1 /* 2 * linux/net/sunrpc/svc_xprt.c 3 * 4 * Author: Tom Tucker <tom@opengridcomputing.com> 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/errno.h> 9 #include <linux/freezer.h> 10 #include <linux/kthread.h> 11 #include <linux/slab.h> 12 #include <net/sock.h> 13 #include <linux/sunrpc/stats.h> 14 #include <linux/sunrpc/svc_xprt.h> 15 #include <linux/sunrpc/svcsock.h> 16 #include <linux/sunrpc/xprt.h> 17 #include <linux/module.h> 18 #include <trace/events/sunrpc.h> 19 20 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 21 22 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); 23 static int svc_deferred_recv(struct svc_rqst *rqstp); 24 static struct cache_deferred_req *svc_defer(struct cache_req *req); 25 static void svc_age_temp_xprts(unsigned long closure); 26 static void svc_delete_xprt(struct svc_xprt *xprt); 27 static void svc_xprt_do_enqueue(struct svc_xprt *xprt); 28 29 /* apparently the "standard" is that clients close 30 * idle connections after 5 minutes, servers after 31 * 6 minutes 32 * http://www.connectathon.org/talks96/nfstcp.pdf 33 */ 34 static int svc_conn_age_period = 6*60; 35 36 /* List of registered transport classes */ 37 static DEFINE_SPINLOCK(svc_xprt_class_lock); 38 static LIST_HEAD(svc_xprt_class_list); 39 40 /* SMP locking strategy: 41 * 42 * svc_pool->sp_lock protects most of the fields of that pool. 43 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. 44 * when both need to be taken (rare), svc_serv->sv_lock is first. 45 * BKL protects svc_serv->sv_nrthread. 46 * svc_sock->sk_lock protects the svc_sock->sk_deferred list 47 * and the ->sk_info_authunix cache. 48 * 49 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being 50 * enqueued multiply. During normal transport processing this bit 51 * is set by svc_xprt_enqueue and cleared by svc_xprt_received. 52 * Providers should not manipulate this bit directly. 53 * 54 * Some flags can be set to certain values at any time 55 * providing that certain rules are followed: 56 * 57 * XPT_CONN, XPT_DATA: 58 * - Can be set or cleared at any time. 59 * - After a set, svc_xprt_enqueue must be called to enqueue 60 * the transport for processing. 61 * - After a clear, the transport must be read/accepted. 62 * If this succeeds, it must be set again. 63 * XPT_CLOSE: 64 * - Can set at any time. It is never cleared. 65 * XPT_DEAD: 66 * - Can only be set while XPT_BUSY is held which ensures 67 * that no other thread will be using the transport or will 68 * try to set XPT_DEAD. 69 */ 70 71 int svc_reg_xprt_class(struct svc_xprt_class *xcl) 72 { 73 struct svc_xprt_class *cl; 74 int res = -EEXIST; 75 76 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name); 77 78 INIT_LIST_HEAD(&xcl->xcl_list); 79 spin_lock(&svc_xprt_class_lock); 80 /* Make sure there isn't already a class with the same name */ 81 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { 82 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) 83 goto out; 84 } 85 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); 86 res = 0; 87 out: 88 spin_unlock(&svc_xprt_class_lock); 89 return res; 90 } 91 EXPORT_SYMBOL_GPL(svc_reg_xprt_class); 92 93 void svc_unreg_xprt_class(struct svc_xprt_class *xcl) 94 { 95 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name); 96 spin_lock(&svc_xprt_class_lock); 97 list_del_init(&xcl->xcl_list); 98 spin_unlock(&svc_xprt_class_lock); 99 } 100 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); 101 102 /* 103 * Format the transport list for printing 104 */ 105 int svc_print_xprts(char *buf, int maxlen) 106 { 107 struct svc_xprt_class *xcl; 108 char tmpstr[80]; 109 int len = 0; 110 buf[0] = '\0'; 111 112 spin_lock(&svc_xprt_class_lock); 113 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 114 int slen; 115 116 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload); 117 slen = strlen(tmpstr); 118 if (len + slen > maxlen) 119 break; 120 len += slen; 121 strcat(buf, tmpstr); 122 } 123 spin_unlock(&svc_xprt_class_lock); 124 125 return len; 126 } 127 128 static void svc_xprt_free(struct kref *kref) 129 { 130 struct svc_xprt *xprt = 131 container_of(kref, struct svc_xprt, xpt_ref); 132 struct module *owner = xprt->xpt_class->xcl_owner; 133 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) 134 svcauth_unix_info_release(xprt); 135 put_net(xprt->xpt_net); 136 /* See comment on corresponding get in xs_setup_bc_tcp(): */ 137 if (xprt->xpt_bc_xprt) 138 xprt_put(xprt->xpt_bc_xprt); 139 xprt->xpt_ops->xpo_free(xprt); 140 module_put(owner); 141 } 142 143 void svc_xprt_put(struct svc_xprt *xprt) 144 { 145 kref_put(&xprt->xpt_ref, svc_xprt_free); 146 } 147 EXPORT_SYMBOL_GPL(svc_xprt_put); 148 149 /* 150 * Called by transport drivers to initialize the transport independent 151 * portion of the transport instance. 