xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision ff6defa6)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
18 #include <trace/events/sunrpc.h>
19 
20 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
21 
22 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
23 static int svc_deferred_recv(struct svc_rqst *rqstp);
24 static struct cache_deferred_req *svc_defer(struct cache_req *req);
25 static void svc_age_temp_xprts(unsigned long closure);
26 static void svc_delete_xprt(struct svc_xprt *xprt);
27 static void svc_xprt_do_enqueue(struct svc_xprt *xprt);
28 
29 /* apparently the "standard" is that clients close
30  * idle connections after 5 minutes, servers after
31  * 6 minutes
32  *   http://www.connectathon.org/talks96/nfstcp.pdf
33  */
34 static int svc_conn_age_period = 6*60;
35 
36 /* List of registered transport classes */
37 static DEFINE_SPINLOCK(svc_xprt_class_lock);
38 static LIST_HEAD(svc_xprt_class_list);
39 
40 /* SMP locking strategy:
41  *
42  *	svc_pool->sp_lock protects most of the fields of that pool.
43  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
44  *	when both need to be taken (rare), svc_serv->sv_lock is first.
45  *	BKL protects svc_serv->sv_nrthread.
46  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
47  *             and the ->sk_info_authunix cache.
48  *
49  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
50  *	enqueued multiply. During normal transport processing this bit
51  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
52  *	Providers should not manipulate this bit directly.
53  *
54  *	Some flags can be set to certain values at any time
55  *	providing that certain rules are followed:
56  *
57  *	XPT_CONN, XPT_DATA:
58  *		- Can be set or cleared at any time.
59  *		- After a set, svc_xprt_enqueue must be called to enqueue
60  *		  the transport for processing.
61  *		- After a clear, the transport must be read/accepted.
62  *		  If this succeeds, it must be set again.
63  *	XPT_CLOSE:
64  *		- Can set at any time. It is never cleared.
65  *      XPT_DEAD:
66  *		- Can only be set while XPT_BUSY is held which ensures
67  *		  that no other thread will be using the transport or will
68  *		  try to set XPT_DEAD.
69  */
70 
71 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
72 {
73 	struct svc_xprt_class *cl;
74 	int res = -EEXIST;
75 
76 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
77 
78 	INIT_LIST_HEAD(&xcl->xcl_list);
79 	spin_lock(&svc_xprt_class_lock);
80 	/* Make sure there isn't already a class with the same name */
81 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
82 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
83 			goto out;
84 	}
85 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
86 	res = 0;
87 out:
88 	spin_unlock(&svc_xprt_class_lock);
89 	return res;
90 }
91 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
92 
93 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
94 {
95 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
96 	spin_lock(&svc_xprt_class_lock);
97 	list_del_init(&xcl->xcl_list);
98 	spin_unlock(&svc_xprt_class_lock);
99 }
100 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
101 
102 /*
103  * Format the transport list for printing
104  */
105 int svc_print_xprts(char *buf, int maxlen)
106 {
107 	struct svc_xprt_class *xcl;
108 	char tmpstr[80];
109 	int len = 0;
110 	buf[0] = '\0';
111 
112 	spin_lock(&svc_xprt_class_lock);
113 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
114 		int slen;
115 
116 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
117 		slen = strlen(tmpstr);
118 		if (len + slen > maxlen)
119 			break;
120 		len += slen;
121 		strcat(buf, tmpstr);
122 	}
123 	spin_unlock(&svc_xprt_class_lock);
124 
125 	return len;
126 }
127 
128 static void svc_xprt_free(struct kref *kref)
129 {
130 	struct svc_xprt *xprt =
131 		container_of(kref, struct svc_xprt, xpt_ref);
132 	struct module *owner = xprt->xpt_class->xcl_owner;
133 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
134 		svcauth_unix_info_release(xprt);
135 	put_net(xprt->xpt_net);
136 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
137 	if (xprt->xpt_bc_xprt)
138 		xprt_put(xprt->xpt_bc_xprt);
139 	xprt->xpt_ops->xpo_free(xprt);
140 	module_put(owner);
141 }
142 
143 void svc_xprt_put(struct svc_xprt *xprt)
144 {
145 	kref_put(&xprt->xpt_ref, svc_xprt_free);
146 }
147 EXPORT_SYMBOL_GPL(svc_xprt_put);
148 
149 /*
150  * Called by transport drivers to initialize the transport independent
151  * portion of the transport instance.
