1 /* 2 * linux/net/sunrpc/svc_xprt.c 3 * 4 * Author: Tom Tucker <tom@opengridcomputing.com> 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/errno.h> 9 #include <linux/freezer.h> 10 #include <linux/kthread.h> 11 #include <linux/slab.h> 12 #include <net/sock.h> 13 #include <linux/sunrpc/stats.h> 14 #include <linux/sunrpc/svc_xprt.h> 15 #include <linux/sunrpc/svcsock.h> 16 #include <linux/sunrpc/xprt.h> 17 #include <linux/module.h> 18 19 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 20 21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); 22 static int svc_deferred_recv(struct svc_rqst *rqstp); 23 static struct cache_deferred_req *svc_defer(struct cache_req *req); 24 static void svc_age_temp_xprts(unsigned long closure); 25 static void svc_delete_xprt(struct svc_xprt *xprt); 26 static void svc_xprt_do_enqueue(struct svc_xprt *xprt); 27 28 /* apparently the "standard" is that clients close 29 * idle connections after 5 minutes, servers after 30 * 6 minutes 31 * http://www.connectathon.org/talks96/nfstcp.pdf 32 */ 33 static int svc_conn_age_period = 6*60; 34 35 /* List of registered transport classes */ 36 static DEFINE_SPINLOCK(svc_xprt_class_lock); 37 static LIST_HEAD(svc_xprt_class_list); 38 39 /* SMP locking strategy: 40 * 41 * svc_pool->sp_lock protects most of the fields of that pool. 42 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. 43 * when both need to be taken (rare), svc_serv->sv_lock is first. 44 * BKL protects svc_serv->sv_nrthread. 45 * svc_sock->sk_lock protects the svc_sock->sk_deferred list 46 * and the ->sk_info_authunix cache. 47 * 48 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being 49 * enqueued multiply. During normal transport processing this bit 50 * is set by svc_xprt_enqueue and cleared by svc_xprt_received. 51 * Providers should not manipulate this bit directly. 52 * 53 * Some flags can be set to certain values at any time 54 * providing that certain rules are followed: 55 * 56 * XPT_CONN, XPT_DATA: 57 * - Can be set or cleared at any time. 58 * - After a set, svc_xprt_enqueue must be called to enqueue 59 * the transport for processing. 60 * - After a clear, the transport must be read/accepted. 61 * If this succeeds, it must be set again. 62 * XPT_CLOSE: 63 * - Can set at any time. It is never cleared. 64 * XPT_DEAD: 65 * - Can only be set while XPT_BUSY is held which ensures 66 * that no other thread will be using the transport or will 67 * try to set XPT_DEAD. 68 */ 69 70 int svc_reg_xprt_class(struct svc_xprt_class *xcl) 71 { 72 struct svc_xprt_class *cl; 73 int res = -EEXIST; 74 75 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name); 76 77 INIT_LIST_HEAD(&xcl->xcl_list); 78 spin_lock(&svc_xprt_class_lock); 79 /* Make sure there isn't already a class with the same name */ 80 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { 81 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) 82 goto out; 83 } 84 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); 85 res = 0; 86 out: 87 spin_unlock(&svc_xprt_class_lock); 88 return res; 89 } 90 EXPORT_SYMBOL_GPL(svc_reg_xprt_class); 91 92 void svc_unreg_xprt_class(struct svc_xprt_class *xcl) 93 { 94 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name); 95 spin_lock(&svc_xprt_class_lock); 96 list_del_init(&xcl->xcl_list); 97 spin_unlock(&svc_xprt_class_lock); 98 } 99 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); 100 101 /* 102 * Format the transport list for printing 103 */ 104 int svc_print_xprts(char *buf, int maxlen) 105 { 106 struct svc_xprt_class *xcl; 107 char tmpstr[80]; 108 int len = 0; 109 buf[0] = '\0'; 110 111 spin_lock(&svc_xprt_class_lock); 112 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 113 int slen; 114 115 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload); 116 slen = strlen(tmpstr); 117 if (len + slen > maxlen) 118 break; 119 len += slen; 120 strcat(buf, tmpstr); 121 } 122 spin_unlock(&svc_xprt_class_lock); 123 124 return len; 125 } 126 127 static void svc_xprt_free(struct kref *kref) 128 { 129 struct svc_xprt *xprt = 130 container_of(kref, struct svc_xprt, xpt_ref); 131 struct module *owner = xprt->xpt_class->xcl_owner; 132 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) 133 svcauth_unix_info_release(xprt); 134 put_net(xprt->xpt_net); 135 /* See comment on corresponding get in xs_setup_bc_tcp(): */ 136 if (xprt->xpt_bc_xprt) 137 xprt_put(xprt->xpt_bc_xprt); 138 xprt->xpt_ops->xpo_free(xprt); 139 module_put(owner); 140 } 141 142 void svc_xprt_put(struct svc_xprt *xprt) 143 { 144 kref_put(&xprt->xpt_ref, svc_xprt_free); 145 } 146 EXPORT_SYMBOL_GPL(svc_xprt_put); 147 148 /* 149 * Called by transport drivers to initialize the transport independent 150 * portion of the transport instance. 