xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision fff74a93)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
18 
19 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
20 
21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
22 static int svc_deferred_recv(struct svc_rqst *rqstp);
23 static struct cache_deferred_req *svc_defer(struct cache_req *req);
24 static void svc_age_temp_xprts(unsigned long closure);
25 static void svc_delete_xprt(struct svc_xprt *xprt);
26 static void svc_xprt_do_enqueue(struct svc_xprt *xprt);
27 
28 /* apparently the "standard" is that clients close
29  * idle connections after 5 minutes, servers after
30  * 6 minutes
31  *   http://www.connectathon.org/talks96/nfstcp.pdf
32  */
33 static int svc_conn_age_period = 6*60;
34 
35 /* List of registered transport classes */
36 static DEFINE_SPINLOCK(svc_xprt_class_lock);
37 static LIST_HEAD(svc_xprt_class_list);
38 
39 /* SMP locking strategy:
40  *
41  *	svc_pool->sp_lock protects most of the fields of that pool.
42  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
43  *	when both need to be taken (rare), svc_serv->sv_lock is first.
44  *	BKL protects svc_serv->sv_nrthread.
45  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
46  *             and the ->sk_info_authunix cache.
47  *
48  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
49  *	enqueued multiply. During normal transport processing this bit
50  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
51  *	Providers should not manipulate this bit directly.
52  *
53  *	Some flags can be set to certain values at any time
54  *	providing that certain rules are followed:
55  *
56  *	XPT_CONN, XPT_DATA:
57  *		- Can be set or cleared at any time.
58  *		- After a set, svc_xprt_enqueue must be called to enqueue
59  *		  the transport for processing.
60  *		- After a clear, the transport must be read/accepted.
61  *		  If this succeeds, it must be set again.
62  *	XPT_CLOSE:
63  *		- Can set at any time. It is never cleared.
64  *      XPT_DEAD:
65  *		- Can only be set while XPT_BUSY is held which ensures
66  *		  that no other thread will be using the transport or will
67  *		  try to set XPT_DEAD.
68  */
69 
70 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
71 {
72 	struct svc_xprt_class *cl;
73 	int res = -EEXIST;
74 
75 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
76 
77 	INIT_LIST_HEAD(&xcl->xcl_list);
78 	spin_lock(&svc_xprt_class_lock);
79 	/* Make sure there isn't already a class with the same name */
80 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
81 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
82 			goto out;
83 	}
84 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
85 	res = 0;
86 out:
87 	spin_unlock(&svc_xprt_class_lock);
88 	return res;
89 }
90 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
91 
92 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
93 {
94 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
95 	spin_lock(&svc_xprt_class_lock);
96 	list_del_init(&xcl->xcl_list);
97 	spin_unlock(&svc_xprt_class_lock);
98 }
99 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
100 
101 /*
102  * Format the transport list for printing
103  */
104 int svc_print_xprts(char *buf, int maxlen)
105 {
106 	struct svc_xprt_class *xcl;
107 	char tmpstr[80];
108 	int len = 0;
109 	buf[0] = '\0';
110 
111 	spin_lock(&svc_xprt_class_lock);
112 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
113 		int slen;
114 
115 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
116 		slen = strlen(tmpstr);
117 		if (len + slen > maxlen)
118 			break;
119 		len += slen;
120 		strcat(buf, tmpstr);
121 	}
122 	spin_unlock(&svc_xprt_class_lock);
123 
124 	return len;
125 }
126 
127 static void svc_xprt_free(struct kref *kref)
128 {
129 	struct svc_xprt *xprt =
130 		container_of(kref, struct svc_xprt, xpt_ref);
131 	struct module *owner = xprt->xpt_class->xcl_owner;
132 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
133 		svcauth_unix_info_release(xprt);
134 	put_net(xprt->xpt_net);
135 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
136 	if (xprt->xpt_bc_xprt)
137 		xprt_put(xprt->xpt_bc_xprt);
138 	xprt->xpt_ops->xpo_free(xprt);
139 	module_put(owner);
140 }
141 
142 void svc_xprt_put(struct svc_xprt *xprt)
143 {
144 	kref_put(&xprt->xpt_ref, svc_xprt_free);
145 }
146 EXPORT_SYMBOL_GPL(svc_xprt_put);
147 
148 /*
149  * Called by transport drivers to initialize the transport independent
150  * portion of the transport instance.
