1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/svcsock.c 4 * 5 * These are the RPC server socket internals. 6 * 7 * The server scheduling algorithm does not always distribute the load 8 * evenly when servicing a single client. May need to modify the 9 * svc_xprt_enqueue procedure... 10 * 11 * TCP support is largely untested and may be a little slow. The problem 12 * is that we currently do two separate recvfrom's, one for the 4-byte 13 * record length, and the second for the actual record. This could possibly 14 * be improved by always reading a minimum size of around 100 bytes and 15 * tucking any superfluous bytes away in a temporary store. Still, that 16 * leaves write requests out in the rain. An alternative may be to peek at 17 * the first skb in the queue, and if it matches the next TCP sequence 18 * number, to extract the record marker. Yuck. 19 * 20 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/sched.h> 25 #include <linux/module.h> 26 #include <linux/errno.h> 27 #include <linux/fcntl.h> 28 #include <linux/net.h> 29 #include <linux/in.h> 30 #include <linux/inet.h> 31 #include <linux/udp.h> 32 #include <linux/tcp.h> 33 #include <linux/unistd.h> 34 #include <linux/slab.h> 35 #include <linux/netdevice.h> 36 #include <linux/skbuff.h> 37 #include <linux/file.h> 38 #include <linux/freezer.h> 39 #include <net/sock.h> 40 #include <net/checksum.h> 41 #include <net/ip.h> 42 #include <net/ipv6.h> 43 #include <net/udp.h> 44 #include <net/tcp.h> 45 #include <net/tcp_states.h> 46 #include <net/tls_prot.h> 47 #include <net/handshake.h> 48 #include <linux/uaccess.h> 49 #include <linux/highmem.h> 50 #include <asm/ioctls.h> 51 #include <linux/key.h> 52 53 #include <linux/sunrpc/types.h> 54 #include <linux/sunrpc/clnt.h> 55 #include <linux/sunrpc/xdr.h> 56 #include <linux/sunrpc/msg_prot.h> 57 #include <linux/sunrpc/svcsock.h> 58 #include <linux/sunrpc/stats.h> 59 #include <linux/sunrpc/xprt.h> 60 61 #include <trace/events/sock.h> 62 #include <trace/events/sunrpc.h> 63 64 #include "socklib.h" 65 #include "sunrpc.h" 66 67 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 68 69 /* To-do: to avoid tying up an nfsd thread while waiting for a 70 * handshake request, the request could instead be deferred. 71 */ 72 enum { 73 SVC_HANDSHAKE_TO = 5U * HZ 74 }; 75 76 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *, 77 int flags); 78 static int svc_udp_recvfrom(struct svc_rqst *); 79 static int svc_udp_sendto(struct svc_rqst *); 80 static void svc_sock_detach(struct svc_xprt *); 81 static void svc_tcp_sock_detach(struct svc_xprt *); 82 static void svc_sock_free(struct svc_xprt *); 83 84 static struct svc_xprt *svc_create_socket(struct svc_serv *, int, 85 struct net *, struct sockaddr *, 86 int, int); 87 #ifdef CONFIG_DEBUG_LOCK_ALLOC 88 static struct lock_class_key svc_key[2]; 89 static struct lock_class_key svc_slock_key[2]; 90 91 static void svc_reclassify_socket(struct socket *sock) 92 { 93 struct sock *sk = sock->sk; 94 95 if (WARN_ON_ONCE(!sock_allow_reclassification(sk))) 96 return; 97 98 switch (sk->sk_family) { 99 case AF_INET: 100 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD", 101 &svc_slock_key[0], 102 "sk_xprt.xpt_lock-AF_INET-NFSD", 103 &svc_key[0]); 104 break; 105 106 case AF_INET6: 107 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD", 108 &svc_slock_key[1], 109 "sk_xprt.xpt_lock-AF_INET6-NFSD", 110 &svc_key[1]); 111 break; 112 113 default: 114 BUG(); 115 } 116 } 117 #else 118 static void svc_reclassify_socket(struct socket *sock) 119 { 120 } 121 #endif 122 123 /** 124 * svc_tcp_release_ctxt - Release transport-related resources 125 * @xprt: the transport which owned the context 126 * @ctxt: the context from rqstp->rq_xprt_ctxt or dr->xprt_ctxt 127 * 128 */ 129 static void svc_tcp_release_ctxt(struct svc_xprt *xprt, void *ctxt) 130 { 131 } 132 133 /** 134 * svc_udp_release_ctxt - Release transport-related resources 135 * @xprt: the transport which owned the context 136 * @ctxt: the context from rqstp->rq_xprt_ctxt or dr->xprt_ctxt 137 * 138 */ 139 static void svc_udp_release_ctxt(struct svc_xprt *xprt, void *ctxt) 140 { 141 struct sk_buff *skb = ctxt; 142 143 if (skb) 144 consume_skb(skb); 145 } 146 147 union svc_pktinfo_u { 148 struct in_pktinfo pkti; 149 struct in6_pktinfo pkti6; 150 }; 151 #define SVC_PKTINFO_SPACE \ 152 CMSG_SPACE(sizeof(union svc_pktinfo_u)) 153 154 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh) 155 { 156 struct svc_sock *svsk = 157 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 158 switch (svsk->sk_sk->sk_family) { 159 case AF_INET: { 160 struct in_pktinfo *pki = CMSG_DATA(cmh); 161 162 cmh->cmsg_level = SOL_IP; 163 cmh->cmsg_type = IP_PKTINFO; 164 pki->ipi_ifindex = 0; 165 pki->ipi_spec_dst.s_addr = 166 svc_daddr_in(rqstp)->sin_addr.s_addr; 167 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 168 } 169 break; 170 171 case AF_INET6: { 172 struct in6_pktinfo *pki = CMSG_DATA(cmh); 173 struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp); 174 175 cmh->cmsg_level = SOL_IPV6; 176 cmh->cmsg_type = IPV6_PKTINFO; 177 pki->ipi6_ifindex = daddr->sin6_scope_id; 178 pki->ipi6_addr = daddr->sin6_addr; 179 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 180 } 181 break; 182 } 183 } 184 185 static int svc_sock_result_payload(struct svc_rqst *rqstp, unsigned int offset, 186 unsigned int length) 187 { 188 return 0; 189 } 190 191 /* 192 * Report socket names for nfsdfs 193 */ 194 static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining) 195 { 196 const struct sock *sk = svsk->sk_sk; 197 const char *proto_name = sk->sk_protocol == IPPROTO_UDP ? 