1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/svcsock.c 4 * 5 * These are the RPC server socket internals. 6 * 7 * The server scheduling algorithm does not always distribute the load 8 * evenly when servicing a single client. May need to modify the 9 * svc_xprt_enqueue procedure... 10 * 11 * TCP support is largely untested and may be a little slow. The problem 12 * is that we currently do two separate recvfrom's, one for the 4-byte 13 * record length, and the second for the actual record. This could possibly 14 * be improved by always reading a minimum size of around 100 bytes and 15 * tucking any superfluous bytes away in a temporary store. Still, that 16 * leaves write requests out in the rain. An alternative may be to peek at 17 * the first skb in the queue, and if it matches the next TCP sequence 18 * number, to extract the record marker. Yuck. 19 * 20 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/sched.h> 25 #include <linux/module.h> 26 #include <linux/errno.h> 27 #include <linux/fcntl.h> 28 #include <linux/net.h> 29 #include <linux/in.h> 30 #include <linux/inet.h> 31 #include <linux/udp.h> 32 #include <linux/tcp.h> 33 #include <linux/unistd.h> 34 #include <linux/slab.h> 35 #include <linux/netdevice.h> 36 #include <linux/skbuff.h> 37 #include <linux/file.h> 38 #include <linux/freezer.h> 39 #include <net/sock.h> 40 #include <net/checksum.h> 41 #include <net/ip.h> 42 #include <net/ipv6.h> 43 #include <net/udp.h> 44 #include <net/tcp.h> 45 #include <net/tcp_states.h> 46 #include <net/tls.h> 47 #include <net/handshake.h> 48 #include <linux/uaccess.h> 49 #include <linux/highmem.h> 50 #include <asm/ioctls.h> 51 #include <linux/key.h> 52 53 #include <linux/sunrpc/types.h> 54 #include <linux/sunrpc/clnt.h> 55 #include <linux/sunrpc/xdr.h> 56 #include <linux/sunrpc/msg_prot.h> 57 #include <linux/sunrpc/svcsock.h> 58 #include <linux/sunrpc/stats.h> 59 #include <linux/sunrpc/xprt.h> 60 61 #include <trace/events/sock.h> 62 #include <trace/events/sunrpc.h> 63 64 #include "socklib.h" 65 #include "sunrpc.h" 66 67 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 68 69 /* To-do: to avoid tying up an nfsd thread while waiting for a 70 * handshake request, the request could instead be deferred. 71 */ 72 enum { 73 SVC_HANDSHAKE_TO = 5U * HZ 74 }; 75 76 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *, 77 int flags); 78 static int svc_udp_recvfrom(struct svc_rqst *); 79 static int svc_udp_sendto(struct svc_rqst *); 80 static void svc_sock_detach(struct svc_xprt *); 81 static void svc_tcp_sock_detach(struct svc_xprt *); 82 static void svc_sock_free(struct svc_xprt *); 83 84 static struct svc_xprt *svc_create_socket(struct svc_serv *, int, 85 struct net *, struct sockaddr *, 86 int, int); 87 #ifdef CONFIG_DEBUG_LOCK_ALLOC 88 static struct lock_class_key svc_key[2]; 89 static struct lock_class_key svc_slock_key[2]; 90 91 static void svc_reclassify_socket(struct socket *sock) 92 { 93 struct sock *sk = sock->sk; 94 95 if (WARN_ON_ONCE(!sock_allow_reclassification(sk))) 96 return; 97 98 switch (sk->sk_family) { 99 case AF_INET: 100 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD", 101 &svc_slock_key[0], 102 "sk_xprt.xpt_lock-AF_INET-NFSD", 103 &svc_key[0]); 104 break; 105 106 case AF_INET6: 107 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD", 108 &svc_slock_key[1], 109 "sk_xprt.xpt_lock-AF_INET6-NFSD", 110 &svc_key[1]); 111 break; 112 113 default: 114 BUG(); 115 } 116 } 117 #else 118 static void svc_reclassify_socket(struct socket *sock) 119 { 120 } 121 #endif 122 123 /** 124 * svc_tcp_release_rqst - Release transport-related resources 125 * @rqstp: request structure with resources to be released 126 * 127 */ 128 static void svc_tcp_release_rqst(struct svc_rqst *rqstp) 129 { 130 } 131 132 /** 133 * svc_udp_release_rqst - Release transport-related resources 134 * @rqstp: request structure with resources to be released 135 * 136 */ 137 static void svc_udp_release_rqst(struct svc_rqst *rqstp) 138 { 139 struct sk_buff *skb = rqstp->rq_xprt_ctxt; 140 141 if (skb) { 142 rqstp->rq_xprt_ctxt = NULL; 143 consume_skb(skb); 144 } 145 } 146 147 union svc_pktinfo_u { 148 struct in_pktinfo pkti; 149 struct in6_pktinfo pkti6; 150 }; 151 #define SVC_PKTINFO_SPACE \ 152 CMSG_SPACE(sizeof(union svc_pktinfo_u)) 153 154 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh) 155 { 156 struct svc_sock *svsk = 157 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 158 switch (svsk->sk_sk->sk_family) { 159 case AF_INET: { 160 struct in_pktinfo *pki = CMSG_DATA(cmh); 161 162 cmh->cmsg_level = SOL_IP; 163 cmh->cmsg_type = IP_PKTINFO; 164 pki->ipi_ifindex = 0; 165 pki->ipi_spec_dst.s_addr = 166 svc_daddr_in(rqstp)->sin_addr.s_addr; 167 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 168 } 169 break; 170 171 case AF_INET6: { 172 struct in6_pktinfo *pki = CMSG_DATA(cmh); 173 struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp); 174 175 cmh->cmsg_level = SOL_IPV6; 176 cmh->cmsg_type = IPV6_PKTINFO; 177 pki->ipi6_ifindex = daddr->sin6_scope_id; 178 pki->ipi6_addr = daddr->sin6_addr; 179 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 180 } 181 break; 182 } 183 } 184 185 static int svc_sock_result_payload(struct svc_rqst *rqstp, unsigned int offset, 186 unsigned int length) 187 { 188 return 0; 189 } 190 191 /* 192 * Report socket names for nfsdfs 193 */ 194 static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining) 195 { 196 const struct sock *sk = svsk->sk_sk; 197 const char *proto_name = sk->sk_protocol == IPPROTO_UDP ? 