152 */ 153 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl, 154 struct svc_xprt *xprt, struct svc_serv *serv) 155 { 156 memset(xprt, 0, sizeof(*xprt)); 157 xprt->xpt_class = xcl; 158 xprt->xpt_ops = xcl->xcl_ops; 159 kref_init(&xprt->xpt_ref); 160 xprt->xpt_server = serv; 161 INIT_LIST_HEAD(&xprt->xpt_list); 162 INIT_LIST_HEAD(&xprt->xpt_ready); 163 INIT_LIST_HEAD(&xprt->xpt_deferred); 164 INIT_LIST_HEAD(&xprt->xpt_users); 165 mutex_init(&xprt->xpt_mutex); 166 spin_lock_init(&xprt->xpt_lock); 167 set_bit(XPT_BUSY, &xprt->xpt_flags); 168 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending"); 169 xprt->xpt_net = get_net(net); 170 } 171 EXPORT_SYMBOL_GPL(svc_xprt_init); 172 173 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl, 174 struct svc_serv *serv, 175 struct net *net, 176 const int family, 177 const unsigned short port, 178 int flags) 179 { 180 struct sockaddr_in sin = { 181 .sin_family = AF_INET, 182 .sin_addr.s_addr = htonl(INADDR_ANY), 183 .sin_port = htons(port), 184 }; 185 #if IS_ENABLED(CONFIG_IPV6) 186 struct sockaddr_in6 sin6 = { 187 .sin6_family = AF_INET6, 188 .sin6_addr = IN6ADDR_ANY_INIT, 189 .sin6_port = htons(port), 190 }; 191 #endif 192 struct sockaddr *sap; 193 size_t len; 194 195 switch (family) { 196 case PF_INET: 197 sap = (struct sockaddr *)&sin; 198 len = sizeof(sin); 199 break; 200 #if IS_ENABLED(CONFIG_IPV6) 201 case PF_INET6: 202 sap = (struct sockaddr *)&sin6; 203 len = sizeof(sin6); 204 break; 205 #endif 206 default: 207 return ERR_PTR(-EAFNOSUPPORT); 208 } 209 210 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags); 211 } 212 213 /* 214 * svc_xprt_received conditionally queues the transport for processing 215 * by another thread. The caller must hold the XPT_BUSY bit and must 216 * not thereafter touch transport data. 217 * 218 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or 219 * insufficient) data. 220 */ 221 static void svc_xprt_received(struct svc_xprt *xprt) 222 { 223 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) { 224 WARN_ONCE(1, "xprt=0x%p already busy!", xprt); 225 return; 226 } 227 228 /* As soon as we clear busy, the xprt could be closed and 229 * 'put', so we need a reference to call svc_xprt_do_enqueue with: 230 */ 231 svc_xprt_get(xprt); 232 smp_mb__before_atomic(); 233 clear_bit(XPT_BUSY, &xprt->xpt_flags); 234 svc_xprt_do_enqueue(xprt); 235 svc_xprt_put(xprt); 236 } 237 238 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new) 239 { 240 clear_bit(XPT_TEMP, &new->xpt_flags); 241 spin_lock_bh(&serv->sv_lock); 242 list_add(&new->xpt_list, &serv->sv_permsocks); 243 spin_unlock_bh(&serv->sv_lock); 244 svc_xprt_received(new); 245 } 246 247 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name, 248 struct net *net, const int family, 249 const unsigned short port, int flags) 250 { 251 struct svc_xprt_class *xcl; 252 253 dprintk("svc: creating transport %s[%d]\n", xprt_name, port); 254 spin_lock(&svc_xprt_class_lock); 255 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 256 struct svc_xprt *newxprt; 257 unsigned short newport; 258 259 if (strcmp(xprt_name, xcl->xcl_name)) 260 continue; 261 262 if (!try_module_get(xcl->xcl_owner)) 263 goto err; 264 265 spin_unlock(&svc_xprt_class_lock); 266 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags); 267 if (IS_ERR(newxprt)) { 268 module_put(xcl->xcl_owner); 269 return PTR_ERR(newxprt); 270 } 271 svc_add_new_perm_xprt(serv, newxprt); 272 newport = svc_xprt_local_port(newxprt); 273 return newport; 274 } 275 err: 276 spin_unlock(&svc_xprt_class_lock); 277 dprintk("svc: transport %s not found\n", xprt_name); 278 279 /* This errno is exposed to user space. Provide a reasonable 280 * perror msg for a bad transport. */ 281 return -EPROTONOSUPPORT; 282 } 283 EXPORT_SYMBOL_GPL(svc_create_xprt); 284 285 /* 286 * Copy the local and remote xprt addresses to the rqstp structure 287 */ 288 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) 289 { 290 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); 291 rqstp->rq_addrlen = xprt->xpt_remotelen; 292 293 /* 294 * Destination address in request is needed for binding the 295 * source address in RPC replies/callbacks later. 