 	}
148 	return buf;
149 }
150 
151 /**
152  * svc_print_addr - Format rq_addr field for printing
153  * @rqstp: svc_rqst struct containing address to print
154  * @buf: target buffer for formatted address
155  * @len: length of target buffer
156  *
157  */
158 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
159 {
160 	return __svc_print_addr(svc_addr(rqstp), buf, len);
161 }
162 EXPORT_SYMBOL_GPL(svc_print_addr);
163 
164 /*
165  * Queue up an idle server thread.  Must have pool->sp_lock held.
166  * Note: this is really a stack rather than a queue, so that we only
167  * use as many different threads as we need, and the rest don't pollute
168  * the cache.
169  */
170 static inline void
171 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
172 {
173 	list_add(&rqstp->rq_list, &pool->sp_threads);
174 }
175 
176 /*
177  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
178  */
179 static inline void
180 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
181 {
182 	list_del(&rqstp->rq_list);
183 }
184 
185 /*
186  * Release an skbuff after use
187  */
188 static inline void
189 svc_release_skb(struct svc_rqst *rqstp)
190 {
191 	struct sk_buff *skb = rqstp->rq_skbuff;
192 	struct svc_deferred_req *dr = rqstp->rq_deferred;
193 
194 	if (skb) {
195 		rqstp->rq_skbuff = NULL;
196 
197 		dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
198 		skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
199 	}
200 	if (dr) {
201 		rqstp->rq_deferred = NULL;
202 		kfree(dr);
203 	}
204 }
205 
206 /*
207  * Any space to write?
208  */
209 static inline unsigned long
210 svc_sock_wspace(struct svc_sock *svsk)
211 {
212 	int wspace;
213 
214 	if (svsk->sk_sock->type == SOCK_STREAM)
215 		wspace = sk_stream_wspace(svsk->sk_sk);
216 	else
217 		wspace = sock_wspace(svsk->sk_sk);
218 
219 	return wspace;
220 }
221 
222 /*
223  * Queue up a socket with data pending. If there are idle nfsd
224  * processes, wake 'em up.
225  *
226  */
227 static void
228 svc_sock_enqueue(struct svc_sock *svsk)
229 {
230 	struct svc_serv	*serv = svsk->sk_server;
231 	struct svc_pool *pool;
232 	struct svc_rqst	*rqstp;
233 	int cpu;
234 
235 	if (!(svsk->sk_flags &
236 	      ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
237 		return;
238 	if (test_bit(SK_DEAD, &svsk->sk_flags))
239 		return;
240 
241 	cpu = get_cpu();
242 	pool = svc_pool_for_cpu(svsk->sk_server, cpu);
243 	put_cpu();
244 
245 	spin_lock_bh(&pool->sp_lock);
246 
247 	if (!list_empty(&pool->sp_threads) &&
248 	    !list_empty(&pool->sp_sockets))
249 		printk(KERN_ERR
250 			"svc_sock_enqueue: threads and sockets both waiting??\n");
251 
252 	if (test_bit(SK_DEAD, &svsk->sk_flags)) {
253 		/* Don't enqueue dead sockets */
254 		dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
255 		goto out_unlock;
256 	}
257 
258 	/* Mark socket as busy. It will remain in this state until the
259 	 * server has processed all pending data and put the socket back
260 	 * on the idle list.  We update SK_BUSY atomically because
261 	 * it also guards against trying to enqueue the svc_sock twice.
262 	 */
263 	if (test_and_set_bit(SK_BUSY, &svsk->sk_flags)) {
264 		/* Don't enqueue socket while already enqueued */
265 		dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
266 		goto out_unlock;
267 	}
268 	BUG_ON(svsk->sk_pool != NULL);
269 	svsk->sk_pool = pool;
270 
271 	set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
272 	if (((atomic_read(&svsk->sk_reserved) + serv->sv_max_mesg)*2
273 	     > svc_sock_wspace(svsk))
274 	    && !test_bit(SK_CLOSE, &svsk->sk_flags)
275 	    && !test_bit(SK_CONN, &svsk->sk_flags)) {
276 		/* Don't enqueue while not enough space for reply */
277 		dprintk("svc: socket %p  no space, %d*2 > %ld, not enqueued\n",
278 			svsk->sk_sk, atomic_read(&svsk->sk_reserved)+serv->sv_max_mesg,
279 			svc_sock_wspace(svsk));
280 		svsk->sk_pool = NULL;
281 		clear_bit(SK_BUSY, &svsk->sk_flags);
282 		goto out_unlock;
283 	}
284 	clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
285 
286 
287 	if (!list_empty(&pool->sp_threads)) {
288 		rqstp = list_entry(pool->sp_threads.next,
289 				   struct svc_rqst,
290 				   rq_list);
291 		dprintk("svc: socket %p served by daemon %p\n",
292 			svsk->sk_sk, rqstp);
293 		svc_thread_dequeue(pool, rqstp);
294 		if (rqstp->rq_sock)
295 			printk(KERN_ERR
296 				"svc_sock_enqueue: server %p, rq_sock=%p!\n",
297 				rqstp, rqstp->rq_sock);
298 		rqstp->rq_sock = svsk;
299 		atomic_inc(&svsk->sk_inuse);
300 		rqstp->rq_reserved = serv->sv_max_mesg;
301 		atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
302 		BUG_ON(svsk->sk_pool != pool);
303 		wake_up(&rqstp->rq_wait);
304 	} else {
305 		dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
306 		list_add_tail(&svsk->sk_ready, &pool->sp_sockets);
307 		BUG_ON(svsk->sk_pool != pool);
308 	}
309 
310 out_unlock:
311 	spin_unlock_bh(&pool->sp_lock);
312 }
313 
314 /*
315  * Dequeue the first socket.  Must be called with the pool->sp_lock held.
316  */
317 static inline struct svc_sock *
318 svc_sock_dequeue(struct svc_pool *pool)
319 {
320 	struct svc_sock	*svsk;
321 
322 	if (list_empty(&pool->sp_sockets))
323 		return NULL;
324 
325 	svsk = list_entry(pool->sp_sockets.next,
326 			  struct svc_sock, sk_ready);
327 	list_del_init(&svsk->sk_ready);
328 
329 	dprintk("svc: socket %p dequeued, inuse=%d\n",
330 		svsk->sk_sk, atomic_read(&svsk->sk_inuse));
331 
332 	return svsk;
333 }
334 
335 /*
336  * Having read something from a socket, check whether it
337  * needs to be re-enqueued.
338  * Note: SK_DATA only gets cleared when a read-attempt finds
339  * no (or insufficient) data.
340  */
341 static inline void
342 svc_sock_received(struct svc_sock *svsk)
343 {
344 	svsk->sk_pool = NULL;
345 	clear_bit(SK_BUSY, &svsk->sk_flags);
346 	svc_sock_enqueue(svsk);
347 }
348 
349 
350 /**
351  * svc_reserve - change the space reserved for the reply to a request.
352  * @rqstp:  The request in question
353  * @space: new max space to reserve
354  *
355  * Each request reserves some space on the output queue of the socket
356  * to make sure the reply fits.  This function reduces that reserved
357  * space to be the amount of space used already, plus @space.
358  *
359  */
360 void svc_reserve(struct svc_rqst *rqstp, int space)
361 {
362 	space += rqstp->rq_res.head[0].iov_len;
363 
364 	if (space < rqstp->rq_reserved) {
365 		struct svc_sock *svsk = rqstp->rq_sock;
366 		atomic_sub((rqstp->rq_reserved - space), &svsk->sk_reserved);
367 		rqstp->rq_reserved = space;
368 
369 		svc_sock_enqueue(svsk);
370 	}
371 }
372 
373 /*
374  * Release a socket after use.