198 "udp" : "tcp"; 199 int len; 200 201 switch (sk->sk_family) { 202 case PF_INET: 203 len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n", 204 proto_name, 205 &inet_sk(sk)->inet_rcv_saddr, 206 inet_sk(sk)->inet_num); 207 break; 208 #if IS_ENABLED(CONFIG_IPV6) 209 case PF_INET6: 210 len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n", 211 proto_name, 212 &sk->sk_v6_rcv_saddr, 213 inet_sk(sk)->inet_num); 214 break; 215 #endif 216 default: 217 len = snprintf(buf, remaining, "*unknown-%d*\n", 218 sk->sk_family); 219 } 220 221 if (len >= remaining) { 222 *buf = '\0'; 223 return -ENAMETOOLONG; 224 } 225 return len; 226 } 227 228 static int 229 svc_tcp_sock_process_cmsg(struct svc_sock *svsk, struct msghdr *msg, 230 struct cmsghdr *cmsg, int ret) 231 { 232 if (cmsg->cmsg_level == SOL_TLS && 233 cmsg->cmsg_type == TLS_GET_RECORD_TYPE) { 234 u8 content_type = *((u8 *)CMSG_DATA(cmsg)); 235 236 switch (content_type) { 237 case TLS_RECORD_TYPE_DATA: 238 /* TLS sets EOR at the end of each application data 239 * record, even though there might be more frames 240 * waiting to be decrypted. 241 */ 242 msg->msg_flags &= ~MSG_EOR; 243 break; 244 case TLS_RECORD_TYPE_ALERT: 245 ret = -ENOTCONN; 246 break; 247 default: 248 ret = -EAGAIN; 249 } 250 } 251 return ret; 252 } 253 254 static int 255 svc_tcp_sock_recv_cmsg(struct svc_sock *svsk, struct msghdr *msg) 256 { 257 union { 258 struct cmsghdr cmsg; 259 u8 buf[CMSG_SPACE(sizeof(u8))]; 260 } u; 261 int ret; 262 263 msg->msg_control = &u; 264 msg->msg_controllen = sizeof(u); 265 ret = sock_recvmsg(svsk->sk_sock, msg, MSG_DONTWAIT); 266 if (unlikely(msg->msg_controllen != sizeof(u))) 267 ret = svc_tcp_sock_process_cmsg(svsk, msg, &u.cmsg, ret); 268 return ret; 269 } 270 271 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 272 static void svc_flush_bvec(const struct bio_vec *bvec, size_t size, size_t seek) 273 { 274 struct bvec_iter bi = { 275 .bi_size = size + seek, 276 }; 277 struct bio_vec bv; 278 279 bvec_iter_advance(bvec, &bi, seek & PAGE_MASK); 280 for_each_bvec(bv, bvec, bi, bi) 281 flush_dcache_page(bv.bv_page); 282 } 283 #else 284 static inline void svc_flush_bvec(const struct bio_vec *bvec, size_t size, 285 size_t seek) 286 { 287 } 288 #endif 289 290 /* 291 * Read from @rqstp's transport socket. The incoming message fills whole 292 * pages in @rqstp's rq_pages array until the last page of the message 293 * has been received into a partial page. 294 */ 295 static ssize_t svc_tcp_read_msg(struct svc_rqst *rqstp, size_t buflen, 296 size_t seek) 297 { 298 struct svc_sock *svsk = 299 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 300 struct bio_vec *bvec = rqstp->rq_bvec; 301 struct msghdr msg = { NULL }; 302 unsigned int i; 303 ssize_t len; 304 size_t t; 305 306 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 307 308 for (i = 0, t = 0; t < buflen; i++, t += PAGE_SIZE) 309 bvec_set_page(&bvec[i], rqstp->rq_pages[i], PAGE_SIZE, 0); 310 rqstp->rq_respages = &rqstp->rq_pages[i]; 311 rqstp->rq_next_page = rqstp->rq_respages + 1; 312 313 iov_iter_bvec(&msg.msg_iter, ITER_DEST, bvec, i, buflen); 314 if (seek) { 315 iov_iter_advance(&msg.msg_iter, seek); 316 buflen -= seek; 317 } 318 len = svc_tcp_sock_recv_cmsg(svsk, &msg); 319 if (len > 0) 320 svc_flush_bvec(bvec, len, seek); 321 322 /* If we read a full record, then assume there may be more 323 * data to read (stream based sockets only!) 324 */ 325 if (len == buflen) 326 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 327 328 return len; 329 } 330 331 /* 332 * Set socket snd and rcv buffer lengths 333 */ 334 static void svc_sock_setbufsize(struct svc_sock *svsk, unsigned int nreqs) 335 { 336 unsigned int max_mesg = svsk->sk_xprt.xpt_server->sv_max_mesg; 337 struct socket *sock = svsk->sk_sock; 338 339 nreqs = min(nreqs, INT_MAX / 2 / max_mesg); 340 341 lock_sock(sock->sk); 342 sock->sk->sk_sndbuf = nreqs * max_mesg * 2; 343 sock->sk->sk_rcvbuf = nreqs * max_mesg * 2; 344 sock->sk->sk_write_space(sock->sk); 345 release_sock(sock->sk); 346 } 347 348 static void svc_sock_secure_port(struct svc_rqst *rqstp) 349 { 350 if (svc_port_is_privileged(svc_addr(rqstp))) 351 set_bit(RQ_SECURE, &rqstp->rq_flags); 352 else 353 clear_bit(RQ_SECURE, &rqstp->rq_flags); 354 } 355 356 /* 357 * INET callback when data has been received on the socket. 358 */ 359 static void svc_data_ready(struct sock *sk) 360 { 361 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 362 363 trace_sk_data_ready(sk); 364 365 if (svsk) { 366 /* Refer to svc_setup_socket() for details. */ 367 rmb(); 368 svsk->sk_odata(sk); 369 trace_svcsock_data_ready(&svsk->sk_xprt, 0); 370 if (test_bit(XPT_HANDSHAKE, &svsk->sk_xprt.xpt_flags)) 371 return; 372 if (!test_and_set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags)) 373 svc_xprt_enqueue(&svsk->sk_xprt); 374 } 375 } 376 377 /* 378 * INET callback when space is newly available on the socket. 379 */ 380 static void svc_write_space(struct sock *sk) 381 { 382 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data); 383 384 if (svsk) { 385 /* Refer to svc_setup_socket() for details. */ 386 rmb(); 387 trace_svcsock_write_space(&svsk->sk_xprt, 0); 388 svsk->sk_owspace(sk); 389 svc_xprt_enqueue(&svsk->sk_xprt); 390 } 391 } 392 393 static int svc_tcp_has_wspace(struct svc_xprt *xprt) 394 { 395 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 396 397 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) 398 return 1; 399 return !test_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 400 } 401 402 static void svc_tcp_kill_temp_xprt(struct svc_xprt *xprt) 403 { 404 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 405 406 sock_no_linger(svsk->sk_sock->sk); 407 } 408 409 /** 410 * svc_tcp_handshake_done - Handshake completion handler 411 * @data: address of xprt to wake 412 * @status: status of handshake 413 * @peerid: serial number of key containing the remote peer's identity 414 * 415 * If a security policy is specified as an export option, we don't 416 * have a specific export here to check. So we set a "TLS session 417 * is present" flag on the xprt and let an upper layer enforce local 418 * security policy. 