296 */ 297 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen); 298 rqstp->rq_daddrlen = xprt->xpt_locallen; 299 } 300 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); 301 302 /** 303 * svc_print_addr - Format rq_addr field for printing 304 * @rqstp: svc_rqst struct containing address to print 305 * @buf: target buffer for formatted address 306 * @len: length of target buffer 307 * 308 */ 309 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) 310 { 311 return __svc_print_addr(svc_addr(rqstp), buf, len); 312 } 313 EXPORT_SYMBOL_GPL(svc_print_addr); 314 315 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt) 316 { 317 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE))) 318 return true; 319 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) 320 return xprt->xpt_ops->xpo_has_wspace(xprt); 321 return false; 322 } 323 324 static void svc_xprt_do_enqueue(struct svc_xprt *xprt) 325 { 326 struct svc_pool *pool; 327 struct svc_rqst *rqstp = NULL; 328 int cpu; 329 bool queued = false; 330 331 if (!svc_xprt_has_something_to_do(xprt)) 332 goto out; 333 334 /* Mark transport as busy. It will remain in this state until 335 * the provider calls svc_xprt_received. We update XPT_BUSY 336 * atomically because it also guards against trying to enqueue 337 * the transport twice. 338 */ 339 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) { 340 /* Don't enqueue transport while already enqueued */ 341 dprintk("svc: transport %p busy, not enqueued\n", xprt); 342 goto out; 343 } 344 345 cpu = get_cpu(); 346 pool = svc_pool_for_cpu(xprt->xpt_server, cpu); 347 348 atomic_long_inc(&pool->sp_stats.packets); 349 350 redo_search: 351 /* find a thread for this xprt */ 352 rcu_read_lock(); 353 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) { 354 /* Do a lockless check first */ 355 if (test_bit(RQ_BUSY, &rqstp->rq_flags)) 356 continue; 357 358 /* 359 * Once the xprt has been queued, it can only be dequeued by 360 * the task that intends to service it. All we can do at that 361 * point is to try to wake this thread back up so that it can 362 * do so. 363 */ 364 if (!queued) { 365 spin_lock_bh(&rqstp->rq_lock); 366 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) { 367 /* already busy, move on... */ 368 spin_unlock_bh(&rqstp->rq_lock); 369 continue; 370 } 371 372 /* this one will do */ 373 rqstp->rq_xprt = xprt; 374 svc_xprt_get(xprt); 375 spin_unlock_bh(&rqstp->rq_lock); 376 } 377 rcu_read_unlock(); 378 379 atomic_long_inc(&pool->sp_stats.threads_woken); 380 wake_up_process(rqstp->rq_task); 381 put_cpu(); 382 goto out; 383 } 384 rcu_read_unlock(); 385 386 /* 387 * We didn't find an idle thread to use, so we need to queue the xprt. 388 * Do so and then search again. If we find one, we can't hook this one 389 * up to it directly but we can wake the thread up in the hopes that it 390 * will pick it up once it searches for a xprt to service. 391 */ 392 if (!queued) { 393 queued = true; 394 dprintk("svc: transport %p put into queue\n", xprt); 395 spin_lock_bh(&pool->sp_lock); 396 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); 397 pool->sp_stats.sockets_queued++; 398 spin_unlock_bh(&pool->sp_lock); 399 goto redo_search; 400 } 401 rqstp = NULL; 402 put_cpu(); 403 out: 404 trace_svc_xprt_do_enqueue(xprt, rqstp); 405 } 406 407 /* 408 * Queue up a transport with data pending. If there are idle nfsd 409 * processes, wake 'em up. 410 * 411 */ 412 void svc_xprt_enqueue(struct svc_xprt *xprt) 413 { 414 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) 415 return; 416 svc_xprt_do_enqueue(xprt); 417 } 418 EXPORT_SYMBOL_GPL(svc_xprt_enqueue); 419 420 /* 421 * Dequeue the first transport, if there is one. 422 */ 423 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) 424 { 425 struct svc_xprt *xprt = NULL; 426 427 if (list_empty(&pool->sp_sockets)) 428 goto out; 429 430 spin_lock_bh(&pool->sp_lock); 431 if (likely(!list_empty(&pool->sp_sockets))) { 432 xprt = list_first_entry(&pool->sp_sockets, 433 struct svc_xprt, xpt_ready); 434 list_del_init(&xprt->xpt_ready); 435 svc_xprt_get(xprt); 436 437 dprintk("svc: transport %p dequeued, inuse=%d\n", 438 xprt, atomic_read(&xprt->xpt_ref.refcount)); 439 } 440 spin_unlock_bh(&pool->sp_lock); 441 out: 442 trace_svc_xprt_dequeue(xprt); 443 return xprt; 444 } 445 446 /** 447 * svc_reserve - change the space reserved for the reply to a request. 