xref: /openbmc/linux/net/sunrpc/svcsock.c (revision 172589cc)
1 /*
2  * linux/net/sunrpc/svcsock.c
3  *
4  * These are the RPC server socket internals.
5  *
6  * The server scheduling algorithm does not always distribute the load
7  * evenly when servicing a single client. May need to modify the
8  * svc_sock_enqueue procedure...
9  *
10  * TCP support is largely untested and may be a little slow. The problem
11  * is that we currently do two separate recvfrom's, one for the 4-byte
12  * record length, and the second for the actual record. This could possibly
13  * be improved by always reading a minimum size of around 100 bytes and
14  * tucking any superfluous bytes away in a temporary store. Still, that
15  * leaves write requests out in the rain. An alternative may be to peek at
16  * the first skb in the queue, and if it matches the next TCP sequence
17  * number, to extract the record marker. Yuck.
18  *
19  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/errno.h>
25 #include <linux/fcntl.h>
26 #include <linux/net.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/udp.h>
30 #include <linux/tcp.h>
31 #include <linux/unistd.h>
32 #include <linux/slab.h>
33 #include <linux/netdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/file.h>
36 #include <linux/freezer.h>
37 #include <net/sock.h>
38 #include <net/checksum.h>
39 #include <net/ip.h>
40 #include <net/ipv6.h>
41 #include <net/tcp_states.h>
42 #include <asm/uaccess.h>
43 #include <asm/ioctls.h>
44 
45 #include <linux/sunrpc/types.h>
46 #include <linux/sunrpc/clnt.h>
47 #include <linux/sunrpc/xdr.h>
48 #include <linux/sunrpc/svcsock.h>
49 #include <linux/sunrpc/stats.h>
50 
51 /* SMP locking strategy:
52  *
53  *	svc_pool->sp_lock protects most of the fields of that pool.
54  * 	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
55  *	when both need to be taken (rare), svc_serv->sv_lock is first.
56  *	BKL protects svc_serv->sv_nrthread.
57  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
58  *             and the ->sk_info_authunix cache.
59  *	svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply.
60  *
61  *	Some flags can be set to certain values at any time
62  *	providing that certain rules are followed:
63  *
64  *	SK_CONN, SK_DATA, can be set or cleared at any time.
65  *		after a set, svc_sock_enqueue must be called.
66  *		after a clear, the socket must be read/accepted
67  *		 if this succeeds, it must be set again.
68  *	SK_CLOSE can set at any time. It is never cleared.
69  *      sk_inuse contains a bias of '1' until SK_DEAD is set.
70  *             so when sk_inuse hits zero, we know the socket is dead
71  *             and no-one is using it.
72  *      SK_DEAD can only be set while SK_BUSY is held which ensures
73  *             no other thread will be using the socket or will try to
74  *	       set SK_DEAD.
75  *
76  */
77 
78 #define RPCDBG_FACILITY	RPCDBG_SVCSOCK
79 
80 
81 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
82 					 int *errp, int flags);
83 static void		svc_delete_socket(struct svc_sock *svsk);
84 static void		svc_udp_data_ready(struct sock *, int);
85 static int		svc_udp_recvfrom(struct svc_rqst *);
86 static int		svc_udp_sendto(struct svc_rqst *);
87 static void		svc_close_socket(struct svc_sock *svsk);
88 
89 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
90 static int svc_deferred_recv(struct svc_rqst *rqstp);
91 static struct cache_deferred_req *svc_defer(struct cache_req *req);
92 
93 /* apparently the "standard" is that clients close
94  * idle connections after 5 minutes, servers after
95  * 6 minutes
96  *   http://www.connectathon.org/talks96/nfstcp.pdf
97  */
98 static int svc_conn_age_period = 6*60;
99 
100 #ifdef CONFIG_DEBUG_LOCK_ALLOC
101 static struct lock_class_key svc_key[2];
102 static struct lock_class_key svc_slock_key[2];
103 
104 static inline void svc_reclassify_socket(struct socket *sock)
105 {
106 	struct sock *sk = sock->sk;
107 	BUG_ON(sk->sk_lock.owner != NULL);
108 	switch (sk->sk_family) {
109 	case AF_INET:
110 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
111 		    &svc_slock_key[0], "sk_lock-AF_INET-NFSD", &svc_key[0]);
112 		break;
113 
114 	case AF_INET6:
115 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
116 		    &svc_slock_key[1], "sk_lock-AF_INET6-NFSD", &svc_key[1]);
117 		break;
118 
119 	default:
120 		BUG();
121 	}
122 }
123 #else
124 static inline void svc_reclassify_socket(struct socket *sock)
125 {
126 }
127 #endif
128 
129 static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
130 {
131 	switch (addr->sa_family) {
132 	case AF_INET:
133 		snprintf(buf, len, "%u.%u.%u.%u, port=%u",
134 			NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
135 			ntohs(((struct sockaddr_in *) addr)->sin_port));
136 		break;
137 
138 	case AF_INET6:
139 		snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
140 			NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
141 			ntohs(((struct sockaddr_in6 *) addr)->sin6_port));
142 		break;
143 
144 	default:
145 		snprintf(buf, len, "unknown address type: %d", addr->sa_family);
146 		break;
147 	}
148 	return buf;
149 }
150 
151 /**
152  * svc_print_addr - Format rq_addr field for printing
153  * @rqstp: svc_rqst struct containing address to print
154  * @buf: target buffer for formatted address
155  * @len: length of target buffer
156  *
157  */
158 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
159 {
160 	return __svc_print_addr(svc_addr(rqstp), buf, len);
161 }
162 EXPORT_SYMBOL_GPL(svc_print_addr);
163 
164 /*
165  * Queue up an idle server thread.  Must have pool->sp_lock held.
166  * Note: this is really a stack rather than a queue, so that we only
167  * use as many different threads as we need, and the rest don't pollute
168  * the cache.
169  */
170 static inline void
171 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
172 {
173 	list_add(&rqstp->rq_list, &pool->sp_threads);
174 }
175 
176 /*
177  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
178  */
179 static inline void
180 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
181 {
182 	list_del(&rqstp->rq_list);
183 }
184 
185 /*
186  * Release an skbuff after use
187  */
188 static inline void
189 svc_release_skb(struct svc_rqst *rqstp)
190 {
191 	struct sk_buff *skb = rqstp->rq_skbuff;
192 	struct svc_deferred_req *dr = rqstp->rq_deferred;
193 
194 	if (skb) {
195 		rqstp->rq_skbuff = NULL;
196 
197 		dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
198 		skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
199 	}
200 	if (dr) {
201 		rqstp->rq_deferred = NULL;
202 		kfree(dr);
203 	}
204 }
205 
206 /*
207  * Any space to write?
208  */
209 static inline unsigned long
210 svc_sock_wspace(struct svc_sock *svsk)
211 {
212 	int wspace;
213 
214 	if (svsk->sk_sock->type == SOCK_STREAM)
215 		wspace = sk_stream_wspace(svsk->sk_sk);
216 	else
217 		wspace = sock_wspace(svsk->sk_sk);
218 
219 	return wspace;
220 }
221 
222 /*
223  * Queue up a socket with data pending. If there are idle nfsd
224  * processes, wake 'em up.
225  *
226  */
227 static void
228 svc_sock_enqueue(struct svc_sock *svsk)
229 {
230 	struct svc_serv	*serv = svsk->sk_server;
231 	struct svc_pool *pool;
232 	struct svc_rqst	*rqstp;
233 	int cpu;
234 
235 	if (!(svsk->sk_flags &
236 	      ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
237 		return;
238 	if (test_bit(SK_DEAD, &svsk->sk_flags))
239 		return;
240 
241 	cpu = get_cpu();
242 	pool = svc_pool_for_cpu(svsk->sk_server, cpu);
243 	put_cpu();
244 
245 	spin_lock_bh(&pool->sp_lock);
246 
247 	if (!list_empty(&pool->sp_threads) &&
248 	    !list_empty(&pool->sp_sockets))
249 		printk(KERN_ERR
250 			"svc_sock_enqueue: threads and sockets both waiting??\n");
251 
252 	if (test_bit(SK_DEAD, &svsk->sk_flags)) {
253 		/* Don't enqueue dead sockets */
254 		dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
255 		goto out_unlock;
256 	}
257 
258 	/* Mark socket as busy. It will remain in this state until the
259 	 * server has processed all pending data and put the socket back
260 	 * on the idle list.  We update SK_BUSY atomically because
261 	 * it also guards against trying to enqueue the svc_sock twice.