375  */
376 static inline void
377 svc_sock_put(struct svc_sock *svsk)
378 {
379 	if (atomic_dec_and_test(&svsk->sk_inuse)) {
380 		BUG_ON(! test_bit(SK_DEAD, &svsk->sk_flags));
381 
382 		dprintk("svc: releasing dead socket\n");
383 		if (svsk->sk_sock->file)
384 			sockfd_put(svsk->sk_sock);
385 		else
386 			sock_release(svsk->sk_sock);
387 		if (svsk->sk_info_authunix != NULL)
388 			svcauth_unix_info_release(svsk->sk_info_authunix);
389 		kfree(svsk);
390 	}
391 }
392 
393 static void
394 svc_sock_release(struct svc_rqst *rqstp)
395 {
396 	struct svc_sock	*svsk = rqstp->rq_sock;
397 
398 	svc_release_skb(rqstp);
399 
400 	svc_free_res_pages(rqstp);
401 	rqstp->rq_res.page_len = 0;
402 	rqstp->rq_res.page_base = 0;
403 
404 
405 	/* Reset response buffer and release
406 	 * the reservation.
407 	 * But first, check that enough space was reserved
408 	 * for the reply, otherwise we have a bug!
409 	 */
410 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
411 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
412 		       rqstp->rq_reserved,
413 		       rqstp->rq_res.len);
414 
415 	rqstp->rq_res.head[0].iov_len = 0;
416 	svc_reserve(rqstp, 0);
417 	rqstp->rq_sock = NULL;
418 
419 	svc_sock_put(svsk);
420 }
421 
422 /*
423  * External function to wake up a server waiting for data
424  * This really only makes sense for services like lockd
425  * which have exactly one thread anyway.
426  */
427 void
428 svc_wake_up(struct svc_serv *serv)
429 {
430 	struct svc_rqst	*rqstp;
431 	unsigned int i;
432 	struct svc_pool *pool;
433 
434 	for (i = 0; i < serv->sv_nrpools; i++) {
435 		pool = &serv->sv_pools[i];
436 
437 		spin_lock_bh(&pool->sp_lock);
438 		if (!list_empty(&pool->sp_threads)) {
439 			rqstp = list_entry(pool->sp_threads.next,
440 					   struct svc_rqst,
441 					   rq_list);
442 			dprintk("svc: daemon %p woken up.\n", rqstp);
443 			/*
444 			svc_thread_dequeue(pool, rqstp);
445 			rqstp->rq_sock = NULL;
446 			 */
447 			wake_up(&rqstp->rq_wait);
448 		}
449 		spin_unlock_bh(&pool->sp_lock);
450 	}
451 }
452 
453 union svc_pktinfo_u {
454 	struct in_pktinfo pkti;
455 	struct in6_pktinfo pkti6;
456 };
457 #define SVC_PKTINFO_SPACE \
458 	CMSG_SPACE(sizeof(union svc_pktinfo_u))
459 
460 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
461 {
462 	switch (rqstp->rq_sock->sk_sk->sk_family) {
463 	case AF_INET: {
464 			struct in_pktinfo *pki = CMSG_DATA(cmh);
465 
466 			cmh->cmsg_level = SOL_IP;
467 			cmh->cmsg_type = IP_PKTINFO;
468 			pki->ipi_ifindex = 0;
469 			pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
470 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
471 		}
472 		break;
473 
474 	case AF_INET6: {
475 			struct in6_pktinfo *pki = CMSG_DATA(cmh);
476 
477 			cmh->cmsg_level = SOL_IPV6;
478 			cmh->cmsg_type = IPV6_PKTINFO;
479 			pki->ipi6_ifindex = 0;
480 			ipv6_addr_copy(&pki->ipi6_addr,
481 					&rqstp->rq_daddr.addr6);
482 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
483 		}
484 		break;
485 	}
486 	return;
487 }
488 
489 /*
490  * Generic sendto routine
491  */
492 static int
493 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
494 {
495 	struct svc_sock	*svsk = rqstp->rq_sock;
496 	struct socket	*sock = svsk->sk_sock;
497 	int		slen;
498 	union {
499 		struct cmsghdr	hdr;
500 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
501 	} buffer;
502 	struct cmsghdr *cmh = &buffer.hdr;
503 	int		len = 0;
504 	int		result;
505 	int		size;
506 	struct page	**ppage = xdr->pages;
507 	size_t		base = xdr->page_base;
508 	unsigned int	pglen = xdr->page_len;
509 	unsigned int	flags = MSG_MORE;
510 	char		buf[RPC_MAX_ADDRBUFLEN];
511 
512 	slen = xdr->len;
513 
514 	if (rqstp->rq_prot == IPPROTO_UDP) {
515 		struct msghdr msg = {
516 			.msg_name	= &rqstp->rq_addr,
517 			.msg_namelen	= rqstp->rq_addrlen,
518 			.msg_control	= cmh,
519 			.msg_controllen	= sizeof(buffer),
520 			.msg_flags	= MSG_MORE,
521 		};
522 
523 		svc_set_cmsg_data(rqstp, cmh);
524 
525 		if (sock_sendmsg(sock, &msg, 0) < 0)
526 			goto out;
527 	}
528 
529 	/* send head */
530 	if (slen == xdr->head[0].iov_len)
531 		flags = 0;
532 	len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
533 				  xdr->head[0].iov_len, flags);
534 	if (len != xdr->head[0].iov_len)
535 		goto out;
536 	slen -= xdr->head[0].iov_len;
537 	if (slen == 0)
538 		goto out;
539 
540 	/* send page data */
541 	size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
542 	while (pglen > 0) {
543 		if (slen == size)
544 			flags = 0;
545 		result = kernel_sendpage(sock, *ppage, base, size, flags);
546 		if (result > 0)
547 			len += result;
548 		if (result != size)
549 			goto out;
550 		slen -= size;
551 		pglen -= size;
552 		size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
553 		base = 0;
554 		ppage++;
555 	}
556 	/* send tail */
557 	if (xdr->tail[0].iov_len) {
558 		result = kernel_sendpage(sock, rqstp->rq_respages[0],
559 					     ((unsigned long)xdr->tail[0].iov_base)
560 						& (PAGE_SIZE-1),
561 					     xdr->tail[0].iov_len, 0);
562 
563 		if (result > 0)
564 			len += result;
565 	}
566 out:
567 	dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
568 		rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len,
569 		xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
570 
571 	return len;
572 }
573 
574 /*
575  * Report socket names for nfsdfs
576  */
577 static int one_sock_name(char *buf, struct svc_sock *svsk)
578 {
579 	int len;
580 
581 	switch(svsk->sk_sk->sk_family) {
582 	case AF_INET:
583 		len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
584 			      svsk->sk_sk->sk_protocol==IPPROTO_UDP?
585 			      "udp" : "tcp",
586 			      NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
587 			      inet_sk(svsk->sk_sk)->num);
588 		break;
589 	default:
590 		len = sprintf(buf, "*unknown-%d*\n",
591 			       svsk->sk_sk->sk_family);
592 	}
593 	return len;
594 }
595 
596 int
597 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
598 {
599 	struct svc_sock *svsk, *closesk = NULL;
600 	int len = 0;
601 
602 	if (!serv)
603 		return 0;
604 	spin_lock_bh(&serv->sv_lock);
605 	list_for_each_entry(svsk, &serv->sv_permsocks, sk_list) {
606 		int onelen = one_sock_name(buf+len, svsk);
607 		if (toclose && strcmp(toclose, buf+len) == 0)
608 			closesk = svsk;
609 		else
610 			len += onelen;
611 	}
612 	spin_unlock_bh(&serv->sv_lock);
613 	if (closesk)
614 		/* Should unregister with portmap, but you cannot
615 		 * unregister just one protocol...
616 		 */
617 		svc_close_socket(closesk);
618 	else if (toclose)
619 		return -ENOENT;
620 	return len;
621 }
622 EXPORT_SYMBOL(svc_sock_names);
623 
624 /*
625  * Check input queue length
626  */
627 static int
628 svc_recv_available(struct svc_sock *svsk)
629 {
630 	struct socket	*sock = svsk->sk_sock;
631 	int		avail, err;
632 
633 	err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
634 
635 	return (err >= 0)? avail : err;
636 }
637 
638 /*
639  * Generic recvfrom routine.
640  */
641 static int
642 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
643 {
644 	struct svc_sock *svsk = rqstp->rq_sock;
645 	struct msghdr msg = {
646 		.msg_flags	= MSG_DONTWAIT,
647 	};
648 	struct sockaddr *sin;
649 	int len;
650 
651 	len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
652 				msg.msg_flags);
653 
654 	/* sock_recvmsg doesn't fill in the name/namelen, so we must..