151 */ 152 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl, 153 struct svc_xprt *xprt, struct svc_serv *serv) 154 { 155 memset(xprt, 0, sizeof(*xprt)); 156 xprt->xpt_class = xcl; 157 xprt->xpt_ops = xcl->xcl_ops; 158 kref_init(&xprt->xpt_ref); 159 xprt->xpt_server = serv; 160 INIT_LIST_HEAD(&xprt->xpt_list); 161 INIT_LIST_HEAD(&xprt->xpt_ready); 162 INIT_LIST_HEAD(&xprt->xpt_deferred); 163 INIT_LIST_HEAD(&xprt->xpt_users); 164 mutex_init(&xprt->xpt_mutex); 165 spin_lock_init(&xprt->xpt_lock); 166 set_bit(XPT_BUSY, &xprt->xpt_flags); 167 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending"); 168 xprt->xpt_net = get_net(net); 169 } 170 EXPORT_SYMBOL_GPL(svc_xprt_init); 171 172 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl, 173 struct svc_serv *serv, 174 struct net *net, 175 const int family, 176 const unsigned short port, 177 int flags) 178 { 179 struct sockaddr_in sin = { 180 .sin_family = AF_INET, 181 .sin_addr.s_addr = htonl(INADDR_ANY), 182 .sin_port = htons(port), 183 }; 184 #if IS_ENABLED(CONFIG_IPV6) 185 struct sockaddr_in6 sin6 = { 186 .sin6_family = AF_INET6, 187 .sin6_addr = IN6ADDR_ANY_INIT, 188 .sin6_port = htons(port), 189 }; 190 #endif 191 struct sockaddr *sap; 192 size_t len; 193 194 switch (family) { 195 case PF_INET: 196 sap = (struct sockaddr *)&sin; 197 len = sizeof(sin); 198 break; 199 #if IS_ENABLED(CONFIG_IPV6) 200 case PF_INET6: 201 sap = (struct sockaddr *)&sin6; 202 len = sizeof(sin6); 203 break; 204 #endif 205 default: 206 return ERR_PTR(-EAFNOSUPPORT); 207 } 208 209 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags); 210 } 211 212 /* 213 * svc_xprt_received conditionally queues the transport for processing 214 * by another thread. The caller must hold the XPT_BUSY bit and must 215 * not thereafter touch transport data. 216 * 217 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or 218 * insufficient) data. 219 */ 220 static void svc_xprt_received(struct svc_xprt *xprt) 221 { 222 WARN_ON_ONCE(!test_bit(XPT_BUSY, &xprt->xpt_flags)); 223 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) 224 return; 225 /* As soon as we clear busy, the xprt could be closed and 226 * 'put', so we need a reference to call svc_xprt_do_enqueue with: 227 */ 228 svc_xprt_get(xprt); 229 smp_mb__before_atomic(); 230 clear_bit(XPT_BUSY, &xprt->xpt_flags); 231 svc_xprt_do_enqueue(xprt); 232 svc_xprt_put(xprt); 233 } 234 235 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new) 236 { 237 clear_bit(XPT_TEMP, &new->xpt_flags); 238 spin_lock_bh(&serv->sv_lock); 239 list_add(&new->xpt_list, &serv->sv_permsocks); 240 spin_unlock_bh(&serv->sv_lock); 241 svc_xprt_received(new); 242 } 243 244 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name, 245 struct net *net, const int family, 246 const unsigned short port, int flags) 247 { 248 struct svc_xprt_class *xcl; 249 250 dprintk("svc: creating transport %s[%d]\n", xprt_name, port); 251 spin_lock(&svc_xprt_class_lock); 252 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 253 struct svc_xprt *newxprt; 254 unsigned short newport; 255 256 if (strcmp(xprt_name, xcl->xcl_name)) 257 continue; 258 259 if (!try_module_get(xcl->xcl_owner)) 260 goto err; 261 262 spin_unlock(&svc_xprt_class_lock); 263 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags); 264 if (IS_ERR(newxprt)) { 265 module_put(xcl->xcl_owner); 266 return PTR_ERR(newxprt); 267 } 268 svc_add_new_perm_xprt(serv, newxprt); 269 newport = svc_xprt_local_port(newxprt); 270 return newport; 271 } 272 err: 273 spin_unlock(&svc_xprt_class_lock); 274 dprintk("svc: transport %s not found\n", xprt_name); 275 276 /* This errno is exposed to user space. Provide a reasonable 277 * perror msg for a bad transport. */ 278 return -EPROTONOSUPPORT; 279 } 280 EXPORT_SYMBOL_GPL(svc_create_xprt); 281 282 /* 283 * Copy the local and remote xprt addresses to the rqstp structure 284 */ 285 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) 286 { 287 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); 288 rqstp->rq_addrlen = xprt->xpt_remotelen; 289 290 /* 291 * Destination address in request is needed for binding the 292 * source address in RPC replies/callbacks later. 293 */ 294 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen); 295 rqstp->rq_daddrlen = xprt->xpt_locallen; 296 } 297 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); 298 299 /** 300 * svc_print_addr - Format rq_addr field for printing 301 * @rqstp: svc_rqst struct containing address to print 302 * @buf: target buffer for formatted address 303 * @len: length of target buffer 304 * 305 */ 306 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) 307 { 308 return __svc_print_addr(svc_addr(rqstp), buf, len); 309 } 310 EXPORT_SYMBOL_GPL(svc_print_addr); 311 312 /* 313 * Queue up an idle server thread. Must have pool->sp_lock held. 314 * Note: this is really a stack rather than a queue, so that we only 315 * use as many different threads as we need, and the rest don't pollute 316 * the cache. 