262 	 */
263 	if (test_and_set_bit(SK_BUSY, &svsk->sk_flags)) {
264 		/* Don't enqueue socket while already enqueued */
265 		dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
266 		goto out_unlock;
267 	}
268 	BUG_ON(svsk->sk_pool != NULL);
269 	svsk->sk_pool = pool;
270 
271 	set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
272 	if (((atomic_read(&svsk->sk_reserved) + serv->sv_max_mesg)*2
273 	     > svc_sock_wspace(svsk))
274 	    && !test_bit(SK_CLOSE, &svsk->sk_flags)
275 	    && !test_bit(SK_CONN, &svsk->sk_flags)) {
276 		/* Don't enqueue while not enough space for reply */
277 		dprintk("svc: socket %p  no space, %d*2 > %ld, not enqueued\n",
278 			svsk->sk_sk, atomic_read(&svsk->sk_reserved)+serv->sv_max_mesg,
279 			svc_sock_wspace(svsk));
280 		svsk->sk_pool = NULL;
281 		clear_bit(SK_BUSY, &svsk->sk_flags);
282 		goto out_unlock;
283 	}
284 	clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
285 
286 
287 	if (!list_empty(&pool->sp_threads)) {
288 		rqstp = list_entry(pool->sp_threads.next,
289 				   struct svc_rqst,
290 				   rq_list);
291 		dprintk("svc: socket %p served by daemon %p\n",
292 			svsk->sk_sk, rqstp);
293 		svc_thread_dequeue(pool, rqstp);
294 		if (rqstp->rq_sock)
295 			printk(KERN_ERR
296 				"svc_sock_enqueue: server %p, rq_sock=%p!\n",
297 				rqstp, rqstp->rq_sock);
298 		rqstp->rq_sock = svsk;
299 		atomic_inc(&svsk->sk_inuse);
300 		rqstp->rq_reserved = serv->sv_max_mesg;
301 		atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
302 		BUG_ON(svsk->sk_pool != pool);
303 		wake_up(&rqstp->rq_wait);
304 	} else {
305 		dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
306 		list_add_tail(&svsk->sk_ready, &pool->sp_sockets);
307 		BUG_ON(svsk->sk_pool != pool);
308 	}
309 
310 out_unlock:
311 	spin_unlock_bh(&pool->sp_lock);
312 }
313 
314 /*
315  * Dequeue the first socket.  Must be called with the pool->sp_lock held.
316  */
317 static inline struct svc_sock *
318 svc_sock_dequeue(struct svc_pool *pool)
319 {
320 	struct svc_sock	*svsk;
321 
322 	if (list_empty(&pool->sp_sockets))
323 		return NULL;
324 
325 	svsk = list_entry(pool->sp_sockets.next,
326 			  struct svc_sock, sk_ready);
327 	list_del_init(&svsk->sk_ready);
328 
329 	dprintk("svc: socket %p dequeued, inuse=%d\n",
330 		svsk->sk_sk, atomic_read(&svsk->sk_inuse));
331 
332 	return svsk;
333 }
334 
335 /*
336  * Having read something from a socket, check whether it
337  * needs to be re-enqueued.
338  * Note: SK_DATA only gets cleared when a read-attempt finds
339  * no (or insufficient) data.
340  */
341 static inline void
342 svc_sock_received(struct svc_sock *svsk)
343 {
344 	svsk->sk_pool = NULL;
345 	clear_bit(SK_BUSY, &svsk->sk_flags);
346 	svc_sock_enqueue(svsk);
347 }
348 
349 
350 /**
351  * svc_reserve - change the space reserved for the reply to a request.
352  * @rqstp:  The request in question
353  * @space: new max space to reserve
354  *
355  * Each request reserves some space on the output queue of the socket
356  * to make sure the reply fits.  This function reduces that reserved
357  * space to be the amount of space used already, plus @space.
358  *
359  */
360 void svc_reserve(struct svc_rqst *rqstp, int space)
361 {
362 	space += rqstp->rq_res.head[0].iov_len;
363 
364 	if (space < rqstp->rq_reserved) {
365 		struct svc_sock *svsk = rqstp->rq_sock;
366 		atomic_sub((rqstp->rq_reserved - space), &svsk->sk_reserved);
367 		rqstp->rq_reserved = space;
368 
369 		svc_sock_enqueue(svsk);
370 	}
371 }
372 
373 /*
374  * Release a socket after use.
375  */
376 static inline void
377 svc_sock_put(struct svc_sock *svsk)
378 {
379 	if (atomic_dec_and_test(&svsk->sk_inuse)) {
380 		BUG_ON(! test_bit(SK_DEAD, &svsk->sk_flags));
381 
382 		dprintk("svc: releasing dead socket\n");
383 		if (svsk->sk_sock->file)
384 			sockfd_put(svsk->sk_sock);
385 		else
386 			sock_release(svsk->sk_sock);
387 		if (svsk->sk_info_authunix != NULL)
388 			svcauth_unix_info_release(svsk->sk_info_authunix);
389 		kfree(svsk);
390 	}
391 }
392 
393 static void
394 svc_sock_release(struct svc_rqst *rqstp)
395 {
396 	struct svc_sock	*svsk = rqstp->rq_sock;
397 
398 	svc_release_skb(rqstp);
399 
400 	svc_free_res_pages(rqstp);
401 	rqstp->rq_res.page_len = 0;
402 	rqstp->rq_res.page_base = 0;
403 
404 
405 	/* Reset response buffer and release
406 	 * the reservation.
407 	 * But first, check that enough space was reserved
408 	 * for the reply, otherwise we have a bug!
409 	 */
410 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
411 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
412 		       rqstp->rq_reserved,
413 		       rqstp->rq_res.len);
414 
415 	rqstp->rq_res.head[0].iov_len = 0;
416 	svc_reserve(rqstp, 0);
417 	rqstp->rq_sock = NULL;
418 
419 	svc_sock_put(svsk);
420 }
421 
422 /*
423  * External function to wake up a server waiting for data
424  * This really only makes sense for services like lockd
425  * which have exactly one thread anyway.
426  */
427 void
428 svc_wake_up(struct svc_serv *serv)
429 {
430 	struct svc_rqst	*rqstp;
431 	unsigned int i;
432 	struct svc_pool *pool;
433 
434 	for (i = 0; i < serv->sv_nrpools; i++) {
435 		pool = &serv->sv_pools[i];
436 
437 		spin_lock_bh(&pool->sp_lock);
438 		if (!list_empty(&pool->sp_threads)) {
439 			rqstp = list_entry(pool->sp_threads.next,
440 					   struct svc_rqst,
441 					   rq_list);
442 			dprintk("svc: daemon %p woken up.\n", rqstp);
443 			/*
444 			svc_thread_dequeue(pool, rqstp);
445 			rqstp->rq_sock = NULL;
446 			 */
447 			wake_up(&rqstp->rq_wait);
448 		}
449 		spin_unlock_bh(&pool->sp_lock);
450 	}
451 }
452 
453 union svc_pktinfo_u {
454 	struct in_pktinfo pkti;
455 	struct in6_pktinfo pkti6;
456 };
457 #define SVC_PKTINFO_SPACE \
458 	CMSG_SPACE(sizeof(union svc_pktinfo_u))
459 
460 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
461 {
462 	switch (rqstp->rq_sock->sk_sk->sk_family) {
463 	case AF_INET: {
464 			struct in_pktinfo *pki = CMSG_DATA(cmh);
465 
466 			cmh->cmsg_level = SOL_IP;
467 			cmh->cmsg_type = IP_PKTINFO;
468 			pki->ipi_ifindex = 0;
469 			pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
470 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
471 		}
472 		break;
473 
474 	case AF_INET6: {
475 			struct in6_pktinfo *pki = CMSG_DATA(cmh);
476 
477 			cmh->cmsg_level = SOL_IPV6;
478 			cmh->cmsg_type = IPV6_PKTINFO;
479 			pki->ipi6_ifindex = 0;
480 			ipv6_addr_copy(&pki->ipi6_addr,
481 					&rqstp->rq_daddr.addr6);
482 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
483 		}
484 		break;
485 	}
486 	return;
487 }
488 
489 /*
490  * Generic sendto routine
491  */
492 static int
493 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
494 {
495 	struct svc_sock	*svsk = rqstp->rq_sock;
496 	struct socket	*sock = svsk->sk_sock;
497 	int		slen;
498 	union {
499 		struct cmsghdr	hdr;
500 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
501 	} buffer;
502 	struct cmsghdr *cmh = &buffer.hdr;
503 	int		len = 0;
504 	int		result;
505 	int		size;
506 	struct page	**ppage = xdr->pages;
507 	size_t		base = xdr->page_base;
508 	unsigned int	pglen = xdr->page_len;
509 	unsigned int	flags = MSG_MORE;
510 	char		buf[RPC_MAX_ADDRBUFLEN];
511 
512 	slen = xdr->len;
513 
514 	if (rqstp->rq_prot == IPPROTO_UDP) {
515 		struct msghdr msg = {
516 			.msg_name	= &rqstp->rq_addr,
517 			.msg_namelen	= rqstp->rq_addrlen,
518 			.msg_control	= cmh,
519 			.msg_controllen	= sizeof(buffer),
520 			.msg_flags	= MSG_MORE,
521 		};
522 
523 		svc_set_cmsg_data(rqstp, cmh);
524 
525 		if (sock_sendmsg(sock, &msg, 0) < 0)
526 			goto out;
527 	}
528 
529 	/* send head */
530 	if (slen == xdr->head[0].iov_len)
531 		flags = 0;
532 	len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
533 				  xdr->head[0].iov_len, flags);
534 	if (len != xdr->head[0].iov_len)
535 		goto out;
536 	slen -= xdr->head[0].iov_len;
537 	if (slen == 0)
538 		goto out;
539 
540 	/* send page data */
541 	size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
542 	while (pglen > 0) {
543 		if (slen == size)
544 			flags = 0;
545 		result = kernel_sendpage(sock, *ppage, base, size, flags);
546 		if (result > 0)
547 			len += result;
548 		if (result != size)
549 			goto out;
550 		slen -= size;
551 		pglen -= size;
552 		size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
553 		base = 0;
554 		ppage++;
555 	}
556 	/* send tail */
557 	if (xdr->tail[0].iov_len) {
558 		result = kernel_sendpage(sock, rqstp->rq_respages[0],
559 					     ((unsigned long)xdr->tail[0].iov_base)
560 						& (PAGE_SIZE-1),
561 					     xdr->tail[0].iov_len, 0);
562 
563 		if (result > 0)
564 			len += result;
565 	}
566 out:
567 	dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
568 		rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len,
569 		xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
570 
571 	return len;
572 }
573 
574 /*
575  * Report socket names for nfsdfs
576  */
577 static int one_sock_name(char *buf, struct svc_sock *svsk)
578 {
579 	int len;
580 
581 	switch(svsk->sk_sk->sk_family) {
582 	case AF_INET:
583 		len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
584 			      svsk->sk_sk->sk_protocol==IPPROTO_UDP?