448 * @rqstp: The request in question 449 * @space: new max space to reserve 450 * 451 * Each request reserves some space on the output queue of the transport 452 * to make sure the reply fits. This function reduces that reserved 453 * space to be the amount of space used already, plus @space. 454 * 455 */ 456 void svc_reserve(struct svc_rqst *rqstp, int space) 457 { 458 space += rqstp->rq_res.head[0].iov_len; 459 460 if (space < rqstp->rq_reserved) { 461 struct svc_xprt *xprt = rqstp->rq_xprt; 462 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); 463 rqstp->rq_reserved = space; 464 465 if (xprt->xpt_ops->xpo_adjust_wspace) 466 xprt->xpt_ops->xpo_adjust_wspace(xprt); 467 svc_xprt_enqueue(xprt); 468 } 469 } 470 EXPORT_SYMBOL_GPL(svc_reserve); 471 472 static void svc_xprt_release(struct svc_rqst *rqstp) 473 { 474 struct svc_xprt *xprt = rqstp->rq_xprt; 475 476 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); 477 478 kfree(rqstp->rq_deferred); 479 rqstp->rq_deferred = NULL; 480 481 svc_free_res_pages(rqstp); 482 rqstp->rq_res.page_len = 0; 483 rqstp->rq_res.page_base = 0; 484 485 /* Reset response buffer and release 486 * the reservation. 487 * But first, check that enough space was reserved 488 * for the reply, otherwise we have a bug! 489 */ 490 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 491 printk(KERN_ERR "RPC request reserved %d but used %d\n", 492 rqstp->rq_reserved, 493 rqstp->rq_res.len); 494 495 rqstp->rq_res.head[0].iov_len = 0; 496 svc_reserve(rqstp, 0); 497 rqstp->rq_xprt = NULL; 498 499 svc_xprt_put(xprt); 500 } 501 502 /* 503 * Some svc_serv's will have occasional work to do, even when a xprt is not 504 * waiting to be serviced. This function is there to "kick" a task in one of 505 * those services so that it can wake up and do that work. Note that we only 506 * bother with pool 0 as we don't need to wake up more than one thread for 507 * this purpose. 508 */ 509 void svc_wake_up(struct svc_serv *serv) 510 { 511 struct svc_rqst *rqstp; 512 struct svc_pool *pool; 513 514 pool = &serv->sv_pools[0]; 515 516 rcu_read_lock(); 517 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) { 518 /* skip any that aren't queued */ 519 if (test_bit(RQ_BUSY, &rqstp->rq_flags)) 520 continue; 521 rcu_read_unlock(); 522 dprintk("svc: daemon %p woken up.\n", rqstp); 523 wake_up_process(rqstp->rq_task); 524 trace_svc_wake_up(rqstp->rq_task->pid); 525 return; 526 } 527 rcu_read_unlock(); 528 529 /* No free entries available */ 530 set_bit(SP_TASK_PENDING, &pool->sp_flags); 531 smp_wmb(); 532 trace_svc_wake_up(0); 533 } 534 EXPORT_SYMBOL_GPL(svc_wake_up); 535 536 int svc_port_is_privileged(struct sockaddr *sin) 537 { 538 switch (sin->sa_family) { 539 case AF_INET: 540 return ntohs(((struct sockaddr_in *)sin)->sin_port) 541 < PROT_SOCK; 542 case AF_INET6: 543 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) 544 < PROT_SOCK; 545 default: 546 return 0; 547 } 548 } 549 550 /* 551 * Make sure that we don't have too many active connections. If we have, 552 * something must be dropped. It's not clear what will happen if we allow 553 * "too many" connections, but when dealing with network-facing software, 554 * we have to code defensively. Here we do that by imposing hard limits. 