198 "udp" : "tcp"; 199 int len; 200 201 switch (sk->sk_family) { 202 case PF_INET: 203 len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n", 204 proto_name, 205 &inet_sk(sk)->inet_rcv_saddr, 206 inet_sk(sk)->inet_num); 207 break; 208 #if IS_ENABLED(CONFIG_IPV6) 209 case PF_INET6: 210 len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n", 211 proto_name, 212 &sk->sk_v6_rcv_saddr, 213 inet_sk(sk)->inet_num); 214 break; 215 #endif 216 default: 217 len = snprintf(buf, remaining, "*unknown-%d*\n", 218 sk->sk_family); 219 } 220 221 if (len >= remaining) { 222 *buf = '\0'; 223 return -ENAMETOOLONG; 224 } 225 return len; 226 } 227 228 static int 229 svc_tcp_sock_process_cmsg(struct socket *sock, struct msghdr *msg, 230 struct cmsghdr *cmsg, int ret) 231 { 232 u8 content_type = tls_get_record_type(sock->sk, cmsg); 233 u8 level, description; 234 235 switch (content_type) { 236 case 0: 237 break; 238 case TLS_RECORD_TYPE_DATA: 239 /* TLS sets EOR at the end of each application data 240 * record, even though there might be more frames 241 * waiting to be decrypted. 242 */ 243 msg->msg_flags &= ~MSG_EOR; 244 break; 245 case TLS_RECORD_TYPE_ALERT: 246 tls_alert_recv(sock->sk, msg, &level, &description); 247 ret = (level == TLS_ALERT_LEVEL_FATAL) ? 248 -ENOTCONN : -EAGAIN; 249 break; 250 default: 251 /* discard this record type */ 252 ret = -EAGAIN; 253 } 254 return ret; 255 } 256 257 static int 258 svc_tcp_sock_recv_cmsg(struct svc_sock *svsk, struct msghdr *msg) 259 { 260 union { 261 struct cmsghdr cmsg; 262 u8 buf[CMSG_SPACE(sizeof(u8))]; 263 } u; 264 struct socket *sock = svsk->sk_sock; 265 int ret; 266 267 msg->msg_control = &u; 268 msg->msg_controllen = sizeof(u); 269 ret = sock_recvmsg(sock, msg, MSG_DONTWAIT); 270 if (unlikely(msg->msg_controllen != sizeof(u))) 271 ret = svc_tcp_sock_process_cmsg(sock, msg, &u.cmsg, ret); 272 return ret; 273 } 274 275 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 276 static void svc_flush_bvec(const struct bio_vec *bvec, size_t size, size_t seek) 277 { 278 struct bvec_iter bi = { 279 .bi_size = size + seek, 280 }; 281 struct bio_vec bv; 282 283 bvec_iter_advance(bvec, &bi, seek & PAGE_MASK); 284 for_each_bvec(bv, bvec, bi, bi) 285 flush_dcache_page(bv.bv_page); 286 } 287 #else 288 static inline void svc_flush_bvec(const struct bio_vec *bvec, size_t size, 289 size_t seek) 290 { 291 } 292 #endif 293 294 /* 295 * Read from @rqstp's transport socket. The incoming message fills whole 296 * pages in @rqstp's rq_pages array until the last page of the message 297 * has been received into a partial page. 298 */ 299 static ssize_t svc_tcp_read_msg(struct svc_rqst *rqstp, size_t buflen, 300 size_t seek) 301 { 302 struct svc_sock *svsk = 303 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 304 struct bio_vec *bvec = rqstp->rq_bvec; 305 struct msghdr msg = { NULL }; 306 unsigned int i; 307 ssize_t len; 308 size_t t; 309 310 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 311 312 for (i = 0, t = 0; t < buflen; i++, t += PAGE_SIZE) 313 bvec_set_page(&bvec[i], rqstp->rq_pages[i], PAGE_SIZE, 0); 314 rqstp->rq_respages = &rqstp->rq_pages[i]; 315 rqstp->rq_next_page = rqstp->rq_respages + 1; 316 317 iov_iter_bvec(&msg.msg_iter, ITER_DEST, bvec, i, buflen); 318 if (seek) { 319 iov_iter_advance(&msg.msg_iter, seek); 320 buflen -= seek; 321 } 322 len = svc_tcp_sock_recv_cmsg(svsk, &msg); 323 if (len > 0) 324 svc_flush_bvec(bvec, len, seek); 325 326 /* If we read a full record, then assume there may be more 327 * data to read (stream based sockets only!) 328 */ 329 if (len == buflen) 330 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 331 332 return len; 333 } 334 335 /* 336 * Set socket snd and rcv buffer lengths 337 */ 338 static void svc_sock_setbufsize(struct svc_sock *svsk, unsigned int nreqs) 339 { 340 unsigned int max_mesg = svsk->sk_xprt.xpt_server->sv_max_mesg; 341 struct socket *sock = svsk->sk_sock; 342 343 nreqs = min(nreqs, INT_MAX / 2 / max_mesg); 344 345 lock_sock(sock->sk); 346 sock->sk->sk_sndbuf = nreqs * max_mesg * 2; 347 sock->sk->sk_rcvbuf = nreqs * max_mesg * 2; 348 sock->sk->sk_write_space(sock->sk); 349 release_sock(sock->sk); 350 } 351 352 static void svc_sock_secure_port(struct svc_rqst *rqstp) 353 { 354 if (svc_port_is_privileged(svc_addr(rqstp))) 355 set_bit(RQ_SECURE, &rqstp->rq_flags); 356 else 357 clear_bit(RQ_SECURE, &rqstp->rq_flags); 358 } 359 360 /* 361 * INET callback when data has been received on the socket. 362 */ 363 static void svc_data_ready(struct sock *sk) 364 { 365 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 366 367 trace_sk_data_ready(sk); 368 369 if (svsk) { 370 /* Refer to svc_setup_socket() for details. */ 371 rmb(); 372 svsk->sk_odata(sk); 373 trace_svcsock_data_ready(&svsk->sk_xprt, 0); 374 if (test_bit(XPT_HANDSHAKE, &svsk->sk_xprt.xpt_flags)) 375 return; 376 if (!test_and_set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags)) 377 svc_xprt_enqueue(&svsk->sk_xprt); 378 } 379 } 380 381 /* 382 * INET callback when space is newly available on the socket. 383 */ 384 static void svc_write_space(struct sock *sk) 385 { 386 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data); 387 388 if (svsk) { 389 /* Refer to svc_setup_socket() for details. */ 390 rmb(); 391 trace_svcsock_write_space(&svsk->sk_xprt, 0); 392 svsk->sk_owspace(sk); 393 svc_xprt_enqueue(&svsk->sk_xprt); 394 } 395 } 396 397 static int svc_tcp_has_wspace(struct svc_xprt *xprt) 398 { 399 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 400 401 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) 402 return 1; 403 return !test_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 404 } 405 406 static void svc_tcp_kill_temp_xprt(struct svc_xprt *xprt) 407 { 408 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 409 410 sock_no_linger(svsk->sk_sock->sk); 411 } 412 413 /** 414 * svc_tcp_handshake_done - Handshake completion handler 415 * @data: address of xprt to wake 416 * @status: status of handshake 417 * @peerid: serial number of key containing the remote peer's identity 418 * 419 * If a security policy is specified as an export option, we don't 420 * have a specific export here to check. So we set a "TLS session 421 * is present" flag on the xprt and let an upper layer enforce local 422 * security policy. 