419 */ 420 static void svc_tcp_handshake_done(void *data, int status, key_serial_t peerid) 421 { 422 struct svc_xprt *xprt = data; 423 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 424 425 if (!status) { 426 if (peerid != TLS_NO_PEERID) 427 set_bit(XPT_PEER_AUTH, &xprt->xpt_flags); 428 set_bit(XPT_TLS_SESSION, &xprt->xpt_flags); 429 } 430 clear_bit(XPT_HANDSHAKE, &xprt->xpt_flags); 431 complete_all(&svsk->sk_handshake_done); 432 } 433 434 /** 435 * svc_tcp_handshake - Perform a transport-layer security handshake 436 * @xprt: connected transport endpoint 437 * 438 */ 439 static void svc_tcp_handshake(struct svc_xprt *xprt) 440 { 441 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 442 struct sock *sk = svsk->sk_sock->sk; 443 struct tls_handshake_args args = { 444 .ta_sock = svsk->sk_sock, 445 .ta_done = svc_tcp_handshake_done, 446 .ta_data = xprt, 447 }; 448 int ret; 449 450 trace_svc_tls_upcall(xprt); 451 452 clear_bit(XPT_TLS_SESSION, &xprt->xpt_flags); 453 init_completion(&svsk->sk_handshake_done); 454 455 ret = tls_server_hello_x509(&args, GFP_KERNEL); 456 if (ret) { 457 trace_svc_tls_not_started(xprt); 458 goto out_failed; 459 } 460 461 ret = wait_for_completion_interruptible_timeout(&svsk->sk_handshake_done, 462 SVC_HANDSHAKE_TO); 463 if (ret <= 0) { 464 if (tls_handshake_cancel(sk)) { 465 trace_svc_tls_timed_out(xprt); 466 goto out_close; 467 } 468 } 469 470 if (!test_bit(XPT_TLS_SESSION, &xprt->xpt_flags)) { 471 trace_svc_tls_unavailable(xprt); 472 goto out_close; 473 } 474 475 /* Mark the transport ready in case the remote sent RPC 476 * traffic before the kernel received the handshake 477 * completion downcall. 478 */ 479 set_bit(XPT_DATA, &xprt->xpt_flags); 480 svc_xprt_enqueue(xprt); 481 return; 482 483 out_close: 484 set_bit(XPT_CLOSE, &xprt->xpt_flags); 485 out_failed: 486 clear_bit(XPT_HANDSHAKE, &xprt->xpt_flags); 487 set_bit(XPT_DATA, &xprt->xpt_flags); 488 svc_xprt_enqueue(xprt); 489 } 490 491 /* 492 * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo 493 */ 494 static int svc_udp_get_dest_address4(struct svc_rqst *rqstp, 495 struct cmsghdr *cmh) 496 { 497 struct in_pktinfo *pki = CMSG_DATA(cmh); 498 struct sockaddr_in *daddr = svc_daddr_in(rqstp); 499 500 if (cmh->cmsg_type != IP_PKTINFO) 501 return 0; 502 503 daddr->sin_family = AF_INET; 504 daddr->sin_addr.s_addr = pki->ipi_spec_dst.s_addr; 505 return 1; 506 } 507 508 /* 509 * See net/ipv6/datagram.c : ip6_datagram_recv_ctl 510 */ 511 static int svc_udp_get_dest_address6(struct svc_rqst *rqstp, 512 struct cmsghdr *cmh) 513 { 514 struct in6_pktinfo *pki = CMSG_DATA(cmh); 515 struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp); 516 517 if (cmh->cmsg_type != IPV6_PKTINFO) 518 return 0; 519 520 daddr->sin6_family = AF_INET6; 521 daddr->sin6_addr = pki->ipi6_addr; 522 daddr->sin6_scope_id = pki->ipi6_ifindex; 523 return 1; 524 } 525 526 /* 527 * Copy the UDP datagram's destination address to the rqstp structure. 528 * The 'destination' address in this case is the address to which the 529 * peer sent the datagram, i.e. our local address. For multihomed 530 * hosts, this can change from msg to msg. Note that only the IP 531 * address changes, the port number should remain the same. 532 */ 533 static int svc_udp_get_dest_address(struct svc_rqst *rqstp, 534 struct cmsghdr *cmh) 535 { 536 switch (cmh->cmsg_level) { 537 case SOL_IP: 538 return svc_udp_get_dest_address4(rqstp, cmh); 539 case SOL_IPV6: 540 return svc_udp_get_dest_address6(rqstp, cmh); 541 } 542 543 return 0; 544 } 545 546 /** 547 * svc_udp_recvfrom - Receive a datagram from a UDP socket. 548 * @rqstp: request structure into which to receive an RPC Call 549 * 550 * Called in a loop when XPT_DATA has been set. 551 * 552 * Returns: 553 * On success, the number of bytes in a received RPC Call, or 554 * %0 if a complete RPC Call message was not ready to return 555 */ 556 static int svc_udp_recvfrom(struct svc_rqst *rqstp) 557 { 558 struct svc_sock *svsk = 559 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 560 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 561 struct sk_buff *skb; 562 union { 563 struct cmsghdr hdr; 564 long all[SVC_PKTINFO_SPACE / sizeof(long)]; 565 } buffer; 566 struct cmsghdr *cmh = &buffer.hdr; 567 struct msghdr msg = { 568 .msg_name = svc_addr(rqstp), 569 .msg_control = cmh, 570 .msg_controllen = sizeof(buffer), 571 .msg_flags = MSG_DONTWAIT, 572 }; 573 size_t len; 574 int err; 575 576 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags)) 577 /* udp sockets need large rcvbuf as all pending 578 * requests are still in that buffer. sndbuf must 579 * also be large enough that there is enough space 580 * for one reply per thread. We count all threads 581 * rather than threads in a particular pool, which 582 * provides an upper bound on the number of threads 583 * which will access the socket. 584 */ 585 svc_sock_setbufsize(svsk, serv->sv_nrthreads + 3); 586 587 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 588 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL, 589 0, 0, MSG_PEEK | MSG_DONTWAIT); 590 if (err < 0) 591 goto out_recv_err; 592 skb = skb_recv_udp(svsk->sk_sk, MSG_DONTWAIT, &err); 593 if (!skb) 594 goto out_recv_err; 595 596 len = svc_addr_len(svc_addr(rqstp)); 597 rqstp->rq_addrlen = len; 598 if (skb->tstamp == 0) { 599 skb->tstamp = ktime_get_real(); 600 /* Don't enable netstamp, sunrpc doesn't 601 need that much accuracy */ 602 } 603 sock_write_timestamp(svsk->sk_sk, skb->tstamp); 604 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */ 605 606 len = skb->len; 607 rqstp->rq_arg.len = len; 608 trace_svcsock_udp_recv(&svsk->sk_xprt, len); 609 610 rqstp->rq_prot = IPPROTO_UDP; 611 612 if (!svc_udp_get_dest_address(rqstp, cmh)) 613 goto out_cmsg_err; 614 rqstp->rq_daddrlen = svc_addr_len(svc_daddr(rqstp)); 615 616 if (skb_is_nonlinear(skb)) { 617 /* we have to copy */ 618 local_bh_disable(); 619 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) 620 goto out_bh_enable; 621 local_bh_enable(); 622 consume_skb(skb); 623 } else { 624 /* we can use it in-place */ 625 rqstp->rq_arg.head[0].iov_base = skb->data; 626 rqstp->rq_arg.head[0].iov_len = len; 627 if (skb_checksum_complete(skb)) 628 goto out_free; 629 rqstp->rq_xprt_ctxt = skb; 630 } 631 632 rqstp->rq_arg.page_base = 0; 633 if (len <= rqstp->rq_arg.head[0].iov_len) { 634 rqstp->rq_arg.head[0].iov_len = len; 635 rqstp->rq_arg.page_len = 0; 636 rqstp->rq_respages = rqstp->rq_pages+1; 637 } else { 638 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 