655 	 */
656 	memcpy(&rqstp->rq_addr, &svsk->sk_remote, svsk->sk_remotelen);
657 	rqstp->rq_addrlen = svsk->sk_remotelen;
658 
659 	/* Destination address in request is needed for binding the
660 	 * source address in RPC callbacks later.
661 	 */
662 	sin = (struct sockaddr *)&svsk->sk_local;
663 	switch (sin->sa_family) {
664 	case AF_INET:
665 		rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
666 		break;
667 	case AF_INET6:
668 		rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
669 		break;
670 	}
671 
672 	dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
673 		svsk, iov[0].iov_base, iov[0].iov_len, len);
674 
675 	return len;
676 }
677 
678 /*
679  * Set socket snd and rcv buffer lengths
680  */
681 static inline void
682 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
683 {
684 #if 0
685 	mm_segment_t	oldfs;
686 	oldfs = get_fs(); set_fs(KERNEL_DS);
687 	sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
688 			(char*)&snd, sizeof(snd));
689 	sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
690 			(char*)&rcv, sizeof(rcv));
691 #else
692 	/* sock_setsockopt limits use to sysctl_?mem_max,
693 	 * which isn't acceptable.  Until that is made conditional
694 	 * on not having CAP_SYS_RESOURCE or similar, we go direct...
695 	 * DaveM said I could!
696 	 */
697 	lock_sock(sock->sk);
698 	sock->sk->sk_sndbuf = snd * 2;
699 	sock->sk->sk_rcvbuf = rcv * 2;
700 	sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
701 	release_sock(sock->sk);
702 #endif
703 }
704 /*
705  * INET callback when data has been received on the socket.
706  */
707 static void
708 svc_udp_data_ready(struct sock *sk, int count)
709 {
710 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
711 
712 	if (svsk) {
713 		dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
714 			svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
715 		set_bit(SK_DATA, &svsk->sk_flags);
716 		svc_sock_enqueue(svsk);
717 	}
718 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
719 		wake_up_interruptible(sk->sk_sleep);
720 }
721 
722 /*
723  * INET callback when space is newly available on the socket.
724  */
725 static void
726 svc_write_space(struct sock *sk)
727 {
728 	struct svc_sock	*svsk = (struct svc_sock *)(sk->sk_user_data);
729 
730 	if (svsk) {
731 		dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
732 			svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
733 		svc_sock_enqueue(svsk);
734 	}
735 
736 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
737 		dprintk("RPC svc_write_space: someone sleeping on %p\n",
738 		       svsk);
739 		wake_up_interruptible(sk->sk_sleep);
740 	}
741 }
742 
743 static inline void svc_udp_get_dest_address(struct svc_rqst *rqstp,
744 					    struct cmsghdr *cmh)
745 {
746 	switch (rqstp->rq_sock->sk_sk->sk_family) {
747 	case AF_INET: {
748 		struct in_pktinfo *pki = CMSG_DATA(cmh);
749 		rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
750 		break;
751 		}
752 	case AF_INET6: {
753 		struct in6_pktinfo *pki = CMSG_DATA(cmh);
754 		ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
755 		break;
756 		}
757 	}
758 }
759 
760 /*
761  * Receive a datagram from a UDP socket.
762  */
763 static int
764 svc_udp_recvfrom(struct svc_rqst *rqstp)
765 {
766 	struct svc_sock	*svsk = rqstp->rq_sock;
767 	struct svc_serv	*serv = svsk->sk_server;
768 	struct sk_buff	*skb;
769 	union {
770 		struct cmsghdr	hdr;
771 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
772 	} buffer;
773 	struct cmsghdr *cmh = &buffer.hdr;
774 	int		err, len;
775 	struct msghdr msg = {
776 		.msg_name = svc_addr(rqstp),
777 		.msg_control = cmh,
778 		.msg_controllen = sizeof(buffer),
779 		.msg_flags = MSG_DONTWAIT,
780 	};
781 
782 	if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
783 	    /* udp sockets need large rcvbuf as all pending
784 	     * requests are still in that buffer.  sndbuf must
785 	     * also be large enough that there is enough space
786 	     * for one reply per thread.  We count all threads
787 	     * rather than threads in a particular pool, which
788 	     * provides an upper bound on the number of threads
789 	     * which will access the socket.
790 	     */
791 	    svc_sock_setbufsize(svsk->sk_sock,
792 				(serv->sv_nrthreads+3) * serv->sv_max_mesg,
793 				(serv->sv_nrthreads+3) * serv->sv_max_mesg);
794 
795 	if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
796 		svc_sock_received(svsk);
797 		return svc_deferred_recv(rqstp);
798 	}
799 
800 	if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
801 		svc_delete_socket(svsk);
802 		return 0;
803 	}
804 
805 	clear_bit(SK_DATA, &svsk->sk_flags);
806 	skb = NULL;
807 	err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
808 			     0, 0, MSG_PEEK | MSG_DONTWAIT);
809 	if (err >= 0)
810 		skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
811 
812 	if (skb == NULL) {
813 		if (err != -EAGAIN) {
814 			/* possibly an icmp error */
815 			dprintk("svc: recvfrom returned error %d\n", -err);
816 			set_bit(SK_DATA, &svsk->sk_flags);
817 		}
818 		svc_sock_received(svsk);
819 		return -EAGAIN;
820 	}
821 	rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
822 	if (skb->tstamp.tv64 == 0) {
823 		skb->tstamp = ktime_get_real();
824 		/* Don't enable netstamp, sunrpc doesn't
825 		   need that much accuracy */
826 	}
827 	svsk->sk_sk->sk_stamp = skb->tstamp;
828 	set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
829 
830 	/*
831 	 * Maybe more packets - kick another thread ASAP.
832 	 */
833 	svc_sock_received(svsk);
834 
835 	len  = skb->len - sizeof(struct udphdr);
836 	rqstp->rq_arg.len = len;
837 
838 	rqstp->rq_prot = IPPROTO_UDP;
839 
840 	if (cmh->cmsg_level != IPPROTO_IP ||
841 	    cmh->cmsg_type != IP_PKTINFO) {
842 		if (net_ratelimit())
843 			printk("rpcsvc: received unknown control message:"
844 			       "%d/%d\n",
845 			       cmh->cmsg_level, cmh->cmsg_type);
846 		skb_free_datagram(svsk->sk_sk, skb);
847 		return 0;
848 	}
849 	svc_udp_get_dest_address(rqstp, cmh);
850 
851 	if (skb_is_nonlinear(skb)) {
852 		/* we have to copy */
853 		local_bh_disable();
854 		if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
855 			local_bh_enable();
856 			/* checksum error */
857 			skb_free_datagram(svsk->sk_sk, skb);
858 			return 0;
859 		}
860 		local_bh_enable();
861 		skb_free_datagram(svsk->sk_sk, skb);
862 	} else {
863 		/* we can use it in-place */
864 		rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
865 		rqstp->rq_arg.head[0].iov_len = len;
866 		if (skb_checksum_complete(skb)) {
867 			skb_free_datagram(svsk->sk_sk, skb);
868 			return 0;
869 		}
870 		rqstp->rq_skbuff = skb;
871 	}
872 
873 	rqstp->rq_arg.page_base = 0;
874 	if (len <= rqstp->rq_arg.head[0].iov_len) {
875 		rqstp->rq_arg.head[0].iov_len = len;
876 		rqstp->rq_arg.page_len = 0;
877 		rqstp->rq_respages = rqstp->rq_pages+1;
878 	} else {
879 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
880 		rqstp->rq_respages = rqstp->rq_pages + 1 +
881 			DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
882 	}
883 
884 	if (serv->sv_stats)
885 		serv->sv_stats->netudpcnt++;
886 
887 	return len;
888 }
889 
890 static int
891 svc_udp_sendto(struct svc_rqst *rqstp)
892 {
893 	int		error;
894 
895 	error = svc_sendto(rqstp, &rqstp->rq_res);
896 	if (error == -ECONNREFUSED)
897 		/* ICMP error on earlier request. */
898 		error = svc_sendto(rqstp, &rqstp->rq_res);
899 
900 	return error;
901 }
902 
903 static struct svc_xprt_ops svc_udp_ops = {
904 };
905 
906 static struct svc_xprt_class svc_udp_class = {
907 	.xcl_name = "udp",
908 	.xcl_ops = &svc_udp_ops,
909 };
910 
911 static void
912 svc_udp_init(struct svc_sock *svsk)
913 {
914 	int one = 1;
915 	mm_segment_t oldfs;
916 
917 	svc_xprt_init(&svc_udp_class, &svsk->sk_xprt);
918 	svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
919 	svsk->sk_sk->sk_write_space = svc_write_space;
920 	svsk->sk_recvfrom = svc_udp_recvfrom;
921 	svsk->sk_sendto = svc_udp_sendto;
922 
923 	/* initialise setting must have enough space to
924 	 * receive and respond to one request.