423 */ 424 static void svc_tcp_handshake_done(void *data, int status, key_serial_t peerid) 425 { 426 struct svc_xprt *xprt = data; 427 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 428 429 if (!status) { 430 if (peerid != TLS_NO_PEERID) 431 set_bit(XPT_PEER_AUTH, &xprt->xpt_flags); 432 set_bit(XPT_TLS_SESSION, &xprt->xpt_flags); 433 } 434 clear_bit(XPT_HANDSHAKE, &xprt->xpt_flags); 435 complete_all(&svsk->sk_handshake_done); 436 } 437 438 /** 439 * svc_tcp_handshake - Perform a transport-layer security handshake 440 * @xprt: connected transport endpoint 441 * 442 */ 443 static void svc_tcp_handshake(struct svc_xprt *xprt) 444 { 445 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 446 struct sock *sk = svsk->sk_sock->sk; 447 struct tls_handshake_args args = { 448 .ta_sock = svsk->sk_sock, 449 .ta_done = svc_tcp_handshake_done, 450 .ta_data = xprt, 451 }; 452 int ret; 453 454 trace_svc_tls_upcall(xprt); 455 456 clear_bit(XPT_TLS_SESSION, &xprt->xpt_flags); 457 init_completion(&svsk->sk_handshake_done); 458 459 ret = tls_server_hello_x509(&args, GFP_KERNEL); 460 if (ret) { 461 trace_svc_tls_not_started(xprt); 462 goto out_failed; 463 } 464 465 ret = wait_for_completion_interruptible_timeout(&svsk->sk_handshake_done, 466 SVC_HANDSHAKE_TO); 467 if (ret <= 0) { 468 if (tls_handshake_cancel(sk)) { 469 trace_svc_tls_timed_out(xprt); 470 goto out_close; 471 } 472 } 473 474 if (!test_bit(XPT_TLS_SESSION, &xprt->xpt_flags)) { 475 trace_svc_tls_unavailable(xprt); 476 goto out_close; 477 } 478 479 /* Mark the transport ready in case the remote sent RPC 480 * traffic before the kernel received the handshake 481 * completion downcall. 482 */ 483 set_bit(XPT_DATA, &xprt->xpt_flags); 484 svc_xprt_enqueue(xprt); 485 return; 486 487 out_close: 488 set_bit(XPT_CLOSE, &xprt->xpt_flags); 489 out_failed: 490 clear_bit(XPT_HANDSHAKE, &xprt->xpt_flags); 491 set_bit(XPT_DATA, &xprt->xpt_flags); 492 svc_xprt_enqueue(xprt); 493 } 494 495 /* 496 * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo 497 */ 498 static int svc_udp_get_dest_address4(struct svc_rqst *rqstp, 499 struct cmsghdr *cmh) 500 { 501 struct in_pktinfo *pki = CMSG_DATA(cmh); 502 struct sockaddr_in *daddr = svc_daddr_in(rqstp); 503 504 if (cmh->cmsg_type != IP_PKTINFO) 505 return 0; 506 507 daddr->sin_family = AF_INET; 508 daddr->sin_addr.s_addr = pki->ipi_spec_dst.s_addr; 509 return 1; 510 } 511 512 /* 513 * See net/ipv6/datagram.c : ip6_datagram_recv_ctl 514 */ 515 static int svc_udp_get_dest_address6(struct svc_rqst *rqstp, 516 struct cmsghdr *cmh) 517 { 518 struct in6_pktinfo *pki = CMSG_DATA(cmh); 519 struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp); 520 521 if (cmh->cmsg_type != IPV6_PKTINFO) 522 return 0; 523 524 daddr->sin6_family = AF_INET6; 525 daddr->sin6_addr = pki->ipi6_addr; 526 daddr->sin6_scope_id = pki->ipi6_ifindex; 527 return 1; 528 } 529 530 /* 531 * Copy the UDP datagram's destination address to the rqstp structure. 532 * The 'destination' address in this case is the address to which the 533 * peer sent the datagram, i.e. our local address. For multihomed 534 * hosts, this can change from msg to msg. Note that only the IP 535 * address changes, the port number should remain the same. 536 */ 537 static int svc_udp_get_dest_address(struct svc_rqst *rqstp, 538 struct cmsghdr *cmh) 539 { 540 switch (cmh->cmsg_level) { 541 case SOL_IP: 542 return svc_udp_get_dest_address4(rqstp, cmh); 543 case SOL_IPV6: 544 return svc_udp_get_dest_address6(rqstp, cmh); 545 } 546 547 return 0; 548 } 549 550 /** 551 * svc_udp_recvfrom - Receive a datagram from a UDP socket. 552 * @rqstp: request structure into which to receive an RPC Call 553 * 554 * Called in a loop when XPT_DATA has been set. 555 * 556 * Returns: 557 * On success, the number of bytes in a received RPC Call, or 558 * %0 if a complete RPC Call message was not ready to return 559 */ 560 static int svc_udp_recvfrom(struct svc_rqst *rqstp) 561 { 562 struct svc_sock *svsk = 563 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 564 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 565 struct sk_buff *skb; 566 union { 567 struct cmsghdr hdr; 568 long all[SVC_PKTINFO_SPACE / sizeof(long)]; 569 } buffer; 570 struct cmsghdr *cmh = &buffer.hdr; 571 struct msghdr msg = { 572 .msg_name = svc_addr(rqstp), 573 .msg_control = cmh, 574 .msg_controllen = sizeof(buffer), 575 .msg_flags = MSG_DONTWAIT, 576 }; 577 size_t len; 578 int err; 579 580 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags)) 581 /* udp sockets need large rcvbuf as all pending 582 * requests are still in that buffer. sndbuf must 583 * also be large enough that there is enough space 584 * for one reply per thread. We count all threads 585 * rather than threads in a particular pool, which 586 * provides an upper bound on the number of threads 587 * which will access the socket. 588 */ 589 svc_sock_setbufsize(svsk, serv->sv_nrthreads + 3); 590 591 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 592 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL, 593 0, 0, MSG_PEEK | MSG_DONTWAIT); 594 if (err < 0) 595 goto out_recv_err; 596 skb = skb_recv_udp(svsk->sk_sk, MSG_DONTWAIT, &err); 597 if (!skb) 598 goto out_recv_err; 599 600 len = svc_addr_len(svc_addr(rqstp)); 601 rqstp->rq_addrlen = len; 602 if (skb->tstamp == 0) { 603 skb->tstamp = ktime_get_real(); 604 /* Don't enable netstamp, sunrpc doesn't 605 need that much accuracy */ 606 } 607 sock_write_timestamp(svsk->sk_sk, skb->tstamp); 608 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */ 609 610 len = skb->len; 611 rqstp->rq_arg.len = len; 612 trace_svcsock_udp_recv(&svsk->sk_xprt, len); 613 614 rqstp->rq_prot = IPPROTO_UDP; 615 616 if (!svc_udp_get_dest_address(rqstp, cmh)) 617 goto out_cmsg_err; 618 rqstp->rq_daddrlen = svc_addr_len(svc_daddr(rqstp)); 619 620 if (skb_is_nonlinear(skb)) { 621 /* we have to copy */ 622 local_bh_disable(); 623 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) 624 goto out_bh_enable; 625 local_bh_enable(); 626 consume_skb(skb); 627 } else { 628 /* we can use it in-place */ 629 rqstp->rq_arg.head[0].iov_base = skb->data; 630 rqstp->rq_arg.head[0].iov_len = len; 631 if (skb_checksum_complete(skb)) 632 