151  */
152 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
153 		   struct svc_xprt *xprt, struct svc_serv *serv)
154 {
155 	memset(xprt, 0, sizeof(*xprt));
156 	xprt->xpt_class = xcl;
157 	xprt->xpt_ops = xcl->xcl_ops;
158 	kref_init(&xprt->xpt_ref);
159 	xprt->xpt_server = serv;
160 	INIT_LIST_HEAD(&xprt->xpt_list);
161 	INIT_LIST_HEAD(&xprt->xpt_ready);
162 	INIT_LIST_HEAD(&xprt->xpt_deferred);
163 	INIT_LIST_HEAD(&xprt->xpt_users);
164 	mutex_init(&xprt->xpt_mutex);
165 	spin_lock_init(&xprt->xpt_lock);
166 	set_bit(XPT_BUSY, &xprt->xpt_flags);
167 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
168 	xprt->xpt_net = get_net(net);
169 }
170 EXPORT_SYMBOL_GPL(svc_xprt_init);
171 
172 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
173 					 struct svc_serv *serv,
174 					 struct net *net,
175 					 const int family,
176 					 const unsigned short port,
177 					 int flags)
178 {
179 	struct sockaddr_in sin = {
180 		.sin_family		= AF_INET,
181 		.sin_addr.s_addr	= htonl(INADDR_ANY),
182 		.sin_port		= htons(port),
183 	};
184 #if IS_ENABLED(CONFIG_IPV6)
185 	struct sockaddr_in6 sin6 = {
186 		.sin6_family		= AF_INET6,
187 		.sin6_addr		= IN6ADDR_ANY_INIT,
188 		.sin6_port		= htons(port),
189 	};
190 #endif
191 	struct sockaddr *sap;
192 	size_t len;
193 
194 	switch (family) {
195 	case PF_INET:
196 		sap = (struct sockaddr *)&sin;
197 		len = sizeof(sin);
198 		break;
199 #if IS_ENABLED(CONFIG_IPV6)
200 	case PF_INET6:
201 		sap = (struct sockaddr *)&sin6;
202 		len = sizeof(sin6);
203 		break;
204 #endif
205 	default:
206 		return ERR_PTR(-EAFNOSUPPORT);
207 	}
208 
209 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
210 }
211 
212 /*
213  * svc_xprt_received conditionally queues the transport for processing
214  * by another thread. The caller must hold the XPT_BUSY bit and must
215  * not thereafter touch transport data.
216  *
217  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
218  * insufficient) data.
219  */
220 static void svc_xprt_received(struct svc_xprt *xprt)
221 {
222 	WARN_ON_ONCE(!test_bit(XPT_BUSY, &xprt->xpt_flags));
223 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags))
224 		return;
225 	/* As soon as we clear busy, the xprt could be closed and
226 	 * 'put', so we need a reference to call svc_xprt_do_enqueue with:
227 	 */
228 	svc_xprt_get(xprt);
229 	smp_mb__before_atomic();
230 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
231 	svc_xprt_do_enqueue(xprt);
232 	svc_xprt_put(xprt);
233 }
234 
235 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
236 {
237 	clear_bit(XPT_TEMP, &new->xpt_flags);
238 	spin_lock_bh(&serv->sv_lock);
239 	list_add(&new->xpt_list, &serv->sv_permsocks);
240 	spin_unlock_bh(&serv->sv_lock);
241 	svc_xprt_received(new);
242 }
243 
244 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
245 		    struct net *net, const int family,
246 		    const unsigned short port, int flags)
247 {
248 	struct svc_xprt_class *xcl;
249 
250 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
251 	spin_lock(&svc_xprt_class_lock);
252 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
253 		struct svc_xprt *newxprt;
254 		unsigned short newport;
255 
256 		if (strcmp(xprt_name, xcl->xcl_name))
257 			continue;
258 
259 		if (!try_module_get(xcl->xcl_owner))
260 			goto err;
261 
262 		spin_unlock(&svc_xprt_class_lock);
263 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
264 		if (IS_ERR(newxprt)) {
265 			module_put(xcl->xcl_owner);
266 			return PTR_ERR(newxprt);
267 		}
268 		svc_add_new_perm_xprt(serv, newxprt);
269 		newport = svc_xprt_local_port(newxprt);
270 		return newport;
271 	}
272  err:
273 	spin_unlock(&svc_xprt_class_lock);
274 	dprintk("svc: transport %s not found\n", xprt_name);
275 
276 	/* This errno is exposed to user space.  Provide a reasonable
277 	 * perror msg for a bad transport. */
278 	return -EPROTONOSUPPORT;
279 }
280 EXPORT_SYMBOL_GPL(svc_create_xprt);
281 
282 /*
283  * Copy the local and remote xprt addresses to the rqstp structure
284  */
285 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
286 {
287 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
288 	rqstp->rq_addrlen = xprt->xpt_remotelen;
289 
290 	/*
291 	 * Destination address in request is needed for binding the
292 	 * source address in RPC replies/callbacks later.
293 	 */
294 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
295 	rqstp->rq_daddrlen = xprt->xpt_locallen;
296 }
297 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
298 
299 /**
300  * svc_print_addr - Format rq_addr field for printing
301  * @rqstp: svc_rqst struct containing address to print
302  * @buf: target buffer for formatted address
303  * @len: length of target buffer
304  *
305  */
306 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
307 {
308 	return __svc_print_addr(svc_addr(rqstp), buf, len);
309 }
310 EXPORT_SYMBOL_GPL(svc_print_addr);
311 
312 /*
313  * Queue up an idle server thread.  Must have pool->sp_lock held.
314  * Note: this is really a stack rather than a queue, so that we only
315  * use as many different threads as we need, and the rest don't pollute
316  * the cache.
317  */
318 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
319 {
320 	list_add(&rqstp->rq_list, &pool->sp_threads);
321 }
322 
323 /*
324  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
325  */
326 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
327 {
328 	list_del(&rqstp->rq_list);
329 }
330 
331 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
332 {
333 	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
334 		return true;
335 	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
336 		return xprt->xpt_ops->xpo_has_wspace(xprt);
337 	return false;
338 }
339 
340 static void svc_xprt_do_enqueue(struct svc_xprt *xprt)
341 {
342 	struct svc_pool *pool;
343 	struct svc_rqst	*rqstp;
344 	int cpu;
345 
346 	if (!svc_xprt_has_something_to_do(xprt))
347 		return;
348 
349 	cpu = get_cpu();
350 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
351 	put_cpu();
352 
353 	spin_lock_bh(&pool->sp_lock);
354 
355 	if (!list_empty(&pool->sp_threads) &&
356 	    !list_empty(&pool->sp_sockets))
357 		printk(KERN_ERR
358 		       "svc_xprt_enqueue: "
359 		       "threads and transports both waiting??\n");
360 
361 	pool->sp_stats.packets++;
362 
363 	/* Mark transport as busy. It will remain in this state until
364 	 * the provider calls svc_xprt_received. We update XPT_BUSY
365 	 * atomically because it also guards against trying to enqueue
366 	 * the transport twice.