925 	 * svc_udp_recvfrom will re-adjust if necessary
926 	 */
927 	svc_sock_setbufsize(svsk->sk_sock,
928 			    3 * svsk->sk_server->sv_max_mesg,
929 			    3 * svsk->sk_server->sv_max_mesg);
930 
931 	set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
932 	set_bit(SK_CHNGBUF, &svsk->sk_flags);
933 
934 	oldfs = get_fs();
935 	set_fs(KERNEL_DS);
936 	/* make sure we get destination address info */
937 	svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
938 				       (char __user *)&one, sizeof(one));
939 	set_fs(oldfs);
940 }
941 
942 /*
943  * A data_ready event on a listening socket means there's a connection
944  * pending. Do not use state_change as a substitute for it.
945  */
946 static void
947 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
948 {
949 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
950 
951 	dprintk("svc: socket %p TCP (listen) state change %d\n",
952 		sk, sk->sk_state);
953 
954 	/*
955 	 * This callback may called twice when a new connection
956 	 * is established as a child socket inherits everything
957 	 * from a parent LISTEN socket.
958 	 * 1) data_ready method of the parent socket will be called
959 	 *    when one of child sockets become ESTABLISHED.
960 	 * 2) data_ready method of the child socket may be called
961 	 *    when it receives data before the socket is accepted.
962 	 * In case of 2, we should ignore it silently.
963 	 */
964 	if (sk->sk_state == TCP_LISTEN) {
965 		if (svsk) {
966 			set_bit(SK_CONN, &svsk->sk_flags);
967 			svc_sock_enqueue(svsk);
968 		} else
969 			printk("svc: socket %p: no user data\n", sk);
970 	}
971 
972 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
973 		wake_up_interruptible_all(sk->sk_sleep);
974 }
975 
976 /*
977  * A state change on a connected socket means it's dying or dead.
978  */
979 static void
980 svc_tcp_state_change(struct sock *sk)
981 {
982 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
983 
984 	dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
985 		sk, sk->sk_state, sk->sk_user_data);
986 
987 	if (!svsk)
988 		printk("svc: socket %p: no user data\n", sk);
989 	else {
990 		set_bit(SK_CLOSE, &svsk->sk_flags);
991 		svc_sock_enqueue(svsk);
992 	}
993 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
994 		wake_up_interruptible_all(sk->sk_sleep);
995 }
996 
997 static void
998 svc_tcp_data_ready(struct sock *sk, int count)
999 {
1000 	struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
1001 
1002 	dprintk("svc: socket %p TCP data ready (svsk %p)\n",
1003 		sk, sk->sk_user_data);
1004 	if (svsk) {
1005 		set_bit(SK_DATA, &svsk->sk_flags);
1006 		svc_sock_enqueue(svsk);
1007 	}
1008 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1009 		wake_up_interruptible(sk->sk_sleep);
1010 }
1011 
1012 static inline int svc_port_is_privileged(struct sockaddr *sin)
1013 {
1014 	switch (sin->sa_family) {
1015 	case AF_INET:
1016 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
1017 			< PROT_SOCK;
1018 	case AF_INET6:
1019 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
1020 			< PROT_SOCK;
1021 	default:
1022 		return 0;
1023 	}
1024 }
1025 
1026 /*
1027  * Accept a TCP connection
1028  */
1029 static void
1030 svc_tcp_accept(struct svc_sock *svsk)
1031 {
1032 	struct sockaddr_storage addr;
1033 	struct sockaddr	*sin = (struct sockaddr *) &addr;
1034 	struct svc_serv	*serv = svsk->sk_server;
1035 	struct socket	*sock = svsk->sk_sock;
1036 	struct socket	*newsock;
1037 	struct svc_sock	*newsvsk;
1038 	int		err, slen;
1039 	char		buf[RPC_MAX_ADDRBUFLEN];
1040 
1041 	dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
1042 	if (!sock)
1043 		return;
1044 
1045 	clear_bit(SK_CONN, &svsk->sk_flags);
1046 	err = kernel_accept(sock, &newsock, O_NONBLOCK);
1047 	if (err < 0) {
1048 		if (err == -ENOMEM)
1049 			printk(KERN_WARNING "%s: no more sockets!\n",
1050 			       serv->sv_name);
1051 		else if (err != -EAGAIN && net_ratelimit())
1052 			printk(KERN_WARNING "%s: accept failed (err %d)!\n",
1053 				   serv->sv_name, -err);
1054 		return;
1055 	}
1056 
1057 	set_bit(SK_CONN, &svsk->sk_flags);
1058 	svc_sock_enqueue(svsk);
1059 
1060 	err = kernel_getpeername(newsock, sin, &slen);
1061 	if (err < 0) {
1062 		if (net_ratelimit())
1063 			printk(KERN_WARNING "%s: peername failed (err %d)!\n",
1064 				   serv->sv_name, -err);
1065 		goto failed;		/* aborted connection or whatever */
1066 	}
1067 
1068 	/* Ideally, we would want to reject connections from unauthorized
1069 	 * hosts here, but when we get encryption, the IP of the host won't
1070 	 * tell us anything.  For now just warn about unpriv connections.
1071 	 */
1072 	if (!svc_port_is_privileged(sin)) {
1073 		dprintk(KERN_WARNING
1074 			"%s: connect from unprivileged port: %s\n",
1075 			serv->sv_name,
1076 			__svc_print_addr(sin, buf, sizeof(buf)));
1077 	}
1078 	dprintk("%s: connect from %s\n", serv->sv_name,
1079 		__svc_print_addr(sin, buf, sizeof(buf)));
1080 
1081 	/* make sure that a write doesn't block forever when
1082 	 * low on memory
1083 	 */
1084 	newsock->sk->sk_sndtimeo = HZ*30;
1085 
1086 	if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
1087 				 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
1088 		goto failed;
1089 	memcpy(&newsvsk->sk_remote, sin, slen);
1090 	newsvsk->sk_remotelen = slen;
1091 	err = kernel_getsockname(newsock, sin, &slen);
1092 	if (unlikely(err < 0)) {
1093 		dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
1094 		slen = offsetof(struct sockaddr, sa_data);
1095 	}
1096 	memcpy(&newsvsk->sk_local, sin, slen);
1097 
1098 	svc_sock_received(newsvsk);
1099 
1100 	/* make sure that we don't have too many active connections.
1101 	 * If we have, something must be dropped.
1102 	 *
1103 	 * There's no point in trying to do random drop here for
1104 	 * DoS prevention. The NFS clients does 1 reconnect in 15
1105 	 * seconds. An attacker can easily beat that.
1106 	 *
1107 	 * The only somewhat efficient mechanism would be if drop
1108 	 * old connections from the same IP first. But right now
1109 	 * we don't even record the client IP in svc_sock.