152  */
153 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
154 		   struct svc_xprt *xprt, struct svc_serv *serv)
155 {
156 	memset(xprt, 0, sizeof(*xprt));
157 	xprt->xpt_class = xcl;
158 	xprt->xpt_ops = xcl->xcl_ops;
159 	kref_init(&xprt->xpt_ref);
160 	xprt->xpt_server = serv;
161 	INIT_LIST_HEAD(&xprt->xpt_list);
162 	INIT_LIST_HEAD(&xprt->xpt_ready);
163 	INIT_LIST_HEAD(&xprt->xpt_deferred);
164 	INIT_LIST_HEAD(&xprt->xpt_users);
165 	mutex_init(&xprt->xpt_mutex);
166 	spin_lock_init(&xprt->xpt_lock);
167 	set_bit(XPT_BUSY, &xprt->xpt_flags);
168 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
169 	xprt->xpt_net = get_net(net);
170 }
171 EXPORT_SYMBOL_GPL(svc_xprt_init);
172 
173 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
174 					 struct svc_serv *serv,
175 					 struct net *net,
176 					 const int family,
177 					 const unsigned short port,
178 					 int flags)
179 {
180 	struct sockaddr_in sin = {
181 		.sin_family		= AF_INET,
182 		.sin_addr.s_addr	= htonl(INADDR_ANY),
183 		.sin_port		= htons(port),
184 	};
185 #if IS_ENABLED(CONFIG_IPV6)
186 	struct sockaddr_in6 sin6 = {
187 		.sin6_family		= AF_INET6,
188 		.sin6_addr		= IN6ADDR_ANY_INIT,
189 		.sin6_port		= htons(port),
190 	};
191 #endif
192 	struct sockaddr *sap;
193 	size_t len;
194 
195 	switch (family) {
196 	case PF_INET:
197 		sap = (struct sockaddr *)&sin;
198 		len = sizeof(sin);
199 		break;
200 #if IS_ENABLED(CONFIG_IPV6)
201 	case PF_INET6:
202 		sap = (struct sockaddr *)&sin6;
203 		len = sizeof(sin6);
204 		break;
205 #endif
206 	default:
207 		return ERR_PTR(-EAFNOSUPPORT);
208 	}
209 
210 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
211 }
212 
213 /*
214  * svc_xprt_received conditionally queues the transport for processing
215  * by another thread. The caller must hold the XPT_BUSY bit and must
216  * not thereafter touch transport data.
217  *
218  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
219  * insufficient) data.
220  */
221 static void svc_xprt_received(struct svc_xprt *xprt)
222 {
223 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
224 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
225 		return;
226 	}
227 
228 	/* As soon as we clear busy, the xprt could be closed and
229 	 * 'put', so we need a reference to call svc_xprt_do_enqueue with:
230 	 */
231 	svc_xprt_get(xprt);
232 	smp_mb__before_atomic();
233 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
234 	svc_xprt_do_enqueue(xprt);
235 	svc_xprt_put(xprt);
236 }
237 
238 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
239 {
240 	clear_bit(XPT_TEMP, &new->xpt_flags);
241 	spin_lock_bh(&serv->sv_lock);
242 	list_add(&new->xpt_list, &serv->sv_permsocks);
243 	spin_unlock_bh(&serv->sv_lock);
244 	svc_xprt_received(new);
245 }
246 
247 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
248 		    struct net *net, const int family,
249 		    const unsigned short port, int flags)
250 {
251 	struct svc_xprt_class *xcl;
252 
253 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
254 	spin_lock(&svc_xprt_class_lock);
255 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
256 		struct svc_xprt *newxprt;
257 		unsigned short newport;
258 
259 		if (strcmp(xprt_name, xcl->xcl_name))
260 			continue;
261 
262 		if (!try_module_get(xcl->xcl_owner))
263 			goto err;
264 
265 		spin_unlock(&svc_xprt_class_lock);
266 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
267 		if (IS_ERR(newxprt)) {
268 			module_put(xcl->xcl_owner);
269 			return PTR_ERR(newxprt);
270 		}
271 		svc_add_new_perm_xprt(serv, newxprt);
272 		newport = svc_xprt_local_port(newxprt);
273 		return newport;
274 	}
275  err:
276 	spin_unlock(&svc_xprt_class_lock);
277 	dprintk("svc: transport %s not found\n", xprt_name);
278 
279 	/* This errno is exposed to user space.  Provide a reasonable
280 	 * perror msg for a bad transport. */
281 	return -EPROTONOSUPPORT;
282 }
283 EXPORT_SYMBOL_GPL(svc_create_xprt);
284 
285 /*
286  * Copy the local and remote xprt addresses to the rqstp structure
287  */
288 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
289 {
290 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
291 	rqstp->rq_addrlen = xprt->xpt_remotelen;
292 
293 	/*
294 	 * Destination address in request is needed for binding the
295 	 * source address in RPC replies/callbacks later.
296 	 */
297 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
298 	rqstp->rq_daddrlen = xprt->xpt_locallen;
299 }
300 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
301 
302 /**
303  * svc_print_addr - Format rq_addr field for printing
304  * @rqstp: svc_rqst struct containing address to print
305  * @buf: target buffer for formatted address
306  * @len: length of target buffer
307  *
308  */
309 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
310 {
311 	return __svc_print_addr(svc_addr(rqstp), buf, len);
312 }
313 EXPORT_SYMBOL_GPL(svc_print_addr);
314 
315 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
316 {
317 	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
318 		return true;
319 	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
320 		return xprt->xpt_ops->xpo_has_wspace(xprt);
321 	return false;
322 }
323 
324 static void svc_xprt_do_enqueue(struct svc_xprt *xprt)
325 {
326 	struct svc_pool *pool;
327 	struct svc_rqst	*rqstp = NULL;
328 	int cpu;
329 	bool queued = false;
330 
331 	if (!svc_xprt_has_something_to_do(xprt))
332 		goto out;
333 
334 	/* Mark transport as busy. It will remain in this state until
335 	 * the provider calls svc_xprt_received. We update XPT_BUSY
336 	 * atomically because it also guards against trying to enqueue
337 	 * the transport twice.