317 */ 318 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp) 319 { 320 list_add(&rqstp->rq_list, &pool->sp_threads); 321 } 322 323 /* 324 * Dequeue an nfsd thread. Must have pool->sp_lock held. 325 */ 326 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp) 327 { 328 list_del(&rqstp->rq_list); 329 } 330 331 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt) 332 { 333 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE))) 334 return true; 335 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) 336 return xprt->xpt_ops->xpo_has_wspace(xprt); 337 return false; 338 } 339 340 static void svc_xprt_do_enqueue(struct svc_xprt *xprt) 341 { 342 struct svc_pool *pool; 343 struct svc_rqst *rqstp; 344 int cpu; 345 346 if (!svc_xprt_has_something_to_do(xprt)) 347 return; 348 349 cpu = get_cpu(); 350 pool = svc_pool_for_cpu(xprt->xpt_server, cpu); 351 put_cpu(); 352 353 spin_lock_bh(&pool->sp_lock); 354 355 if (!list_empty(&pool->sp_threads) && 356 !list_empty(&pool->sp_sockets)) 357 printk(KERN_ERR 358 "svc_xprt_enqueue: " 359 "threads and transports both waiting??\n"); 360 361 pool->sp_stats.packets++; 362 363 /* Mark transport as busy. It will remain in this state until 364 * the provider calls svc_xprt_received. We update XPT_BUSY 365 * atomically because it also guards against trying to enqueue 366 * the transport twice. 367 */ 368 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) { 369 /* Don't enqueue transport while already enqueued */ 370 dprintk("svc: transport %p busy, not enqueued\n", xprt); 371 goto out_unlock; 372 } 373 374 if (!list_empty(&pool->sp_threads)) { 375 rqstp = list_entry(pool->sp_threads.next, 376 struct svc_rqst, 377 rq_list); 378 dprintk("svc: transport %p served by daemon %p\n", 379 xprt, rqstp); 380 svc_thread_dequeue(pool, rqstp); 381 if (rqstp->rq_xprt) 382 printk(KERN_ERR 383 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n", 384 rqstp, rqstp->rq_xprt); 385 rqstp->rq_xprt = xprt; 386 svc_xprt_get(xprt); 387 pool->sp_stats.threads_woken++; 388 wake_up(&rqstp->rq_wait); 389 } else { 390 dprintk("svc: transport %p put into queue\n", xprt); 391 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); 392 pool->sp_stats.sockets_queued++; 393 } 394 395 out_unlock: 396 spin_unlock_bh(&pool->sp_lock); 397 } 398 399 /* 400 * Queue up a transport with data pending. If there are idle nfsd 401 * processes, wake 'em up. 402 * 403 */ 404 void svc_xprt_enqueue(struct svc_xprt *xprt) 405 { 406 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) 407 return; 408 svc_xprt_do_enqueue(xprt); 409 } 410 EXPORT_SYMBOL_GPL(svc_xprt_enqueue); 411 412 /* 413 * Dequeue the first transport. Must be called with the pool->sp_lock held. 414 */ 415 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) 416 { 417 struct svc_xprt *xprt; 418 419 if (list_empty(&pool->sp_sockets)) 420 return NULL; 421 422 xprt = list_entry(pool->sp_sockets.next, 423 struct svc_xprt, xpt_ready); 424 list_del_init(&xprt->xpt_ready); 425 426 dprintk("svc: transport %p dequeued, inuse=%d\n", 427 xprt, atomic_read(&xprt->xpt_ref.refcount)); 428 429 return xprt; 430 } 431 432 /** 433 * svc_reserve - change the space reserved for the reply to a request. 434 * @rqstp: The request in question 435 * @space: new max space to reserve 436 * 437 * Each request reserves some space on the output queue of the transport 438 * to make sure the reply fits. This function reduces that reserved 439 * space to be the amount of space used already, plus @space. 440 * 441 */ 442 void svc_reserve(struct svc_rqst *rqstp, int space) 443 { 444 space += rqstp->rq_res.head[0].iov_len; 445 446 if (space < rqstp->rq_reserved) { 447 struct svc_xprt *xprt = rqstp->rq_xprt; 448 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); 449 rqstp->rq_reserved = space; 450 451 if (xprt->xpt_ops->xpo_adjust_wspace) 452 xprt->xpt_ops->xpo_adjust_wspace(xprt); 453 svc_xprt_enqueue(xprt); 454 } 455 } 456 EXPORT_SYMBOL_GPL(svc_reserve); 457 458 static void svc_xprt_release(struct svc_rqst *rqstp) 459 { 460 struct svc_xprt *xprt = rqstp->rq_xprt; 461 462 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); 463 464 kfree(rqstp->rq_deferred); 465 rqstp->rq_deferred = NULL; 466 467 svc_free_res_pages(rqstp); 468 rqstp->rq_res.page_len = 0; 469 rqstp->rq_res.page_base = 0; 470 471 /* Reset response buffer and release 472 * the reservation. 473 * But first, check that enough space was reserved 474 * for the reply, otherwise we have a bug! 475 */ 476 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 477 printk(KERN_ERR "RPC request reserved %d but used %d\n", 478 rqstp->rq_reserved, 479 rqstp->rq_res.len); 480 481 rqstp->rq_res.head[0].iov_len = 0; 482 svc_reserve(rqstp, 0); 483 rqstp->rq_xprt = NULL; 484 485 svc_xprt_put(xprt); 486 } 487 488 /* 489 * External function to wake up a server waiting for data 490 * This really only makes sense for services like lockd 491 * which have exactly one thread anyway. 