1110 	 */
1111 	if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
1112 		struct svc_sock *svsk = NULL;
1113 		spin_lock_bh(&serv->sv_lock);
1114 		if (!list_empty(&serv->sv_tempsocks)) {
1115 			if (net_ratelimit()) {
1116 				/* Try to help the admin */
1117 				printk(KERN_NOTICE "%s: too many open TCP "
1118 					"sockets, consider increasing the "
1119 					"number of nfsd threads\n",
1120 						   serv->sv_name);
1121 				printk(KERN_NOTICE
1122 				       "%s: last TCP connect from %s\n",
1123 				       serv->sv_name, __svc_print_addr(sin,
1124 							buf, sizeof(buf)));
1125 			}
1126 			/*
1127 			 * Always select the oldest socket. It's not fair,
1128 			 * but so is life
1129 			 */
1130 			svsk = list_entry(serv->sv_tempsocks.prev,
1131 					  struct svc_sock,
1132 					  sk_list);
1133 			set_bit(SK_CLOSE, &svsk->sk_flags);
1134 			atomic_inc(&svsk->sk_inuse);
1135 		}
1136 		spin_unlock_bh(&serv->sv_lock);
1137 
1138 		if (svsk) {
1139 			svc_sock_enqueue(svsk);
1140 			svc_sock_put(svsk);
1141 		}
1142 
1143 	}
1144 
1145 	if (serv->sv_stats)
1146 		serv->sv_stats->nettcpconn++;
1147 
1148 	return;
1149 
1150 failed:
1151 	sock_release(newsock);
1152 	return;
1153 }
1154 
1155 /*
1156  * Receive data from a TCP socket.
1157  */
1158 static int
1159 svc_tcp_recvfrom(struct svc_rqst *rqstp)
1160 {
1161 	struct svc_sock	*svsk = rqstp->rq_sock;
1162 	struct svc_serv	*serv = svsk->sk_server;
1163 	int		len;
1164 	struct kvec *vec;
1165 	int pnum, vlen;
1166 
1167 	dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1168 		svsk, test_bit(SK_DATA, &svsk->sk_flags),
1169 		test_bit(SK_CONN, &svsk->sk_flags),
1170 		test_bit(SK_CLOSE, &svsk->sk_flags));
1171 
1172 	if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
1173 		svc_sock_received(svsk);
1174 		return svc_deferred_recv(rqstp);
1175 	}
1176 
1177 	if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
1178 		svc_delete_socket(svsk);
1179 		return 0;
1180 	}
1181 
1182 	if (svsk->sk_sk->sk_state == TCP_LISTEN) {
1183 		svc_tcp_accept(svsk);
1184 		svc_sock_received(svsk);
1185 		return 0;
1186 	}
1187 
1188 	if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
1189 		/* sndbuf needs to have room for one request
1190 		 * per thread, otherwise we can stall even when the
1191 		 * network isn't a bottleneck.
1192 		 *
1193 		 * We count all threads rather than threads in a
1194 		 * particular pool, which provides an upper bound
1195 		 * on the number of threads which will access the socket.
1196 		 *
1197 		 * rcvbuf just needs to be able to hold a few requests.
1198 		 * Normally they will be removed from the queue
1199 		 * as soon a a complete request arrives.
1200 		 */
1201 		svc_sock_setbufsize(svsk->sk_sock,
1202 				    (serv->sv_nrthreads+3) * serv->sv_max_mesg,
1203 				    3 * serv->sv_max_mesg);
1204 
1205 	clear_bit(SK_DATA, &svsk->sk_flags);
1206 
1207 	/* Receive data. If we haven't got the record length yet, get
1208 	 * the next four bytes. Otherwise try to gobble up as much as
1209 	 * possible up to the complete record length.
1210 	 */
1211 	if (svsk->sk_tcplen < 4) {
1212 		unsigned long	want = 4 - svsk->sk_tcplen;
1213 		struct kvec	iov;
1214 
1215 		iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1216 		iov.iov_len  = want;
1217 		if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1218 			goto error;
1219 		svsk->sk_tcplen += len;
1220 
1221 		if (len < want) {
1222 			dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1223 				len, want);
1224 			svc_sock_received(svsk);
1225 			return -EAGAIN; /* record header not complete */
1226 		}
1227 
1228 		svsk->sk_reclen = ntohl(svsk->sk_reclen);
1229 		if (!(svsk->sk_reclen & 0x80000000)) {
1230 			/* FIXME: technically, a record can be fragmented,
1231 			 *  and non-terminal fragments will not have the top
1232 			 *  bit set in the fragment length header.
1233 			 *  But apparently no known nfs clients send fragmented
1234 			 *  records. */
1235 			if (net_ratelimit())
1236 				printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1237 				       " (non-terminal)\n",
1238 				       (unsigned long) svsk->sk_reclen);
1239 			goto err_delete;
1240 		}
1241 		svsk->sk_reclen &= 0x7fffffff;
1242 		dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1243 		if (svsk->sk_reclen > serv->sv_max_mesg) {
1244 			if (net_ratelimit())
1245 				printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1246 				       " (large)\n",
1247 				       (unsigned long) svsk->sk_reclen);
1248 			goto err_delete;
1249 		}
1250 	}
1251 
1252 	/* Check whether enough data is available */
1253 	len = svc_recv_available(svsk);
1254 	if (len < 0)
1255 		goto error;
1256 
1257 	if (len < svsk->sk_reclen) {
1258 		dprintk("svc: incomplete TCP record (%d of %d)\n",
1259 			len, svsk->sk_reclen);
1260 		svc_sock_received(svsk);
1261 		return -EAGAIN;	/* record not complete */
1262 	}
1263 	len = svsk->sk_reclen;
1264 	set_bit(SK_DATA, &svsk->sk_flags);
1265 
1266 	vec = rqstp->rq_vec;
1267 	vec[0] = rqstp->rq_arg.head[0];
1268 	vlen = PAGE_SIZE;
1269 	pnum = 1;
1270 	while (vlen < len) {
1271 		vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
1272 		vec[pnum].iov_len = PAGE_SIZE;
1273 		pnum++;
1274 		vlen += PAGE_SIZE;
1275 	}
1276 	rqstp->rq_respages = &rqstp->rq_pages[pnum];
1277 
1278 	/* Now receive data */
1279 	len = svc_recvfrom(rqstp, vec, pnum, len);
1280 	if (len < 0)
1281 		goto error;
1282 
1283 	dprintk("svc: TCP complete record (%d bytes)\n", len);
1284 	rqstp->rq_arg.len = len;
1285 	rqstp->rq_arg.page_base = 0;
1286 	if (len <= rqstp->rq_arg.head[0].iov_len) {
1287 		rqstp->rq_arg.head[0].iov_len = len;
1288 		rqstp->rq_arg.page_len = 0;
1289 	} else {
1290 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1291 	}
1292 
1293 	rqstp->rq_skbuff      = NULL;
1294 	rqstp->rq_prot	      = IPPROTO_TCP;
1295 
1296 	/* Reset TCP read info */
1297 	svsk->sk_reclen = 0;
1298 	svsk->sk_tcplen = 0;
1299 
1300 	svc_sock_received(svsk);
1301 	if (serv->sv_stats)
1302 		serv->sv_stats->nettcpcnt++;
1303 
1304 	return len;
1305 
1306  err_delete:
1307 	svc_delete_socket(svsk);
1308 	return -EAGAIN;
1309 
1310  error:
1311 	if (len == -EAGAIN) {
1312 		dprintk("RPC: TCP recvfrom got EAGAIN\n");
1313 		svc_sock_received(svsk);
1314 	} else {
1315 		printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1316 					svsk->sk_server->sv_name, -len);
1317 		goto err_delete;
1318 	}
1319 
1320 	return len;
1321 }
1322 
1323 /*
1324  * Send out data on TCP socket.
1325  */
1326 static int
1327 svc_tcp_sendto(struct svc_rqst *rqstp)
1328 {
1329 	struct xdr_buf	*xbufp = &rqstp->rq_res;
1330 	int sent;
1331 	__be32 reclen;
1332 
1333 	/* Set up the first element of the reply kvec.
1334 	 * Any other kvecs that may be in use have been taken
1335 	 * care of by the server implementation itself.