338 	 */
339 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
340 		/* Don't enqueue transport while already enqueued */
341 		dprintk("svc: transport %p busy, not enqueued\n", xprt);
342 		goto out;
343 	}
344 
345 	cpu = get_cpu();
346 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
347 
348 	atomic_long_inc(&pool->sp_stats.packets);
349 
350 redo_search:
351 	/* find a thread for this xprt */
352 	rcu_read_lock();
353 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
354 		/* Do a lockless check first */
355 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
356 			continue;
357 
358 		/*
359 		 * Once the xprt has been queued, it can only be dequeued by
360 		 * the task that intends to service it. All we can do at that
361 		 * point is to try to wake this thread back up so that it can
362 		 * do so.
363 		 */
364 		if (!queued) {
365 			spin_lock_bh(&rqstp->rq_lock);
366 			if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) {
367 				/* already busy, move on... */
368 				spin_unlock_bh(&rqstp->rq_lock);
369 				continue;
370 			}
371 
372 			/* this one will do */
373 			rqstp->rq_xprt = xprt;
374 			svc_xprt_get(xprt);
375 			spin_unlock_bh(&rqstp->rq_lock);
376 		}
377 		rcu_read_unlock();
378 
379 		atomic_long_inc(&pool->sp_stats.threads_woken);
380 		wake_up_process(rqstp->rq_task);
381 		put_cpu();
382 		goto out;
383 	}
384 	rcu_read_unlock();
385 
386 	/*
387 	 * We didn't find an idle thread to use, so we need to queue the xprt.
388 	 * Do so and then search again. If we find one, we can't hook this one
389 	 * up to it directly but we can wake the thread up in the hopes that it
390 	 * will pick it up once it searches for a xprt to service.
391 	 */
392 	if (!queued) {
393 		queued = true;
394 		dprintk("svc: transport %p put into queue\n", xprt);
395 		spin_lock_bh(&pool->sp_lock);
396 		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
397 		pool->sp_stats.sockets_queued++;
398 		spin_unlock_bh(&pool->sp_lock);
399 		goto redo_search;
400 	}
401 	rqstp = NULL;
402 	put_cpu();
403 out:
404 	trace_svc_xprt_do_enqueue(xprt, rqstp);
405 }
406 
407 /*
408  * Queue up a transport with data pending. If there are idle nfsd
409  * processes, wake 'em up.
410  *
411  */
412 void svc_xprt_enqueue(struct svc_xprt *xprt)
413 {
414 	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
415 		return;
416 	svc_xprt_do_enqueue(xprt);
417 }
418 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
419 
420 /*
421  * Dequeue the first transport, if there is one.
422  */
423 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
424 {
425 	struct svc_xprt	*xprt = NULL;
426 
427 	if (list_empty(&pool->sp_sockets))
428 		goto out;
429 
430 	spin_lock_bh(&pool->sp_lock);
431 	if (likely(!list_empty(&pool->sp_sockets))) {
432 		xprt = list_first_entry(&pool->sp_sockets,
433 					struct svc_xprt, xpt_ready);
434 		list_del_init(&xprt->xpt_ready);
435 		svc_xprt_get(xprt);
436 
437 		dprintk("svc: transport %p dequeued, inuse=%d\n",
438 			xprt, atomic_read(&xprt->xpt_ref.refcount));
439 	}
440 	spin_unlock_bh(&pool->sp_lock);
441 out:
442 	trace_svc_xprt_dequeue(xprt);
443 	return xprt;
444 }
445 
446 /**
447  * svc_reserve - change the space reserved for the reply to a request.
448  * @rqstp:  The request in question
449  * @space: new max space to reserve
450  *
451  * Each request reserves some space on the output queue of the transport
452  * to make sure the reply fits.  This function reduces that reserved
453  * space to be the amount of space used already, plus @space.
454  *
455  */
456 void svc_reserve(struct svc_rqst *rqstp, int space)
457 {
458 	space += rqstp->rq_res.head[0].iov_len;
459 
460 	if (space < rqstp->rq_reserved) {
461 		struct svc_xprt *xprt = rqstp->rq_xprt;
462 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
463 		rqstp->rq_reserved = space;
464 
465 		if (xprt->xpt_ops->xpo_adjust_wspace)
466 			xprt->xpt_ops->xpo_adjust_wspace(xprt);
467 		svc_xprt_enqueue(xprt);
468 	}
469 }
470 EXPORT_SYMBOL_GPL(svc_reserve);
471 
472 static void svc_xprt_release(struct svc_rqst *rqstp)
473 {
474 	struct svc_xprt	*xprt = rqstp->rq_xprt;
475 
476 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
477 
478 	kfree(rqstp->rq_deferred);
479 	rqstp->rq_deferred = NULL;
480 
481 	svc_free_res_pages(rqstp);
482 	rqstp->rq_res.page_len = 0;
483 	rqstp->rq_res.page_base = 0;
484 
485 	/* Reset response buffer and release
486 	 * the reservation.
487 	 * But first, check that enough space was reserved
488 	 * for the reply, otherwise we have a bug!
489 	 */
490 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
491 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
492 		       rqstp->rq_reserved,
493 		       rqstp->rq_res.len);
494 
495 	rqstp->rq_res.head[0].iov_len = 0;
496 	svc_reserve(rqstp, 0);
497 	rqstp->rq_xprt = NULL;
498 
499 	svc_xprt_put(xprt);
500 }
501 
502 /*
503  * Some svc_serv's will have occasional work to do, even when a xprt is not
504  * waiting to be serviced. This function is there to "kick" a task in one of
505  * those services so that it can wake up and do that work. Note that we only
506  * bother with pool 0 as we don't need to wake up more than one thread for
507  * this purpose.