639 rqstp->rq_respages = rqstp->rq_pages + 1 + 640 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE); 641 } 642 rqstp->rq_next_page = rqstp->rq_respages+1; 643 644 if (serv->sv_stats) 645 serv->sv_stats->netudpcnt++; 646 647 svc_sock_secure_port(rqstp); 648 svc_xprt_received(rqstp->rq_xprt); 649 return len; 650 651 out_recv_err: 652 if (err != -EAGAIN) { 653 /* possibly an icmp error */ 654 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 655 } 656 trace_svcsock_udp_recv_err(&svsk->sk_xprt, err); 657 goto out_clear_busy; 658 out_cmsg_err: 659 net_warn_ratelimited("svc: received unknown control message %d/%d; dropping RPC reply datagram\n", 660 cmh->cmsg_level, cmh->cmsg_type); 661 goto out_free; 662 out_bh_enable: 663 local_bh_enable(); 664 out_free: 665 kfree_skb(skb); 666 out_clear_busy: 667 svc_xprt_received(rqstp->rq_xprt); 668 return 0; 669 } 670 671 /** 672 * svc_udp_sendto - Send out a reply on a UDP socket 673 * @rqstp: completed svc_rqst 674 * 675 * xpt_mutex ensures @rqstp's whole message is written to the socket 676 * without interruption. 677 * 678 * Returns the number of bytes sent, or a negative errno. 679 */ 680 static int svc_udp_sendto(struct svc_rqst *rqstp) 681 { 682 struct svc_xprt *xprt = rqstp->rq_xprt; 683 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 684 struct xdr_buf *xdr = &rqstp->rq_res; 685 union { 686 struct cmsghdr hdr; 687 long all[SVC_PKTINFO_SPACE / sizeof(long)]; 688 } buffer; 689 struct cmsghdr *cmh = &buffer.hdr; 690 struct msghdr msg = { 691 .msg_name = &rqstp->rq_addr, 692 .msg_namelen = rqstp->rq_addrlen, 693 .msg_control = cmh, 694 .msg_controllen = sizeof(buffer), 695 }; 696 unsigned int sent; 697 int err; 698 699 svc_udp_release_rqst(rqstp); 700 701 svc_set_cmsg_data(rqstp, cmh); 702 703 mutex_lock(&xprt->xpt_mutex); 704 705 if (svc_xprt_is_dead(xprt)) 706 goto out_notconn; 707 708 err = xdr_alloc_bvec(xdr, GFP_KERNEL); 709 if (err < 0) 710 goto out_unlock; 711 712 err = xprt_sock_sendmsg(svsk->sk_sock, &msg, xdr, 0, 0, &sent); 713 if (err == -ECONNREFUSED) { 714 /* ICMP error on earlier request. */ 715 err = xprt_sock_sendmsg(svsk->sk_sock, &msg, xdr, 0, 0, &sent); 716 } 717 xdr_free_bvec(xdr); 718 trace_svcsock_udp_send(xprt, err); 719 out_unlock: 720 mutex_unlock(&xprt->xpt_mutex); 721 if (err < 0) 722 return err; 723 return sent; 724 725 out_notconn: 726 mutex_unlock(&xprt->xpt_mutex); 727 return -ENOTCONN; 728 } 729 730 static int svc_udp_has_wspace(struct svc_xprt *xprt) 731 { 732 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 733 struct svc_serv *serv = xprt->xpt_server; 734 unsigned long required; 735 736 /* 737 * Set the SOCK_NOSPACE flag before checking the available 738 * sock space. 739 */ 740 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 741 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg; 742 if (required*2 > sock_wspace(svsk->sk_sk)) 743 return 0; 744 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 745 return 1; 746 } 747 748 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt) 749 { 750 BUG(); 751 return NULL; 752 } 753 754 static void svc_udp_kill_temp_xprt(struct svc_xprt *xprt) 755 { 756 } 757 758 static struct svc_xprt *svc_udp_create(struct svc_serv *serv, 759 struct net *net, 760 struct sockaddr *sa, int salen, 761 int flags) 762 { 763 return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags); 764 } 765 766 static const struct svc_xprt_ops svc_udp_ops = { 767 .xpo_create = svc_udp_create, 768 .xpo_recvfrom = svc_udp_recvfrom, 769 .xpo_sendto = svc_udp_sendto, 770 .xpo_result_payload = svc_sock_result_payload, 771 .xpo_release_rqst = svc_udp_release_rqst, 772 .xpo_detach = svc_sock_detach, 773 .xpo_free = svc_sock_free, 774 .xpo_has_wspace = svc_udp_has_wspace, 775 .xpo_accept = svc_udp_accept, 776 .xpo_kill_temp_xprt = svc_udp_kill_temp_xprt, 777 }; 778 779 static struct svc_xprt_class svc_udp_class = { 780 .xcl_name = "udp", 781 .xcl_owner = THIS_MODULE, 782 .xcl_ops = &svc_udp_ops, 783 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP, 784 .xcl_ident = XPRT_TRANSPORT_UDP, 785 }; 786 787 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv) 788 { 789 svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_udp_class, 790 &svsk->sk_xprt, serv); 791 clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); 792 svsk->sk_sk->sk_data_ready = svc_data_ready; 793 svsk->sk_sk->sk_write_space = svc_write_space; 794 795 /* initialise setting must have enough space to 796 * receive and respond to one request. 797 * svc_udp_recvfrom will re-adjust if necessary 798 */ 799 svc_sock_setbufsize(svsk, 3); 800 801 /* data might have come in before data_ready set up */ 802 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 803 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 804 805 /* make sure we get destination address info */ 806 switch (svsk->sk_sk->sk_family) { 807 case AF_INET: 808 ip_sock_set_pktinfo(svsk->sk_sock->sk); 809 break; 810 case AF_INET6: 811 ip6_sock_set_recvpktinfo(svsk->sk_sock->sk); 812 break; 813 default: 814 BUG(); 815 } 816 } 817 818 /* 819 * A data_ready event on a listening socket means there's a connection 820 * pending. Do not use state_change as a substitute for it. 821 */ 822 static void svc_tcp_listen_data_ready(struct sock *sk) 823 { 824 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 825 826 trace_sk_data_ready(sk); 827 828 if (svsk) { 829 /* Refer to svc_setup_socket() for details. */ 830 rmb(); 831 svsk->sk_odata(sk); 832 } 833 834 /* 835 * This callback may called twice when a new connection 836 * is established as a child socket inherits everything 837 * from a parent LISTEN socket. 838 * 1) data_ready method of the parent socket will be called 839 * when one of child sockets become ESTABLISHED. 840 * 2) data_ready method of the child socket may be called 841 * when it receives data before the socket is accepted. 842 * In case of 2, we should ignore it silently. 