1336 	 */
1337 	reclen = htonl(0x80000000|((xbufp->len ) - 4));
1338 	memcpy(xbufp->head[0].iov_base, &reclen, 4);
1339 
1340 	if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1341 		return -ENOTCONN;
1342 
1343 	sent = svc_sendto(rqstp, &rqstp->rq_res);
1344 	if (sent != xbufp->len) {
1345 		printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1346 		       rqstp->rq_sock->sk_server->sv_name,
1347 		       (sent<0)?"got error":"sent only",
1348 		       sent, xbufp->len);
1349 		set_bit(SK_CLOSE, &rqstp->rq_sock->sk_flags);
1350 		svc_sock_enqueue(rqstp->rq_sock);
1351 		sent = -EAGAIN;
1352 	}
1353 	return sent;
1354 }
1355 
1356 static struct svc_xprt_ops svc_tcp_ops = {
1357 };
1358 
1359 static struct svc_xprt_class svc_tcp_class = {
1360 	.xcl_name = "tcp",
1361 	.xcl_ops = &svc_tcp_ops,
1362 };
1363 
1364 void svc_init_xprt_sock(void)
1365 {
1366 	svc_reg_xprt_class(&svc_tcp_class);
1367 	svc_reg_xprt_class(&svc_udp_class);
1368 }
1369 
1370 void svc_cleanup_xprt_sock(void)
1371 {
1372 	svc_unreg_xprt_class(&svc_tcp_class);
1373 	svc_unreg_xprt_class(&svc_udp_class);
1374 }
1375 
1376 static void
1377 svc_tcp_init(struct svc_sock *svsk)
1378 {
1379 	struct sock	*sk = svsk->sk_sk;
1380 	struct tcp_sock *tp = tcp_sk(sk);
1381 
1382 	svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt);
1383 	svsk->sk_recvfrom = svc_tcp_recvfrom;
1384 	svsk->sk_sendto = svc_tcp_sendto;
1385 
1386 	if (sk->sk_state == TCP_LISTEN) {
1387 		dprintk("setting up TCP socket for listening\n");
1388 		sk->sk_data_ready = svc_tcp_listen_data_ready;
1389 		set_bit(SK_CONN, &svsk->sk_flags);
1390 	} else {
1391 		dprintk("setting up TCP socket for reading\n");
1392 		sk->sk_state_change = svc_tcp_state_change;
1393 		sk->sk_data_ready = svc_tcp_data_ready;
1394 		sk->sk_write_space = svc_write_space;
1395 
1396 		svsk->sk_reclen = 0;
1397 		svsk->sk_tcplen = 0;
1398 
1399 		tp->nonagle = 1;        /* disable Nagle's algorithm */
1400 
1401 		/* initialise setting must have enough space to
1402 		 * receive and respond to one request.
1403 		 * svc_tcp_recvfrom will re-adjust if necessary
1404 		 */
1405 		svc_sock_setbufsize(svsk->sk_sock,
1406 				    3 * svsk->sk_server->sv_max_mesg,
1407 				    3 * svsk->sk_server->sv_max_mesg);
1408 
1409 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1410 		set_bit(SK_DATA, &svsk->sk_flags);
1411 		if (sk->sk_state != TCP_ESTABLISHED)
1412 			set_bit(SK_CLOSE, &svsk->sk_flags);
1413 	}
1414 }
1415 
1416 void
1417 svc_sock_update_bufs(struct svc_serv *serv)
1418 {
1419 	/*
1420 	 * The number of server threads has changed. Update
1421 	 * rcvbuf and sndbuf accordingly on all sockets
1422 	 */
1423 	struct list_head *le;
1424 
1425 	spin_lock_bh(&serv->sv_lock);
1426 	list_for_each(le, &serv->sv_permsocks) {
1427 		struct svc_sock *svsk =
1428 			list_entry(le, struct svc_sock, sk_list);
1429 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1430 	}
1431 	list_for_each(le, &serv->sv_tempsocks) {
1432 		struct svc_sock *svsk =
1433 			list_entry(le, struct svc_sock, sk_list);
1434 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1435 	}
1436 	spin_unlock_bh(&serv->sv_lock);
1437 }
1438 
1439 /*
1440  * Receive the next request on any socket.  This code is carefully
1441  * organised not to touch any cachelines in the shared svc_serv
1442  * structure, only cachelines in the local svc_pool.
1443  */
1444 int
1445 svc_recv(struct svc_rqst *rqstp, long timeout)
1446 {
1447 	struct svc_sock		*svsk = NULL;
1448 	struct svc_serv		*serv = rqstp->rq_server;
1449 	struct svc_pool		*pool = rqstp->rq_pool;
1450 	int			len, i;
1451 	int 			pages;
1452 	struct xdr_buf		*arg;
1453 	DECLARE_WAITQUEUE(wait, current);
1454 
1455 	dprintk("svc: server %p waiting for data (to = %ld)\n",
1456 		rqstp, timeout);
1457 
1458 	if (rqstp->rq_sock)
1459 		printk(KERN_ERR
1460 			"svc_recv: service %p, socket not NULL!\n",
1461 			 rqstp);
1462 	if (waitqueue_active(&rqstp->rq_wait))
1463 		printk(KERN_ERR
1464 			"svc_recv: service %p, wait queue active!\n",
1465 			 rqstp);
1466 
1467 
1468 	/* now allocate needed pages.  If we get a failure, sleep briefly */
1469 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
1470 	for (i=0; i < pages ; i++)
1471 		while (rqstp->rq_pages[i] == NULL) {
1472 			struct page *p = alloc_page(GFP_KERNEL);
1473 			if (!p)
1474 				schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1475 			rqstp->rq_pages[i] = p;
1476 		}
1477 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
1478 	BUG_ON(pages >= RPCSVC_MAXPAGES);
1479 
1480 	/* Make arg->head point to first page and arg->pages point to rest */
1481 	arg = &rqstp->rq_arg;
1482 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
1483 	arg->head[0].iov_len = PAGE_SIZE;
1484 	arg->pages = rqstp->rq_pages + 1;
1485 	arg->page_base = 0;
1486 	/* save at least one page for response */
1487 	arg->page_len = (pages-2)*PAGE_SIZE;
1488 	arg->len = (pages-1)*PAGE_SIZE;
1489 	arg->tail[0].iov_len = 0;
1490 
1491 	try_to_freeze();
1492 	cond_resched();
1493 	if (signalled())
1494 		return -EINTR;
1495 
1496 	spin_lock_bh(&pool->sp_lock);
1497 	if ((svsk = svc_sock_dequeue(pool)) != NULL) {
1498 		rqstp->rq_sock = svsk;
1499 		atomic_inc(&svsk->sk_inuse);
1500 		rqstp->rq_reserved = serv->sv_max_mesg;
1501 		atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
1502 	} else {
1503 		/* No data pending. Go to sleep */
1504 		svc_thread_enqueue(pool, rqstp);
1505 
1506 		/*
1507 		 * We have to be able to interrupt this wait
1508 		 * to bring down the daemons ...
1509 		 */
1510 		set_current_state(TASK_INTERRUPTIBLE);
1511 		add_wait_queue(&rqstp->rq_wait, &wait);
1512 		spin_unlock_bh(&pool->sp_lock);
1513 
1514 		schedule_timeout(timeout);
1515 
1516 		try_to_freeze();
1517 
1518 		spin_lock_bh(&pool->sp_lock);
1519 		remove_wait_queue(&rqstp->rq_wait, &wait);
1520 
1521 		if (!(svsk = rqstp->rq_sock)) {
1522 			svc_thread_dequeue(pool, rqstp);
1523 			spin_unlock_bh(&pool->sp_lock);
1524 			dprintk("svc: server %p, no data yet\n", rqstp);
1525 			return signalled()? -EINTR : -EAGAIN;
1526 		}
1527 	}
1528 	spin_unlock_bh(&pool->sp_lock);
1529 
1530 	dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1531 		 rqstp, pool->sp_id, svsk, atomic_read(&svsk->sk_inuse));
1532 	len = svsk->sk_recvfrom(rqstp);
1533 	dprintk("svc: got len=%d\n", len);
1534 
1535 	/* No data, incomplete (TCP) read, or accept() */
1536 	if (len == 0 || len == -EAGAIN) {
1537 		rqstp->rq_res.len = 0;
1538 		svc_sock_release(rqstp);
1539 		return -EAGAIN;
1540 	}
1541 	svsk->sk_lastrecv = get_seconds();
1542 	clear_bit(SK_OLD, &svsk->sk_flags);
1543 
1544 	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
1545 	rqstp->rq_chandle.defer = svc_defer;
1546 
1547 	if (serv->sv_stats)
1548 		serv->sv_stats->netcnt++;
1549 	return len;
1550 }
1551 
1552 /*
1553  * Drop request
1554  */
1555 void
1556 svc_drop(struct svc_rqst *rqstp)
1557 {
1558 	dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1559 	svc_sock_release(rqstp);
1560 }
1561 
1562 /*
1563  * Return reply to client.