508  */
509 void svc_wake_up(struct svc_serv *serv)
510 {
511 	struct svc_rqst	*rqstp;
512 	struct svc_pool *pool;
513 
514 	pool = &serv->sv_pools[0];
515 
516 	rcu_read_lock();
517 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
518 		/* skip any that aren't queued */
519 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
520 			continue;
521 		rcu_read_unlock();
522 		dprintk("svc: daemon %p woken up.\n", rqstp);
523 		wake_up_process(rqstp->rq_task);
524 		trace_svc_wake_up(rqstp->rq_task->pid);
525 		return;
526 	}
527 	rcu_read_unlock();
528 
529 	/* No free entries available */
530 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
531 	smp_wmb();
532 	trace_svc_wake_up(0);
533 }
534 EXPORT_SYMBOL_GPL(svc_wake_up);
535 
536 int svc_port_is_privileged(struct sockaddr *sin)
537 {
538 	switch (sin->sa_family) {
539 	case AF_INET:
540 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
541 			< PROT_SOCK;
542 	case AF_INET6:
543 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
544 			< PROT_SOCK;
545 	default:
546 		return 0;
547 	}
548 }
549 
550 /*
551  * Make sure that we don't have too many active connections. If we have,
552  * something must be dropped. It's not clear what will happen if we allow
553  * "too many" connections, but when dealing with network-facing software,
554  * we have to code defensively. Here we do that by imposing hard limits.
555  *
556  * There's no point in trying to do random drop here for DoS
557  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
558  * attacker can easily beat that.
559  *
560  * The only somewhat efficient mechanism would be if drop old
561  * connections from the same IP first. But right now we don't even
562  * record the client IP in svc_sock.
563  *
564  * single-threaded services that expect a lot of clients will probably
565  * need to set sv_maxconn to override the default value which is based
566  * on the number of threads
567  */
568 static void svc_check_conn_limits(struct svc_serv *serv)
569 {
570 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
571 				(serv->sv_nrthreads+3) * 20;
572 
573 	if (serv->sv_tmpcnt > limit) {
574 		struct svc_xprt *xprt = NULL;
575 		spin_lock_bh(&serv->sv_lock);
576 		if (!list_empty(&serv->sv_tempsocks)) {
577 			/* Try to help the admin */
578 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
579 					       serv->sv_name, serv->sv_maxconn ?
580 					       "max number of connections" :
581 					       "number of threads");
582 			/*
583 			 * Always select the oldest connection. It's not fair,
584 			 * but so is life
585 			 */
586 			xprt = list_entry(serv->sv_tempsocks.prev,
587 					  struct svc_xprt,
588 					  xpt_list);
589 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
590 			svc_xprt_get(xprt);
591 		}
592 		spin_unlock_bh(&serv->sv_lock);
593 
594 		if (xprt) {
595 			svc_xprt_enqueue(xprt);
596 			svc_xprt_put(xprt);
597 		}
598 	}
599 }
600 
601 static int svc_alloc_arg(struct svc_rqst *rqstp)
602 {
603 	struct svc_serv *serv = rqstp->rq_server;
604 	struct xdr_buf *arg;
605 	int pages;
606 	int i;
607 
608 	/* now allocate needed pages.  If we get a failure, sleep briefly */
609 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
610 	WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
611 	if (pages >= RPCSVC_MAXPAGES)
612 		/* use as many pages as possible */
613 		pages = RPCSVC_MAXPAGES - 1;
614 	for (i = 0; i < pages ; i++)
615 		while (rqstp->rq_pages[i] == NULL) {
616 			struct page *p = alloc_page(GFP_KERNEL);
617 			if (!p) {
618 				set_current_state(TASK_INTERRUPTIBLE);
619 				if (signalled() || kthread_should_stop()) {
620 					set_current_state(TASK_RUNNING);
621 					return -EINTR;
622 				}
623 				schedule_timeout(msecs_to_jiffies(500));
624 			}
625 			rqstp->rq_pages[i] = p;
626 		}
627 	rqstp->rq_page_end = &rqstp->rq_pages[i];
628 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
629 
630 	/* Make arg->head point to first page and arg->pages point to rest */
631 	arg = &rqstp->rq_arg;
632 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
633 	arg->head[0].iov_len = PAGE_SIZE;
634 	arg->pages = rqstp->rq_pages + 1;
635 	arg->page_base = 0;
636 	/* save at least one page for response */
637 	arg->page_len = (pages-2)*PAGE_SIZE;
638 	arg->len = (pages-1)*PAGE_SIZE;
639 	arg->tail[0].iov_len = 0;
640 	return 0;
641 }
642 
643 static bool
644 rqst_should_sleep(struct svc_rqst *rqstp)
645 {
646 	struct svc_pool		*pool = rqstp->rq_pool;
647 
648 	/* did someone call svc_wake_up? */
649 	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
650 		return false;
651 
652 	/* was a socket queued? */
653 	if (!list_empty(&pool->sp_sockets))
654 		return false;
655 
656 	/* are we shutting down? */
657 	if (signalled() || kthread_should_stop())
658 		return false;
659 
660 	/* are we freezing? */
661 	if (freezing(current))
662 		return false;
663 
664 	return true;
665 }
666 
667 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
668 {
669 	struct svc_xprt *xprt;
670 	struct svc_pool		*pool = rqstp->rq_pool;
671 	long			time_left = 0;
672 
673 	/* rq_xprt should be clear on entry */
674 	WARN_ON_ONCE(rqstp->rq_xprt);
675 
676 	/* Normally we will wait up to 5 seconds for any required
677 	 * cache information to be provided.