585 			      "udp" : "tcp",
586 			      NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
587 			      inet_sk(svsk->sk_sk)->num);
588 		break;
589 	default:
590 		len = sprintf(buf, "*unknown-%d*\n",
591 			       svsk->sk_sk->sk_family);
592 	}
593 	return len;
594 }
595 
596 int
597 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
598 {
599 	struct svc_sock *svsk, *closesk = NULL;
600 	int len = 0;
601 
602 	if (!serv)
603 		return 0;
604 	spin_lock_bh(&serv->sv_lock);
605 	list_for_each_entry(svsk, &serv->sv_permsocks, sk_list) {
606 		int onelen = one_sock_name(buf+len, svsk);
607 		if (toclose && strcmp(toclose, buf+len) == 0)
608 			closesk = svsk;
609 		else
610 			len += onelen;
611 	}
612 	spin_unlock_bh(&serv->sv_lock);
613 	if (closesk)
614 		/* Should unregister with portmap, but you cannot
615 		 * unregister just one protocol...
616 		 */
617 		svc_close_socket(closesk);
618 	else if (toclose)
619 		return -ENOENT;
620 	return len;
621 }
622 EXPORT_SYMBOL(svc_sock_names);
623 
624 /*
625  * Check input queue length
626  */
627 static int
628 svc_recv_available(struct svc_sock *svsk)
629 {
630 	struct socket	*sock = svsk->sk_sock;
631 	int		avail, err;
632 
633 	err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
634 
635 	return (err >= 0)? avail : err;
636 }
637 
638 /*
639  * Generic recvfrom routine.
640  */
641 static int
642 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
643 {
644 	struct svc_sock *svsk = rqstp->rq_sock;
645 	struct msghdr msg = {
646 		.msg_flags	= MSG_DONTWAIT,
647 	};
648 	struct sockaddr *sin;
649 	int len;
650 
651 	len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
652 				msg.msg_flags);
653 
654 	/* sock_recvmsg doesn't fill in the name/namelen, so we must..
655 	 */
656 	memcpy(&rqstp->rq_addr, &svsk->sk_remote, svsk->sk_remotelen);
657 	rqstp->rq_addrlen = svsk->sk_remotelen;
658 
659 	/* Destination address in request is needed for binding the
660 	 * source address in RPC callbacks later.
661 	 */
662 	sin = (struct sockaddr *)&svsk->sk_local;
663 	switch (sin->sa_family) {
664 	case AF_INET:
665 		rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
666 		break;
667 	case AF_INET6:
668 		rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
669 		break;
670 	}
671 
672 	dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
673 		svsk, iov[0].iov_base, iov[0].iov_len, len);
674 
675 	return len;
676 }
677 
678 /*
679  * Set socket snd and rcv buffer lengths
680  */
681 static inline void
682 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
683 {
684 #if 0
685 	mm_segment_t	oldfs;
686 	oldfs = get_fs(); set_fs(KERNEL_DS);
687 	sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
688 			(char*)&snd, sizeof(snd));
689 	sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
690 			(char*)&rcv, sizeof(rcv));
691 #else
692 	/* sock_setsockopt limits use to sysctl_?mem_max,
693 	 * which isn't acceptable.  Until that is made conditional
694 	 * on not having CAP_SYS_RESOURCE or similar, we go direct...
695 	 * DaveM said I could!
696 	 */
697 	lock_sock(sock->sk);
698 	sock->sk->sk_sndbuf = snd * 2;
699 	sock->sk->sk_rcvbuf = rcv * 2;
700 	sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
701 	release_sock(sock->sk);
702 #endif
703 }
704 /*
705  * INET callback when data has been received on the socket.
706  */
707 static void
708 svc_udp_data_ready(struct sock *sk, int count)
709 {
710 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
711 
712 	if (svsk) {
713 		dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
714 			svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
715 		set_bit(SK_DATA, &svsk->sk_flags);
716 		svc_sock_enqueue(svsk);
717 	}
718 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
719 		wake_up_interruptible(sk->sk_sleep);
720 }
721 
722 /*
723  * INET callback when space is newly available on the socket.
724  */
725 static void
726 svc_write_space(struct sock *sk)
727 {
728 	struct svc_sock	*svsk = (struct svc_sock *)(sk->sk_user_data);
729 
730 	if (svsk) {
731 		dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
732 			svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
733 		svc_sock_enqueue(svsk);
734 	}
735 
736 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
737 		dprintk("RPC svc_write_space: someone sleeping on %p\n",
738 		       svsk);
739 		wake_up_interruptible(sk->sk_sleep);
740 	}
741 }
742 
743 static inline void svc_udp_get_dest_address(struct svc_rqst *rqstp,
744 					    struct cmsghdr *cmh)
745 {
746 	switch (rqstp->rq_sock->sk_sk->sk_family) {
747 	case AF_INET: {
748 		struct in_pktinfo *pki = CMSG_DATA(cmh);
749 		rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
750 		break;
751 		}
752 	case AF_INET6: {
753 		struct in6_pktinfo *pki = CMSG_DATA(cmh);
754 		ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
755 		break;
756 		}
757 	}
758 }
759 
760 /*
761  * Receive a datagram from a UDP socket.
762  */
763 static int
764 svc_udp_recvfrom(struct svc_rqst *rqstp)
765 {
766 	struct svc_sock	*svsk = rqstp->rq_sock;
767 	struct svc_serv	*serv = svsk->sk_server;
768 	struct sk_buff	*skb;
769 	union {
770 		struct cmsghdr	hdr;
771 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
772 	} buffer;
773 	struct cmsghdr *cmh = &buffer.hdr;
774 	int		err, len;
775 	struct msghdr msg = {
776 		.msg_name = svc_addr(rqstp),
777 		.msg_control = cmh,
778 		.msg_controllen = sizeof(buffer),
779 		.msg_flags = MSG_DONTWAIT,
780 	};
781 
782 	if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
783 	    /* udp sockets need large rcvbuf as all pending
784 	     * requests are still in that buffer.  sndbuf must
785 	     * also be large enough that there is enough space
786 	     * for one reply per thread.  We count all threads
787 	     * rather than threads in a particular pool, which
788 	     * provides an upper bound on the number of threads
789 	     * which will access the socket.