goto out_free; 633 rqstp->rq_xprt_ctxt = skb; 634 } 635 636 rqstp->rq_arg.page_base = 0; 637 if (len <= rqstp->rq_arg.head[0].iov_len) { 638 rqstp->rq_arg.head[0].iov_len = len; 639 rqstp->rq_arg.page_len = 0; 640 rqstp->rq_respages = rqstp->rq_pages+1; 641 } else { 642 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 643 rqstp->rq_respages = rqstp->rq_pages + 1 + 644 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE); 645 } 646 rqstp->rq_next_page = rqstp->rq_respages+1; 647 648 if (serv->sv_stats) 649 serv->sv_stats->netudpcnt++; 650 651 svc_sock_secure_port(rqstp); 652 svc_xprt_received(rqstp->rq_xprt); 653 return len; 654 655 out_recv_err: 656 if (err != -EAGAIN) { 657 /* possibly an icmp error */ 658 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 659 } 660 trace_svcsock_udp_recv_err(&svsk->sk_xprt, err); 661 goto out_clear_busy; 662 out_cmsg_err: 663 net_warn_ratelimited("svc: received unknown control message %d/%d; dropping RPC reply datagram\n", 664 cmh->cmsg_level, cmh->cmsg_type); 665 goto out_free; 666 out_bh_enable: 667 local_bh_enable(); 668 out_free: 669 kfree_skb(skb); 670 out_clear_busy: 671 svc_xprt_received(rqstp->rq_xprt); 672 return 0; 673 } 674 675 /** 676 * svc_udp_sendto - Send out a reply on a UDP socket 677 * @rqstp: completed svc_rqst 678 * 679 * xpt_mutex ensures @rqstp's whole message is written to the socket 680 * without interruption. 681 * 682 * Returns the number of bytes sent, or a negative errno. 683 */ 684 static int svc_udp_sendto(struct svc_rqst *rqstp) 685 { 686 struct svc_xprt *xprt = rqstp->rq_xprt; 687 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 688 struct xdr_buf *xdr = &rqstp->rq_res; 689 union { 690 struct cmsghdr hdr; 691 long all[SVC_PKTINFO_SPACE / sizeof(long)]; 692 } buffer; 693 struct cmsghdr *cmh = &buffer.hdr; 694 struct msghdr msg = { 695 .msg_name = &rqstp->rq_addr, 696 .msg_namelen = rqstp->rq_addrlen, 697 .msg_control = cmh, 698 .msg_controllen = sizeof(buffer), 699 }; 700 unsigned int sent; 701 int err; 702 703 svc_udp_release_ctxt(xprt, rqstp->rq_xprt_ctxt); 704 rqstp->rq_xprt_ctxt = NULL; 705 706 svc_set_cmsg_data(rqstp, cmh); 707 708 mutex_lock(&xprt->xpt_mutex); 709 710 if (svc_xprt_is_dead(xprt)) 711 goto out_notconn; 712 713 err = xdr_alloc_bvec(xdr, GFP_KERNEL); 714 if (err < 0) 715 goto out_unlock; 716 717 err = xprt_sock_sendmsg(svsk->sk_sock, &msg, xdr, 0, 0, &sent); 718 if (err == -ECONNREFUSED) { 719 /* ICMP error on earlier request. */ 720 err = xprt_sock_sendmsg(svsk->sk_sock, &msg, xdr, 0, 0, &sent); 721 } 722 xdr_free_bvec(xdr); 723 trace_svcsock_udp_send(xprt, err); 724 out_unlock: 725 mutex_unlock(&xprt->xpt_mutex); 726 if (err < 0) 727 return err; 728 return sent; 729 730 out_notconn: 731 mutex_unlock(&xprt->xpt_mutex); 732 return -ENOTCONN; 733 } 734 735 static int svc_udp_has_wspace(struct svc_xprt *xprt) 736 { 737 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 738 struct svc_serv *serv = xprt->xpt_server; 739 unsigned long required; 740 741 /* 742 * Set the SOCK_NOSPACE flag before checking the available 743 * sock space. 744 */ 745 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 746 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg; 747 if (required*2 > sock_wspace(svsk->sk_sk)) 748 return 0; 749 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 750 return 1; 751 } 752 753 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt) 754 { 755 BUG(); 756 return NULL; 757 } 758 759 static void svc_udp_kill_temp_xprt(struct svc_xprt *xprt) 760 { 761 } 762 763 static struct svc_xprt *svc_udp_create(struct svc_serv *serv, 764 struct net *net, 765 struct sockaddr *sa, int salen, 766 int flags) 767 { 768 return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags); 769 } 770 771 static const struct svc_xprt_ops svc_udp_ops = { 772 .xpo_create = svc_udp_create, 773 .xpo_recvfrom = svc_udp_recvfrom, 774 .xpo_sendto = svc_udp_sendto, 775 .xpo_result_payload = svc_sock_result_payload, 776 .xpo_release_ctxt = svc_udp_release_ctxt, 777 .xpo_detach = svc_sock_detach, 778 .xpo_free = svc_sock_free, 779 .xpo_has_wspace = svc_udp_has_wspace, 780 .xpo_accept = svc_udp_accept, 781 .xpo_kill_temp_xprt = svc_udp_kill_temp_xprt, 782 }; 783 784 static struct svc_xprt_class svc_udp_class = { 785 .xcl_name = "udp", 786 .xcl_owner = THIS_MODULE, 787 .xcl_ops = &svc_udp_ops, 788 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP, 789 .xcl_ident = XPRT_TRANSPORT_UDP, 790 }; 791 792 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv) 793 { 794 svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_udp_class, 795 &svsk->sk_xprt, serv); 796 clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); 797 svsk->sk_sk->sk_data_ready = svc_data_ready; 798 svsk->sk_sk->sk_write_space = svc_write_space; 799 800 /* initialise setting must have enough space to 801 * receive and respond to one request. 802 * svc_udp_recvfrom will re-adjust if necessary 803 */ 804 svc_sock_setbufsize(svsk, 3); 805 806 /* data might have come in before data_ready set up */ 807 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 808 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 809 810 /* make sure we get destination address info */ 811 switch (svsk->sk_sk->sk_family) { 812 case AF_INET: 813 ip_sock_set_pktinfo(svsk->sk_sock->sk); 814 break; 815 case AF_INET6: 816 ip6_sock_set_recvpktinfo(svsk->sk_sock->sk); 817 break; 818 default: 819 BUG(); 820 } 821 } 822 823 /* 824 * A data_ready event on a listening socket means there's a connection 825 * pending. Do not use state_change as a substitute for it. 826 */ 827 static void svc_tcp_listen_data_ready(struct sock *sk) 828 { 829 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 830 831 trace_sk_data_ready(sk); 832 833 /* 834 * This callback may called twice when a new connection 835 * is established as a child socket inherits everything 836 * from a parent LISTEN socket. 837 * 1) data_ready method of the parent socket will be called 838 * when one of child sockets become ESTABLISHED. 