678 	 */
679 	rqstp->rq_chandle.thread_wait = 5*HZ;
680 
681 	xprt = svc_xprt_dequeue(pool);
682 	if (xprt) {
683 		rqstp->rq_xprt = xprt;
684 
685 		/* As there is a shortage of threads and this request
686 		 * had to be queued, don't allow the thread to wait so
687 		 * long for cache updates.
688 		 */
689 		rqstp->rq_chandle.thread_wait = 1*HZ;
690 		clear_bit(SP_TASK_PENDING, &pool->sp_flags);
691 		return xprt;
692 	}
693 
694 	/*
695 	 * We have to be able to interrupt this wait
696 	 * to bring down the daemons ...
697 	 */
698 	set_current_state(TASK_INTERRUPTIBLE);
699 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
700 	smp_mb();
701 
702 	if (likely(rqst_should_sleep(rqstp)))
703 		time_left = schedule_timeout(timeout);
704 	else
705 		__set_current_state(TASK_RUNNING);
706 
707 	try_to_freeze();
708 
709 	spin_lock_bh(&rqstp->rq_lock);
710 	set_bit(RQ_BUSY, &rqstp->rq_flags);
711 	spin_unlock_bh(&rqstp->rq_lock);
712 
713 	xprt = rqstp->rq_xprt;
714 	if (xprt != NULL)
715 		return xprt;
716 
717 	if (!time_left)
718 		atomic_long_inc(&pool->sp_stats.threads_timedout);
719 
720 	if (signalled() || kthread_should_stop())
721 		return ERR_PTR(-EINTR);
722 	return ERR_PTR(-EAGAIN);
723 }
724 
725 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
726 {
727 	spin_lock_bh(&serv->sv_lock);
728 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
729 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
730 	serv->sv_tmpcnt++;
731 	if (serv->sv_temptimer.function == NULL) {
732 		/* setup timer to age temp transports */
733 		setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
734 			    (unsigned long)serv);
735 		mod_timer(&serv->sv_temptimer,
736 			  jiffies + svc_conn_age_period * HZ);
737 	}
738 	spin_unlock_bh(&serv->sv_lock);
739 	svc_xprt_received(newxpt);
740 }
741 
742 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
743 {
744 	struct svc_serv *serv = rqstp->rq_server;
745 	int len = 0;
746 
747 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
748 		dprintk("svc_recv: found XPT_CLOSE\n");
749 		svc_delete_xprt(xprt);
750 		/* Leave XPT_BUSY set on the dead xprt: */
751 		goto out;
752 	}
753 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
754 		struct svc_xprt *newxpt;
755 		/*
756 		 * We know this module_get will succeed because the
757 		 * listener holds a reference too
758 		 */
759 		__module_get(xprt->xpt_class->xcl_owner);
760 		svc_check_conn_limits(xprt->xpt_server);
761 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
762 		if (newxpt)
763 			svc_add_new_temp_xprt(serv, newxpt);
764 		else
765 			module_put(xprt->xpt_class->xcl_owner);
766 	} else {
767 		/* XPT_DATA|XPT_DEFERRED case: */
768 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
769 			rqstp, rqstp->rq_pool->sp_id, xprt,
770 			atomic_read(&xprt->xpt_ref.refcount));
771 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
772 		if (rqstp->rq_deferred)
773 			len = svc_deferred_recv(rqstp);
774 		else
775 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
776 		dprintk("svc: got len=%d\n", len);
777 		rqstp->rq_reserved = serv->sv_max_mesg;
778 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
779 	}
780 	/* clear XPT_BUSY: */
781 	svc_xprt_received(xprt);
782 out:
783 	trace_svc_handle_xprt(xprt, len);
784 	return len;
785 }
786 
787 /*
788  * Receive the next request on any transport.  This code is carefully
789  * organised not to touch any cachelines in the shared svc_serv
790  * structure, only cachelines in the local svc_pool.
791  */
792 int svc_recv(struct svc_rqst *rqstp, long timeout)
793 {
794 	struct svc_xprt		*xprt = NULL;
795 	struct svc_serv		*serv = rqstp->rq_server;
796 	int			len, err;
797 
798 	dprintk("svc: server %p waiting for data (to = %ld)\n",
799 		rqstp, timeout);
800 
801 	if (rqstp->rq_xprt)
802 		printk(KERN_ERR
803 			"svc_recv: service %p, transport not NULL!\n",
804 			 rqstp);
805 
806 	err = svc_alloc_arg(rqstp);
807 	if (err)
808 		goto out;
809 
810 	try_to_freeze();
811 	cond_resched();
812 	err = -EINTR;
813 	if (signalled() || kthread_should_stop())
814 		goto out;
815 
816 	xprt = svc_get_next_xprt(rqstp, timeout);
817 	if (IS_ERR(xprt)) {
818 		err = PTR_ERR(xprt);
819 		goto out;
820 	}
821 
822 	len = svc_handle_xprt(rqstp, xprt);
823 
824 	/* No data, incomplete (TCP) read, or accept() */
825 	err = -EAGAIN;
826 	if (len <= 0)
827 		goto out_release;
828 
829 	clear_bit(XPT_OLD, &xprt->xpt_flags);
830 
831 	if (xprt->xpt_ops->xpo_secure_port(rqstp))
832 		set_bit(RQ_SECURE, &rqstp->rq_flags);
833 	else
834 		clear_bit(RQ_SECURE, &rqstp->rq_flags);
835 	rqstp->rq_chandle.defer = svc_defer;
836 	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
837 
838 	if (serv->sv_stats)
839 		serv->sv_stats->netcnt++;
840 	trace_svc_recv(rqstp, len);
841 	return len;
842 out_release:
843 	rqstp->rq_res.len = 0;
844 	svc_xprt_release(rqstp);
845 out:
846 	trace_svc_recv(rqstp, err);
847 	return err;
848 }
849 EXPORT_SYMBOL_GPL(svc_recv);
850 
851 /*
852  * Drop request
853  */
854 void svc_drop(struct svc_rqst *rqstp)
855 {
856 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
857 	svc_xprt_release(rqstp);
858 }
859 EXPORT_SYMBOL_GPL(svc_drop);
860 
861 /*
862  * Return reply to client.