367 	 */
368 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
369 		/* Don't enqueue transport while already enqueued */
370 		dprintk("svc: transport %p busy, not enqueued\n", xprt);
371 		goto out_unlock;
372 	}
373 
374 	if (!list_empty(&pool->sp_threads)) {
375 		rqstp = list_entry(pool->sp_threads.next,
376 				   struct svc_rqst,
377 				   rq_list);
378 		dprintk("svc: transport %p served by daemon %p\n",
379 			xprt, rqstp);
380 		svc_thread_dequeue(pool, rqstp);
381 		if (rqstp->rq_xprt)
382 			printk(KERN_ERR
383 				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
384 				rqstp, rqstp->rq_xprt);
385 		rqstp->rq_xprt = xprt;
386 		svc_xprt_get(xprt);
387 		pool->sp_stats.threads_woken++;
388 		wake_up(&rqstp->rq_wait);
389 	} else {
390 		dprintk("svc: transport %p put into queue\n", xprt);
391 		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
392 		pool->sp_stats.sockets_queued++;
393 	}
394 
395 out_unlock:
396 	spin_unlock_bh(&pool->sp_lock);
397 }
398 
399 /*
400  * Queue up a transport with data pending. If there are idle nfsd
401  * processes, wake 'em up.
402  *
403  */
404 void svc_xprt_enqueue(struct svc_xprt *xprt)
405 {
406 	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
407 		return;
408 	svc_xprt_do_enqueue(xprt);
409 }
410 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
411 
412 /*
413  * Dequeue the first transport.  Must be called with the pool->sp_lock held.
414  */
415 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
416 {
417 	struct svc_xprt	*xprt;
418 
419 	if (list_empty(&pool->sp_sockets))
420 		return NULL;
421 
422 	xprt = list_entry(pool->sp_sockets.next,
423 			  struct svc_xprt, xpt_ready);
424 	list_del_init(&xprt->xpt_ready);
425 
426 	dprintk("svc: transport %p dequeued, inuse=%d\n",
427 		xprt, atomic_read(&xprt->xpt_ref.refcount));
428 
429 	return xprt;
430 }
431 
432 /**
433  * svc_reserve - change the space reserved for the reply to a request.
434  * @rqstp:  The request in question
435  * @space: new max space to reserve
436  *
437  * Each request reserves some space on the output queue of the transport
438  * to make sure the reply fits.  This function reduces that reserved
439  * space to be the amount of space used already, plus @space.
440  *
441  */
442 void svc_reserve(struct svc_rqst *rqstp, int space)
443 {
444 	space += rqstp->rq_res.head[0].iov_len;
445 
446 	if (space < rqstp->rq_reserved) {
447 		struct svc_xprt *xprt = rqstp->rq_xprt;
448 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
449 		rqstp->rq_reserved = space;
450 
451 		if (xprt->xpt_ops->xpo_adjust_wspace)
452 			xprt->xpt_ops->xpo_adjust_wspace(xprt);
453 		svc_xprt_enqueue(xprt);
454 	}
455 }
456 EXPORT_SYMBOL_GPL(svc_reserve);
457 
458 static void svc_xprt_release(struct svc_rqst *rqstp)
459 {
460 	struct svc_xprt	*xprt = rqstp->rq_xprt;
461 
462 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
463 
464 	kfree(rqstp->rq_deferred);
465 	rqstp->rq_deferred = NULL;
466 
467 	svc_free_res_pages(rqstp);
468 	rqstp->rq_res.page_len = 0;
469 	rqstp->rq_res.page_base = 0;
470 
471 	/* Reset response buffer and release
472 	 * the reservation.
473 	 * But first, check that enough space was reserved
474 	 * for the reply, otherwise we have a bug!
475 	 */
476 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
477 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
478 		       rqstp->rq_reserved,
479 		       rqstp->rq_res.len);
480 
481 	rqstp->rq_res.head[0].iov_len = 0;
482 	svc_reserve(rqstp, 0);
483 	rqstp->rq_xprt = NULL;
484 
485 	svc_xprt_put(xprt);
486 }
487 
488 /*
489  * External function to wake up a server waiting for data
490  * This really only makes sense for services like lockd
491  * which have exactly one thread anyway.