492 */ 493 void svc_wake_up(struct svc_serv *serv) 494 { 495 struct svc_rqst *rqstp; 496 unsigned int i; 497 struct svc_pool *pool; 498 499 for (i = 0; i < serv->sv_nrpools; i++) { 500 pool = &serv->sv_pools[i]; 501 502 spin_lock_bh(&pool->sp_lock); 503 if (!list_empty(&pool->sp_threads)) { 504 rqstp = list_entry(pool->sp_threads.next, 505 struct svc_rqst, 506 rq_list); 507 dprintk("svc: daemon %p woken up.\n", rqstp); 508 /* 509 svc_thread_dequeue(pool, rqstp); 510 rqstp->rq_xprt = NULL; 511 */ 512 wake_up(&rqstp->rq_wait); 513 } else 514 pool->sp_task_pending = 1; 515 spin_unlock_bh(&pool->sp_lock); 516 } 517 } 518 EXPORT_SYMBOL_GPL(svc_wake_up); 519 520 int svc_port_is_privileged(struct sockaddr *sin) 521 { 522 switch (sin->sa_family) { 523 case AF_INET: 524 return ntohs(((struct sockaddr_in *)sin)->sin_port) 525 < PROT_SOCK; 526 case AF_INET6: 527 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) 528 < PROT_SOCK; 529 default: 530 return 0; 531 } 532 } 533 534 /* 535 * Make sure that we don't have too many active connections. If we have, 536 * something must be dropped. It's not clear what will happen if we allow 537 * "too many" connections, but when dealing with network-facing software, 538 * we have to code defensively. Here we do that by imposing hard limits. 539 * 540 * There's no point in trying to do random drop here for DoS 541 * prevention. The NFS clients does 1 reconnect in 15 seconds. An 542 * attacker can easily beat that. 543 * 544 * The only somewhat efficient mechanism would be if drop old 545 * connections from the same IP first. But right now we don't even 546 * record the client IP in svc_sock. 547 * 548 * single-threaded services that expect a lot of clients will probably 549 * need to set sv_maxconn to override the default value which is based 550 * on the number of threads 551 */ 552 static void svc_check_conn_limits(struct svc_serv *serv) 553 { 554 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn : 555 (serv->sv_nrthreads+3) * 20; 556 557 if (serv->sv_tmpcnt > limit) { 558 struct svc_xprt *xprt = NULL; 559 spin_lock_bh(&serv->sv_lock); 560 if (!list_empty(&serv->sv_tempsocks)) { 561 /* Try to help the admin */ 562 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n", 563 serv->sv_name, serv->sv_maxconn ? 564 "max number of connections" : 565 "number of threads"); 566 /* 567 * Always select the oldest connection. It's not fair, 568 * but so is life 569 */ 570 xprt = list_entry(serv->sv_tempsocks.prev, 571 struct svc_xprt, 572 xpt_list); 573 set_bit(XPT_CLOSE, &xprt->xpt_flags); 574 svc_xprt_get(xprt); 575 } 576 spin_unlock_bh(&serv->sv_lock); 577 578 if (xprt) { 579 svc_xprt_enqueue(xprt); 580 svc_xprt_put(xprt); 581 } 582 } 583 } 584 585 static int svc_alloc_arg(struct svc_rqst *rqstp) 586 { 587 struct svc_serv *serv = rqstp->rq_server; 588 struct xdr_buf *arg; 589 int pages; 590 int i; 591 592 /* now allocate needed pages. If we get a failure, sleep briefly */ 593 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE; 594 WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES); 595 if (pages >= RPCSVC_MAXPAGES) 596 /* use as many pages as possible */ 597 pages = RPCSVC_MAXPAGES - 1; 598 for (i = 0; i < pages ; i++) 599 while (rqstp->rq_pages[i] == NULL) { 600 struct page *p = alloc_page(GFP_KERNEL); 601 if (!p) { 602 set_current_state(TASK_INTERRUPTIBLE); 603 if (signalled() || kthread_should_stop()) { 604 set_current_state(TASK_RUNNING); 605 return -EINTR; 606 } 607 schedule_timeout(msecs_to_jiffies(500)); 608 } 609 rqstp->rq_pages[i] = p; 610 } 611 rqstp->rq_page_end = &rqstp->rq_pages[i]; 612 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */ 613 614 /* Make arg->head point to first page and arg->pages point to rest */ 615 arg = &rqstp->rq_arg; 616 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); 617 arg->head[0].iov_len = PAGE_SIZE; 618 arg->pages = rqstp->rq_pages + 1; 619 arg->page_base = 0; 620 /* save at least one page for response */ 621 arg->page_len = (pages-2)*PAGE_SIZE; 622 arg->len = (pages-1)*PAGE_SIZE; 623 arg->tail[0].iov_len = 0; 624 return 0; 625 } 626 627 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout) 628 { 629 struct svc_xprt *xprt; 630 struct svc_pool *pool = rqstp->rq_pool; 631 DECLARE_WAITQUEUE(wait, current); 632 long time_left; 633 634 /* Normally we will wait up to 5 seconds for any required 635 * cache information to be provided. 636 */ 637 rqstp->rq_chandle.thread_wait = 5*HZ; 638 639 spin_lock_bh(&pool->sp_lock); 640 xprt = svc_xprt_dequeue(pool); 641 if (xprt) { 642 rqstp->rq_xprt = xprt; 643 svc_xprt_get(xprt); 644 645 /* As there is a shortage of threads and this request 646 * had to be queued, don't allow the thread to wait so 647 * long for cache updates. 648 */ 649 rqstp->rq_chandle.thread_wait = 1*HZ; 650 pool->sp_task_pending = 0; 651 } else { 652 if (pool->sp_task_pending) { 653 pool->sp_task_pending = 0; 654 spin_unlock_bh(&pool->sp_lock); 655 return ERR_PTR(-EAGAIN); 656 } 657 /* No data pending. Go to sleep */ 658 svc_thread_enqueue(pool, rqstp); 659 660 /* 661 * We have to be able to interrupt this wait 662 * to bring down the daemons ... 