555 * 556 * There's no point in trying to do random drop here for DoS 557 * prevention. The NFS clients does 1 reconnect in 15 seconds. An 558 * attacker can easily beat that. 559 * 560 * The only somewhat efficient mechanism would be if drop old 561 * connections from the same IP first. But right now we don't even 562 * record the client IP in svc_sock. 563 * 564 * single-threaded services that expect a lot of clients will probably 565 * need to set sv_maxconn to override the default value which is based 566 * on the number of threads 567 */ 568 static void svc_check_conn_limits(struct svc_serv *serv) 569 { 570 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn : 571 (serv->sv_nrthreads+3) * 20; 572 573 if (serv->sv_tmpcnt > limit) { 574 struct svc_xprt *xprt = NULL; 575 spin_lock_bh(&serv->sv_lock); 576 if (!list_empty(&serv->sv_tempsocks)) { 577 /* Try to help the admin */ 578 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n", 579 serv->sv_name, serv->sv_maxconn ? 580 "max number of connections" : 581 "number of threads"); 582 /* 583 * Always select the oldest connection. It's not fair, 584 * but so is life 585 */ 586 xprt = list_entry(serv->sv_tempsocks.prev, 587 struct svc_xprt, 588 xpt_list); 589 set_bit(XPT_CLOSE, &xprt->xpt_flags); 590 svc_xprt_get(xprt); 591 } 592 spin_unlock_bh(&serv->sv_lock); 593 594 if (xprt) { 595 svc_xprt_enqueue(xprt); 596 svc_xprt_put(xprt); 597 } 598 } 599 } 600 601 static int svc_alloc_arg(struct svc_rqst *rqstp) 602 { 603 struct svc_serv *serv = rqstp->rq_server; 604 struct xdr_buf *arg; 605 int pages; 606 int i; 607 608 /* now allocate needed pages. If we get a failure, sleep briefly */ 609 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE; 610 WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES); 611 if (pages >= RPCSVC_MAXPAGES) 612 /* use as many pages as possible */ 613 pages = RPCSVC_MAXPAGES - 1; 614 for (i = 0; i < pages ; i++) 615 while (rqstp->rq_pages[i] == NULL) { 616 struct page *p = alloc_page(GFP_KERNEL); 617 if (!p) { 618 set_current_state(TASK_INTERRUPTIBLE); 619 if (signalled() || kthread_should_stop()) { 620 set_current_state(TASK_RUNNING); 621 return -EINTR; 622 } 623 schedule_timeout(msecs_to_jiffies(500)); 624 } 625 rqstp->rq_pages[i] = p; 626 } 627 rqstp->rq_page_end = &rqstp->rq_pages[i]; 628 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */ 629 630 /* Make arg->head point to first page and arg->pages point to rest */ 631 arg = &rqstp->rq_arg; 632 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); 633 arg->head[0].iov_len = PAGE_SIZE; 634 arg->pages = rqstp->rq_pages + 1; 635 arg->page_base = 0; 636 /* save at least one page for response */ 637 arg->page_len = (pages-2)*PAGE_SIZE; 638 arg->len = (pages-1)*PAGE_SIZE; 639 arg->tail[0].iov_len = 0; 640 return 0; 641 } 642 643 static bool 644 rqst_should_sleep(struct svc_rqst *rqstp) 645 { 646 struct svc_pool *pool = rqstp->rq_pool; 647 648 /* did someone call svc_wake_up? */ 649 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags)) 650 return false; 651 652 /* was a socket queued? */ 653 if (!list_empty(&pool->sp_sockets)) 654 return false; 655 656 /* are we shutting down? */ 657 if (signalled() || kthread_should_stop()) 658 return false; 659 660 /* are we freezing? */ 661 if (freezing(current)) 662 return false; 663 664 return true; 665 } 666 667 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout) 668 { 669 struct svc_xprt *xprt; 670 struct svc_pool *pool = rqstp->rq_pool; 671 long time_left = 0; 672 673 /* rq_xprt should be clear on entry */ 674 WARN_ON_ONCE(rqstp->rq_xprt); 675 676 /* Normally we will wait up to 5 seconds for any required 677 * cache information to be provided. 678 */ 679 rqstp->rq_chandle.thread_wait = 5*HZ; 680 681 xprt = svc_xprt_dequeue(pool); 682 if (xprt) { 683 rqstp->rq_xprt = xprt; 684 685 /* As there is a shortage of threads and this request 686 * had to be queued, don't allow the thread to wait so 687 * long for cache updates. 688 */ 689 rqstp->rq_chandle.thread_wait = 1*HZ; 690 clear_bit(SP_TASK_PENDING, &pool->sp_flags); 691 return xprt; 692 } 693 694 /* 695 * We have to be able to interrupt this wait 696 * to bring down the daemons ... 