492  */
493 void svc_wake_up(struct svc_serv *serv)
494 {
495 	struct svc_rqst	*rqstp;
496 	unsigned int i;
497 	struct svc_pool *pool;
498 
499 	for (i = 0; i < serv->sv_nrpools; i++) {
500 		pool = &serv->sv_pools[i];
501 
502 		spin_lock_bh(&pool->sp_lock);
503 		if (!list_empty(&pool->sp_threads)) {
504 			rqstp = list_entry(pool->sp_threads.next,
505 					   struct svc_rqst,
506 					   rq_list);
507 			dprintk("svc: daemon %p woken up.\n", rqstp);
508 			/*
509 			svc_thread_dequeue(pool, rqstp);
510 			rqstp->rq_xprt = NULL;
511 			 */
512 			wake_up(&rqstp->rq_wait);
513 		} else
514 			pool->sp_task_pending = 1;
515 		spin_unlock_bh(&pool->sp_lock);
516 	}
517 }
518 EXPORT_SYMBOL_GPL(svc_wake_up);
519 
520 int svc_port_is_privileged(struct sockaddr *sin)
521 {
522 	switch (sin->sa_family) {
523 	case AF_INET:
524 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
525 			< PROT_SOCK;
526 	case AF_INET6:
527 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
528 			< PROT_SOCK;
529 	default:
530 		return 0;
531 	}
532 }
533 
534 /*
535  * Make sure that we don't have too many active connections. If we have,
536  * something must be dropped. It's not clear what will happen if we allow
537  * "too many" connections, but when dealing with network-facing software,
538  * we have to code defensively. Here we do that by imposing hard limits.
539  *
540  * There's no point in trying to do random drop here for DoS
541  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
542  * attacker can easily beat that.
543  *
544  * The only somewhat efficient mechanism would be if drop old
545  * connections from the same IP first. But right now we don't even
546  * record the client IP in svc_sock.
547  *
548  * single-threaded services that expect a lot of clients will probably
549  * need to set sv_maxconn to override the default value which is based
550  * on the number of threads
551  */
552 static void svc_check_conn_limits(struct svc_serv *serv)
553 {
554 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
555 				(serv->sv_nrthreads+3) * 20;
556 
557 	if (serv->sv_tmpcnt > limit) {
558 		struct svc_xprt *xprt = NULL;
559 		spin_lock_bh(&serv->sv_lock);
560 		if (!list_empty(&serv->sv_tempsocks)) {
561 			/* Try to help the admin */
562 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
563 					       serv->sv_name, serv->sv_maxconn ?
564 					       "max number of connections" :
565 					       "number of threads");
566 			/*
567 			 * Always select the oldest connection. It's not fair,
568 			 * but so is life
569 			 */
570 			xprt = list_entry(serv->sv_tempsocks.prev,
571 					  struct svc_xprt,
572 					  xpt_list);
573 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
574 			svc_xprt_get(xprt);
575 		}
576 		spin_unlock_bh(&serv->sv_lock);
577 
578 		if (xprt) {
579 			svc_xprt_enqueue(xprt);
580 			svc_xprt_put(xprt);
581 		}
582 	}
583 }
584 
585 static int svc_alloc_arg(struct svc_rqst *rqstp)
586 {
587 	struct svc_serv *serv = rqstp->rq_server;
588 	struct xdr_buf *arg;
589 	int pages;
590 	int i;
591 
592 	/* now allocate needed pages.  If we get a failure, sleep briefly */
593 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
594 	WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
595 	if (pages >= RPCSVC_MAXPAGES)
596 		/* use as many pages as possible */
597 		pages = RPCSVC_MAXPAGES - 1;
598 	for (i = 0; i < pages ; i++)
599 		while (rqstp->rq_pages[i] == NULL) {
600 			struct page *p = alloc_page(GFP_KERNEL);
601 			if (!p) {
602 				set_current_state(TASK_INTERRUPTIBLE);
603 				if (signalled() || kthread_should_stop()) {
604 					set_current_state(TASK_RUNNING);
605 					return -EINTR;
606 				}
607 				schedule_timeout(msecs_to_jiffies(500));
608 			}
609 			rqstp->rq_pages[i] = p;
610 		}
611 	rqstp->rq_page_end = &rqstp->rq_pages[i];
612 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
613 
614 	/* Make arg->head point to first page and arg->pages point to rest */
615 	arg = &rqstp->rq_arg;
616 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
617 	arg->head[0].iov_len = PAGE_SIZE;
618 	arg->pages = rqstp->rq_pages + 1;
619 	arg->page_base = 0;
620 	/* save at least one page for response */
621 	arg->page_len = (pages-2)*PAGE_SIZE;
622 	arg->len = (pages-1)*PAGE_SIZE;
623 	arg->tail[0].iov_len = 0;
624 	return 0;
625 }
626 
627 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
628 {
629 	struct svc_xprt *xprt;
630 	struct svc_pool		*pool = rqstp->rq_pool;
631 	DECLARE_WAITQUEUE(wait, current);
632 	long			time_left;
633 
634 	/* Normally we will wait up to 5 seconds for any required
635 	 * cache information to be provided.
636 	 */
637 	rqstp->rq_chandle.thread_wait = 5*HZ;
638 
639 	spin_lock_bh(&pool->sp_lock);
640 	xprt = svc_xprt_dequeue(pool);
641 	if (xprt) {
642 		rqstp->rq_xprt = xprt;
643 		svc_xprt_get(xprt);
644 
645 		/* As there is a shortage of threads and this request
646 		 * had to be queued, don't allow the thread to wait so
647 		 * long for cache updates.
648 		 */
649 		rqstp->rq_chandle.thread_wait = 1*HZ;
650 		pool->sp_task_pending = 0;
651 	} else {
652 		if (pool->sp_task_pending) {
653 			pool->sp_task_pending = 0;
654 			spin_unlock_bh(&pool->sp_lock);
655 			return ERR_PTR(-EAGAIN);
656 		}
657 		/* No data pending. Go to sleep */
658 		svc_thread_enqueue(pool, rqstp);
659 
660 		/*
661 		 * We have to be able to interrupt this wait
662 		 * to bring down the daemons ...