843 */ 844 if (sk->sk_state == TCP_LISTEN) { 845 if (svsk) { 846 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 847 svc_xprt_enqueue(&svsk->sk_xprt); 848 } 849 } 850 } 851 852 /* 853 * A state change on a connected socket means it's dying or dead. 854 */ 855 static void svc_tcp_state_change(struct sock *sk) 856 { 857 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 858 859 if (svsk) { 860 /* Refer to svc_setup_socket() for details. */ 861 rmb(); 862 svsk->sk_ostate(sk); 863 trace_svcsock_tcp_state(&svsk->sk_xprt, svsk->sk_sock); 864 if (sk->sk_state != TCP_ESTABLISHED) 865 svc_xprt_deferred_close(&svsk->sk_xprt); 866 } 867 } 868 869 /* 870 * Accept a TCP connection 871 */ 872 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt) 873 { 874 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 875 struct sockaddr_storage addr; 876 struct sockaddr *sin = (struct sockaddr *) &addr; 877 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 878 struct socket *sock = svsk->sk_sock; 879 struct socket *newsock; 880 struct svc_sock *newsvsk; 881 int err, slen; 882 883 if (!sock) 884 return NULL; 885 886 clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 887 err = kernel_accept(sock, &newsock, O_NONBLOCK); 888 if (err < 0) { 889 if (err == -ENOMEM) 890 printk(KERN_WARNING "%s: no more sockets!\n", 891 serv->sv_name); 892 else if (err != -EAGAIN) 893 net_warn_ratelimited("%s: accept failed (err %d)!\n", 894 serv->sv_name, -err); 895 trace_svcsock_accept_err(xprt, serv->sv_name, err); 896 return NULL; 897 } 898 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 899 900 err = kernel_getpeername(newsock, sin); 901 if (err < 0) { 902 trace_svcsock_getpeername_err(xprt, serv->sv_name, err); 903 goto failed; /* aborted connection or whatever */ 904 } 905 slen = err; 906 907 /* Reset the inherited callbacks before calling svc_setup_socket */ 908 newsock->sk->sk_state_change = svsk->sk_ostate; 909 newsock->sk->sk_data_ready = svsk->sk_odata; 910 newsock->sk->sk_write_space = svsk->sk_owspace; 911 912 /* make sure that a write doesn't block forever when 913 * low on memory 914 */ 915 newsock->sk->sk_sndtimeo = HZ*30; 916 917 newsvsk = svc_setup_socket(serv, newsock, 918 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY)); 919 if (IS_ERR(newsvsk)) 920 goto failed; 921 svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen); 922 err = kernel_getsockname(newsock, sin); 923 slen = err; 924 if (unlikely(err < 0)) 925 slen = offsetof(struct sockaddr, sa_data); 926 svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen); 927 928 if (sock_is_loopback(newsock->sk)) 929 set_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags); 930 else 931 clear_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags); 932 if (serv->sv_stats) 933 serv->sv_stats->nettcpconn++; 934 935 return &newsvsk->sk_xprt; 936 937 failed: 938 sock_release(newsock); 939 return NULL; 940 } 941 942 static size_t svc_tcp_restore_pages(struct svc_sock *svsk, 943 struct svc_rqst *rqstp) 944 { 945 size_t len = svsk->sk_datalen; 946 unsigned int i, npages; 947 948 if (!len) 949 return 0; 950 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 951 for (i = 0; i < npages; i++) { 952 if (rqstp->rq_pages[i] != NULL) 953 put_page(rqstp->rq_pages[i]); 954 BUG_ON(svsk->sk_pages[i] == NULL); 955 rqstp->rq_pages[i] = svsk->sk_pages[i]; 956 svsk->sk_pages[i] = NULL; 957 } 958 rqstp->rq_arg.head[0].iov_base = page_address(rqstp->rq_pages[0]); 959 return len; 960 } 961 962 static void svc_tcp_save_pages(struct svc_sock *svsk, struct svc_rqst *rqstp) 963 { 964 unsigned int i, len, npages; 965 966 if (svsk->sk_datalen == 0) 967 return; 968 len = svsk->sk_datalen; 969 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 970 for (i = 0; i < npages; i++) { 971 svsk->sk_pages[i] = rqstp->rq_pages[i]; 972 rqstp->rq_pages[i] = NULL; 973 } 974 } 975 976 static void svc_tcp_clear_pages(struct svc_sock *svsk) 977 { 978 unsigned int i, len, npages; 979 980 if (svsk->sk_datalen == 0) 981 goto out; 982 len = svsk->sk_datalen; 983 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 984 for (i = 0; i < npages; i++) { 985 if (svsk->sk_pages[i] == NULL) { 986 WARN_ON_ONCE(1); 987 continue; 988 } 989 put_page(svsk->sk_pages[i]); 990 svsk->sk_pages[i] = NULL; 991 } 992 out: 993 svsk->sk_tcplen = 0; 994 svsk->sk_datalen = 0; 995 } 996 997 /* 998 * Receive fragment record header into sk_marker. 999 */ 1000 static ssize_t svc_tcp_read_marker(struct svc_sock *svsk, 1001 struct svc_rqst *rqstp) 1002 { 1003 ssize_t want, len; 1004 1005 /* If we haven't gotten the record length yet, 1006 * get the next four bytes. 1007 */ 1008 if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) { 1009 struct msghdr msg = { NULL }; 1010 struct kvec iov; 1011 1012 want = sizeof(rpc_fraghdr) - svsk->sk_tcplen; 1013 iov.iov_base = ((char *)&svsk->sk_marker) + svsk->sk_tcplen; 1014 iov.iov_len = want; 1015 iov_iter_kvec(&msg.msg_iter, ITER_DEST, &iov, 1, want); 1016 len = svc_tcp_sock_recv_cmsg(svsk, &msg); 1017 if (len < 0) 1018 return len; 1019 svsk->sk_tcplen += len; 1020 if (len < want) { 1021 /* call again to read the remaining bytes */ 1022 goto err_short; 1023 } 1024 trace_svcsock_marker(&svsk->sk_xprt, svsk->sk_marker); 1025 if (svc_sock_reclen(svsk) + svsk->sk_datalen > 1026 svsk->sk_xprt.xpt_server->sv_max_mesg) 1027 goto err_too_large; 1028 } 1029 return svc_sock_reclen(svsk); 1030 1031 err_too_large: 1032 net_notice_ratelimited("svc: %s %s RPC fragment too large: %d\n", 1033 __func__, svsk->sk_xprt.xpt_server->sv_name, 1034 svc_sock_reclen(svsk)); 1035 svc_xprt_deferred_close(&svsk->sk_xprt); 1036 err_short: 1037 return -EAGAIN; 1038 } 1039 1040 static int receive_cb_reply(struct svc_sock *svsk, struct svc_rqst *rqstp) 1041 { 1042 struct rpc_xprt *bc_xprt = svsk->sk_xprt.xpt_bc_xprt; 1043 struct rpc_rqst *req = NULL; 1044 struct kvec *src, *dst; 1045 __be32 *p = (__be32 *)rqstp->rq_arg.head[0].iov_base; 1046 __be32 xid; 1047 __be32 calldir; 1048 1049 xid = *p++; 1050 calldir = *p; 1051 1052 if (!bc_xprt) 1053 return -EAGAIN; 1054 spin_lock(&bc_xprt->queue_lock); 1055 req = xprt_lookup_rqst(bc_xprt, xid); 1056 if (!req) 1057 goto unlock_notfound; 1058 1059 memcpy(&req->rq_private_buf, &req->rq_rcv_buf, sizeof(struct xdr_buf)); 1060 /* 1061 * XXX!: cheating for now! Only copying HEAD. 1062 * But we know this is good enough for now (in fact, for any 1063 * callback reply in the forseeable future). 