663 */ 664 set_current_state(TASK_INTERRUPTIBLE); 665 666 /* 667 * checking kthread_should_stop() here allows us to avoid 668 * locking and signalling when stopping kthreads that call 669 * svc_recv. If the thread has already been woken up, then 670 * we can exit here without sleeping. If not, then it 671 * it'll be woken up quickly during the schedule_timeout 672 */ 673 if (kthread_should_stop()) { 674 set_current_state(TASK_RUNNING); 675 spin_unlock_bh(&pool->sp_lock); 676 return ERR_PTR(-EINTR); 677 } 678 679 add_wait_queue(&rqstp->rq_wait, &wait); 680 spin_unlock_bh(&pool->sp_lock); 681 682 time_left = schedule_timeout(timeout); 683 684 try_to_freeze(); 685 686 spin_lock_bh(&pool->sp_lock); 687 remove_wait_queue(&rqstp->rq_wait, &wait); 688 if (!time_left) 689 pool->sp_stats.threads_timedout++; 690 691 xprt = rqstp->rq_xprt; 692 if (!xprt) { 693 svc_thread_dequeue(pool, rqstp); 694 spin_unlock_bh(&pool->sp_lock); 695 dprintk("svc: server %p, no data yet\n", rqstp); 696 if (signalled() || kthread_should_stop()) 697 return ERR_PTR(-EINTR); 698 else 699 return ERR_PTR(-EAGAIN); 700 } 701 } 702 spin_unlock_bh(&pool->sp_lock); 703 return xprt; 704 } 705 706 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt) 707 { 708 spin_lock_bh(&serv->sv_lock); 709 set_bit(XPT_TEMP, &newxpt->xpt_flags); 710 list_add(&newxpt->xpt_list, &serv->sv_tempsocks); 711 serv->sv_tmpcnt++; 712 if (serv->sv_temptimer.function == NULL) { 713 /* setup timer to age temp transports */ 714 setup_timer(&serv->sv_temptimer, svc_age_temp_xprts, 715 (unsigned long)serv); 716 mod_timer(&serv->sv_temptimer, 717 jiffies + svc_conn_age_period * HZ); 718 } 719 spin_unlock_bh(&serv->sv_lock); 720 svc_xprt_received(newxpt); 721 } 722 723 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt) 724 { 725 struct svc_serv *serv = rqstp->rq_server; 726 int len = 0; 727 728 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { 729 dprintk("svc_recv: found XPT_CLOSE\n"); 730 svc_delete_xprt(xprt); 731 /* Leave XPT_BUSY set on the dead xprt: */ 732 return 0; 733 } 734 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 735 struct svc_xprt *newxpt; 736 /* 737 * We know this module_get will succeed because the 738 * listener holds a reference too 739 */ 740 __module_get(xprt->xpt_class->xcl_owner); 741 svc_check_conn_limits(xprt->xpt_server); 742 newxpt = xprt->xpt_ops->xpo_accept(xprt); 743 if (newxpt) 744 svc_add_new_temp_xprt(serv, newxpt); 745 else 746 module_put(xprt->xpt_class->xcl_owner); 747 } else if (xprt->xpt_ops->xpo_has_wspace(xprt)) { 748 /* XPT_DATA|XPT_DEFERRED case: */ 749 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n", 750 rqstp, rqstp->rq_pool->sp_id, xprt, 751 atomic_read(&xprt->xpt_ref.refcount)); 752 rqstp->rq_deferred = svc_deferred_dequeue(xprt); 753 if (rqstp->rq_deferred) 754 len = svc_deferred_recv(rqstp); 755 else 756 len = xprt->xpt_ops->xpo_recvfrom(rqstp); 757 dprintk("svc: got len=%d\n", len); 758 rqstp->rq_reserved = serv->sv_max_mesg; 759 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 760 } 761 /* clear XPT_BUSY: */ 762 svc_xprt_received(xprt); 763 return len; 764 } 765 766 /* 767 * Receive the next request on any transport. This code is carefully 768 * organised not to touch any cachelines in the shared svc_serv 769 * structure, only cachelines in the local svc_pool. 770 */ 771 int svc_recv(struct svc_rqst *rqstp, long timeout) 772 { 773 struct svc_xprt *xprt = NULL; 774 struct svc_serv *serv = rqstp->rq_server; 775 int len, err; 776 777 dprintk("svc: server %p waiting for data (to = %ld)\n", 778 rqstp, timeout); 779 780 if (rqstp->rq_xprt) 781 printk(KERN_ERR 782 "svc_recv: service %p, transport not NULL!\n", 783 rqstp); 784 if (waitqueue_active(&rqstp->rq_wait)) 785 printk(KERN_ERR 786 "svc_recv: service %p, wait queue active!\n", 787 rqstp); 788 789 err = svc_alloc_arg(rqstp); 790 if (err) 791 return err; 792 793 try_to_freeze(); 794 cond_resched(); 795 if (signalled() || kthread_should_stop()) 796 return -EINTR; 797 798 xprt = svc_get_next_xprt(rqstp, timeout); 799 if (IS_ERR(xprt)) 800 return PTR_ERR(xprt); 801 802 len = svc_handle_xprt(rqstp, xprt); 803 804 /* No data, incomplete (TCP) read, or accept() */ 805 if (len <= 0) 806 goto out; 807 808 clear_bit(XPT_OLD, &xprt->xpt_flags); 809 810 rqstp->rq_secure = xprt->xpt_ops->xpo_secure_port(rqstp); 811 rqstp->rq_chandle.defer = svc_defer; 812 813 if (serv->sv_stats) 814 serv->sv_stats->netcnt++; 815 return len; 816 out: 817 rqstp->rq_res.len = 0; 818 svc_xprt_release(rqstp); 819 return -EAGAIN; 820 } 821 EXPORT_SYMBOL_GPL(svc_recv); 822 823 /* 824 * Drop request 825 */ 826 void svc_drop(struct svc_rqst *rqstp) 827 { 828 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt); 829 svc_xprt_release(rqstp); 830 } 831 EXPORT_SYMBOL_GPL(svc_drop); 832 833 /* 834 * Return reply to client. 