663 		 */
664 		set_current_state(TASK_INTERRUPTIBLE);
665 
666 		/*
667 		 * checking kthread_should_stop() here allows us to avoid
668 		 * locking and signalling when stopping kthreads that call
669 		 * svc_recv. If the thread has already been woken up, then
670 		 * we can exit here without sleeping. If not, then it
671 		 * it'll be woken up quickly during the schedule_timeout
672 		 */
673 		if (kthread_should_stop()) {
674 			set_current_state(TASK_RUNNING);
675 			spin_unlock_bh(&pool->sp_lock);
676 			return ERR_PTR(-EINTR);
677 		}
678 
679 		add_wait_queue(&rqstp->rq_wait, &wait);
680 		spin_unlock_bh(&pool->sp_lock);
681 
682 		time_left = schedule_timeout(timeout);
683 
684 		try_to_freeze();
685 
686 		spin_lock_bh(&pool->sp_lock);
687 		remove_wait_queue(&rqstp->rq_wait, &wait);
688 		if (!time_left)
689 			pool->sp_stats.threads_timedout++;
690 
691 		xprt = rqstp->rq_xprt;
692 		if (!xprt) {
693 			svc_thread_dequeue(pool, rqstp);
694 			spin_unlock_bh(&pool->sp_lock);
695 			dprintk("svc: server %p, no data yet\n", rqstp);
696 			if (signalled() || kthread_should_stop())
697 				return ERR_PTR(-EINTR);
698 			else
699 				return ERR_PTR(-EAGAIN);
700 		}
701 	}
702 	spin_unlock_bh(&pool->sp_lock);
703 	return xprt;
704 }
705 
706 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
707 {
708 	spin_lock_bh(&serv->sv_lock);
709 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
710 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
711 	serv->sv_tmpcnt++;
712 	if (serv->sv_temptimer.function == NULL) {
713 		/* setup timer to age temp transports */
714 		setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
715 			    (unsigned long)serv);
716 		mod_timer(&serv->sv_temptimer,
717 			  jiffies + svc_conn_age_period * HZ);
718 	}
719 	spin_unlock_bh(&serv->sv_lock);
720 	svc_xprt_received(newxpt);
721 }
722 
723 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
724 {
725 	struct svc_serv *serv = rqstp->rq_server;
726 	int len = 0;
727 
728 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
729 		dprintk("svc_recv: found XPT_CLOSE\n");
730 		svc_delete_xprt(xprt);
731 		/* Leave XPT_BUSY set on the dead xprt: */
732 		return 0;
733 	}
734 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
735 		struct svc_xprt *newxpt;
736 		/*
737 		 * We know this module_get will succeed because the
738 		 * listener holds a reference too
739 		 */
740 		__module_get(xprt->xpt_class->xcl_owner);
741 		svc_check_conn_limits(xprt->xpt_server);
742 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
743 		if (newxpt)
744 			svc_add_new_temp_xprt(serv, newxpt);
745 		else
746 			module_put(xprt->xpt_class->xcl_owner);
747 	} else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
748 		/* XPT_DATA|XPT_DEFERRED case: */
749 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
750 			rqstp, rqstp->rq_pool->sp_id, xprt,
751 			atomic_read(&xprt->xpt_ref.refcount));
752 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
753 		if (rqstp->rq_deferred)
754 			len = svc_deferred_recv(rqstp);
755 		else
756 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
757 		dprintk("svc: got len=%d\n", len);
758 		rqstp->rq_reserved = serv->sv_max_mesg;
759 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
760 	}
761 	/* clear XPT_BUSY: */
762 	svc_xprt_received(xprt);
763 	return len;
764 }
765 
766 /*
767  * Receive the next request on any transport.  This code is carefully
768  * organised not to touch any cachelines in the shared svc_serv
769  * structure, only cachelines in the local svc_pool.
770  */
771 int svc_recv(struct svc_rqst *rqstp, long timeout)
772 {
773 	struct svc_xprt		*xprt = NULL;
774 	struct svc_serv		*serv = rqstp->rq_server;
775 	int			len, err;
776 
777 	dprintk("svc: server %p waiting for data (to = %ld)\n",
778 		rqstp, timeout);
779 
780 	if (rqstp->rq_xprt)
781 		printk(KERN_ERR
782 			"svc_recv: service %p, transport not NULL!\n",
783 			 rqstp);
784 	if (waitqueue_active(&rqstp->rq_wait))
785 		printk(KERN_ERR
786 			"svc_recv: service %p, wait queue active!\n",
787 			 rqstp);
788 
789 	err = svc_alloc_arg(rqstp);
790 	if (err)
791 		return err;
792 
793 	try_to_freeze();
794 	cond_resched();
795 	if (signalled() || kthread_should_stop())
796 		return -EINTR;
797 
798 	xprt = svc_get_next_xprt(rqstp, timeout);
799 	if (IS_ERR(xprt))
800 		return PTR_ERR(xprt);
801 
802 	len = svc_handle_xprt(rqstp, xprt);
803 
804 	/* No data, incomplete (TCP) read, or accept() */
805 	if (len <= 0)
806 		goto out;
807 
808 	clear_bit(XPT_OLD, &xprt->xpt_flags);
809 
810 	rqstp->rq_secure = xprt->xpt_ops->xpo_secure_port(rqstp);
811 	rqstp->rq_chandle.defer = svc_defer;
812 
813 	if (serv->sv_stats)
814 		serv->sv_stats->netcnt++;
815 	return len;
816 out:
817 	rqstp->rq_res.len = 0;
818 	svc_xprt_release(rqstp);
819 	return -EAGAIN;
820 }
821 EXPORT_SYMBOL_GPL(svc_recv);
822 
823 /*
824  * Drop request
825  */
826 void svc_drop(struct svc_rqst *rqstp)
827 {
828 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
829 	svc_xprt_release(rqstp);
830 }
831 EXPORT_SYMBOL_GPL(svc_drop);
832 
833 /*
834  * Return reply to client.