839 * 2) data_ready method of the child socket may be called 840 * when it receives data before the socket is accepted. 841 * In case of 2, we should ignore it silently and DO NOT 842 * dereference svsk. 843 */ 844 if (sk->sk_state != TCP_LISTEN) 845 return; 846 847 if (svsk) { 848 /* Refer to svc_setup_socket() for details. */ 849 rmb(); 850 svsk->sk_odata(sk); 851 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 852 svc_xprt_enqueue(&svsk->sk_xprt); 853 } 854 } 855 856 /* 857 * A state change on a connected socket means it's dying or dead. 858 */ 859 static void svc_tcp_state_change(struct sock *sk) 860 { 861 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 862 863 if (svsk) { 864 /* Refer to svc_setup_socket() for details. */ 865 rmb(); 866 svsk->sk_ostate(sk); 867 trace_svcsock_tcp_state(&svsk->sk_xprt, svsk->sk_sock); 868 if (sk->sk_state != TCP_ESTABLISHED) 869 svc_xprt_deferred_close(&svsk->sk_xprt); 870 } 871 } 872 873 /* 874 * Accept a TCP connection 875 */ 876 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt) 877 { 878 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 879 struct sockaddr_storage addr; 880 struct sockaddr *sin = (struct sockaddr *) &addr; 881 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 882 struct socket *sock = svsk->sk_sock; 883 struct socket *newsock; 884 struct svc_sock *newsvsk; 885 int err, slen; 886 887 if (!sock) 888 return NULL; 889 890 clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 891 err = kernel_accept(sock, &newsock, O_NONBLOCK); 892 if (err < 0) { 893 if (err != -EAGAIN) 894 trace_svcsock_accept_err(xprt, serv->sv_name, err); 895 return NULL; 896 } 897 if (IS_ERR(sock_alloc_file(newsock, O_NONBLOCK, NULL))) 898 return NULL; 899 900 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 901 902 err = kernel_getpeername(newsock, sin); 903 if (err < 0) { 904 trace_svcsock_getpeername_err(xprt, serv->sv_name, err); 905 goto failed; /* aborted connection or whatever */ 906 } 907 slen = err; 908 909 /* Reset the inherited callbacks before calling svc_setup_socket */ 910 newsock->sk->sk_state_change = svsk->sk_ostate; 911 newsock->sk->sk_data_ready = svsk->sk_odata; 912 newsock->sk->sk_write_space = svsk->sk_owspace; 913 914 /* make sure that a write doesn't block forever when 915 * low on memory 916 */ 917 newsock->sk->sk_sndtimeo = HZ*30; 918 919 newsvsk = svc_setup_socket(serv, newsock, 920 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY)); 921 if (IS_ERR(newsvsk)) 922 goto failed; 923 svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen); 924 err = kernel_getsockname(newsock, sin); 925 slen = err; 926 if (unlikely(err < 0)) 927 slen = offsetof(struct sockaddr, sa_data); 928 svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen); 929 930 if (sock_is_loopback(newsock->sk)) 931 set_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags); 932 else 933 clear_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags); 934 if (serv->sv_stats) 935 serv->sv_stats->nettcpconn++; 936 937 return &newsvsk->sk_xprt; 938 939 failed: 940 sockfd_put(newsock); 941 return NULL; 942 } 943 944 static size_t svc_tcp_restore_pages(struct svc_sock *svsk, 945 struct svc_rqst *rqstp) 946 { 947 size_t len = svsk->sk_datalen; 948 unsigned int i, npages; 949 950 if (!len) 951 return 0; 952 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 953 for (i = 0; i < npages; i++) { 954 if (rqstp->rq_pages[i] != NULL) 955 put_page(rqstp->rq_pages[i]); 956 BUG_ON(svsk->sk_pages[i] == NULL); 957 rqstp->rq_pages[i] = svsk->sk_pages[i]; 958 svsk->sk_pages[i] = NULL; 959 } 960 rqstp->rq_arg.head[0].iov_base = page_address(rqstp->rq_pages[0]); 961 return len; 962 } 963 964 static void svc_tcp_save_pages(struct svc_sock *svsk, struct svc_rqst *rqstp) 965 { 966 unsigned int i, len, npages; 967 968 if (svsk->sk_datalen == 0) 969 return; 970 len = svsk->sk_datalen; 971 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 972 for (i = 0; i < npages; i++) { 973 svsk->sk_pages[i] = rqstp->rq_pages[i]; 974 rqstp->rq_pages[i] = NULL; 975 } 976 } 977 978 static void svc_tcp_clear_pages(struct svc_sock *svsk) 979 { 980 unsigned int i, len, npages; 981 982 if (svsk->sk_datalen == 0) 983 goto out; 984 len = svsk->sk_datalen; 985 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 986 for (i = 0; i < npages; i++) { 987 if (svsk->sk_pages[i] == NULL) { 988 WARN_ON_ONCE(1); 989 continue; 990 } 991 put_page(svsk->sk_pages[i]); 992 svsk->sk_pages[i] = NULL; 993 } 994 out: 995 svsk->sk_tcplen = 0; 996 svsk->sk_datalen = 0; 997 } 998 999 /* 1000 * Receive fragment record header into sk_marker. 1001 */ 1002 static ssize_t svc_tcp_read_marker(struct svc_sock *svsk, 1003 struct svc_rqst *rqstp) 1004 { 1005 ssize_t want, len; 1006 1007 /* If we haven't gotten the record length yet, 1008 * get the next four bytes. 1009 */ 1010 if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) { 1011 struct msghdr msg = { NULL }; 1012 struct kvec iov; 1013 1014 want = sizeof(rpc_fraghdr) - svsk->sk_tcplen; 1015 iov.iov_base = ((char *)&svsk->sk_marker) + svsk->sk_tcplen; 1016 iov.iov_len = want; 1017 iov_iter_kvec(&msg.msg_iter, ITER_DEST, &iov, 1, want); 1018 len = svc_tcp_sock_recv_cmsg(svsk, &msg); 1019 if (len < 0) 1020 return len; 1021 svsk->sk_tcplen += len; 1022 if (len < want) { 1023 /* call again to read the remaining bytes */ 1024 goto err_short; 1025 } 1026 trace_svcsock_marker(&svsk->sk_xprt, svsk->sk_marker); 1027 if (svc_sock_reclen(svsk) + svsk->sk_datalen > 1028 svsk->sk_xprt.xpt_server->sv_max_mesg) 1029 goto err_too_large; 1030 } 1031 return svc_sock_reclen(svsk); 1032 1033 err_too_large: 1034 net_notice_ratelimited("svc: %s %s RPC fragment too large: %d\n", 1035 __func__, svsk->sk_xprt.xpt_server->sv_name, 1036 svc_sock_reclen(svsk)); 1037 svc_xprt_deferred_close(&svsk->sk_xprt); 1038 err_short: 1039 return -EAGAIN; 1040 } 1041 1042 static int receive_cb_reply(struct svc_sock *svsk, struct svc_rqst *rqstp) 1043 { 1044 struct rpc_xprt *bc_xprt = svsk->sk_xprt.xpt_bc_xprt; 1045 struct rpc_rqst *req = NULL; 1046 struct kvec *src, *dst; 1047 __be32 *p = (__be32 *)rqstp->rq_arg.head[0].iov_base; 1048 __be32 xid; 1049 __be32 calldir; 1050 1051 xid = *p++; 1052 calldir = *p; 1053 1054 if (!bc_xprt) 1055 return -EAGAIN; 1056 spin_lock(&bc_xprt->queue_lock); 1057 req = xprt_lookup_rqst(bc_xprt, xid); 1058 if (!req) 1059 goto unlock_notfound; 1060 1061 memcpy(&req->rq_private_buf, &req->rq_rcv_buf, sizeof(struct xdr_buf)); 1062 /* 1063 * XXX!: cheating for now! Only copying HEAD. 1064 * But we know this is good enough for now (in fact, for any 1065 * callback reply in the forseeable future). 