863  */
864 int svc_send(struct svc_rqst *rqstp)
865 {
866 	struct svc_xprt	*xprt;
867 	int		len = -EFAULT;
868 	struct xdr_buf	*xb;
869 
870 	xprt = rqstp->rq_xprt;
871 	if (!xprt)
872 		goto out;
873 
874 	/* release the receive skb before sending the reply */
875 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
876 
877 	/* calculate over-all length */
878 	xb = &rqstp->rq_res;
879 	xb->len = xb->head[0].iov_len +
880 		xb->page_len +
881 		xb->tail[0].iov_len;
882 
883 	/* Grab mutex to serialize outgoing data. */
884 	mutex_lock(&xprt->xpt_mutex);
885 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
886 			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
887 		len = -ENOTCONN;
888 	else
889 		len = xprt->xpt_ops->xpo_sendto(rqstp);
890 	mutex_unlock(&xprt->xpt_mutex);
891 	rpc_wake_up(&xprt->xpt_bc_pending);
892 	svc_xprt_release(rqstp);
893 
894 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
895 		len = 0;
896 out:
897 	trace_svc_send(rqstp, len);
898 	return len;
899 }
900 
901 /*
902  * Timer function to close old temporary transports, using
903  * a mark-and-sweep algorithm.
904  */
905 static void svc_age_temp_xprts(unsigned long closure)
906 {
907 	struct svc_serv *serv = (struct svc_serv *)closure;
908 	struct svc_xprt *xprt;
909 	struct list_head *le, *next;
910 
911 	dprintk("svc_age_temp_xprts\n");
912 
913 	if (!spin_trylock_bh(&serv->sv_lock)) {
914 		/* busy, try again 1 sec later */
915 		dprintk("svc_age_temp_xprts: busy\n");
916 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
917 		return;
918 	}
919 
920 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
921 		xprt = list_entry(le, struct svc_xprt, xpt_list);
922 
923 		/* First time through, just mark it OLD. Second time
924 		 * through, close it. */
925 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
926 			continue;
927 		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
928 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
929 			continue;
930 		list_del_init(le);
931 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
932 		dprintk("queuing xprt %p for closing\n", xprt);
933 
934 		/* a thread will dequeue and close it soon */
935 		svc_xprt_enqueue(xprt);
936 	}
937 	spin_unlock_bh(&serv->sv_lock);
938 
939 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
940 }
941 
942 static void call_xpt_users(struct svc_xprt *xprt)
943 {
944 	struct svc_xpt_user *u;
945 
946 	spin_lock(&xprt->xpt_lock);
947 	while (!list_empty(&xprt->xpt_users)) {
948 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
949 		list_del(&u->list);
950 		u->callback(u);
951 	}
952 	spin_unlock(&xprt->xpt_lock);
953 }
954 
955 /*
956  * Remove a dead transport
957  */
958 static void svc_delete_xprt(struct svc_xprt *xprt)
959 {
960 	struct svc_serv	*serv = xprt->xpt_server;
961 	struct svc_deferred_req *dr;
962 
963 	/* Only do this once */
964 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
965 		BUG();
966 
967 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
968 	xprt->xpt_ops->xpo_detach(xprt);
969 
970 	spin_lock_bh(&serv->sv_lock);
971 	list_del_init(&xprt->xpt_list);
972 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
973 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
974 		serv->sv_tmpcnt--;
975 	spin_unlock_bh(&serv->sv_lock);
976 
977 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
978 		kfree(dr);
979 
980 	call_xpt_users(xprt);
981 	svc_xprt_put(xprt);
982 }
983 
984 void svc_close_xprt(struct svc_xprt *xprt)
985 {
986 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
987 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
988 		/* someone else will have to effect the close */
989 		return;
990 	/*
991 	 * We expect svc_close_xprt() to work even when no threads are
992 	 * running (e.g., while configuring the server before starting
993 	 * any threads), so if the transport isn't busy, we delete
994 	 * it ourself:
995 	 */
996 	svc_delete_xprt(xprt);
997 }
998 EXPORT_SYMBOL_GPL(svc_close_xprt);
999 
1000 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1001 {
1002 	struct svc_xprt *xprt;
1003 	int ret = 0;
1004 
1005 	spin_lock(&serv->sv_lock);
1006 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1007 		if (xprt->xpt_net != net)
1008 			continue;
1009 		ret++;
1010 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1011 		svc_xprt_enqueue(xprt);
1012 	}
1013 	spin_unlock(&serv->sv_lock);
1014 	return ret;
1015 }
1016 
1017 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1018 {
1019 	struct svc_pool *pool;
1020 	struct svc_xprt *xprt;
1021 	struct svc_xprt *tmp;
1022 	int i;
1023 
1024 	for (i = 0; i < serv->sv_nrpools; i++) {
1025 		pool = &serv->sv_pools[i];
1026 
1027 		spin_lock_bh(&pool->sp_lock);
1028 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1029 			if (xprt->xpt_net != net)
1030 				continue;
1031 			list_del_init(&xprt->xpt_ready);
1032 			spin_unlock_bh(&pool->sp_lock);
1033 			return xprt;
1034 		}
1035 		spin_unlock_bh(&pool->sp_lock);
1036 	}
1037 	return NULL;
1038 }
1039 
1040 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1041 {
1042 	struct svc_xprt *xprt;
1043 
1044 	while ((xprt = svc_dequeue_net(serv, net))) {
1045 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1046 		svc_delete_xprt(xprt);
1047 	}
1048 }
1049 
1050 /*
1051  * Server threads may still be running (especially in the case where the
1052  * service is still running in other network namespaces).