835  */
836 int svc_send(struct svc_rqst *rqstp)
837 {
838 	struct svc_xprt	*xprt;
839 	int		len;
840 	struct xdr_buf	*xb;
841 
842 	xprt = rqstp->rq_xprt;
843 	if (!xprt)
844 		return -EFAULT;
845 
846 	/* release the receive skb before sending the reply */
847 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
848 
849 	/* calculate over-all length */
850 	xb = &rqstp->rq_res;
851 	xb->len = xb->head[0].iov_len +
852 		xb->page_len +
853 		xb->tail[0].iov_len;
854 
855 	/* Grab mutex to serialize outgoing data. */
856 	mutex_lock(&xprt->xpt_mutex);
857 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
858 			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
859 		len = -ENOTCONN;
860 	else
861 		len = xprt->xpt_ops->xpo_sendto(rqstp);
862 	mutex_unlock(&xprt->xpt_mutex);
863 	rpc_wake_up(&xprt->xpt_bc_pending);
864 	svc_xprt_release(rqstp);
865 
866 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
867 		return 0;
868 	return len;
869 }
870 
871 /*
872  * Timer function to close old temporary transports, using
873  * a mark-and-sweep algorithm.
874  */
875 static void svc_age_temp_xprts(unsigned long closure)
876 {
877 	struct svc_serv *serv = (struct svc_serv *)closure;
878 	struct svc_xprt *xprt;
879 	struct list_head *le, *next;
880 
881 	dprintk("svc_age_temp_xprts\n");
882 
883 	if (!spin_trylock_bh(&serv->sv_lock)) {
884 		/* busy, try again 1 sec later */
885 		dprintk("svc_age_temp_xprts: busy\n");
886 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
887 		return;
888 	}
889 
890 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
891 		xprt = list_entry(le, struct svc_xprt, xpt_list);
892 
893 		/* First time through, just mark it OLD. Second time
894 		 * through, close it. */
895 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
896 			continue;
897 		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
898 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
899 			continue;
900 		list_del_init(le);
901 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
902 		set_bit(XPT_DETACHED, &xprt->xpt_flags);
903 		dprintk("queuing xprt %p for closing\n", xprt);
904 
905 		/* a thread will dequeue and close it soon */
906 		svc_xprt_enqueue(xprt);
907 	}
908 	spin_unlock_bh(&serv->sv_lock);
909 
910 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
911 }
912 
913 static void call_xpt_users(struct svc_xprt *xprt)
914 {
915 	struct svc_xpt_user *u;
916 
917 	spin_lock(&xprt->xpt_lock);
918 	while (!list_empty(&xprt->xpt_users)) {
919 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
920 		list_del(&u->list);
921 		u->callback(u);
922 	}
923 	spin_unlock(&xprt->xpt_lock);
924 }
925 
926 /*
927  * Remove a dead transport
928  */
929 static void svc_delete_xprt(struct svc_xprt *xprt)
930 {
931 	struct svc_serv	*serv = xprt->xpt_server;
932 	struct svc_deferred_req *dr;
933 
934 	/* Only do this once */
935 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
936 		BUG();
937 
938 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
939 	xprt->xpt_ops->xpo_detach(xprt);
940 
941 	spin_lock_bh(&serv->sv_lock);
942 	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
943 		list_del_init(&xprt->xpt_list);
944 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
945 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
946 		serv->sv_tmpcnt--;
947 	spin_unlock_bh(&serv->sv_lock);
948 
949 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
950 		kfree(dr);
951 
952 	call_xpt_users(xprt);
953 	svc_xprt_put(xprt);
954 }
955 
956 void svc_close_xprt(struct svc_xprt *xprt)
957 {
958 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
959 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
960 		/* someone else will have to effect the close */
961 		return;
962 	/*
963 	 * We expect svc_close_xprt() to work even when no threads are
964 	 * running (e.g., while configuring the server before starting
965 	 * any threads), so if the transport isn't busy, we delete
966 	 * it ourself:
967 	 */
968 	svc_delete_xprt(xprt);
969 }
970 EXPORT_SYMBOL_GPL(svc_close_xprt);
971 
972 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
973 {
974 	struct svc_xprt *xprt;
975 	int ret = 0;
976 
977 	spin_lock(&serv->sv_lock);
978 	list_for_each_entry(xprt, xprt_list, xpt_list) {
979 		if (xprt->xpt_net != net)
980 			continue;
981 		ret++;
982 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
983 		svc_xprt_enqueue(xprt);
984 	}
985 	spin_unlock(&serv->sv_lock);
986 	return ret;
987 }
988 
989 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
990 {
991 	struct svc_pool *pool;
992 	struct svc_xprt *xprt;
993 	struct svc_xprt *tmp;
994 	int i;
995 
996 	for (i = 0; i < serv->sv_nrpools; i++) {
997 		pool = &serv->sv_pools[i];
998 
999 		spin_lock_bh(&pool->sp_lock);
1000 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1001 			if (xprt->xpt_net != net)
1002 				continue;
1003 			list_del_init(&xprt->xpt_ready);
1004 			spin_unlock_bh(&pool->sp_lock);
1005 			return xprt;
1006 		}
1007 		spin_unlock_bh(&pool->sp_lock);
1008 	}
1009 	return NULL;
1010 }
1011 
1012 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1013 {
1014 	struct svc_xprt *xprt;
1015 
1016 	while ((xprt = svc_dequeue_net(serv, net))) {
1017 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1018 		svc_delete_xprt(xprt);
1019 	}
1020 }
1021 
1022 /*
1023  * Server threads may still be running (especially in the case where the
1024  * service is still running in other network namespaces).