790 	     */
791 	    svc_sock_setbufsize(svsk->sk_sock,
792 				(serv->sv_nrthreads+3) * serv->sv_max_mesg,
793 				(serv->sv_nrthreads+3) * serv->sv_max_mesg);
794 
795 	if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
796 		svc_sock_received(svsk);
797 		return svc_deferred_recv(rqstp);
798 	}
799 
800 	if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
801 		svc_delete_socket(svsk);
802 		return 0;
803 	}
804 
805 	clear_bit(SK_DATA, &svsk->sk_flags);
806 	skb = NULL;
807 	err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
808 			     0, 0, MSG_PEEK | MSG_DONTWAIT);
809 	if (err >= 0)
810 		skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
811 
812 	if (skb == NULL) {
813 		if (err != -EAGAIN) {
814 			/* possibly an icmp error */
815 			dprintk("svc: recvfrom returned error %d\n", -err);
816 			set_bit(SK_DATA, &svsk->sk_flags);
817 		}
818 		svc_sock_received(svsk);
819 		return -EAGAIN;
820 	}
821 	rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
822 	if (skb->tstamp.tv64 == 0) {
823 		skb->tstamp = ktime_get_real();
824 		/* Don't enable netstamp, sunrpc doesn't
825 		   need that much accuracy */
826 	}
827 	svsk->sk_sk->sk_stamp = skb->tstamp;
828 	set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
829 
830 	/*
831 	 * Maybe more packets - kick another thread ASAP.
832 	 */
833 	svc_sock_received(svsk);
834 
835 	len  = skb->len - sizeof(struct udphdr);
836 	rqstp->rq_arg.len = len;
837 
838 	rqstp->rq_prot = IPPROTO_UDP;
839 
840 	if (cmh->cmsg_level != IPPROTO_IP ||
841 	    cmh->cmsg_type != IP_PKTINFO) {
842 		if (net_ratelimit())
843 			printk("rpcsvc: received unknown control message:"
844 			       "%d/%d\n",
845 			       cmh->cmsg_level, cmh->cmsg_type);
846 		skb_free_datagram(svsk->sk_sk, skb);
847 		return 0;
848 	}
849 	svc_udp_get_dest_address(rqstp, cmh);
850 
851 	if (skb_is_nonlinear(skb)) {
852 		/* we have to copy */
853 		local_bh_disable();
854 		if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
855 			local_bh_enable();
856 			/* checksum error */
857 			skb_free_datagram(svsk->sk_sk, skb);
858 			return 0;
859 		}
860 		local_bh_enable();
861 		skb_free_datagram(svsk->sk_sk, skb);
862 	} else {
863 		/* we can use it in-place */
864 		rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
865 		rqstp->rq_arg.head[0].iov_len = len;
866 		if (skb_checksum_complete(skb)) {
867 			skb_free_datagram(svsk->sk_sk, skb);
868 			return 0;
869 		}
870 		rqstp->rq_skbuff = skb;
871 	}
872 
873 	rqstp->rq_arg.page_base = 0;
874 	if (len <= rqstp->rq_arg.head[0].iov_len) {
875 		rqstp->rq_arg.head[0].iov_len = len;
876 		rqstp->rq_arg.page_len = 0;
877 		rqstp->rq_respages = rqstp->rq_pages+1;
878 	} else {
879 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
880 		rqstp->rq_respages = rqstp->rq_pages + 1 +
881 			DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
882 	}
883 
884 	if (serv->sv_stats)
885 		serv->sv_stats->netudpcnt++;
886 
887 	return len;
888 }
889 
890 static int
891 svc_udp_sendto(struct svc_rqst *rqstp)
892 {
893 	int		error;
894 
895 	error = svc_sendto(rqstp, &rqstp->rq_res);
896 	if (error == -ECONNREFUSED)
897 		/* ICMP error on earlier request. */
898 		error = svc_sendto(rqstp, &rqstp->rq_res);
899 
900 	return error;
901 }
902 
903 static void
904 svc_udp_init(struct svc_sock *svsk)
905 {
906 	int one = 1;
907 	mm_segment_t oldfs;
908 
909 	svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
910 	svsk->sk_sk->sk_write_space = svc_write_space;
911 	svsk->sk_recvfrom = svc_udp_recvfrom;
912 	svsk->sk_sendto = svc_udp_sendto;
913 
914 	/* initialise setting must have enough space to
915 	 * receive and respond to one request.
916 	 * svc_udp_recvfrom will re-adjust if necessary
917 	 */
918 	svc_sock_setbufsize(svsk->sk_sock,
919 			    3 * svsk->sk_server->sv_max_mesg,
920 			    3 * svsk->sk_server->sv_max_mesg);
921 
922 	set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
923 	set_bit(SK_CHNGBUF, &svsk->sk_flags);
924 
925 	oldfs = get_fs();
926 	set_fs(KERNEL_DS);
927 	/* make sure we get destination address info */
928 	svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
929 				       (char __user *)&one, sizeof(one));
930 	set_fs(oldfs);
931 }
932 
933 /*
934  * A data_ready event on a listening socket means there's a connection
935  * pending. Do not use state_change as a substitute for it.
936  */
937 static void
938 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
939 {
940 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
941 
942 	dprintk("svc: socket %p TCP (listen) state change %d\n",
943 		sk, sk->sk_state);
944 
945 	/*
946 	 * This callback may called twice when a new connection
947 	 * is established as a child socket inherits everything
948 	 * from a parent LISTEN socket.
949 	 * 1) data_ready method of the parent socket will be called
950 	 *    when one of child sockets become ESTABLISHED.
951 	 * 2) data_ready method of the child socket may be called
952 	 *    when it receives data before the socket is accepted.
953 	 * In case of 2, we should ignore it silently.
954 	 */
955 	if (sk->sk_state == TCP_LISTEN) {
956 		if (svsk) {
957 			set_bit(SK_CONN, &svsk->sk_flags);
958 			svc_sock_enqueue(svsk);
959 		} else
960 			printk("svc: socket %p: no user data\n", sk);
961 	}
962 
963 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
964 		wake_up_interruptible_all(sk->sk_sleep);
965 }
966 
967 /*
968  * A state change on a connected socket means it's dying or dead.
969  */
970 static void
971 svc_tcp_state_change(struct sock *sk)
972 {
973 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
974 
975 	dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
976 		sk, sk->sk_state, sk->sk_user_data);
977 
978 	if (!svsk)
979 		printk("svc: socket %p: no user data\n", sk);
980 	else {
981 		set_bit(SK_CLOSE, &svsk->sk_flags);
982 		svc_sock_enqueue(svsk);
983 	}
984 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
985 		wake_up_interruptible_all(sk->sk_sleep);
986 }
987 
988 static void
989 svc_tcp_data_ready(struct sock *sk, int count)
990 {
991 	struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
992 
993 	dprintk("svc: socket %p TCP data ready (svsk %p)\n",
994 		sk, sk->sk_user_data);
995 	if (svsk) {
996 		set_bit(SK_DATA, &svsk->sk_flags);
997 		svc_sock_enqueue(svsk);
998 	}
999 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1000 		wake_up_interruptible(sk->sk_sleep);
1001 }
1002 
1003 static inline int svc_port_is_privileged(struct sockaddr *sin)
1004 {
1005 	switch (sin->sa_family) {
1006 	case AF_INET:
1007 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
1008 			< PROT_SOCK;
1009 	case AF_INET6:
1010 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
1011 			< PROT_SOCK;
1012 	default:
1013 		return 0;
1014 	}
1015 }
1016 
1017 /*
1018  * Accept a TCP connection
1019  */
1020 static void
1021 svc_tcp_accept(struct svc_sock *svsk)
1022 {
1023 	struct sockaddr_storage addr;
1024 	struct sockaddr	*sin = (struct sockaddr *) &addr;
1025 	struct svc_serv	*serv = svsk->sk_server;
1026 	struct socket	*sock = svsk->sk_sock;
1027 	struct socket	*newsock;
1028 	struct svc_sock	*newsvsk;
1029 	int		err, slen;
1030 	char		buf[RPC_MAX_ADDRBUFLEN];
1031 
1032 	dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
1033 	if (!sock)
1034 		return;
1035 
1036 	clear_bit(SK_CONN, &svsk->sk_flags);
1037 	err = kernel_accept(sock, &newsock, O_NONBLOCK);
1038 	if (err < 0) {
1039 		if (err == -ENOMEM)
1040 			printk(KERN_WARNING "%s: no more sockets!\n",
1041 			       serv->sv_name);
1042 		else if (err != -EAGAIN && net_ratelimit())
1043 			printk(KERN_WARNING "%s: accept failed (err %d)!\n",
1044 				   serv->sv_name, -err);
1045 		return;
1046 	}
1047 
1048 	set_bit(SK_CONN, &svsk->sk_flags);
1049 	svc_sock_enqueue(svsk);
1050 
1051 	err = kernel_getpeername(newsock, sin, &slen);
1052 	if (err < 0) {
1053 		if (net_ratelimit())
1054 			printk(KERN_WARNING "%s: peername failed (err %d)!\n",
1055 				   serv->sv_name, -err);
1056 		goto failed;		/* aborted connection or whatever */
1057 	}
1058 
1059 	/* Ideally, we would want to reject connections from unauthorized
1060 	 * hosts here, but when we get encryption, the IP of the host won't
1061 	 * tell us anything.  For now just warn about unpriv connections.