697 */ 698 set_current_state(TASK_INTERRUPTIBLE); 699 clear_bit(RQ_BUSY, &rqstp->rq_flags); 700 smp_mb(); 701 702 if (likely(rqst_should_sleep(rqstp))) 703 time_left = schedule_timeout(timeout); 704 else 705 __set_current_state(TASK_RUNNING); 706 707 try_to_freeze(); 708 709 spin_lock_bh(&rqstp->rq_lock); 710 set_bit(RQ_BUSY, &rqstp->rq_flags); 711 spin_unlock_bh(&rqstp->rq_lock); 712 713 xprt = rqstp->rq_xprt; 714 if (xprt != NULL) 715 return xprt; 716 717 if (!time_left) 718 atomic_long_inc(&pool->sp_stats.threads_timedout); 719 720 if (signalled() || kthread_should_stop()) 721 return ERR_PTR(-EINTR); 722 return ERR_PTR(-EAGAIN); 723 } 724 725 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt) 726 { 727 spin_lock_bh(&serv->sv_lock); 728 set_bit(XPT_TEMP, &newxpt->xpt_flags); 729 list_add(&newxpt->xpt_list, &serv->sv_tempsocks); 730 serv->sv_tmpcnt++; 731 if (serv->sv_temptimer.function == NULL) { 732 /* setup timer to age temp transports */ 733 setup_timer(&serv->sv_temptimer, svc_age_temp_xprts, 734 (unsigned long)serv); 735 mod_timer(&serv->sv_temptimer, 736 jiffies + svc_conn_age_period * HZ); 737 } 738 spin_unlock_bh(&serv->sv_lock); 739 svc_xprt_received(newxpt); 740 } 741 742 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt) 743 { 744 struct svc_serv *serv = rqstp->rq_server; 745 int len = 0; 746 747 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { 748 dprintk("svc_recv: found XPT_CLOSE\n"); 749 svc_delete_xprt(xprt); 750 /* Leave XPT_BUSY set on the dead xprt: */ 751 goto out; 752 } 753 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 754 struct svc_xprt *newxpt; 755 /* 756 * We know this module_get will succeed because the 757 * listener holds a reference too 758 */ 759 __module_get(xprt->xpt_class->xcl_owner); 760 svc_check_conn_limits(xprt->xpt_server); 761 newxpt = xprt->xpt_ops->xpo_accept(xprt); 762 if (newxpt) 763 svc_add_new_temp_xprt(serv, newxpt); 764 else 765 module_put(xprt->xpt_class->xcl_owner); 766 } else { 767 /* XPT_DATA|XPT_DEFERRED case: */ 768 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n", 769 rqstp, rqstp->rq_pool->sp_id, xprt, 770 atomic_read(&xprt->xpt_ref.refcount)); 771 rqstp->rq_deferred = svc_deferred_dequeue(xprt); 772 if (rqstp->rq_deferred) 773 len = svc_deferred_recv(rqstp); 774 else 775 len = xprt->xpt_ops->xpo_recvfrom(rqstp); 776 dprintk("svc: got len=%d\n", len); 777 rqstp->rq_reserved = serv->sv_max_mesg; 778 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 779 } 780 /* clear XPT_BUSY: */ 781 svc_xprt_received(xprt); 782 out: 783 trace_svc_handle_xprt(xprt, len); 784 return len; 785 } 786 787 /* 788 * Receive the next request on any transport. This code is carefully 789 * organised not to touch any cachelines in the shared svc_serv 790 * structure, only cachelines in the local svc_pool. 791 */ 792 int svc_recv(struct svc_rqst *rqstp, long timeout) 793 { 794 struct svc_xprt *xprt = NULL; 795 struct svc_serv *serv = rqstp->rq_server; 796 int len, err; 797 798 dprintk("svc: server %p waiting for data (to = %ld)\n", 799 rqstp, timeout); 800 801 if (rqstp->rq_xprt) 802 printk(KERN_ERR 803 "svc_recv: service %p, transport not NULL!\n", 804 rqstp); 805 806 err = svc_alloc_arg(rqstp); 807 if (err) 808 goto out; 809 810 try_to_freeze(); 811 cond_resched(); 812 err = -EINTR; 813 if (signalled() || kthread_should_stop()) 814 goto out; 815 816 xprt = svc_get_next_xprt(rqstp, timeout); 817 if (IS_ERR(xprt)) { 818 err = PTR_ERR(xprt); 819 goto out; 820 } 821 822 len = svc_handle_xprt(rqstp, xprt); 823 824 /* No data, incomplete (TCP) read, or accept() */ 825 err = -EAGAIN; 826 if (len <= 0) 827 goto out_release; 828 829 clear_bit(XPT_OLD, &xprt->xpt_flags); 830 831 if (xprt->xpt_ops->xpo_secure_port(rqstp)) 832 set_bit(RQ_SECURE, &rqstp->rq_flags); 833 else 834 clear_bit(RQ_SECURE, &rqstp->rq_flags); 835 rqstp->rq_chandle.defer = svc_defer; 836 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]); 837 838 if (serv->sv_stats) 839 serv->sv_stats->netcnt++; 840 trace_svc_recv(rqstp, len); 841 return len; 842 out_release: 843 rqstp->rq_res.len = 0; 844 svc_xprt_release(rqstp); 845 out: 846 trace_svc_recv(rqstp, err); 847 return err; 848 } 849 EXPORT_SYMBOL_GPL(svc_recv); 850 851 /* 852 * Drop request 853 */ 854 void svc_drop(struct svc_rqst *rqstp) 855 { 856 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt); 857 svc_xprt_release(rqstp); 858 } 859 EXPORT_SYMBOL_GPL(svc_drop); 860 861 /* 862 * Return reply to client. 