1025  *
1026  * So we shut down sockets the same way we would on a running server, by
1027  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1028  * the close.  In the case there are no such other threads,
1029  * threads running, svc_clean_up_xprts() does a simple version of a
1030  * server's main event loop, and in the case where there are other
1031  * threads, we may need to wait a little while and then check again to
1032  * see if they're done.
1033  */
1034 void svc_close_net(struct svc_serv *serv, struct net *net)
1035 {
1036 	int delay = 0;
1037 
1038 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1039 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1040 
1041 		svc_clean_up_xprts(serv, net);
1042 		msleep(delay++);
1043 	}
1044 }
1045 
1046 /*
1047  * Handle defer and revisit of requests
1048  */
1049 
1050 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1051 {
1052 	struct svc_deferred_req *dr =
1053 		container_of(dreq, struct svc_deferred_req, handle);
1054 	struct svc_xprt *xprt = dr->xprt;
1055 
1056 	spin_lock(&xprt->xpt_lock);
1057 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1058 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1059 		spin_unlock(&xprt->xpt_lock);
1060 		dprintk("revisit canceled\n");
1061 		svc_xprt_put(xprt);
1062 		kfree(dr);
1063 		return;
1064 	}
1065 	dprintk("revisit queued\n");
1066 	dr->xprt = NULL;
1067 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1068 	spin_unlock(&xprt->xpt_lock);
1069 	svc_xprt_enqueue(xprt);
1070 	svc_xprt_put(xprt);
1071 }
1072 
1073 /*
1074  * Save the request off for later processing. The request buffer looks
1075  * like this:
1076  *
1077  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1078  *
1079  * This code can only handle requests that consist of an xprt-header
1080  * and rpc-header.
1081  */
1082 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1083 {
1084 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1085 	struct svc_deferred_req *dr;
1086 
1087 	if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
1088 		return NULL; /* if more than a page, give up FIXME */
1089 	if (rqstp->rq_deferred) {
1090 		dr = rqstp->rq_deferred;
1091 		rqstp->rq_deferred = NULL;
1092 	} else {
1093 		size_t skip;
1094 		size_t size;
1095 		/* FIXME maybe discard if size too large */
1096 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1097 		dr = kmalloc(size, GFP_KERNEL);
1098 		if (dr == NULL)
1099 			return NULL;
1100 
1101 		dr->handle.owner = rqstp->rq_server;
1102 		dr->prot = rqstp->rq_prot;
1103 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1104 		dr->addrlen = rqstp->rq_addrlen;
1105 		dr->daddr = rqstp->rq_daddr;
1106 		dr->argslen = rqstp->rq_arg.len >> 2;
1107 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1108 
1109 		/* back up head to the start of the buffer and copy */
1110 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1111 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1112 		       dr->argslen << 2);
1113 	}
1114 	svc_xprt_get(rqstp->rq_xprt);
1115 	dr->xprt = rqstp->rq_xprt;
1116 	rqstp->rq_dropme = true;
1117 
1118 	dr->handle.revisit = svc_revisit;
1119 	return &dr->handle;
1120 }
1121 
1122 /*
1123  * recv data from a deferred request into an active one
1124  */
1125 static int svc_deferred_recv(struct svc_rqst *rqstp)
1126 {
1127 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1128 
1129 	/* setup iov_base past transport header */
1130 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1131 	/* The iov_len does not include the transport header bytes */
1132 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1133 	rqstp->rq_arg.page_len = 0;
1134 	/* The rq_arg.len includes the transport header bytes */
1135 	rqstp->rq_arg.len     = dr->argslen<<2;
1136 	rqstp->rq_prot        = dr->prot;
1137 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1138 	rqstp->rq_addrlen     = dr->addrlen;
1139 	/* Save off transport header len in case we get deferred again */
1140 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1141 	rqstp->rq_daddr       = dr->daddr;
1142 	rqstp->rq_respages    = rqstp->rq_pages;
1143 	return (dr->argslen<<2) - dr->xprt_hlen;
1144 }
1145 
1146 
1147 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1148 {
1149 	struct svc_deferred_req *dr = NULL;
1150 
1151 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1152 		return NULL;
1153 	spin_lock(&xprt->xpt_lock);
1154 	if (!list_empty(&xprt->xpt_deferred)) {
1155 		dr = list_entry(xprt->xpt_deferred.next,
1156 				struct svc_deferred_req,
1157 				handle.recent);
1158 		list_del_init(&dr->handle.recent);
1159 	} else
1160 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1161 	spin_unlock(&xprt->xpt_lock);
1162 	return dr;
1163 }
1164 
1165 /**
1166  * svc_find_xprt - find an RPC transport instance
1167  * @serv: pointer to svc_serv to search
1168  * @xcl_name: C string containing transport's class name
1169  * @net: owner net pointer
1170  * @af: Address family of transport's local address
1171  * @port: transport's IP port number
1172  *
1173  * Return the transport instance pointer for the endpoint accepting
1174  * connections/peer traffic from the specified transport class,
1175  * address family and port.