1062 	 */
1063 	if (!svc_port_is_privileged(sin)) {
1064 		dprintk(KERN_WARNING
1065 			"%s: connect from unprivileged port: %s\n",
1066 			serv->sv_name,
1067 			__svc_print_addr(sin, buf, sizeof(buf)));
1068 	}
1069 	dprintk("%s: connect from %s\n", serv->sv_name,
1070 		__svc_print_addr(sin, buf, sizeof(buf)));
1071 
1072 	/* make sure that a write doesn't block forever when
1073 	 * low on memory
1074 	 */
1075 	newsock->sk->sk_sndtimeo = HZ*30;
1076 
1077 	if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
1078 				 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
1079 		goto failed;
1080 	memcpy(&newsvsk->sk_remote, sin, slen);
1081 	newsvsk->sk_remotelen = slen;
1082 	err = kernel_getsockname(newsock, sin, &slen);
1083 	if (unlikely(err < 0)) {
1084 		dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
1085 		slen = offsetof(struct sockaddr, sa_data);
1086 	}
1087 	memcpy(&newsvsk->sk_local, sin, slen);
1088 
1089 	svc_sock_received(newsvsk);
1090 
1091 	/* make sure that we don't have too many active connections.
1092 	 * If we have, something must be dropped.
1093 	 *
1094 	 * There's no point in trying to do random drop here for
1095 	 * DoS prevention. The NFS clients does 1 reconnect in 15
1096 	 * seconds. An attacker can easily beat that.
1097 	 *
1098 	 * The only somewhat efficient mechanism would be if drop
1099 	 * old connections from the same IP first. But right now
1100 	 * we don't even record the client IP in svc_sock.
1101 	 */
1102 	if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
1103 		struct svc_sock *svsk = NULL;
1104 		spin_lock_bh(&serv->sv_lock);
1105 		if (!list_empty(&serv->sv_tempsocks)) {
1106 			if (net_ratelimit()) {
1107 				/* Try to help the admin */
1108 				printk(KERN_NOTICE "%s: too many open TCP "
1109 					"sockets, consider increasing the "
1110 					"number of nfsd threads\n",
1111 						   serv->sv_name);
1112 				printk(KERN_NOTICE
1113 				       "%s: last TCP connect from %s\n",
1114 				       serv->sv_name, __svc_print_addr(sin,
1115 							buf, sizeof(buf)));
1116 			}
1117 			/*
1118 			 * Always select the oldest socket. It's not fair,
1119 			 * but so is life
1120 			 */
1121 			svsk = list_entry(serv->sv_tempsocks.prev,
1122 					  struct svc_sock,
1123 					  sk_list);
1124 			set_bit(SK_CLOSE, &svsk->sk_flags);
1125 			atomic_inc(&svsk->sk_inuse);
1126 		}
1127 		spin_unlock_bh(&serv->sv_lock);
1128 
1129 		if (svsk) {
1130 			svc_sock_enqueue(svsk);
1131 			svc_sock_put(svsk);
1132 		}
1133 
1134 	}
1135 
1136 	if (serv->sv_stats)
1137 		serv->sv_stats->nettcpconn++;
1138 
1139 	return;
1140 
1141 failed:
1142 	sock_release(newsock);
1143 	return;
1144 }
1145 
1146 /*
1147  * Receive data from a TCP socket.
1148  */
1149 static int
1150 svc_tcp_recvfrom(struct svc_rqst *rqstp)
1151 {
1152 	struct svc_sock	*svsk = rqstp->rq_sock;
1153 	struct svc_serv	*serv = svsk->sk_server;
1154 	int		len;
1155 	struct kvec *vec;
1156 	int pnum, vlen;
1157 
1158 	dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1159 		svsk, test_bit(SK_DATA, &svsk->sk_flags),
1160 		test_bit(SK_CONN, &svsk->sk_flags),
1161 		test_bit(SK_CLOSE, &svsk->sk_flags));
1162 
1163 	if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
1164 		svc_sock_received(svsk);
1165 		return svc_deferred_recv(rqstp);
1166 	}
1167 
1168 	if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
1169 		svc_delete_socket(svsk);
1170 		return 0;
1171 	}
1172 
1173 	if (svsk->sk_sk->sk_state == TCP_LISTEN) {
1174 		svc_tcp_accept(svsk);
1175 		svc_sock_received(svsk);
1176 		return 0;
1177 	}
1178 
1179 	if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
1180 		/* sndbuf needs to have room for one request
1181 		 * per thread, otherwise we can stall even when the
1182 		 * network isn't a bottleneck.
1183 		 *
1184 		 * We count all threads rather than threads in a
1185 		 * particular pool, which provides an upper bound
1186 		 * on the number of threads which will access the socket.
1187 		 *
1188 		 * rcvbuf just needs to be able to hold a few requests.
1189 		 * Normally they will be removed from the queue
1190 		 * as soon a a complete request arrives.
1191 		 */
1192 		svc_sock_setbufsize(svsk->sk_sock,
1193 				    (serv->sv_nrthreads+3) * serv->sv_max_mesg,
1194 				    3 * serv->sv_max_mesg);
1195 
1196 	clear_bit(SK_DATA, &svsk->sk_flags);
1197 
1198 	/* Receive data. If we haven't got the record length yet, get
1199 	 * the next four bytes. Otherwise try to gobble up as much as
1200 	 * possible up to the complete record length.
1201 	 */
1202 	if (svsk->sk_tcplen < 4) {
1203 		unsigned long	want = 4 - svsk->sk_tcplen;
1204 		struct kvec	iov;
1205 
1206 		iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1207 		iov.iov_len  = want;
1208 		if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1209 			goto error;
1210 		svsk->sk_tcplen += len;
1211 
1212 		if (len < want) {
1213 			dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1214 				len, want);
1215 			svc_sock_received(svsk);
1216 			return -EAGAIN; /* record header not complete */
1217 		}
1218 
1219 		svsk->sk_reclen = ntohl(svsk->sk_reclen);
1220 		if (!(svsk->sk_reclen & 0x80000000)) {
1221 			/* FIXME: technically, a record can be fragmented,
1222 			 *  and non-terminal fragments will not have the top
1223 			 *  bit set in the fragment length header.
1224 			 *  But apparently no known nfs clients send fragmented
1225 			 *  records. */
1226 			if (net_ratelimit())
1227 				printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1228 				       " (non-terminal)\n",
1229 				       (unsigned long) svsk->sk_reclen);
1230 			goto err_delete;
1231 		}
1232 		svsk->sk_reclen &= 0x7fffffff;
1233 		dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1234 		if (svsk->sk_reclen > serv->sv_max_mesg) {
1235 			if (net_ratelimit())
1236 				printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1237 				       " (large)\n",
1238 				       (unsigned long) svsk->sk_reclen);
1239 			goto err_delete;
1240 		}
1241 	}
1242 
1243 	/* Check whether enough data is available */
1244 	len = svc_recv_available(svsk);
1245 	if (len < 0)
1246 		goto error;
1247 
1248 	if (len < svsk->sk_reclen) {
1249 		dprintk("svc: incomplete TCP record (%d of %d)\n",
1250 			len, svsk->sk_reclen);
1251 		svc_sock_received(svsk);
1252 		return -EAGAIN;	/* record not complete */
1253 	}
1254 	len = svsk->sk_reclen;
1255 	set_bit(SK_DATA, &svsk->sk_flags);
1256 
1257 	vec = rqstp->rq_vec;
1258 	vec[0] = rqstp->rq_arg.head[0];
1259 	vlen = PAGE_SIZE;
1260 	pnum = 1;
1261 	while (vlen < len) {
1262 		vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
1263 		vec[pnum].iov_len = PAGE_SIZE;
1264 		pnum++;
1265 		vlen += PAGE_SIZE;
1266 	}
1267 	rqstp->rq_respages = &rqstp->rq_pages[pnum];
1268 
1269 	/* Now receive data */
1270 	len = svc_recvfrom(rqstp, vec, pnum, len);
1271 	if (len < 0)
1272 		goto error;
1273 
1274 	dprintk("svc: TCP complete record (%d bytes)\n", len);
1275 	rqstp->rq_arg.len = len;
1276 	rqstp->rq_arg.page_base = 0;
1277 	if (len <= rqstp->rq_arg.head[0].iov_len) {
1278 		rqstp->rq_arg.head[0].iov_len = len;
1279 		rqstp->rq_arg.page_len = 0;
1280 	} else {
1281 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1282 	}
1283 
1284 	rqstp->rq_skbuff      = NULL;
1285 	rqstp->rq_prot	      = IPPROTO_TCP;
1286 
1287 	/* Reset TCP read info */
1288 	svsk->sk_reclen = 0;
1289 	svsk->sk_tcplen = 0;
1290 
1291 	svc_sock_received(svsk);
1292 	if (serv->sv_stats)
1293 		serv->sv_stats->nettcpcnt++;
1294 
1295 	return len;
1296 
1297  err_delete:
1298 	svc_delete_socket(svsk);
1299 	return -EAGAIN;
1300 
1301  error:
1302 	if (len == -EAGAIN) {
1303 		dprintk("RPC: TCP recvfrom got EAGAIN\n");
1304 		svc_sock_received(svsk);
1305 	} else {
1306 		printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1307 					svsk->sk_server->sv_name, -len);
1308 		goto err_delete;
1309 	}
1310 
1311 	return len;
1312 }
1313 
1314 /*
1315  * Send out data on TCP socket.