1064 */ 1065 dst = &req->rq_private_buf.head[0]; 1066 src = &rqstp->rq_arg.head[0]; 1067 if (dst->iov_len < src->iov_len) 1068 goto unlock_eagain; /* whatever; just giving up. */ 1069 memcpy(dst->iov_base, src->iov_base, src->iov_len); 1070 xprt_complete_rqst(req->rq_task, rqstp->rq_arg.len); 1071 rqstp->rq_arg.len = 0; 1072 spin_unlock(&bc_xprt->queue_lock); 1073 return 0; 1074 unlock_notfound: 1075 printk(KERN_NOTICE 1076 "%s: Got unrecognized reply: " 1077 "calldir 0x%x xpt_bc_xprt %p xid %08x\n", 1078 __func__, ntohl(calldir), 1079 bc_xprt, ntohl(xid)); 1080 unlock_eagain: 1081 spin_unlock(&bc_xprt->queue_lock); 1082 return -EAGAIN; 1083 } 1084 1085 static void svc_tcp_fragment_received(struct svc_sock *svsk) 1086 { 1087 /* If we have more data, signal svc_xprt_enqueue() to try again */ 1088 svsk->sk_tcplen = 0; 1089 svsk->sk_marker = xdr_zero; 1090 } 1091 1092 /** 1093 * svc_tcp_recvfrom - Receive data from a TCP socket 1094 * @rqstp: request structure into which to receive an RPC Call 1095 * 1096 * Called in a loop when XPT_DATA has been set. 1097 * 1098 * Read the 4-byte stream record marker, then use the record length 1099 * in that marker to set up exactly the resources needed to receive 1100 * the next RPC message into @rqstp. 1101 * 1102 * Returns: 1103 * On success, the number of bytes in a received RPC Call, or 1104 * %0 if a complete RPC Call message was not ready to return 1105 * 1106 * The zero return case handles partial receives and callback Replies. 1107 * The state of a partial receive is preserved in the svc_sock for 1108 * the next call to svc_tcp_recvfrom. 1109 */ 1110 static int svc_tcp_recvfrom(struct svc_rqst *rqstp) 1111 { 1112 struct svc_sock *svsk = 1113 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 1114 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 1115 size_t want, base; 1116 ssize_t len; 1117 __be32 *p; 1118 __be32 calldir; 1119 1120 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 1121 len = svc_tcp_read_marker(svsk, rqstp); 1122 if (len < 0) 1123 goto error; 1124 1125 base = svc_tcp_restore_pages(svsk, rqstp); 1126 want = len - (svsk->sk_tcplen - sizeof(rpc_fraghdr)); 1127 len = svc_tcp_read_msg(rqstp, base + want, base); 1128 if (len >= 0) { 1129 trace_svcsock_tcp_recv(&svsk->sk_xprt, len); 1130 svsk->sk_tcplen += len; 1131 svsk->sk_datalen += len; 1132 } 1133 if (len != want || !svc_sock_final_rec(svsk)) 1134 goto err_incomplete; 1135 if (svsk->sk_datalen < 8) 1136 goto err_nuts; 1137 1138 rqstp->rq_arg.len = svsk->sk_datalen; 1139 rqstp->rq_arg.page_base = 0; 1140 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) { 1141 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len; 1142 rqstp->rq_arg.page_len = 0; 1143 } else 1144 rqstp->rq_arg.page_len = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1145 1146 rqstp->rq_xprt_ctxt = NULL; 1147 rqstp->rq_prot = IPPROTO_TCP; 1148 if (test_bit(XPT_LOCAL, &svsk->sk_xprt.xpt_flags)) 1149 set_bit(RQ_LOCAL, &rqstp->rq_flags); 1150 else 1151 clear_bit(RQ_LOCAL, &rqstp->rq_flags); 1152 1153 p = (__be32 *)rqstp->rq_arg.head[0].iov_base; 1154 calldir = p[1]; 1155 if (calldir) 1156 len = receive_cb_reply(svsk, rqstp); 1157 1158 /* Reset TCP read info */ 1159 svsk->sk_datalen = 0; 1160 svc_tcp_fragment_received(svsk); 1161 1162 if (len < 0) 1163 goto error; 1164 1165 svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt); 1166 if (serv->sv_stats) 1167 serv->sv_stats->nettcpcnt++; 1168 1169 svc_sock_secure_port(rqstp); 1170 svc_xprt_received(rqstp->rq_xprt); 1171 return rqstp->rq_arg.len; 1172 1173 err_incomplete: 1174 svc_tcp_save_pages(svsk, rqstp); 1175 if (len < 0 && len != -EAGAIN) 1176 goto err_delete; 1177 if (len == want) 1178 svc_tcp_fragment_received(svsk); 1179 else 1180 trace_svcsock_tcp_recv_short(&svsk->sk_xprt, 1181 svc_sock_reclen(svsk), 1182 svsk->sk_tcplen - sizeof(rpc_fraghdr)); 1183 goto err_noclose; 1184 error: 1185 if (len != -EAGAIN) 1186 goto err_delete; 1187 trace_svcsock_tcp_recv_eagain(&svsk->sk_xprt, 0); 1188 goto err_noclose; 1189 err_nuts: 1190 svsk->sk_datalen = 0; 1191 err_delete: 1192 trace_svcsock_tcp_recv_err(&svsk->sk_xprt, len); 1193 svc_xprt_deferred_close(&svsk->sk_xprt); 1194 err_noclose: 1195 svc_xprt_received(rqstp->rq_xprt); 1196 return 0; /* record not complete */ 1197 } 1198 1199 static int svc_tcp_send_kvec(struct socket *sock, const struct kvec *vec, 1200 int flags) 1201 { 1202 return kernel_sendpage(sock, virt_to_page(vec->iov_base), 1203 offset_in_page(vec->iov_base), 1204 vec->iov_len, flags); 1205 } 1206 1207 /* 1208 * kernel_sendpage() is used exclusively to reduce the number of 1209 * copy operations in this path. Therefore the caller must ensure 1210 * that the pages backing @xdr are unchanging. 1211 * 1212 * In addition, the logic assumes that * .bv_len is never larger 1213 * than PAGE_SIZE. 1214 */ 1215 static int svc_tcp_sendmsg(struct socket *sock, struct xdr_buf *xdr, 1216 rpc_fraghdr marker, unsigned int *sentp) 1217 { 1218 const struct kvec *head = xdr->head; 1219 const struct kvec *tail = xdr->tail; 1220 struct kvec rm = { 1221 .iov_base = &marker, 1222 .iov_len = sizeof(marker), 1223 }; 1224 struct msghdr msg = { 1225 .msg_flags = 0, 1226 }; 1227 int ret; 1228 1229 *sentp = 0; 1230 ret = xdr_alloc_bvec(xdr, GFP_KERNEL); 1231 if (ret < 0) 1232 return ret; 1233 1234 ret = kernel_sendmsg(sock, &msg, &rm, 1, rm.iov_len); 1235 if (ret < 0) 1236 return ret; 1237 *sentp += ret; 1238 if (ret != rm.iov_len) 1239 return -EAGAIN; 1240 1241 ret = svc_tcp_send_kvec(sock, head, 0); 1242 if (ret < 0) 1243 return ret; 1244 *sentp += ret; 1245 if (ret != head->iov_len) 1246 goto out; 1247 1248 if (xdr->page_len) { 1249 unsigned int offset, len, remaining; 1250 struct bio_vec *bvec; 1251 1252 bvec = xdr->bvec + (xdr->page_base >> PAGE_SHIFT); 1253 offset = offset_in_page(xdr->page_base); 1254 remaining = xdr->page_len; 1255 while (remaining > 0) { 1256 len = min(remaining, bvec->bv_len - offset); 1257 ret = kernel_sendpage(sock, bvec->bv_page, 1258 bvec->bv_offset + offset, 1259 len, 0); 1260 if (ret < 0) 1261 return ret; 1262 *sentp += ret; 1263 if (ret != len) 1264 goto out; 1265 remaining -= len; 1266 offset = 0; 1267 bvec++; 1268 } 1269 } 1270 1271 if (tail->iov_len) { 1272 ret = svc_tcp_send_kvec(sock, tail, 0); 1273 if (ret < 0) 1274 return ret; 1275 *sentp += ret; 1276 } 1277 1278 out: 1279 return 0; 1280 } 1281 1282 /** 1283 * svc_tcp_sendto - Send out a reply on a TCP socket 1284 * @rqstp: completed svc_rqst 1285 * 1286 * xpt_mutex ensures @rqstp's whole message is written to the socket 1287 * without interruption. 