1564  */
1565 int
1566 svc_send(struct svc_rqst *rqstp)
1567 {
1568 	struct svc_sock	*svsk;
1569 	int		len;
1570 	struct xdr_buf	*xb;
1571 
1572 	if ((svsk = rqstp->rq_sock) == NULL) {
1573 		printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1574 				__FILE__, __LINE__);
1575 		return -EFAULT;
1576 	}
1577 
1578 	/* release the receive skb before sending the reply */
1579 	svc_release_skb(rqstp);
1580 
1581 	/* calculate over-all length */
1582 	xb = & rqstp->rq_res;
1583 	xb->len = xb->head[0].iov_len +
1584 		xb->page_len +
1585 		xb->tail[0].iov_len;
1586 
1587 	/* Grab svsk->sk_mutex to serialize outgoing data. */
1588 	mutex_lock(&svsk->sk_mutex);
1589 	if (test_bit(SK_DEAD, &svsk->sk_flags))
1590 		len = -ENOTCONN;
1591 	else
1592 		len = svsk->sk_sendto(rqstp);
1593 	mutex_unlock(&svsk->sk_mutex);
1594 	svc_sock_release(rqstp);
1595 
1596 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1597 		return 0;
1598 	return len;
1599 }
1600 
1601 /*
1602  * Timer function to close old temporary sockets, using
1603  * a mark-and-sweep algorithm.
1604  */
1605 static void
1606 svc_age_temp_sockets(unsigned long closure)
1607 {
1608 	struct svc_serv *serv = (struct svc_serv *)closure;
1609 	struct svc_sock *svsk;
1610 	struct list_head *le, *next;
1611 	LIST_HEAD(to_be_aged);
1612 
1613 	dprintk("svc_age_temp_sockets\n");
1614 
1615 	if (!spin_trylock_bh(&serv->sv_lock)) {
1616 		/* busy, try again 1 sec later */
1617 		dprintk("svc_age_temp_sockets: busy\n");
1618 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
1619 		return;
1620 	}
1621 
1622 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
1623 		svsk = list_entry(le, struct svc_sock, sk_list);
1624 
1625 		if (!test_and_set_bit(SK_OLD, &svsk->sk_flags))
1626 			continue;
1627 		if (atomic_read(&svsk->sk_inuse) > 1 || test_bit(SK_BUSY, &svsk->sk_flags))
1628 			continue;
1629 		atomic_inc(&svsk->sk_inuse);
1630 		list_move(le, &to_be_aged);
1631 		set_bit(SK_CLOSE, &svsk->sk_flags);
1632 		set_bit(SK_DETACHED, &svsk->sk_flags);
1633 	}
1634 	spin_unlock_bh(&serv->sv_lock);
1635 
1636 	while (!list_empty(&to_be_aged)) {
1637 		le = to_be_aged.next;
1638 		/* fiddling the sk_list node is safe 'cos we're SK_DETACHED */
1639 		list_del_init(le);
1640 		svsk = list_entry(le, struct svc_sock, sk_list);
1641 
1642 		dprintk("queuing svsk %p for closing, %lu seconds old\n",
1643 			svsk, get_seconds() - svsk->sk_lastrecv);
1644 
1645 		/* a thread will dequeue and close it soon */
1646 		svc_sock_enqueue(svsk);
1647 		svc_sock_put(svsk);
1648 	}
1649 
1650 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1651 }
1652 
1653 /*
1654  * Initialize socket for RPC use and create svc_sock struct
1655  * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1656  */
1657 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1658 						struct socket *sock,
1659 						int *errp, int flags)
1660 {
1661 	struct svc_sock	*svsk;
1662 	struct sock	*inet;
1663 	int		pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1664 	int		is_temporary = flags & SVC_SOCK_TEMPORARY;
1665 
1666 	dprintk("svc: svc_setup_socket %p\n", sock);
1667 	if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1668 		*errp = -ENOMEM;
1669 		return NULL;
1670 	}
1671 
1672 	inet = sock->sk;
1673 
1674 	/* Register socket with portmapper */
1675 	if (*errp >= 0 && pmap_register)
1676 		*errp = svc_register(serv, inet->sk_protocol,
1677 				     ntohs(inet_sk(inet)->sport));
1678 
1679 	if (*errp < 0) {
1680 		kfree(svsk);
1681 		return NULL;
1682 	}
1683 
1684 	set_bit(SK_BUSY, &svsk->sk_flags);
1685 	inet->sk_user_data = svsk;
1686 	svsk->sk_sock = sock;
1687 	svsk->sk_sk = inet;
1688 	svsk->sk_ostate = inet->sk_state_change;
1689 	svsk->sk_odata = inet->sk_data_ready;
1690 	svsk->sk_owspace = inet->sk_write_space;
1691 	svsk->sk_server = serv;
1692 	atomic_set(&svsk->sk_inuse, 1);
1693 	svsk->sk_lastrecv = get_seconds();
1694 	spin_lock_init(&svsk->sk_lock);
1695 	INIT_LIST_HEAD(&svsk->sk_deferred);
1696 	INIT_LIST_HEAD(&svsk->sk_ready);
1697 	mutex_init(&svsk->sk_mutex);
1698 
1699 	/* Initialize the socket */
1700 	if (sock->type == SOCK_DGRAM)
1701 		svc_udp_init(svsk);
1702 	else
1703 		svc_tcp_init(svsk);
1704 
1705 	spin_lock_bh(&serv->sv_lock);
1706 	if (is_temporary) {
1707 		set_bit(SK_TEMP, &svsk->sk_flags);
1708 		list_add(&svsk->sk_list, &serv->sv_tempsocks);
1709 		serv->sv_tmpcnt++;
1710 		if (serv->sv_temptimer.function == NULL) {
1711 			/* setup timer to age temp sockets */
1712 			setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
1713 					(unsigned long)serv);
1714 			mod_timer(&serv->sv_temptimer,
1715 					jiffies + svc_conn_age_period * HZ);
1716 		}
1717 	} else {
1718 		clear_bit(SK_TEMP, &svsk->sk_flags);
1719 		list_add(&svsk->sk_list, &serv->sv_permsocks);
1720 	}
1721 	spin_unlock_bh(&serv->sv_lock);
1722 
1723 	dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1724 				svsk, svsk->sk_sk);
1725 
1726 	return svsk;
1727 }
1728 
1729 int svc_addsock(struct svc_serv *serv,
1730 		int fd,
1731 		char *name_return,
1732 		int *proto)
1733 {
1734 	int err = 0;
1735 	struct socket *so = sockfd_lookup(fd, &err);
1736 	struct svc_sock *svsk = NULL;
1737 
1738 	if (!so)
1739 		return err;
1740 	if (so->sk->sk_family != AF_INET)
1741 		err =  -EAFNOSUPPORT;
1742 	else if (so->sk->sk_protocol != IPPROTO_TCP &&
1743 	    so->sk->sk_protocol != IPPROTO_UDP)
1744 		err =  -EPROTONOSUPPORT;
1745 	else if (so->state > SS_UNCONNECTED)
1746 		err = -EISCONN;
1747 	else {
1748 		svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
1749 		if (svsk) {
1750 			svc_sock_received(svsk);
1751 			err = 0;
1752 		}
1753 	}
1754 	if (err) {
1755 		sockfd_put(so);
1756 		return err;
1757 	}
1758 	if (proto) *proto = so->sk->sk_protocol;
1759 	return one_sock_name(name_return, svsk);
1760 }
1761 EXPORT_SYMBOL_GPL(svc_addsock);
1762 
1763 /*
1764  * Create socket for RPC service.