1316  */
1317 static int
1318 svc_tcp_sendto(struct svc_rqst *rqstp)
1319 {
1320 	struct xdr_buf	*xbufp = &rqstp->rq_res;
1321 	int sent;
1322 	__be32 reclen;
1323 
1324 	/* Set up the first element of the reply kvec.
1325 	 * Any other kvecs that may be in use have been taken
1326 	 * care of by the server implementation itself.
1327 	 */
1328 	reclen = htonl(0x80000000|((xbufp->len ) - 4));
1329 	memcpy(xbufp->head[0].iov_base, &reclen, 4);
1330 
1331 	if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1332 		return -ENOTCONN;
1333 
1334 	sent = svc_sendto(rqstp, &rqstp->rq_res);
1335 	if (sent != xbufp->len) {
1336 		printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1337 		       rqstp->rq_sock->sk_server->sv_name,
1338 		       (sent<0)?"got error":"sent only",
1339 		       sent, xbufp->len);
1340 		set_bit(SK_CLOSE, &rqstp->rq_sock->sk_flags);
1341 		svc_sock_enqueue(rqstp->rq_sock);
1342 		sent = -EAGAIN;
1343 	}
1344 	return sent;
1345 }
1346 
1347 static void
1348 svc_tcp_init(struct svc_sock *svsk)
1349 {
1350 	struct sock	*sk = svsk->sk_sk;
1351 	struct tcp_sock *tp = tcp_sk(sk);
1352 
1353 	svsk->sk_recvfrom = svc_tcp_recvfrom;
1354 	svsk->sk_sendto = svc_tcp_sendto;
1355 
1356 	if (sk->sk_state == TCP_LISTEN) {
1357 		dprintk("setting up TCP socket for listening\n");
1358 		sk->sk_data_ready = svc_tcp_listen_data_ready;
1359 		set_bit(SK_CONN, &svsk->sk_flags);
1360 	} else {
1361 		dprintk("setting up TCP socket for reading\n");
1362 		sk->sk_state_change = svc_tcp_state_change;
1363 		sk->sk_data_ready = svc_tcp_data_ready;
1364 		sk->sk_write_space = svc_write_space;
1365 
1366 		svsk->sk_reclen = 0;
1367 		svsk->sk_tcplen = 0;
1368 
1369 		tp->nonagle = 1;        /* disable Nagle's algorithm */
1370 
1371 		/* initialise setting must have enough space to
1372 		 * receive and respond to one request.
1373 		 * svc_tcp_recvfrom will re-adjust if necessary
1374 		 */
1375 		svc_sock_setbufsize(svsk->sk_sock,
1376 				    3 * svsk->sk_server->sv_max_mesg,
1377 				    3 * svsk->sk_server->sv_max_mesg);
1378 
1379 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1380 		set_bit(SK_DATA, &svsk->sk_flags);
1381 		if (sk->sk_state != TCP_ESTABLISHED)
1382 			set_bit(SK_CLOSE, &svsk->sk_flags);
1383 	}
1384 }
1385 
1386 void
1387 svc_sock_update_bufs(struct svc_serv *serv)
1388 {
1389 	/*
1390 	 * The number of server threads has changed. Update
1391 	 * rcvbuf and sndbuf accordingly on all sockets
1392 	 */
1393 	struct list_head *le;
1394 
1395 	spin_lock_bh(&serv->sv_lock);
1396 	list_for_each(le, &serv->sv_permsocks) {
1397 		struct svc_sock *svsk =
1398 			list_entry(le, struct svc_sock, sk_list);
1399 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1400 	}
1401 	list_for_each(le, &serv->sv_tempsocks) {
1402 		struct svc_sock *svsk =
1403 			list_entry(le, struct svc_sock, sk_list);
1404 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1405 	}
1406 	spin_unlock_bh(&serv->sv_lock);
1407 }
1408 
1409 /*
1410  * Receive the next request on any socket.  This code is carefully
1411  * organised not to touch any cachelines in the shared svc_serv
1412  * structure, only cachelines in the local svc_pool.
1413  */
1414 int
1415 svc_recv(struct svc_rqst *rqstp, long timeout)
1416 {
1417 	struct svc_sock		*svsk = NULL;
1418 	struct svc_serv		*serv = rqstp->rq_server;
1419 	struct svc_pool		*pool = rqstp->rq_pool;
1420 	int			len, i;
1421 	int 			pages;
1422 	struct xdr_buf		*arg;
1423 	DECLARE_WAITQUEUE(wait, current);
1424 
1425 	dprintk("svc: server %p waiting for data (to = %ld)\n",
1426 		rqstp, timeout);
1427 
1428 	if (rqstp->rq_sock)
1429 		printk(KERN_ERR
1430 			"svc_recv: service %p, socket not NULL!\n",
1431 			 rqstp);
1432 	if (waitqueue_active(&rqstp->rq_wait))
1433 		printk(KERN_ERR
1434 			"svc_recv: service %p, wait queue active!\n",
1435 			 rqstp);
1436 
1437 
1438 	/* now allocate needed pages.  If we get a failure, sleep briefly */
1439 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
1440 	for (i=0; i < pages ; i++)
1441 		while (rqstp->rq_pages[i] == NULL) {
1442 			struct page *p = alloc_page(GFP_KERNEL);
1443 			if (!p)
1444 				schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1445 			rqstp->rq_pages[i] = p;
1446 		}
1447 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
1448 	BUG_ON(pages >= RPCSVC_MAXPAGES);
1449 
1450 	/* Make arg->head point to first page and arg->pages point to rest */
1451 	arg = &rqstp->rq_arg;
1452 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
1453 	arg->head[0].iov_len = PAGE_SIZE;
1454 	arg->pages = rqstp->rq_pages + 1;
1455 	arg->page_base = 0;
1456 	/* save at least one page for response */
1457 	arg->page_len = (pages-2)*PAGE_SIZE;
1458 	arg->len = (pages-1)*PAGE_SIZE;
1459 	arg->tail[0].iov_len = 0;
1460 
1461 	try_to_freeze();
1462 	cond_resched();
1463 	if (signalled())
1464 		return -EINTR;
1465 
1466 	spin_lock_bh(&pool->sp_lock);
1467 	if ((svsk = svc_sock_dequeue(pool)) != NULL) {
1468 		rqstp->rq_sock = svsk;
1469 		atomic_inc(&svsk->sk_inuse);
1470 		rqstp->rq_reserved = serv->sv_max_mesg;
1471 		atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
1472 	} else {
1473 		/* No data pending. Go to sleep */
1474 		svc_thread_enqueue(pool, rqstp);
1475 
1476 		/*
1477 		 * We have to be able to interrupt this wait
1478 		 * to bring down the daemons ...