1066 */ 1067 dst = &req->rq_private_buf.head[0]; 1068 src = &rqstp->rq_arg.head[0]; 1069 if (dst->iov_len < src->iov_len) 1070 goto unlock_eagain; /* whatever; just giving up. */ 1071 memcpy(dst->iov_base, src->iov_base, src->iov_len); 1072 xprt_complete_rqst(req->rq_task, rqstp->rq_arg.len); 1073 rqstp->rq_arg.len = 0; 1074 spin_unlock(&bc_xprt->queue_lock); 1075 return 0; 1076 unlock_notfound: 1077 printk(KERN_NOTICE 1078 "%s: Got unrecognized reply: " 1079 "calldir 0x%x xpt_bc_xprt %p xid %08x\n", 1080 __func__, ntohl(calldir), 1081 bc_xprt, ntohl(xid)); 1082 unlock_eagain: 1083 spin_unlock(&bc_xprt->queue_lock); 1084 return -EAGAIN; 1085 } 1086 1087 static void svc_tcp_fragment_received(struct svc_sock *svsk) 1088 { 1089 /* If we have more data, signal svc_xprt_enqueue() to try again */ 1090 svsk->sk_tcplen = 0; 1091 svsk->sk_marker = xdr_zero; 1092 } 1093 1094 /** 1095 * svc_tcp_recvfrom - Receive data from a TCP socket 1096 * @rqstp: request structure into which to receive an RPC Call 1097 * 1098 * Called in a loop when XPT_DATA has been set. 1099 * 1100 * Read the 4-byte stream record marker, then use the record length 1101 * in that marker to set up exactly the resources needed to receive 1102 * the next RPC message into @rqstp. 1103 * 1104 * Returns: 1105 * On success, the number of bytes in a received RPC Call, or 1106 * %0 if a complete RPC Call message was not ready to return 1107 * 1108 * The zero return case handles partial receives and callback Replies. 1109 * The state of a partial receive is preserved in the svc_sock for 1110 * the next call to svc_tcp_recvfrom. 1111 */ 1112 static int svc_tcp_recvfrom(struct svc_rqst *rqstp) 1113 { 1114 struct svc_sock *svsk = 1115 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 1116 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 1117 size_t want, base; 1118 ssize_t len; 1119 __be32 *p; 1120 __be32 calldir; 1121 1122 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 1123 len = svc_tcp_read_marker(svsk, rqstp); 1124 if (len < 0) 1125 goto error; 1126 1127 base = svc_tcp_restore_pages(svsk, rqstp); 1128 want = len - (svsk->sk_tcplen - sizeof(rpc_fraghdr)); 1129 len = svc_tcp_read_msg(rqstp, base + want, base); 1130 if (len >= 0) { 1131 trace_svcsock_tcp_recv(&svsk->sk_xprt, len); 1132 svsk->sk_tcplen += len; 1133 svsk->sk_datalen += len; 1134 } 1135 if (len != want || !svc_sock_final_rec(svsk)) 1136 goto err_incomplete; 1137 if (svsk->sk_datalen < 8) 1138 goto err_nuts; 1139 1140 rqstp->rq_arg.len = svsk->sk_datalen; 1141 rqstp->rq_arg.page_base = 0; 1142 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) { 1143 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len; 1144 rqstp->rq_arg.page_len = 0; 1145 } else 1146 rqstp->rq_arg.page_len = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1147 1148 rqstp->rq_xprt_ctxt = NULL; 1149 rqstp->rq_prot = IPPROTO_TCP; 1150 if (test_bit(XPT_LOCAL, &svsk->sk_xprt.xpt_flags)) 1151 set_bit(RQ_LOCAL, &rqstp->rq_flags); 1152 else 1153 clear_bit(RQ_LOCAL, &rqstp->rq_flags); 1154 1155 p = (__be32 *)rqstp->rq_arg.head[0].iov_base; 1156 calldir = p[1]; 1157 if (calldir) 1158 len = receive_cb_reply(svsk, rqstp); 1159 1160 /* Reset TCP read info */ 1161 svsk->sk_datalen = 0; 1162 svc_tcp_fragment_received(svsk); 1163 1164 if (len < 0) 1165 goto error; 1166 1167 svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt); 1168 if (serv->sv_stats) 1169 serv->sv_stats->nettcpcnt++; 1170 1171 svc_sock_secure_port(rqstp); 1172 svc_xprt_received(rqstp->rq_xprt); 1173 return rqstp->rq_arg.len; 1174 1175 err_incomplete: 1176 svc_tcp_save_pages(svsk, rqstp); 1177 if (len < 0 && len != -EAGAIN) 1178 goto err_delete; 1179 if (len == want) 1180 svc_tcp_fragment_received(svsk); 1181 else 1182 trace_svcsock_tcp_recv_short(&svsk->sk_xprt, 1183 svc_sock_reclen(svsk), 1184 svsk->sk_tcplen - sizeof(rpc_fraghdr)); 1185 goto err_noclose; 1186 error: 1187 if (len != -EAGAIN) 1188 goto err_delete; 1189 trace_svcsock_tcp_recv_eagain(&svsk->sk_xprt, 0); 1190 goto err_noclose; 1191 err_nuts: 1192 svsk->sk_datalen = 0; 1193 err_delete: 1194 trace_svcsock_tcp_recv_err(&svsk->sk_xprt, len); 1195 svc_xprt_deferred_close(&svsk->sk_xprt); 1196 err_noclose: 1197 svc_xprt_received(rqstp->rq_xprt); 1198 return 0; /* record not complete */ 1199 } 1200 1201 static int svc_tcp_send_kvec(struct socket *sock, const struct kvec *vec, 1202 int flags) 1203 { 1204 struct msghdr msg = { .msg_flags = MSG_SPLICE_PAGES | flags, }; 1205 1206 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, vec, 1, vec->iov_len); 1207 return sock_sendmsg(sock, &msg); 1208 } 1209 1210 /* 1211 * MSG_SPLICE_PAGES is used exclusively to reduce the number of 1212 * copy operations in this path. Therefore the caller must ensure 1213 * that the pages backing @xdr are unchanging. 