835 */ 836 int svc_send(struct svc_rqst *rqstp) 837 { 838 struct svc_xprt *xprt; 839 int len; 840 struct xdr_buf *xb; 841 842 xprt = rqstp->rq_xprt; 843 if (!xprt) 844 return -EFAULT; 845 846 /* release the receive skb before sending the reply */ 847 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); 848 849 /* calculate over-all length */ 850 xb = &rqstp->rq_res; 851 xb->len = xb->head[0].iov_len + 852 xb->page_len + 853 xb->tail[0].iov_len; 854 855 /* Grab mutex to serialize outgoing data. */ 856 mutex_lock(&xprt->xpt_mutex); 857 if (test_bit(XPT_DEAD, &xprt->xpt_flags) 858 || test_bit(XPT_CLOSE, &xprt->xpt_flags)) 859 len = -ENOTCONN; 860 else 861 len = xprt->xpt_ops->xpo_sendto(rqstp); 862 mutex_unlock(&xprt->xpt_mutex); 863 rpc_wake_up(&xprt->xpt_bc_pending); 864 svc_xprt_release(rqstp); 865 866 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) 867 return 0; 868 return len; 869 } 870 871 /* 872 * Timer function to close old temporary transports, using 873 * a mark-and-sweep algorithm. 874 */ 875 static void svc_age_temp_xprts(unsigned long closure) 876 { 877 struct svc_serv *serv = (struct svc_serv *)closure; 878 struct svc_xprt *xprt; 879 struct list_head *le, *next; 880 881 dprintk("svc_age_temp_xprts\n"); 882 883 if (!spin_trylock_bh(&serv->sv_lock)) { 884 /* busy, try again 1 sec later */ 885 dprintk("svc_age_temp_xprts: busy\n"); 886 mod_timer(&serv->sv_temptimer, jiffies + HZ); 887 return; 888 } 889 890 list_for_each_safe(le, next, &serv->sv_tempsocks) { 891 xprt = list_entry(le, struct svc_xprt, xpt_list); 892 893 /* First time through, just mark it OLD. Second time 894 * through, close it. */ 895 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) 896 continue; 897 if (atomic_read(&xprt->xpt_ref.refcount) > 1 || 898 test_bit(XPT_BUSY, &xprt->xpt_flags)) 899 continue; 900 list_del_init(le); 901 set_bit(XPT_CLOSE, &xprt->xpt_flags); 902 set_bit(XPT_DETACHED, &xprt->xpt_flags); 903 dprintk("queuing xprt %p for closing\n", xprt); 904 905 /* a thread will dequeue and close it soon */ 906 svc_xprt_enqueue(xprt); 907 } 908 spin_unlock_bh(&serv->sv_lock); 909 910 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); 911 } 912 913 static void call_xpt_users(struct svc_xprt *xprt) 914 { 915 struct svc_xpt_user *u; 916 917 spin_lock(&xprt->xpt_lock); 918 while (!list_empty(&xprt->xpt_users)) { 919 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list); 920 list_del(&u->list); 921 u->callback(u); 922 } 923 spin_unlock(&xprt->xpt_lock); 924 } 925 926 /* 927 * Remove a dead transport 928 */ 929 static void svc_delete_xprt(struct svc_xprt *xprt) 930 { 931 struct svc_serv *serv = xprt->xpt_server; 932 struct svc_deferred_req *dr; 933 934 /* Only do this once */ 935 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) 936 BUG(); 937 938 dprintk("svc: svc_delete_xprt(%p)\n", xprt); 939 xprt->xpt_ops->xpo_detach(xprt); 940 941 spin_lock_bh(&serv->sv_lock); 942 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags)) 943 list_del_init(&xprt->xpt_list); 944 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready)); 945 if (test_bit(XPT_TEMP, &xprt->xpt_flags)) 946 serv->sv_tmpcnt--; 947 spin_unlock_bh(&serv->sv_lock); 948 949 while ((dr = svc_deferred_dequeue(xprt)) != NULL) 950 kfree(dr); 951 952 call_xpt_users(xprt); 953 svc_xprt_put(xprt); 954 } 955 956 void svc_close_xprt(struct svc_xprt *xprt) 957 { 958 set_bit(XPT_CLOSE, &xprt->xpt_flags); 959 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 960 /* someone else will have to effect the close */ 961 return; 962 /* 963 * We expect svc_close_xprt() to work even when no threads are 964 * running (e.g., while configuring the server before starting 965 * any threads), so if the transport isn't busy, we delete 966 * it ourself: 967 */ 968 svc_delete_xprt(xprt); 969 } 970 EXPORT_SYMBOL_GPL(svc_close_xprt); 971 972 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) 973 { 974 struct svc_xprt *xprt; 975 int ret = 0; 976 977 spin_lock(&serv->sv_lock); 978 list_for_each_entry(xprt, xprt_list, xpt_list) { 979 if (xprt->xpt_net != net) 980 continue; 981 ret++; 982 set_bit(XPT_CLOSE, &xprt->xpt_flags); 983 svc_xprt_enqueue(xprt); 984 } 985 spin_unlock(&serv->sv_lock); 986 return ret; 987 } 988 989 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net) 990 { 991 struct svc_pool *pool; 992 struct svc_xprt *xprt; 993 struct svc_xprt *tmp; 994 int i; 995 996 for (i = 0; i < serv->sv_nrpools; i++) { 997 pool = &serv->sv_pools[i]; 998 999 spin_lock_bh(&pool->sp_lock); 1000 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) { 1001 if (xprt->xpt_net != net) 1002 continue; 1003 list_del_init(&xprt->xpt_ready); 1004 spin_unlock_bh(&pool->sp_lock); 1005 return xprt; 1006 } 1007 spin_unlock_bh(&pool->sp_lock); 1008 } 1009 return NULL; 1010 } 1011 1012 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net) 1013 { 1014 struct svc_xprt *xprt; 1015 1016 while ((xprt = svc_dequeue_net(serv, net))) { 1017 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1018 svc_delete_xprt(xprt); 1019 } 1020 } 1021 1022 /* 1023 * Server threads may still be running (especially in the case where the 1024 * service is still running in other network namespaces). 