863 */ 864 int svc_send(struct svc_rqst *rqstp) 865 { 866 struct svc_xprt *xprt; 867 int len = -EFAULT; 868 struct xdr_buf *xb; 869 870 xprt = rqstp->rq_xprt; 871 if (!xprt) 872 goto out; 873 874 /* release the receive skb before sending the reply */ 875 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); 876 877 /* calculate over-all length */ 878 xb = &rqstp->rq_res; 879 xb->len = xb->head[0].iov_len + 880 xb->page_len + 881 xb->tail[0].iov_len; 882 883 /* Grab mutex to serialize outgoing data. */ 884 mutex_lock(&xprt->xpt_mutex); 885 if (test_bit(XPT_DEAD, &xprt->xpt_flags) 886 || test_bit(XPT_CLOSE, &xprt->xpt_flags)) 887 len = -ENOTCONN; 888 else 889 len = xprt->xpt_ops->xpo_sendto(rqstp); 890 mutex_unlock(&xprt->xpt_mutex); 891 rpc_wake_up(&xprt->xpt_bc_pending); 892 svc_xprt_release(rqstp); 893 894 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) 895 len = 0; 896 out: 897 trace_svc_send(rqstp, len); 898 return len; 899 } 900 901 /* 902 * Timer function to close old temporary transports, using 903 * a mark-and-sweep algorithm. 904 */ 905 static void svc_age_temp_xprts(unsigned long closure) 906 { 907 struct svc_serv *serv = (struct svc_serv *)closure; 908 struct svc_xprt *xprt; 909 struct list_head *le, *next; 910 911 dprintk("svc_age_temp_xprts\n"); 912 913 if (!spin_trylock_bh(&serv->sv_lock)) { 914 /* busy, try again 1 sec later */ 915 dprintk("svc_age_temp_xprts: busy\n"); 916 mod_timer(&serv->sv_temptimer, jiffies + HZ); 917 return; 918 } 919 920 list_for_each_safe(le, next, &serv->sv_tempsocks) { 921 xprt = list_entry(le, struct svc_xprt, xpt_list); 922 923 /* First time through, just mark it OLD. Second time 924 * through, close it. */ 925 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) 926 continue; 927 if (atomic_read(&xprt->xpt_ref.refcount) > 1 || 928 test_bit(XPT_BUSY, &xprt->xpt_flags)) 929 continue; 930 list_del_init(le); 931 set_bit(XPT_CLOSE, &xprt->xpt_flags); 932 dprintk("queuing xprt %p for closing\n", xprt); 933 934 /* a thread will dequeue and close it soon */ 935 svc_xprt_enqueue(xprt); 936 } 937 spin_unlock_bh(&serv->sv_lock); 938 939 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); 940 } 941 942 static void call_xpt_users(struct svc_xprt *xprt) 943 { 944 struct svc_xpt_user *u; 945 946 spin_lock(&xprt->xpt_lock); 947 while (!list_empty(&xprt->xpt_users)) { 948 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list); 949 list_del(&u->list); 950 u->callback(u); 951 } 952 spin_unlock(&xprt->xpt_lock); 953 } 954 955 /* 956 * Remove a dead transport 957 */ 958 static void svc_delete_xprt(struct svc_xprt *xprt) 959 { 960 struct svc_serv *serv = xprt->xpt_server; 961 struct svc_deferred_req *dr; 962 963 /* Only do this once */ 964 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) 965 BUG(); 966 967 dprintk("svc: svc_delete_xprt(%p)\n", xprt); 968 xprt->xpt_ops->xpo_detach(xprt); 969 970 spin_lock_bh(&serv->sv_lock); 971 list_del_init(&xprt->xpt_list); 972 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready)); 973 if (test_bit(XPT_TEMP, &xprt->xpt_flags)) 974 serv->sv_tmpcnt--; 975 spin_unlock_bh(&serv->sv_lock); 976 977 while ((dr = svc_deferred_dequeue(xprt)) != NULL) 978 kfree(dr); 979 980 call_xpt_users(xprt); 981 svc_xprt_put(xprt); 982 } 983 984 void svc_close_xprt(struct svc_xprt *xprt) 985 { 986 set_bit(XPT_CLOSE, &xprt->xpt_flags); 987 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 988 /* someone else will have to effect the close */ 989 return; 990 /* 991 * We expect svc_close_xprt() to work even when no threads are 992 * running (e.g., while configuring the server before starting 993 * any threads), so if the transport isn't busy, we delete 994 * it ourself: 995 */ 996 svc_delete_xprt(xprt); 997 } 998 EXPORT_SYMBOL_GPL(svc_close_xprt); 999 1000 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) 1001 { 1002 struct svc_xprt *xprt; 1003 int ret = 0; 1004 1005 spin_lock(&serv->sv_lock); 1006 list_for_each_entry(xprt, xprt_list, xpt_list) { 1007 if (xprt->xpt_net != net) 1008 continue; 1009 ret++; 1010 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1011 svc_xprt_enqueue(xprt); 1012 } 1013 spin_unlock(&serv->sv_lock); 1014 return ret; 1015 } 1016 1017 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net) 1018 { 1019 struct svc_pool *pool; 1020 struct svc_xprt *xprt; 1021 struct svc_xprt *tmp; 1022 int i; 1023 1024 for (i = 0; i < serv->sv_nrpools; i++) { 1025 pool = &serv->sv_pools[i]; 1026 1027 spin_lock_bh(&pool->sp_lock); 1028 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) { 