1053  *
1054  * So we shut down sockets the same way we would on a running server, by
1055  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1056  * the close.  In the case there are no such other threads,
1057  * threads running, svc_clean_up_xprts() does a simple version of a
1058  * server's main event loop, and in the case where there are other
1059  * threads, we may need to wait a little while and then check again to
1060  * see if they're done.
1061  */
1062 void svc_close_net(struct svc_serv *serv, struct net *net)
1063 {
1064 	int delay = 0;
1065 
1066 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1067 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1068 
1069 		svc_clean_up_xprts(serv, net);
1070 		msleep(delay++);
1071 	}
1072 }
1073 
1074 /*
1075  * Handle defer and revisit of requests
1076  */
1077 
1078 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1079 {
1080 	struct svc_deferred_req *dr =
1081 		container_of(dreq, struct svc_deferred_req, handle);
1082 	struct svc_xprt *xprt = dr->xprt;
1083 
1084 	spin_lock(&xprt->xpt_lock);
1085 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1086 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1087 		spin_unlock(&xprt->xpt_lock);
1088 		dprintk("revisit canceled\n");
1089 		svc_xprt_put(xprt);
1090 		kfree(dr);
1091 		return;
1092 	}
1093 	dprintk("revisit queued\n");
1094 	dr->xprt = NULL;
1095 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1096 	spin_unlock(&xprt->xpt_lock);
1097 	svc_xprt_enqueue(xprt);
1098 	svc_xprt_put(xprt);
1099 }
1100 
1101 /*
1102  * Save the request off for later processing. The request buffer looks
1103  * like this:
1104  *
1105  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1106  *
1107  * This code can only handle requests that consist of an xprt-header
1108  * and rpc-header.
1109  */
1110 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1111 {
1112 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1113 	struct svc_deferred_req *dr;
1114 
1115 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1116 		return NULL; /* if more than a page, give up FIXME */
1117 	if (rqstp->rq_deferred) {
1118 		dr = rqstp->rq_deferred;
1119 		rqstp->rq_deferred = NULL;
1120 	} else {
1121 		size_t skip;
1122 		size_t size;
1123 		/* FIXME maybe discard if size too large */
1124 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1125 		dr = kmalloc(size, GFP_KERNEL);
1126 		if (dr == NULL)
1127 			return NULL;
1128 
1129 		dr->handle.owner = rqstp->rq_server;
1130 		dr->prot = rqstp->rq_prot;
1131 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1132 		dr->addrlen = rqstp->rq_addrlen;
1133 		dr->daddr = rqstp->rq_daddr;
1134 		dr->argslen = rqstp->rq_arg.len >> 2;
1135 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1136 
1137 		/* back up head to the start of the buffer and copy */
1138 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1139 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1140 		       dr->argslen << 2);
1141 	}
1142 	svc_xprt_get(rqstp->rq_xprt);
1143 	dr->xprt = rqstp->rq_xprt;
1144 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1145 
1146 	dr->handle.revisit = svc_revisit;
1147 	return &dr->handle;
1148 }
1149 
1150 /*
1151  * recv data from a deferred request into an active one
1152  */
1153 static int svc_deferred_recv(struct svc_rqst *rqstp)
1154 {
1155 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1156 
1157 	/* setup iov_base past transport header */
1158 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1159 	/* The iov_len does not include the transport header bytes */
1160 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1161 	rqstp->rq_arg.page_len = 0;
1162 	/* The rq_arg.len includes the transport header bytes */
1163 	rqstp->rq_arg.len     = dr->argslen<<2;
1164 	rqstp->rq_prot        = dr->prot;
1165 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1166 	rqstp->rq_addrlen     = dr->addrlen;
1167 	/* Save off transport header len in case we get deferred again */
1168 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1169 	rqstp->rq_daddr       = dr->daddr;
1170 	rqstp->rq_respages    = rqstp->rq_pages;
1171 	return (dr->argslen<<2) - dr->xprt_hlen;
1172 }
1173 
1174 
1175 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1176 {
1177 	struct svc_deferred_req *dr = NULL;
1178 
1179 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1180 		return NULL;
1181 	spin_lock(&xprt->xpt_lock);
1182 	if (!list_empty(&xprt->xpt_deferred)) {
1183 		dr = list_entry(xprt->xpt_deferred.next,
1184 				struct svc_deferred_req,
1185 				handle.recent);
1186 		list_del_init(&dr->handle.recent);
1187 	} else
1188 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1189 	spin_unlock(&xprt->xpt_lock);
1190 	return dr;
1191 }
1192 
1193 /**
1194  * svc_find_xprt - find an RPC transport instance
1195  * @serv: pointer to svc_serv to search
1196  * @xcl_name: C string containing transport's class name
1197  * @net: owner net pointer
1198  * @af: Address family of transport's local address
1199  * @port: transport's IP port number
1200  *
1201  * Return the transport instance pointer for the endpoint accepting
1202  * connections/peer traffic from the specified transport class,
1203  * address family and port.