1025 * 1026 * So we shut down sockets the same way we would on a running server, by 1027 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do 1028 * the close. In the case there are no such other threads, 1029 * threads running, svc_clean_up_xprts() does a simple version of a 1030 * server's main event loop, and in the case where there are other 1031 * threads, we may need to wait a little while and then check again to 1032 * see if they're done. 1033 */ 1034 void svc_close_net(struct svc_serv *serv, struct net *net) 1035 { 1036 int delay = 0; 1037 1038 while (svc_close_list(serv, &serv->sv_permsocks, net) + 1039 svc_close_list(serv, &serv->sv_tempsocks, net)) { 1040 1041 svc_clean_up_xprts(serv, net); 1042 msleep(delay++); 1043 } 1044 } 1045 1046 /* 1047 * Handle defer and revisit of requests 1048 */ 1049 1050 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 1051 { 1052 struct svc_deferred_req *dr = 1053 container_of(dreq, struct svc_deferred_req, handle); 1054 struct svc_xprt *xprt = dr->xprt; 1055 1056 spin_lock(&xprt->xpt_lock); 1057 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 1058 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) { 1059 spin_unlock(&xprt->xpt_lock); 1060 dprintk("revisit canceled\n"); 1061 svc_xprt_put(xprt); 1062 kfree(dr); 1063 return; 1064 } 1065 dprintk("revisit queued\n"); 1066 dr->xprt = NULL; 1067 list_add(&dr->handle.recent, &xprt->xpt_deferred); 1068 spin_unlock(&xprt->xpt_lock); 1069 svc_xprt_enqueue(xprt); 1070 svc_xprt_put(xprt); 1071 } 1072 1073 /* 1074 * Save the request off for later processing. The request buffer looks 1075 * like this: 1076 * 1077 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> 1078 * 1079 * This code can only handle requests that consist of an xprt-header 1080 * and rpc-header. 1081 */ 1082 static struct cache_deferred_req *svc_defer(struct cache_req *req) 1083 { 1084 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 1085 struct svc_deferred_req *dr; 1086 1087 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral) 1088 return NULL; /* if more than a page, give up FIXME */ 1089 if (rqstp->rq_deferred) { 1090 dr = rqstp->rq_deferred; 1091 rqstp->rq_deferred = NULL; 1092 } else { 1093 size_t skip; 1094 size_t size; 1095 /* FIXME maybe discard if size too large */ 1096 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; 1097 dr = kmalloc(size, GFP_KERNEL); 1098 if (dr == NULL) 1099 return NULL; 1100 1101 dr->handle.owner = rqstp->rq_server; 1102 dr->prot = rqstp->rq_prot; 1103 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); 1104 dr->addrlen = rqstp->rq_addrlen; 1105 dr->daddr = rqstp->rq_daddr; 1106 dr->argslen = rqstp->rq_arg.len >> 2; 1107 dr->xprt_hlen = rqstp->rq_xprt_hlen; 1108 1109 /* back up head to the start of the buffer and copy */ 1110 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1111 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, 1112 dr->argslen << 2); 1113 } 1114 svc_xprt_get(rqstp->rq_xprt); 1115 dr->xprt = rqstp->rq_xprt; 1116 rqstp->rq_dropme = true; 1117 1118 dr->handle.revisit = svc_revisit; 1119 return &dr->handle; 1120 } 1121 1122 /* 1123 * recv data from a deferred request into an active one 1124 */ 1125 static int svc_deferred_recv(struct svc_rqst *rqstp) 1126 { 1127 struct svc_deferred_req *dr = rqstp->rq_deferred; 1128 1129 /* setup iov_base past transport header */ 1130 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2); 1131 /* The iov_len does not include the transport header bytes */ 1132 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen; 1133 rqstp->rq_arg.page_len = 0; 1134 /* The rq_arg.len includes the transport header bytes */ 1135 rqstp->rq_arg.len = dr->argslen<<2; 1136 rqstp->rq_prot = dr->prot; 1137 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); 1138 rqstp->rq_addrlen = dr->addrlen; 1139 /* Save off transport header len in case we get deferred again */ 1140 rqstp->rq_xprt_hlen = dr->xprt_hlen; 1141 rqstp->rq_daddr = dr->daddr; 1142 rqstp->rq_respages = rqstp->rq_pages; 1143 return (dr->argslen<<2) - dr->xprt_hlen; 1144 } 1145 1146 1147 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) 1148 { 1149 struct svc_deferred_req *dr = NULL; 1150 1151 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) 1152 return NULL; 1153 spin_lock(&xprt->xpt_lock); 1154 if (!list_empty(&xprt->xpt_deferred)) { 1155 dr = list_entry(xprt->xpt_deferred.next, 1156 struct svc_deferred_req, 1157 handle.recent); 1158 list_del_init(&dr->handle.recent); 1159 } else 1160 clear_bit(XPT_DEFERRED, &xprt->xpt_flags); 1161 spin_unlock(&xprt->xpt_lock); 1162 return dr; 1163 } 1164 1165 /** 1166 * svc_find_xprt - find an RPC transport instance 1167 * @serv: pointer to svc_serv to search 1168 * @xcl_name: C string containing