1765  */
1766 static int svc_create_socket(struct svc_serv *serv, int protocol,
1767 				struct sockaddr *sin, int len, int flags)
1768 {
1769 	struct svc_sock	*svsk;
1770 	struct socket	*sock;
1771 	int		error;
1772 	int		type;
1773 	char		buf[RPC_MAX_ADDRBUFLEN];
1774 
1775 	dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1776 			serv->sv_program->pg_name, protocol,
1777 			__svc_print_addr(sin, buf, sizeof(buf)));
1778 
1779 	if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1780 		printk(KERN_WARNING "svc: only UDP and TCP "
1781 				"sockets supported\n");
1782 		return -EINVAL;
1783 	}
1784 	type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1785 
1786 	error = sock_create_kern(sin->sa_family, type, protocol, &sock);
1787 	if (error < 0)
1788 		return error;
1789 
1790 	svc_reclassify_socket(sock);
1791 
1792 	if (type == SOCK_STREAM)
1793 		sock->sk->sk_reuse = 1;		/* allow address reuse */
1794 	error = kernel_bind(sock, sin, len);
1795 	if (error < 0)
1796 		goto bummer;
1797 
1798 	if (protocol == IPPROTO_TCP) {
1799 		if ((error = kernel_listen(sock, 64)) < 0)
1800 			goto bummer;
1801 	}
1802 
1803 	if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1804 		svc_sock_received(svsk);
1805 		return ntohs(inet_sk(svsk->sk_sk)->sport);
1806 	}
1807 
1808 bummer:
1809 	dprintk("svc: svc_create_socket error = %d\n", -error);
1810 	sock_release(sock);
1811 	return error;
1812 }
1813 
1814 /*
1815  * Remove a dead socket
1816  */
1817 static void
1818 svc_delete_socket(struct svc_sock *svsk)
1819 {
1820 	struct svc_serv	*serv;
1821 	struct sock	*sk;
1822 
1823 	dprintk("svc: svc_delete_socket(%p)\n", svsk);
1824 
1825 	serv = svsk->sk_server;
1826 	sk = svsk->sk_sk;
1827 
1828 	sk->sk_state_change = svsk->sk_ostate;
1829 	sk->sk_data_ready = svsk->sk_odata;
1830 	sk->sk_write_space = svsk->sk_owspace;
1831 
1832 	spin_lock_bh(&serv->sv_lock);
1833 
1834 	if (!test_and_set_bit(SK_DETACHED, &svsk->sk_flags))
1835 		list_del_init(&svsk->sk_list);
1836 	/*
1837 	 * We used to delete the svc_sock from whichever list
1838 	 * it's sk_ready node was on, but we don't actually
1839 	 * need to.  This is because the only time we're called
1840 	 * while still attached to a queue, the queue itself
1841 	 * is about to be destroyed (in svc_destroy).
1842 	 */
1843 	if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags)) {
1844 		BUG_ON(atomic_read(&svsk->sk_inuse)<2);
1845 		atomic_dec(&svsk->sk_inuse);
1846 		if (test_bit(SK_TEMP, &svsk->sk_flags))
1847 			serv->sv_tmpcnt--;
1848 	}
1849 
1850 	spin_unlock_bh(&serv->sv_lock);
1851 }
1852 
1853 static void svc_close_socket(struct svc_sock *svsk)
1854 {
1855 	set_bit(SK_CLOSE, &svsk->sk_flags);
1856 	if (test_and_set_bit(SK_BUSY, &svsk->sk_flags))
1857 		/* someone else will have to effect the close */
1858 		return;
1859 
1860 	atomic_inc(&svsk->sk_inuse);
1861 	svc_delete_socket(svsk);
1862 	clear_bit(SK_BUSY, &svsk->sk_flags);
1863 	svc_sock_put(svsk);
1864 }
1865 
1866 void svc_force_close_socket(struct svc_sock *svsk)
1867 {
1868 	set_bit(SK_CLOSE, &svsk->sk_flags);
1869 	if (test_bit(SK_BUSY, &svsk->sk_flags)) {
1870 		/* Waiting to be processed, but no threads left,
1871 		 * So just remove it from the waiting list
1872 		 */
1873 		list_del_init(&svsk->sk_ready);
1874 		clear_bit(SK_BUSY, &svsk->sk_flags);
1875 	}
1876 	svc_close_socket(svsk);
1877 }
1878 
1879 /**
1880  * svc_makesock - Make a socket for nfsd and lockd
1881  * @serv: RPC server structure
1882  * @protocol: transport protocol to use
1883  * @port: port to use
1884  * @flags: requested socket characteristics
1885  *
1886  */
1887 int svc_makesock(struct svc_serv *serv, int protocol, unsigned short port,
1888 			int flags)
1889 {
1890 	struct sockaddr_in sin = {
1891 		.sin_family		= AF_INET,
1892 		.sin_addr.s_addr	= INADDR_ANY,
1893 		.sin_port		= htons(port),
1894 	};
1895 
1896 	dprintk("svc: creating socket proto = %d\n", protocol);
1897 	return svc_create_socket(serv, protocol, (struct sockaddr *) &sin,
1898 							sizeof(sin), flags);
1899 }
1900 
1901 /*
1902  * Handle defer and revisit of requests
1903  */
1904 
1905 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1906 {
1907 	struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1908 	struct svc_sock *svsk;
1909 
1910 	if (too_many) {
1911 		svc_sock_put(dr->svsk);
1912 		kfree(dr);
1913 		return;
1914 	}
1915 	dprintk("revisit queued\n");
1916 	svsk = dr->svsk;
1917 	dr->svsk = NULL;
1918 	spin_lock(&svsk->sk_lock);
1919 	list_add(&dr->handle.recent, &svsk->sk_deferred);
1920 	spin_unlock(&svsk->sk_lock);
1921 	set_bit(SK_DEFERRED, &svsk->sk_flags);
1922 	svc_sock_enqueue(svsk);
1923 	svc_sock_put(svsk);
1924 }
1925 
1926 static struct cache_deferred_req *
1927 svc_defer(struct cache_req *req)
1928 {
1929 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1930 	int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1931 	struct svc_deferred_req *dr;
1932 
1933 	if (rqstp->rq_arg.page_len)
1934 		return NULL; /* if more than a page, give up FIXME */
1935 	if (rqstp->rq_deferred) {
1936 		dr = rqstp->rq_deferred;
1937 		rqstp->rq_deferred = NULL;
1938 	} else {
1939 		int skip  = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1940 		/* FIXME maybe discard if size too large */
1941 		dr = kmalloc(size, GFP_KERNEL);
1942 		if (dr == NULL)
1943 			return NULL;
1944 
1945 		dr->handle.owner = rqstp->rq_server;
1946 		dr->prot = rqstp->rq_prot;
1947 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1948 		dr->addrlen = rqstp->rq_addrlen;
1949 		dr->daddr = rqstp->rq_daddr;
1950 		dr->argslen = rqstp->rq_arg.len >> 2;
1951 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1952 	}
1953 	atomic_inc(&rqstp->rq_sock->sk_inuse);
1954 	dr->svsk = rqstp->rq_sock;
1955 
1956 	dr->handle.revisit = svc_revisit;
1957 	return &dr->handle;
1958 }
1959 
1960 /*
1961  * recv data from a deferred request into an active one
1962  */
1963 static int svc_deferred_recv(struct svc_rqst *rqstp)
1964 {
1965 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1966 
1967 	rqstp->rq_arg.head[0].iov_base = dr->args;
1968 	rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
1969 	rqstp->rq_arg.page_len = 0;
1970 	rqstp->rq_arg.len = dr->argslen<<2;
1971 	rqstp->rq_prot        = dr->prot;
1972 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1973 	rqstp->rq_addrlen     = dr->addrlen;
1974 	rqstp->rq_daddr       = dr->daddr;
1975 	rqstp->rq_respages    = rqstp->rq_pages;
1976 	return dr->argslen<<2;
1977 }
1978 
1979 
1980 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
1981 {
1982 	struct svc_deferred_req *dr = NULL;
1983 
1984 	if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
1985 		return NULL;
1986 	spin_lock(&svsk->sk_lock);
1987 	clear_bit(SK_DEFERRED, &svsk->sk_flags);
1988 	if (!list_empty(&svsk->sk_deferred)) {
1989 		dr = list_entry(svsk->sk_deferred.next,
1990 				struct svc_deferred_req,
1991 				handle.recent);
1992 		list_del_init(&dr->handle.recent);
1993 		set_bit(SK_DEFERRED, &svsk->sk_flags);
1994 	}
1995 	spin_unlock(&svsk->sk_lock);
1996 	return dr;
1997 }
1998