1479 		 */
1480 		set_current_state(TASK_INTERRUPTIBLE);
1481 		add_wait_queue(&rqstp->rq_wait, &wait);
1482 		spin_unlock_bh(&pool->sp_lock);
1483 
1484 		schedule_timeout(timeout);
1485 
1486 		try_to_freeze();
1487 
1488 		spin_lock_bh(&pool->sp_lock);
1489 		remove_wait_queue(&rqstp->rq_wait, &wait);
1490 
1491 		if (!(svsk = rqstp->rq_sock)) {
1492 			svc_thread_dequeue(pool, rqstp);
1493 			spin_unlock_bh(&pool->sp_lock);
1494 			dprintk("svc: server %p, no data yet\n", rqstp);
1495 			return signalled()? -EINTR : -EAGAIN;
1496 		}
1497 	}
1498 	spin_unlock_bh(&pool->sp_lock);
1499 
1500 	dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1501 		 rqstp, pool->sp_id, svsk, atomic_read(&svsk->sk_inuse));
1502 	len = svsk->sk_recvfrom(rqstp);
1503 	dprintk("svc: got len=%d\n", len);
1504 
1505 	/* No data, incomplete (TCP) read, or accept() */
1506 	if (len == 0 || len == -EAGAIN) {
1507 		rqstp->rq_res.len = 0;
1508 		svc_sock_release(rqstp);
1509 		return -EAGAIN;
1510 	}
1511 	svsk->sk_lastrecv = get_seconds();
1512 	clear_bit(SK_OLD, &svsk->sk_flags);
1513 
1514 	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
1515 	rqstp->rq_chandle.defer = svc_defer;
1516 
1517 	if (serv->sv_stats)
1518 		serv->sv_stats->netcnt++;
1519 	return len;
1520 }
1521 
1522 /*
1523  * Drop request
1524  */
1525 void
1526 svc_drop(struct svc_rqst *rqstp)
1527 {
1528 	dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1529 	svc_sock_release(rqstp);
1530 }
1531 
1532 /*
1533  * Return reply to client.
1534  */
1535 int
1536 svc_send(struct svc_rqst *rqstp)
1537 {
1538 	struct svc_sock	*svsk;
1539 	int		len;
1540 	struct xdr_buf	*xb;
1541 
1542 	if ((svsk = rqstp->rq_sock) == NULL) {
1543 		printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1544 				__FILE__, __LINE__);
1545 		return -EFAULT;
1546 	}
1547 
1548 	/* release the receive skb before sending the reply */
1549 	svc_release_skb(rqstp);
1550 
1551 	/* calculate over-all length */
1552 	xb = & rqstp->rq_res;
1553 	xb->len = xb->head[0].iov_len +
1554 		xb->page_len +
1555 		xb->tail[0].iov_len;
1556 
1557 	/* Grab svsk->sk_mutex to serialize outgoing data. */
1558 	mutex_lock(&svsk->sk_mutex);
1559 	if (test_bit(SK_DEAD, &svsk->sk_flags))
1560 		len = -ENOTCONN;
1561 	else
1562 		len = svsk->sk_sendto(rqstp);
1563 	mutex_unlock(&svsk->sk_mutex);
1564 	svc_sock_release(rqstp);
1565 
1566 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1567 		return 0;
1568 	return len;
1569 }
1570 
1571 /*
1572  * Timer function to close old temporary sockets, using
1573  * a mark-and-sweep algorithm.
1574  */
1575 static void
1576 svc_age_temp_sockets(unsigned long closure)
1577 {
1578 	struct svc_serv *serv = (struct svc_serv *)closure;
1579 	struct svc_sock *svsk;
1580 	struct list_head *le, *next;
1581 	LIST_HEAD(to_be_aged);
1582 
1583 	dprintk("svc_age_temp_sockets\n");
1584 
1585 	if (!spin_trylock_bh(&serv->sv_lock)) {
1586 		/* busy, try again 1 sec later */
1587 		dprintk("svc_age_temp_sockets: busy\n");
1588 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
1589 		return;
1590 	}
1591 
1592 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
1593 		svsk = list_entry(le, struct svc_sock, sk_list);
1594 
1595 		if (!test_and_set_bit(SK_OLD, &svsk->sk_flags))
1596 			continue;
1597 		if (atomic_read(&svsk->sk_inuse) > 1 || test_bit(SK_BUSY, &svsk->sk_flags))
1598 			continue;
1599 		atomic_inc(&svsk->sk_inuse);
1600 		list_move(le, &to_be_aged);
1601 		set_bit(SK_CLOSE, &svsk->sk_flags);
1602 		set_bit(SK_DETACHED, &svsk->sk_flags);
1603 	}
1604 	spin_unlock_bh(&serv->sv_lock);
1605 
1606 	while (!list_empty(&to_be_aged)) {
1607 		le = to_be_aged.next;
1608 		/* fiddling the sk_list node is safe 'cos we're SK_DETACHED */
1609 		list_del_init(le);
1610 		svsk = list_entry(le, struct svc_sock, sk_list);
1611 
1612 		dprintk("queuing svsk %p for closing, %lu seconds old\n",
1613 			svsk, get_seconds() - svsk->sk_lastrecv);
1614 
1615 		/* a thread will dequeue and close it soon */
1616 		svc_sock_enqueue(svsk);
1617 		svc_sock_put(svsk);
1618 	}
1619 
1620 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1621 }
1622 
1623 /*
1624  * Initialize socket for RPC use and create svc_sock struct
1625  * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1626  */
1627 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1628 						struct socket *sock,
1629 						int *errp, int flags)
1630 {
1631 	struct svc_sock	*svsk;
1632 	struct sock	*inet;
1633 	int		pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1634 	int		is_temporary = flags & SVC_SOCK_TEMPORARY;
1635 
1636 	dprintk("svc: svc_setup_socket %p\n", sock);
1637 	if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1638 		*errp = -ENOMEM;
1639 		return NULL;
1640 	}
1641 
1642 	inet = sock->sk;
1643 
1644 	/* Register socket with portmapper */
1645 	if (*errp >= 0 && pmap_register)
1646 		*errp = svc_register(serv, inet->sk_protocol,
1647 				     ntohs(inet_sk(inet)->sport));
1648 
1649 	if (*errp < 0) {
1650 		kfree(svsk);
1651 		return NULL;
1652 	}
1653 
1654 	set_bit(SK_BUSY, &svsk->sk_flags);
1655 	inet->sk_user_data = svsk;
1656 	svsk->sk_sock = sock;
1657 	svsk->sk_sk = inet;
1658 	svsk->sk_ostate = inet->sk_state_change;
1659 	svsk->sk_odata = inet->sk_data_ready;
1660 	svsk->sk_owspace = inet->sk_write_space;
1661 	svsk->sk_server = serv;
1662 	atomic_set(&svsk->sk_inuse, 1);
1663 	svsk->sk_lastrecv = get_seconds();
1664 	spin_lock_init(&svsk->sk_lock);
1665 	INIT_LIST_HEAD(&svsk->sk_deferred);
1666 	INIT_LIST_HEAD(&svsk->sk_ready);
1667 	mutex_init(&svsk->sk_mutex);
1668 
1669 	/* Initialize the socket */
1670 	if (sock->type == SOCK_DGRAM)
1671 		svc_udp_init(svsk);
1672 	else
1673 		svc_tcp_init(svsk);
1674 
1675 	spin_lock_bh(&serv->sv_lock);
1676 	if (is_temporary) {
1677 		set_bit(SK_TEMP, &svsk->sk_flags);
1678 		list_add(&svsk->sk_list, &serv->sv_tempsocks);
1679 		serv->sv_tmpcnt++;
1680 		if (serv->sv_temptimer.function == NULL) {
1681 			/* setup timer to age temp sockets */
1682 			setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
1683 					(unsigned long)serv);
1684 			mod_timer(&serv->sv_temptimer,
1685 					jiffies + svc_conn_age_period * HZ);
1686 		}
1687 	} else {
1688 		clear_bit(SK_TEMP, &svsk->sk_flags);
1689 		list_add(&svsk->sk_list, &serv->sv_permsocks);
1690 	}
1691 	spin_unlock_bh(&serv->sv_lock);
1692 
1693 	dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1694 				svsk, svsk->sk_sk);
1695 
1696 	return svsk;
1697 }
1698 
1699 int svc_addsock(struct svc_serv *serv,
1700 		int fd,
1701 		char *name_return,
1702 		int *proto)
1703 {
1704 	int err = 0;
1705 	struct socket *so = sockfd_lookup(fd, &err);
1706 	struct svc_sock *svsk = NULL;
1707 
1708 	if (!so)
1709 		return err;
1710 	if (so->sk->sk_family != AF_INET)
1711 		err =  -EAFNOSUPPORT;
1712 	else if (so->sk->sk_protocol != IPPROTO_TCP &&
1713 	    so->sk->sk_protocol != IPPROTO_UDP)
1714 		err =  -EPROTONOSUPPORT;
1715 	else if (so->state > SS_UNCONNECTED)
1716 		err = -EISCONN;
1717 	else {
1718 		svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
1719 		if (svsk) {
1720 			svc_sock_received(svsk);
1721 			err = 0;
1722 		}
1723 	}
1724 	if (err) {
1725 		sockfd_put(so);
1726 		return err;
1727 	}
1728 	if (proto) *proto = so->sk->sk_protocol;
1729 	return one_sock_name(name_return, svsk);
1730 }
1731 EXPORT_SYMBOL_GPL(svc_addsock);
1732 
1733 /*
1734  * Create socket for RPC service.