transport's class name 1169 * @net: owner net pointer 1170 * @af: Address family of transport's local address 1171 * @port: transport's IP port number 1172 * 1173 * Return the transport instance pointer for the endpoint accepting 1174 * connections/peer traffic from the specified transport class, 1175 * address family and port. 1176 * 1177 * Specifying 0 for the address family or port is effectively a 1178 * wild-card, and will result in matching the first transport in the 1179 * service's list that has a matching class name. 1180 */ 1181 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name, 1182 struct net *net, const sa_family_t af, 1183 const unsigned short port) 1184 { 1185 struct svc_xprt *xprt; 1186 struct svc_xprt *found = NULL; 1187 1188 /* Sanity check the args */ 1189 if (serv == NULL || xcl_name == NULL) 1190 return found; 1191 1192 spin_lock_bh(&serv->sv_lock); 1193 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1194 if (xprt->xpt_net != net) 1195 continue; 1196 if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) 1197 continue; 1198 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) 1199 continue; 1200 if (port != 0 && port != svc_xprt_local_port(xprt)) 1201 continue; 1202 found = xprt; 1203 svc_xprt_get(xprt); 1204 break; 1205 } 1206 spin_unlock_bh(&serv->sv_lock); 1207 return found; 1208 } 1209 EXPORT_SYMBOL_GPL(svc_find_xprt); 1210 1211 static int svc_one_xprt_name(const struct svc_xprt *xprt, 1212 char *pos, int remaining) 1213 { 1214 int len; 1215 1216 len = snprintf(pos, remaining, "%s %u\n", 1217 xprt->xpt_class->xcl_name, 1218 svc_xprt_local_port(xprt)); 1219 if (len >= remaining) 1220 return -ENAMETOOLONG; 1221 return len; 1222 } 1223 1224 /** 1225 * svc_xprt_names - format a buffer with a list of transport names 1226 * @serv: pointer to an RPC service 1227 * @buf: pointer to a buffer to be filled in 1228 * @buflen: length of buffer to be filled in 1229 * 1230 * Fills in @buf with a string containing a list of transport names, 1231 * each name terminated with '\n'. 1232 * 1233 * Returns positive length of the filled-in string on success; otherwise 1234 * a negative errno value is returned if an error occurs. 1235 */ 1236 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen) 1237 { 1238 struct svc_xprt *xprt; 1239 int len, totlen; 1240 char *pos; 1241 1242 /* Sanity check args */ 1243 if (!serv) 1244 return 0; 1245 1246 spin_lock_bh(&serv->sv_lock); 1247 1248 pos = buf; 1249 totlen = 0; 1250 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1251 len = svc_one_xprt_name(xprt, pos, buflen - totlen); 1252 if (len < 0) { 1253 *buf = '\0'; 1254 totlen = len; 1255 } 1256 if (len <= 0) 1257 break; 1258 1259 pos += len; 1260 totlen += len; 1261 } 1262 1263 spin_unlock_bh(&serv->sv_lock); 1264 return totlen; 1265 } 1266 EXPORT_SYMBOL_GPL(svc_xprt_names); 1267 1268 1269 /*----------------------------------------------------------------------------*/ 1270 1271 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos) 1272 { 1273 unsigned int pidx = (unsigned int)*pos; 1274 struct svc_serv *serv = m->private; 1275 1276 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx); 1277 1278 if (!pidx) 1279 return SEQ_START_TOKEN; 1280 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]); 1281 } 1282 1283 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos) 1284 { 1285 struct svc_pool *pool = p; 1286 struct svc_serv *serv = m->private; 1287 1288 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos); 1289 1290 if (p == SEQ_START_TOKEN) { 1291 pool = &serv->sv_pools[0]; 1292 } else { 1293 unsigned int pidx = (pool - &serv->sv_pools[0]); 1294 if (pidx < serv->sv_nrpools-1) 1295 pool = &serv->sv_pools[pidx+1]; 1296 else 1297 pool = NULL; 1298 } 1299 ++*pos; 1300 return pool; 1301 } 1302 1303 static void svc_pool_stats_stop(struct seq_file *m, void *p) 1304 { 1305 } 1306 1307 static int svc_pool_stats_show(struct seq_file *m, void *p) 1308 { 1309 struct svc_pool *pool = p; 1310 1311 if (p == SEQ_START_TOKEN) { 1312 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n"); 1313 return 0; 1314 } 1315 1316 seq_printf(m, "%u %lu %lu %lu %lu\n", 1317 pool->sp_id, 1318 pool->sp_stats.packets, 1319 pool->sp_stats.sockets_queued, 1320 pool->sp_stats.threads_woken, 1321 pool->sp_stats.threads_timedout); 1322 1323 return 0; 1324 } 1325 1326 static const struct seq_operations svc_pool_stats_seq_ops = { 1327 .start = svc_pool_stats_start, 1328 .next = svc_pool_stats_next, 1329 .stop = svc_pool_stats_stop, 1330 .show = svc_pool_stats_show, 1331 }; 1332 1333 int svc_pool_stats_open(struct svc_serv *serv, struct file *file) 1334 { 1335 int err; 1336 1337 err = seq_open(file, &svc_pool_stats_seq_ops); 1338 if (!err) 1339 ((struct seq_file *) file->private_data)->private = serv; 1340 return err; 1341 } 1342 EXPORT_SYMBOL(svc_pool_stats_open); 1343 1344 /*----------------------------------------------------------------------------*/ 1345