1204  *
1205  * Specifying 0 for the address family or port is effectively a
1206  * wild-card, and will result in matching the first transport in the
1207  * service's list that has a matching class name.
1208  */
1209 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1210 			       struct net *net, const sa_family_t af,
1211 			       const unsigned short port)
1212 {
1213 	struct svc_xprt *xprt;
1214 	struct svc_xprt *found = NULL;
1215 
1216 	/* Sanity check the args */
1217 	if (serv == NULL || xcl_name == NULL)
1218 		return found;
1219 
1220 	spin_lock_bh(&serv->sv_lock);
1221 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1222 		if (xprt->xpt_net != net)
1223 			continue;
1224 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1225 			continue;
1226 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1227 			continue;
1228 		if (port != 0 && port != svc_xprt_local_port(xprt))
1229 			continue;
1230 		found = xprt;
1231 		svc_xprt_get(xprt);
1232 		break;
1233 	}
1234 	spin_unlock_bh(&serv->sv_lock);
1235 	return found;
1236 }
1237 EXPORT_SYMBOL_GPL(svc_find_xprt);
1238 
1239 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1240 			     char *pos, int remaining)
1241 {
1242 	int len;
1243 
1244 	len = snprintf(pos, remaining, "%s %u\n",
1245 			xprt->xpt_class->xcl_name,
1246 			svc_xprt_local_port(xprt));
1247 	if (len >= remaining)
1248 		return -ENAMETOOLONG;
1249 	return len;
1250 }
1251 
1252 /**
1253  * svc_xprt_names - format a buffer with a list of transport names
1254  * @serv: pointer to an RPC service
1255  * @buf: pointer to a buffer to be filled in
1256  * @buflen: length of buffer to be filled in
1257  *
1258  * Fills in @buf with a string containing a list of transport names,
1259  * each name terminated with '\n'.
1260  *
1261  * Returns positive length of the filled-in string on success; otherwise
1262  * a negative errno value is returned if an error occurs.
1263  */
1264 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1265 {
1266 	struct svc_xprt *xprt;
1267 	int len, totlen;
1268 	char *pos;
1269 
1270 	/* Sanity check args */
1271 	if (!serv)
1272 		return 0;
1273 
1274 	spin_lock_bh(&serv->sv_lock);
1275 
1276 	pos = buf;
1277 	totlen = 0;
1278 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1279 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1280 		if (len < 0) {
1281 			*buf = '\0';
1282 			totlen = len;
1283 		}
1284 		if (len <= 0)
1285 			break;
1286 
1287 		pos += len;
1288 		totlen += len;
1289 	}
1290 
1291 	spin_unlock_bh(&serv->sv_lock);
1292 	return totlen;
1293 }
1294 EXPORT_SYMBOL_GPL(svc_xprt_names);
1295 
1296 
1297 /*----------------------------------------------------------------------------*/
1298 
1299 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1300 {
1301 	unsigned int pidx = (unsigned int)*pos;
1302 	struct svc_serv *serv = m->private;
1303 
1304 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1305 
1306 	if (!pidx)
1307 		return SEQ_START_TOKEN;
1308 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1309 }
1310 
1311 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1312 {
1313 	struct svc_pool *pool = p;
1314 	struct svc_serv *serv = m->private;
1315 
1316 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1317 
1318 	if (p == SEQ_START_TOKEN) {
1319 		pool = &serv->sv_pools[0];
1320 	} else {
1321 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1322 		if (pidx < serv->sv_nrpools-1)
1323 			pool = &serv->sv_pools[pidx+1];
1324 		else
1325 			pool = NULL;
1326 	}
1327 	++*pos;
1328 	return pool;
1329 }
1330 
1331 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1332 {
1333 }
1334 
1335 static int svc_pool_stats_show(struct seq_file *m, void *p)
1336 {
1337 	struct svc_pool *pool = p;
1338 
1339 	if (p == SEQ_START_TOKEN) {
1340 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1341 		return 0;
1342 	}
1343 
1344 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1345 		pool->sp_id,
1346 		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1347 		pool->sp_stats.sockets_queued,
1348 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1349 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1350 
1351 	return 0;
1352 }
1353 
1354 static const struct seq_operations svc_pool_stats_seq_ops = {
1355 	.start	= svc_pool_stats_start,
1356 	.next	= svc_pool_stats_next,
1357 	.stop	= svc_pool_stats_stop,
1358 	.show	= svc_pool_stats_show,
1359 };
1360 
1361 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1362 {
1363 	int err;
1364 
1365 	err = seq_open(file, &svc_pool_stats_seq_ops);
1366 	if (!err)
1367 		((struct seq_file *) file->private_data)->private = serv;
1368 	return err;
1369 }
1370 EXPORT_SYMBOL(svc_pool_stats_open);
1371 
1372 /*----------------------------------------------------------------------------*/
1373