1214 * 1215 * In addition, the logic assumes that * .bv_len is never larger 1216 * than PAGE_SIZE. 1217 */ 1218 static int svc_tcp_sendmsg(struct socket *sock, struct xdr_buf *xdr, 1219 rpc_fraghdr marker, unsigned int *sentp) 1220 { 1221 const struct kvec *head = xdr->head; 1222 const struct kvec *tail = xdr->tail; 1223 struct kvec rm = { 1224 .iov_base = &marker, 1225 .iov_len = sizeof(marker), 1226 }; 1227 struct msghdr msg = { 1228 .msg_flags = 0, 1229 }; 1230 int ret; 1231 1232 *sentp = 0; 1233 ret = xdr_alloc_bvec(xdr, GFP_KERNEL); 1234 if (ret < 0) 1235 return ret; 1236 1237 ret = kernel_sendmsg(sock, &msg, &rm, 1, rm.iov_len); 1238 if (ret < 0) 1239 return ret; 1240 *sentp += ret; 1241 if (ret != rm.iov_len) 1242 return -EAGAIN; 1243 1244 ret = svc_tcp_send_kvec(sock, head, 0); 1245 if (ret < 0) 1246 return ret; 1247 *sentp += ret; 1248 if (ret != head->iov_len) 1249 goto out; 1250 1251 if (xdr_buf_pagecount(xdr)) 1252 xdr->bvec[0].bv_offset = offset_in_page(xdr->page_base); 1253 1254 msg.msg_flags = MSG_SPLICE_PAGES; 1255 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, xdr->bvec, 1256 xdr_buf_pagecount(xdr), xdr->page_len); 1257 ret = sock_sendmsg(sock, &msg); 1258 if (ret < 0) 1259 return ret; 1260 *sentp += ret; 1261 1262 if (tail->iov_len) { 1263 ret = svc_tcp_send_kvec(sock, tail, 0); 1264 if (ret < 0) 1265 return ret; 1266 *sentp += ret; 1267 } 1268 1269 out: 1270 return 0; 1271 } 1272 1273 /** 1274 * svc_tcp_sendto - Send out a reply on a TCP socket 1275 * @rqstp: completed svc_rqst 1276 * 1277 * xpt_mutex ensures @rqstp's whole message is written to the socket 1278 * without interruption. 1279 * 1280 * Returns the number of bytes sent, or a negative errno. 1281 */ 1282 static int svc_tcp_sendto(struct svc_rqst *rqstp) 1283 { 1284 struct svc_xprt *xprt = rqstp->rq_xprt; 1285 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1286 struct xdr_buf *xdr = &rqstp->rq_res; 1287 rpc_fraghdr marker = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT | 1288 (u32)xdr->len); 1289 unsigned int sent; 1290 int err; 1291 1292 svc_tcp_release_ctxt(xprt, rqstp->rq_xprt_ctxt); 1293 rqstp->rq_xprt_ctxt = NULL; 1294 1295 atomic_inc(&svsk->sk_sendqlen); 1296 mutex_lock(&xprt->xpt_mutex); 1297 if (svc_xprt_is_dead(xprt)) 1298 goto out_notconn; 1299 tcp_sock_set_cork(svsk->sk_sk, true); 1300 err = svc_tcp_sendmsg(svsk->sk_sock, xdr, marker, &sent); 1301 xdr_free_bvec(xdr); 1302 trace_svcsock_tcp_send(xprt, err < 0 ? (long)err : sent); 1303 if (err < 0 || sent != (xdr->len + sizeof(marker))) 1304 goto out_close; 1305 if (atomic_dec_and_test(&svsk->sk_sendqlen)) 1306 tcp_sock_set_cork(svsk->sk_sk, false); 1307 mutex_unlock(&xprt->xpt_mutex); 1308 return sent; 1309 1310 out_notconn: 1311 atomic_dec(&svsk->sk_sendqlen); 1312 mutex_unlock(&xprt->xpt_mutex); 1313 return -ENOTCONN; 1314 out_close: 1315 pr_notice("rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n", 1316 xprt->xpt_server->sv_name, 1317 (err < 0) ? "got error" : "sent", 1318 (err < 0) ? err : sent, xdr->len); 1319 svc_xprt_deferred_close(xprt); 1320 atomic_dec(&svsk->sk_sendqlen); 1321 mutex_unlock(&xprt->xpt_mutex); 1322 return -EAGAIN; 1323 } 1324 1325 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv, 1326 struct net *net, 1327 struct sockaddr *sa, int salen, 1328 int flags) 1329 { 1330 return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags); 1331 } 1332 1333 static const struct svc_xprt_ops svc_tcp_ops = { 1334 .xpo_create = svc_tcp_create, 1335 .xpo_recvfrom = svc_tcp_recvfrom, 1336 .xpo_sendto = svc_tcp_sendto, 1337 .xpo_result_payload = svc_sock_result_payload, 1338 .xpo_release_ctxt = svc_tcp_release_ctxt, 1339 .xpo_detach = svc_tcp_sock_detach, 1340 .xpo_free = svc_sock_free, 1341 .xpo_has_wspace = svc_tcp_has_wspace, 1342 .xpo_accept = svc_tcp_accept, 1343 .xpo_kill_temp_xprt = svc_tcp_kill_temp_xprt, 1344 .xpo_handshake = svc_tcp_handshake, 1345 }; 1346 1347 static struct svc_xprt_class svc_tcp_class = { 1348 .xcl_name = "tcp", 1349 .xcl_owner = THIS_MODULE, 1350 .xcl_ops = &svc_tcp_ops, 1351 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP, 1352 .xcl_ident = XPRT_TRANSPORT_TCP, 1353 }; 1354 1355 void svc_init_xprt_sock(void) 1356 { 1357 svc_reg_xprt_class(&svc_tcp_class); 1358 svc_reg_xprt_class(&svc_udp_class); 1359 } 1360 1361 void svc_cleanup_xprt_sock(void) 1362 { 1363 svc_unreg_xprt_class(&svc_tcp_class); 1364 svc_unreg_xprt_class(&svc_udp_class); 1365 } 1366 1367 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv) 1368 { 1369 struct sock *sk = svsk->sk_sk; 1370 1371 svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_tcp_class, 1372 &svsk->sk_xprt, serv); 1373 set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); 1374 set_bit(XPT_CONG_CTRL, &svsk->sk_xprt.xpt_flags); 1375 if (sk->sk_state == TCP_LISTEN) { 1376 strcpy(svsk->sk_xprt.xpt_remotebuf, "listener"); 1377 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags); 1378 sk->sk_data_ready = svc_tcp_listen_data_ready; 1379 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 1380 } else { 1381 sk->sk_state_change = svc_tcp_state_change; 1382 sk->sk_data_ready = svc_data_ready; 1383 sk->sk_write_space = svc_write_space; 1384 1385 svsk->sk_marker = xdr_zero; 1386 svsk->sk_tcplen = 0; 1387 svsk->sk_datalen = 0; 1388 memset(&svsk->sk_pages[0], 0, sizeof(svsk->sk_pages)); 1389 1390 tcp_sock_set_nodelay(sk); 1391 1392 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 1393 switch (sk->sk_state) { 1394 case TCP_SYN_RECV: 1395 case TCP_ESTABLISHED: 1396 break; 1397 default: 1398 svc_xprt_deferred_close(&svsk->sk_xprt); 1399 } 1400 } 1401 } 1402 1403 void svc_sock_update_bufs(struct svc_serv *serv) 1404 { 1405 /* 1406 * The number of server threads has changed. Update 1407 * rcvbuf and sndbuf accordingly on all sockets 1408 */ 1409 struct svc_sock *svsk; 1410 1411 spin_lock_bh(&serv->sv_lock); 1412 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) 1413 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 1414 spin_unlock_bh(&serv->sv_lock); 1415 } 1416 EXPORT_SYMBOL_GPL(svc_sock_update_bufs); 1417 1418 /* 1419 * Initialize socket for RPC use and create svc_sock struct 1420 */ 1421 static struct svc_sock *svc_setup_socket(struct svc_serv *serv, 1422 struct socket *sock, 1423 int flags) 1424 { 1425 struct svc_sock *svsk; 1426 struct sock *inet; 1427 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS); 1428 1429 svsk = kzalloc(sizeof(*svsk), GFP_KERNEL); 1430 if (!svsk) 1431 return ERR_PTR(-ENOMEM); 1432 1433 inet = sock->sk; 1434 1435 if (pmap_register) { 1436 int err; 1437 1438 err = svc_register(serv, sock_net(sock->sk), inet->sk_family, 1439 inet->sk_protocol, 1440 ntohs(inet_sk(inet)->inet_sport)); 1441 if (err < 0) { 1442 kfree(svsk); 1443 return ERR_PTR(err); 1444 } 1445 } 1446 1447 svsk->sk_sock = sock; 1448 svsk->sk_sk = inet; 1449 svsk->sk_ostate = inet->sk_state_change; 1450 svsk->sk_odata = inet->sk_data_ready; 1451 svsk->sk_owspace = inet->sk_write_space; 1452 /* 1453 * This barrier is necessary in order to prevent race condition 1454 * with svc_data_ready(), svc_tcp_listen_data_ready(), and others 1455 * when calling callbacks above. 