1288 * 1289 * Returns the number of bytes sent, or a negative errno. 1290 */ 1291 static int svc_tcp_sendto(struct svc_rqst *rqstp) 1292 { 1293 struct svc_xprt *xprt = rqstp->rq_xprt; 1294 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1295 struct xdr_buf *xdr = &rqstp->rq_res; 1296 rpc_fraghdr marker = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT | 1297 (u32)xdr->len); 1298 unsigned int sent; 1299 int err; 1300 1301 svc_tcp_release_rqst(rqstp); 1302 1303 atomic_inc(&svsk->sk_sendqlen); 1304 mutex_lock(&xprt->xpt_mutex); 1305 if (svc_xprt_is_dead(xprt)) 1306 goto out_notconn; 1307 tcp_sock_set_cork(svsk->sk_sk, true); 1308 err = svc_tcp_sendmsg(svsk->sk_sock, xdr, marker, &sent); 1309 xdr_free_bvec(xdr); 1310 trace_svcsock_tcp_send(xprt, err < 0 ? (long)err : sent); 1311 if (err < 0 || sent != (xdr->len + sizeof(marker))) 1312 goto out_close; 1313 if (atomic_dec_and_test(&svsk->sk_sendqlen)) 1314 tcp_sock_set_cork(svsk->sk_sk, false); 1315 mutex_unlock(&xprt->xpt_mutex); 1316 return sent; 1317 1318 out_notconn: 1319 atomic_dec(&svsk->sk_sendqlen); 1320 mutex_unlock(&xprt->xpt_mutex); 1321 return -ENOTCONN; 1322 out_close: 1323 pr_notice("rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n", 1324 xprt->xpt_server->sv_name, 1325 (err < 0) ? "got error" : "sent", 1326 (err < 0) ? err : sent, xdr->len); 1327 svc_xprt_deferred_close(xprt); 1328 atomic_dec(&svsk->sk_sendqlen); 1329 mutex_unlock(&xprt->xpt_mutex); 1330 return -EAGAIN; 1331 } 1332 1333 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv, 1334 struct net *net, 1335 struct sockaddr *sa, int salen, 1336 int flags) 1337 { 1338 return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags); 1339 } 1340 1341 static const struct svc_xprt_ops svc_tcp_ops = { 1342 .xpo_create = svc_tcp_create, 1343 .xpo_recvfrom = svc_tcp_recvfrom, 1344 .xpo_sendto = svc_tcp_sendto, 1345 .xpo_result_payload = svc_sock_result_payload, 1346 .xpo_release_rqst = svc_tcp_release_rqst, 1347 .xpo_detach = svc_tcp_sock_detach, 1348 .xpo_free = svc_sock_free, 1349 .xpo_has_wspace = svc_tcp_has_wspace, 1350 .xpo_accept = svc_tcp_accept, 1351 .xpo_kill_temp_xprt = svc_tcp_kill_temp_xprt, 1352 .xpo_handshake = svc_tcp_handshake, 1353 }; 1354 1355 static struct svc_xprt_class svc_tcp_class = { 1356 .xcl_name = "tcp", 1357 .xcl_owner = THIS_MODULE, 1358 .xcl_ops = &svc_tcp_ops, 1359 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP, 1360 .xcl_ident = XPRT_TRANSPORT_TCP, 1361 }; 1362 1363 void svc_init_xprt_sock(void) 1364 { 1365 svc_reg_xprt_class(&svc_tcp_class); 1366 svc_reg_xprt_class(&svc_udp_class); 1367 } 1368 1369 void svc_cleanup_xprt_sock(void) 1370 { 1371 svc_unreg_xprt_class(&svc_tcp_class); 1372 svc_unreg_xprt_class(&svc_udp_class); 1373 } 1374 1375 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv) 1376 { 1377 struct sock *sk = svsk->sk_sk; 1378 1379 svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_tcp_class, 1380 &svsk->sk_xprt, serv); 1381 set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); 1382 set_bit(XPT_CONG_CTRL, &svsk->sk_xprt.xpt_flags); 1383 if (sk->sk_state == TCP_LISTEN) { 1384 strcpy(svsk->sk_xprt.xpt_remotebuf, "listener"); 1385 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags); 1386 sk->sk_data_ready = svc_tcp_listen_data_ready; 1387 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 1388 } else { 1389 sk->sk_state_change = svc_tcp_state_change; 1390 sk->sk_data_ready = svc_data_ready; 1391 sk->sk_write_space = svc_write_space; 1392 1393 svsk->sk_marker = xdr_zero; 1394 svsk->sk_tcplen = 0; 1395 svsk->sk_datalen = 0; 1396 memset(&svsk->sk_pages[0], 0, sizeof(svsk->sk_pages)); 1397 1398 tcp_sock_set_nodelay(sk); 1399 1400 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 1401 switch (sk->sk_state) { 1402 case TCP_SYN_RECV: 1403 case TCP_ESTABLISHED: 1404 break; 1405 default: 1406 svc_xprt_deferred_close(&svsk->sk_xprt); 1407 } 1408 } 1409 } 1410 1411 void svc_sock_update_bufs(struct svc_serv *serv) 1412 { 1413 /* 1414 * The number of server threads has changed. Update 1415 * rcvbuf and sndbuf accordingly on all sockets 1416 */ 1417 struct svc_sock *svsk; 1418 1419 spin_lock_bh(&serv->sv_lock); 1420 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) 1421 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 1422 spin_unlock_bh(&serv->sv_lock); 1423 } 1424 EXPORT_SYMBOL_GPL(svc_sock_update_bufs); 1425 1426 /* 1427 * Initialize socket for RPC use and create svc_sock struct 1428 */ 1429 static struct svc_sock *svc_setup_socket(struct svc_serv *serv, 1430 struct socket *sock, 1431 int flags) 1432 { 1433 struct file *filp = NULL; 1434 struct svc_sock *svsk; 1435 struct sock *inet; 1436 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS); 1437 1438 svsk = kzalloc(sizeof(*svsk), GFP_KERNEL); 1439 if (!svsk) 1440 return ERR_PTR(-ENOMEM); 1441 1442 if (!sock->file) { 1443 filp = sock_alloc_file(sock, O_NONBLOCK, NULL); 1444 if (IS_ERR(filp)) { 1445 kfree(svsk); 1446 return ERR_CAST(filp); 1447 } 1448 } 1449 1450 inet = sock->sk; 1451 1452 if (pmap_register) { 1453 int err; 1454 1455 err = svc_register(serv, sock_net(sock->sk), inet->sk_family, 1456 inet->sk_protocol, 1457 ntohs(inet_sk(inet)->inet_sport)); 1458 if (err < 0) { 1459 if (filp) 1460 fput(filp); 1461 kfree(svsk); 1462 return ERR_PTR(err); 1463 } 1464 } 1465 1466 svsk->sk_sock = sock; 1467 svsk->sk_sk = inet; 1468 svsk->sk_ostate = inet->sk_state_change; 1469 svsk->sk_odata = inet->sk_data_ready; 1470 svsk->sk_owspace = inet->sk_write_space; 1471 /* 1472 * This barrier is necessary in order to prevent race condition 1473 * with svc_data_ready(), svc_listen_data_ready() and others 1474 * when calling callbacks above. 