1176  *
1177  * Specifying 0 for the address family or port is effectively a
1178  * wild-card, and will result in matching the first transport in the
1179  * service's list that has a matching class name.
1180  */
1181 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1182 			       struct net *net, const sa_family_t af,
1183 			       const unsigned short port)
1184 {
1185 	struct svc_xprt *xprt;
1186 	struct svc_xprt *found = NULL;
1187 
1188 	/* Sanity check the args */
1189 	if (serv == NULL || xcl_name == NULL)
1190 		return found;
1191 
1192 	spin_lock_bh(&serv->sv_lock);
1193 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1194 		if (xprt->xpt_net != net)
1195 			continue;
1196 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1197 			continue;
1198 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1199 			continue;
1200 		if (port != 0 && port != svc_xprt_local_port(xprt))
1201 			continue;
1202 		found = xprt;
1203 		svc_xprt_get(xprt);
1204 		break;
1205 	}
1206 	spin_unlock_bh(&serv->sv_lock);
1207 	return found;
1208 }
1209 EXPORT_SYMBOL_GPL(svc_find_xprt);
1210 
1211 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1212 			     char *pos, int remaining)
1213 {
1214 	int len;
1215 
1216 	len = snprintf(pos, remaining, "%s %u\n",
1217 			xprt->xpt_class->xcl_name,
1218 			svc_xprt_local_port(xprt));
1219 	if (len >= remaining)
1220 		return -ENAMETOOLONG;
1221 	return len;
1222 }
1223 
1224 /**
1225  * svc_xprt_names - format a buffer with a list of transport names
1226  * @serv: pointer to an RPC service
1227  * @buf: pointer to a buffer to be filled in
1228  * @buflen: length of buffer to be filled in
1229  *
1230  * Fills in @buf with a string containing a list of transport names,
1231  * each name terminated with '\n'.
1232  *
1233  * Returns positive length of the filled-in string on success; otherwise
1234  * a negative errno value is returned if an error occurs.
1235  */
1236 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1237 {
1238 	struct svc_xprt *xprt;
1239 	int len, totlen;
1240 	char *pos;
1241 
1242 	/* Sanity check args */
1243 	if (!serv)
1244 		return 0;
1245 
1246 	spin_lock_bh(&serv->sv_lock);
1247 
1248 	pos = buf;
1249 	totlen = 0;
1250 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1251 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1252 		if (len < 0) {
1253 			*buf = '\0';
1254 			totlen = len;
1255 		}
1256 		if (len <= 0)
1257 			break;
1258 
1259 		pos += len;
1260 		totlen += len;
1261 	}
1262 
1263 	spin_unlock_bh(&serv->sv_lock);
1264 	return totlen;
1265 }
1266 EXPORT_SYMBOL_GPL(svc_xprt_names);
1267 
1268 
1269 /*----------------------------------------------------------------------------*/
1270 
1271 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1272 {
1273 	unsigned int pidx = (unsigned int)*pos;
1274 	struct svc_serv *serv = m->private;
1275 
1276 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1277 
1278 	if (!pidx)
1279 		return SEQ_START_TOKEN;
1280 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1281 }
1282 
1283 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1284 {
1285 	struct svc_pool *pool = p;
1286 	struct svc_serv *serv = m->private;
1287 
1288 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1289 
1290 	if (p == SEQ_START_TOKEN) {
1291 		pool = &serv->sv_pools[0];
1292 	} else {
1293 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1294 		if (pidx < serv->sv_nrpools-1)
1295 			pool = &serv->sv_pools[pidx+1];
1296 		else
1297 			pool = NULL;
1298 	}
1299 	++*pos;
1300 	return pool;
1301 }
1302 
1303 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1304 {
1305 }
1306 
1307 static int svc_pool_stats_show(struct seq_file *m, void *p)
1308 {
1309 	struct svc_pool *pool = p;
1310 
1311 	if (p == SEQ_START_TOKEN) {
1312 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1313 		return 0;
1314 	}
1315 
1316 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1317 		pool->sp_id,
1318 		pool->sp_stats.packets,
1319 		pool->sp_stats.sockets_queued,
1320 		pool->sp_stats.threads_woken,
1321 		pool->sp_stats.threads_timedout);
1322 
1323 	return 0;
1324 }
1325 
1326 static const struct seq_operations svc_pool_stats_seq_ops = {
1327 	.start	= svc_pool_stats_start,
1328 	.next	= svc_pool_stats_next,
1329 	.stop	= svc_pool_stats_stop,
1330 	.show	= svc_pool_stats_show,
1331 };
1332 
1333 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1334 {
1335 	int err;
1336 
1337 	err = seq_open(file, &svc_pool_stats_seq_ops);
1338 	if (!err)
1339 		((struct seq_file *) file->private_data)->private = serv;
1340 	return err;
1341 }
1342 EXPORT_SYMBOL(svc_pool_stats_open);
1343 
1344 /*----------------------------------------------------------------------------*/
1345