1735  */
1736 static int svc_create_socket(struct svc_serv *serv, int protocol,
1737 				struct sockaddr *sin, int len, int flags)
1738 {
1739 	struct svc_sock	*svsk;
1740 	struct socket	*sock;
1741 	int		error;
1742 	int		type;
1743 	char		buf[RPC_MAX_ADDRBUFLEN];
1744 
1745 	dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1746 			serv->sv_program->pg_name, protocol,
1747 			__svc_print_addr(sin, buf, sizeof(buf)));
1748 
1749 	if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1750 		printk(KERN_WARNING "svc: only UDP and TCP "
1751 				"sockets supported\n");
1752 		return -EINVAL;
1753 	}
1754 	type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1755 
1756 	error = sock_create_kern(sin->sa_family, type, protocol, &sock);
1757 	if (error < 0)
1758 		return error;
1759 
1760 	svc_reclassify_socket(sock);
1761 
1762 	if (type == SOCK_STREAM)
1763 		sock->sk->sk_reuse = 1;		/* allow address reuse */
1764 	error = kernel_bind(sock, sin, len);
1765 	if (error < 0)
1766 		goto bummer;
1767 
1768 	if (protocol == IPPROTO_TCP) {
1769 		if ((error = kernel_listen(sock, 64)) < 0)
1770 			goto bummer;
1771 	}
1772 
1773 	if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1774 		svc_sock_received(svsk);
1775 		return ntohs(inet_sk(svsk->sk_sk)->sport);
1776 	}
1777 
1778 bummer:
1779 	dprintk("svc: svc_create_socket error = %d\n", -error);
1780 	sock_release(sock);
1781 	return error;
1782 }
1783 
1784 /*
1785  * Remove a dead socket
1786  */
1787 static void
1788 svc_delete_socket(struct svc_sock *svsk)
1789 {
1790 	struct svc_serv	*serv;
1791 	struct sock	*sk;
1792 
1793 	dprintk("svc: svc_delete_socket(%p)\n", svsk);
1794 
1795 	serv = svsk->sk_server;
1796 	sk = svsk->sk_sk;
1797 
1798 	sk->sk_state_change = svsk->sk_ostate;
1799 	sk->sk_data_ready = svsk->sk_odata;
1800 	sk->sk_write_space = svsk->sk_owspace;
1801 
1802 	spin_lock_bh(&serv->sv_lock);
1803 
1804 	if (!test_and_set_bit(SK_DETACHED, &svsk->sk_flags))
1805 		list_del_init(&svsk->sk_list);
1806 	/*
1807 	 * We used to delete the svc_sock from whichever list
1808 	 * it's sk_ready node was on, but we don't actually
1809 	 * need to.  This is because the only time we're called
1810 	 * while still attached to a queue, the queue itself
1811 	 * is about to be destroyed (in svc_destroy).
1812 	 */
1813 	if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags)) {
1814 		BUG_ON(atomic_read(&svsk->sk_inuse)<2);
1815 		atomic_dec(&svsk->sk_inuse);
1816 		if (test_bit(SK_TEMP, &svsk->sk_flags))
1817 			serv->sv_tmpcnt--;
1818 	}
1819 
1820 	spin_unlock_bh(&serv->sv_lock);
1821 }
1822 
1823 static void svc_close_socket(struct svc_sock *svsk)
1824 {
1825 	set_bit(SK_CLOSE, &svsk->sk_flags);
1826 	if (test_and_set_bit(SK_BUSY, &svsk->sk_flags))
1827 		/* someone else will have to effect the close */
1828 		return;
1829 
1830 	atomic_inc(&svsk->sk_inuse);
1831 	svc_delete_socket(svsk);
1832 	clear_bit(SK_BUSY, &svsk->sk_flags);
1833 	svc_sock_put(svsk);
1834 }
1835 
1836 void svc_force_close_socket(struct svc_sock *svsk)
1837 {
1838 	set_bit(SK_CLOSE, &svsk->sk_flags);
1839 	if (test_bit(SK_BUSY, &svsk->sk_flags)) {
1840 		/* Waiting to be processed, but no threads left,
1841 		 * So just remove it from the waiting list
1842 		 */
1843 		list_del_init(&svsk->sk_ready);
1844 		clear_bit(SK_BUSY, &svsk->sk_flags);
1845 	}
1846 	svc_close_socket(svsk);
1847 }
1848 
1849 /**
1850  * svc_makesock - Make a socket for nfsd and lockd
1851  * @serv: RPC server structure
1852  * @protocol: transport protocol to use
1853  * @port: port to use
1854  * @flags: requested socket characteristics
1855  *
1856  */
1857 int svc_makesock(struct svc_serv *serv, int protocol, unsigned short port,
1858 			int flags)
1859 {
1860 	struct sockaddr_in sin = {
1861 		.sin_family		= AF_INET,
1862 		.sin_addr.s_addr	= INADDR_ANY,
1863 		.sin_port		= htons(port),
1864 	};
1865 
1866 	dprintk("svc: creating socket proto = %d\n", protocol);
1867 	return svc_create_socket(serv, protocol, (struct sockaddr *) &sin,
1868 							sizeof(sin), flags);
1869 }
1870 
1871 /*
1872  * Handle defer and revisit of requests
1873  */
1874 
1875 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1876 {
1877 	struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1878 	struct svc_sock *svsk;
1879 
1880 	if (too_many) {
1881 		svc_sock_put(dr->svsk);
1882 		kfree(dr);
1883 		return;
1884 	}
1885 	dprintk("revisit queued\n");
1886 	svsk = dr->svsk;
1887 	dr->svsk = NULL;
1888 	spin_lock(&svsk->sk_lock);
1889 	list_add(&dr->handle.recent, &svsk->sk_deferred);
1890 	spin_unlock(&svsk->sk_lock);
1891 	set_bit(SK_DEFERRED, &svsk->sk_flags);
1892 	svc_sock_enqueue(svsk);
1893 	svc_sock_put(svsk);
1894 }
1895 
1896 static struct cache_deferred_req *
1897 svc_defer(struct cache_req *req)
1898 {
1899 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1900 	int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1901 	struct svc_deferred_req *dr;
1902 
1903 	if (rqstp->rq_arg.page_len)
1904 		return NULL; /* if more than a page, give up FIXME */
1905 	if (rqstp->rq_deferred) {
1906 		dr = rqstp->rq_deferred;
1907 		rqstp->rq_deferred = NULL;
1908 	} else {
1909 		int skip  = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1910 		/* FIXME maybe discard if size too large */
1911 		dr = kmalloc(size, GFP_KERNEL);
1912 		if (dr == NULL)
1913 			return NULL;
1914 
1915 		dr->handle.owner = rqstp->rq_server;
1916 		dr->prot = rqstp->rq_prot;
1917 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1918 		dr->addrlen = rqstp->rq_addrlen;
1919 		dr->daddr = rqstp->rq_daddr;
1920 		dr->argslen = rqstp->rq_arg.len >> 2;
1921 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1922 	}
1923 	atomic_inc(&rqstp->rq_sock->sk_inuse);
1924 	dr->svsk = rqstp->rq_sock;
1925 
1926 	dr->handle.revisit = svc_revisit;
1927 	return &dr->handle;
1928 }
1929 
1930 /*
1931  * recv data from a deferred request into an active one
1932  */
1933 static int svc_deferred_recv(struct svc_rqst *rqstp)
1934 {
1935 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1936 
1937 	rqstp->rq_arg.head[0].iov_base = dr->args;
1938 	rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
1939 	rqstp->rq_arg.page_len = 0;
1940 	rqstp->rq_arg.len = dr->argslen<<2;
1941 	rqstp->rq_prot        = dr->prot;
1942 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1943 	rqstp->rq_addrlen     = dr->addrlen;
1944 	rqstp->rq_daddr       = dr->daddr;
1945 	rqstp->rq_respages    = rqstp->rq_pages;
1946 	return dr->argslen<<2;
1947 }
1948 
1949 
1950 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
1951 {
1952 	struct svc_deferred_req *dr = NULL;
1953 
1954 	if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
1955 		return NULL;
1956 	spin_lock(&svsk->sk_lock);
1957 	clear_bit(SK_DEFERRED, &svsk->sk_flags);
1958 	if (!list_empty(&svsk->sk_deferred)) {
1959 		dr = list_entry(svsk->sk_deferred.next,
1960 				struct svc_deferred_req,
1961 				handle.recent);
1962 		list_del_init(&dr->handle.recent);
1963 		set_bit(SK_DEFERRED, &svsk->sk_flags);
1964 	}
1965 	spin_unlock(&svsk->sk_lock);
1966 	return dr;
1967 }
1968