1475 */ 1476 wmb(); 1477 inet->sk_user_data = svsk; 1478 1479 /* Initialize the socket */ 1480 if (sock->type == SOCK_DGRAM) 1481 svc_udp_init(svsk, serv); 1482 else 1483 svc_tcp_init(svsk, serv); 1484 1485 trace_svcsock_new_socket(sock); 1486 return svsk; 1487 } 1488 1489 bool svc_alien_sock(struct net *net, int fd) 1490 { 1491 int err; 1492 struct socket *sock = sockfd_lookup(fd, &err); 1493 bool ret = false; 1494 1495 if (!sock) 1496 goto out; 1497 if (sock_net(sock->sk) != net) 1498 ret = true; 1499 sockfd_put(sock); 1500 out: 1501 return ret; 1502 } 1503 EXPORT_SYMBOL_GPL(svc_alien_sock); 1504 1505 /** 1506 * svc_addsock - add a listener socket to an RPC service 1507 * @serv: pointer to RPC service to which to add a new listener 1508 * @fd: file descriptor of the new listener 1509 * @name_return: pointer to buffer to fill in with name of listener 1510 * @len: size of the buffer 1511 * @cred: credential 1512 * 1513 * Fills in socket name and returns positive length of name if successful. 1514 * Name is terminated with '\n'. On error, returns a negative errno 1515 * value. 1516 */ 1517 int svc_addsock(struct svc_serv *serv, const int fd, char *name_return, 1518 const size_t len, const struct cred *cred) 1519 { 1520 int err = 0; 1521 struct socket *so = sockfd_lookup(fd, &err); 1522 struct svc_sock *svsk = NULL; 1523 struct sockaddr_storage addr; 1524 struct sockaddr *sin = (struct sockaddr *)&addr; 1525 int salen; 1526 1527 if (!so) 1528 return err; 1529 err = -EAFNOSUPPORT; 1530 if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6)) 1531 goto out; 1532 err = -EPROTONOSUPPORT; 1533 if (so->sk->sk_protocol != IPPROTO_TCP && 1534 so->sk->sk_protocol != IPPROTO_UDP) 1535 goto out; 1536 err = -EISCONN; 1537 if (so->state > SS_UNCONNECTED) 1538 goto out; 1539 err = -ENOENT; 1540 if (!try_module_get(THIS_MODULE)) 1541 goto out; 1542 svsk = svc_setup_socket(serv, so, SVC_SOCK_DEFAULTS); 1543 if (IS_ERR(svsk)) { 1544 module_put(THIS_MODULE); 1545 err = PTR_ERR(svsk); 1546 goto out; 1547 } 1548 salen = kernel_getsockname(svsk->sk_sock, sin); 1549 if (salen >= 0) 1550 svc_xprt_set_local(&svsk->sk_xprt, sin, salen); 1551 svsk->sk_xprt.xpt_cred = get_cred(cred); 1552 svc_add_new_perm_xprt(serv, &svsk->sk_xprt); 1553 return svc_one_sock_name(svsk, name_return, len); 1554 out: 1555 sockfd_put(so); 1556 return err; 1557 } 1558 EXPORT_SYMBOL_GPL(svc_addsock); 1559 1560 /* 1561 * Create socket for RPC service. 1562 */ 1563 static struct svc_xprt *svc_create_socket(struct svc_serv *serv, 1564 int protocol, 1565 struct net *net, 1566 struct sockaddr *sin, int len, 1567 int flags) 1568 { 1569 struct svc_sock *svsk; 1570 struct socket *sock; 1571 int error; 1572 int type; 1573 struct sockaddr_storage addr; 1574 struct sockaddr *newsin = (struct sockaddr *)&addr; 1575 int newlen; 1576 int family; 1577 1578 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) { 1579 printk(KERN_WARNING "svc: only UDP and TCP " 1580 "sockets supported\n"); 1581 return ERR_PTR(-EINVAL); 1582 } 1583 1584 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM; 1585 switch (sin->sa_family) { 1586 case AF_INET6: 1587 family = PF_INET6; 1588 break; 1589 case AF_INET: 1590 family = PF_INET; 1591 break; 1592 default: 1593 return ERR_PTR(-EINVAL); 1594 } 1595 1596 error = __sock_create(net, family, type, protocol, &sock, 1); 1597 if (error < 0) 1598 return ERR_PTR(error); 1599 1600 svc_reclassify_socket(sock); 1601 1602 /* 1603 * If this is an PF_INET6 listener, we want to avoid 1604 * getting requests from IPv4 remotes. Those should 1605 * be shunted to a PF_INET listener via rpcbind. 1606 */ 1607 if (family == PF_INET6) 1608 ip6_sock_set_v6only(sock->sk); 1609 if (type == SOCK_STREAM) 1610 sock->sk->sk_reuse = SK_CAN_REUSE; /* allow address reuse */ 1611 error = kernel_bind(sock, sin, len); 1612 if (error < 0) 1613 goto bummer; 1614 1615 error = kernel_getsockname(sock, newsin); 1616 if (error < 0) 1617 goto bummer; 1618 newlen = error; 1619 1620 if (protocol == IPPROTO_TCP) { 1621 if ((error = kernel_listen(sock, 64)) < 0) 1622 goto bummer; 1623 } 1624 1625 svsk = svc_setup_socket(serv, sock, flags); 1626 if (IS_ERR(svsk)) { 1627 error = PTR_ERR(svsk); 1628 goto bummer; 1629 } 1630 svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen); 1631 return (struct svc_xprt *)svsk; 1632 bummer: 1633 sock_release(sock); 1634 return ERR_PTR(error); 1635 } 1636 1637 /* 1638 * Detach the svc_sock from the socket so that no 1639 * more callbacks occur. 1640 */ 1641 static void svc_sock_detach(struct svc_xprt *xprt) 1642 { 1643 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1644 struct sock *sk = svsk->sk_sk; 1645 1646 /* put back the old socket callbacks */ 1647 lock_sock(sk); 1648 sk->sk_state_change = svsk->sk_ostate; 1649 sk->sk_data_ready = svsk->sk_odata; 1650 sk->sk_write_space = svsk->sk_owspace; 1651 sk->sk_user_data = NULL; 1652 release_sock(sk); 1653 } 1654 1655 /* 1656 * Disconnect the socket, and reset the callbacks 1657 */ 1658 static void svc_tcp_sock_detach(struct svc_xprt *xprt) 1659 { 1660 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1661 1662 svc_sock_detach(xprt); 1663 1664 if (!test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 1665 svc_tcp_clear_pages(svsk); 1666 kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR); 1667 } 1668 } 1669 1670 /* 1671 * Free the svc_sock's socket resources and the svc_sock itself. 1672 */ 1673 static void svc_sock_free(struct svc_xprt *xprt) 1674 { 1675 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1676 struct socket *sock = svsk->sk_sock; 1677 1678 tls_handshake_cancel(sock->sk); 1679 if (sock->file) 1680 sockfd_put(sock); 1681 else 1682 sock_release(sock); 1683 kfree(svsk); 1684 } 1685