1456 */ 1457 wmb(); 1458 inet->sk_user_data = svsk; 1459 1460 /* Initialize the socket */ 1461 if (sock->type == SOCK_DGRAM) 1462 svc_udp_init(svsk, serv); 1463 else 1464 svc_tcp_init(svsk, serv); 1465 1466 trace_svcsock_new(svsk, sock); 1467 return svsk; 1468 } 1469 1470 /** 1471 * svc_addsock - add a listener socket to an RPC service 1472 * @serv: pointer to RPC service to which to add a new listener 1473 * @net: caller's network namespace 1474 * @fd: file descriptor of the new listener 1475 * @name_return: pointer to buffer to fill in with name of listener 1476 * @len: size of the buffer 1477 * @cred: credential 1478 * 1479 * Fills in socket name and returns positive length of name if successful. 1480 * Name is terminated with '\n'. On error, returns a negative errno 1481 * value. 1482 */ 1483 int svc_addsock(struct svc_serv *serv, struct net *net, const int fd, 1484 char *name_return, const size_t len, const struct cred *cred) 1485 { 1486 int err = 0; 1487 struct socket *so = sockfd_lookup(fd, &err); 1488 struct svc_sock *svsk = NULL; 1489 struct sockaddr_storage addr; 1490 struct sockaddr *sin = (struct sockaddr *)&addr; 1491 int salen; 1492 1493 if (!so) 1494 return err; 1495 err = -EINVAL; 1496 if (sock_net(so->sk) != net) 1497 goto out; 1498 err = -EAFNOSUPPORT; 1499 if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6)) 1500 goto out; 1501 err = -EPROTONOSUPPORT; 1502 if (so->sk->sk_protocol != IPPROTO_TCP && 1503 so->sk->sk_protocol != IPPROTO_UDP) 1504 goto out; 1505 err = -EISCONN; 1506 if (so->state > SS_UNCONNECTED) 1507 goto out; 1508 err = -ENOENT; 1509 if (!try_module_get(THIS_MODULE)) 1510 goto out; 1511 svsk = svc_setup_socket(serv, so, SVC_SOCK_DEFAULTS); 1512 if (IS_ERR(svsk)) { 1513 module_put(THIS_MODULE); 1514 err = PTR_ERR(svsk); 1515 goto out; 1516 } 1517 salen = kernel_getsockname(svsk->sk_sock, sin); 1518 if (salen >= 0) 1519 svc_xprt_set_local(&svsk->sk_xprt, sin, salen); 1520 svsk->sk_xprt.xpt_cred = get_cred(cred); 1521 svc_add_new_perm_xprt(serv, &svsk->sk_xprt); 1522 return svc_one_sock_name(svsk, name_return, len); 1523 out: 1524 sockfd_put(so); 1525 return err; 1526 } 1527 EXPORT_SYMBOL_GPL(svc_addsock); 1528 1529 /* 1530 * Create socket for RPC service. 1531 */ 1532 static struct svc_xprt *svc_create_socket(struct svc_serv *serv, 1533 int protocol, 1534 struct net *net, 1535 struct sockaddr *sin, int len, 1536 int flags) 1537 { 1538 struct svc_sock *svsk; 1539 struct socket *sock; 1540 int error; 1541 int type; 1542 struct sockaddr_storage addr; 1543 struct sockaddr *newsin = (struct sockaddr *)&addr; 1544 int newlen; 1545 int family; 1546 1547 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) { 1548 printk(KERN_WARNING "svc: only UDP and TCP " 1549 "sockets supported\n"); 1550 return ERR_PTR(-EINVAL); 1551 } 1552 1553 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM; 1554 switch (sin->sa_family) { 1555 case AF_INET6: 1556 family = PF_INET6; 1557 break; 1558 case AF_INET: 1559 family = PF_INET; 1560 break; 1561 default: 1562 return ERR_PTR(-EINVAL); 1563 } 1564 1565 error = __sock_create(net, family, type, protocol, &sock, 1); 1566 if (error < 0) 1567 return ERR_PTR(error); 1568 1569 svc_reclassify_socket(sock); 1570 1571 /* 1572 * If this is an PF_INET6 listener, we want to avoid 1573 * getting requests from IPv4 remotes. Those should 1574 * be shunted to a PF_INET listener via rpcbind. 1575 */ 1576 if (family == PF_INET6) 1577 ip6_sock_set_v6only(sock->sk); 1578 if (type == SOCK_STREAM) 1579 sock->sk->sk_reuse = SK_CAN_REUSE; /* allow address reuse */ 1580 error = kernel_bind(sock, sin, len); 1581 if (error < 0) 1582 goto bummer; 1583 1584 error = kernel_getsockname(sock, newsin); 1585 if (error < 0) 1586 goto bummer; 1587 newlen = error; 1588 1589 if (protocol == IPPROTO_TCP) { 1590 if ((error = kernel_listen(sock, 64)) < 0) 1591 goto bummer; 1592 } 1593 1594 svsk = svc_setup_socket(serv, sock, flags); 1595 if (IS_ERR(svsk)) { 1596 error = PTR_ERR(svsk); 1597 goto bummer; 1598 } 1599 svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen); 1600 return (struct svc_xprt *)svsk; 1601 bummer: 1602 sock_release(sock); 1603 return ERR_PTR(error); 1604 } 1605 1606 /* 1607 * Detach the svc_sock from the socket so that no 1608 * more callbacks occur. 1609 */ 1610 static void svc_sock_detach(struct svc_xprt *xprt) 1611 { 1612 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1613 struct sock *sk = svsk->sk_sk; 1614 1615 /* put back the old socket callbacks */ 1616 lock_sock(sk); 1617 sk->sk_state_change = svsk->sk_ostate; 1618 sk->sk_data_ready = svsk->sk_odata; 1619 sk->sk_write_space = svsk->sk_owspace; 1620 sk->sk_user_data = NULL; 1621 release_sock(sk); 1622 } 1623 1624 /* 1625 * Disconnect the socket, and reset the callbacks 1626 */ 1627 static void svc_tcp_sock_detach(struct svc_xprt *xprt) 1628 { 1629 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1630 1631 tls_handshake_close(svsk->sk_sock); 1632 1633 svc_sock_detach(xprt); 1634 1635 if (!test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 1636 svc_tcp_clear_pages(svsk); 1637 kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR); 1638 } 1639 } 1640 1641 /* 1642 * Free the svc_sock's socket resources and the svc_sock itself. 1643 */ 1644 static void svc_sock_free(struct svc_xprt *xprt) 1645 { 1646 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1647 struct socket *sock = svsk->sk_sock; 1648 1649 trace_svcsock_free(svsk, sock); 1650 1651 tls_handshake_cancel(sock->sk); 1652 if (sock->file) 1653 sockfd_put(sock); 1654 else 1655 sock_release(sock); 1656 kfree(svsk); 1657 } 1658