1029 if (xprt->xpt_net != net) 1030 continue; 1031 list_del_init(&xprt->xpt_ready); 1032 spin_unlock_bh(&pool->sp_lock); 1033 return xprt; 1034 } 1035 spin_unlock_bh(&pool->sp_lock); 1036 } 1037 return NULL; 1038 } 1039 1040 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net) 1041 { 1042 struct svc_xprt *xprt; 1043 1044 while ((xprt = svc_dequeue_net(serv, net))) { 1045 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1046 svc_delete_xprt(xprt); 1047 } 1048 } 1049 1050 /* 1051 * Server threads may still be running (especially in the case where the 1052 * service is still running in other network namespaces). 1053 * 1054 * So we shut down sockets the same way we would on a running server, by 1055 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do 1056 * the close. In the case there are no such other threads, 1057 * threads running, svc_clean_up_xprts() does a simple version of a 1058 * server's main event loop, and in the case where there are other 1059 * threads, we may need to wait a little while and then check again to 1060 * see if they're done. 1061 */ 1062 void svc_close_net(struct svc_serv *serv, struct net *net) 1063 { 1064 int delay = 0; 1065 1066 while (svc_close_list(serv, &serv->sv_permsocks, net) + 1067 svc_close_list(serv, &serv->sv_tempsocks, net)) { 1068 1069 svc_clean_up_xprts(serv, net); 1070 msleep(delay++); 1071 } 1072 } 1073 1074 /* 1075 * Handle defer and revisit of requests 1076 */ 1077 1078 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 1079 { 1080 struct svc_deferred_req *dr = 1081 container_of(dreq, struct svc_deferred_req, handle); 1082 struct svc_xprt *xprt = dr->xprt; 1083 1084 spin_lock(&xprt->xpt_lock); 1085 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 1086 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) { 1087 spin_unlock(&xprt->xpt_lock); 1088 dprintk("revisit canceled\n"); 1089 svc_xprt_put(xprt); 1090 kfree(dr); 1091 return; 1092 } 1093 dprintk("revisit queued\n"); 1094 dr->xprt = NULL; 1095 list_add(&dr->handle.recent, &xprt->xpt_deferred); 1096 spin_unlock(&xprt->xpt_lock); 1097 svc_xprt_enqueue(xprt); 1098 svc_xprt_put(xprt); 1099 } 1100 1101 /* 1102 * Save the request off for later processing. The request buffer looks 1103 * like this: 1104 * 1105 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> 1106 * 1107 * This code can only handle requests that consist of an xprt-header 1108 * and rpc-header. 1109 */ 1110 static struct cache_deferred_req *svc_defer(struct cache_req *req) 1111 { 1112 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 1113 struct svc_deferred_req *dr; 1114 1115 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags)) 1116 return NULL; /* if more than a page, give up FIXME */ 1117 if (rqstp->rq_deferred) { 1118 dr = rqstp->rq_deferred; 1119 rqstp->rq_deferred = NULL; 1120 } else { 1121 size_t skip; 1122 size_t size; 1123 /* FIXME maybe discard if size too large */ 1124 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; 1125 dr = kmalloc(size, GFP_KERNEL); 1126 if (dr == NULL) 1127 return NULL; 1128 1129 dr->handle.owner = rqstp->rq_server; 1130 dr->prot = rqstp->rq_prot; 1131 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); 1132 dr->addrlen = rqstp->rq_addrlen; 1133 dr->daddr = rqstp->rq_daddr; 1134 dr->argslen = rqstp->rq_arg.len >> 2; 1135 dr->xprt_hlen = rqstp->rq_xprt_hlen; 1136 1137 /* back up head to the start of the buffer and copy */ 1138 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1139 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, 1140 dr->argslen << 2); 1141 } 1142 svc_xprt_get(rqstp->rq_xprt); 1143 dr->xprt = rqstp->rq_xprt; 1144 set_bit(RQ_DROPME, &rqstp->rq_flags); 1145 1146 dr->handle.revisit = svc_revisit; 1147 return &dr->handle; 1148 } 1149 1150 /* 1151 * recv data from a deferred request into an active one 1152 */ 1153 static int svc_deferred_recv(struct svc_rqst *rqstp) 1154 { 1155 struct svc_deferred_req *dr = rqstp->rq_deferred; 1156 1157 /* setup iov_base past transport header */ 1158 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2); 1159 /* The iov_len does not include the transport header bytes */ 1160 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen; 1161 rqstp->rq_arg.page_len = 0; 1162 /* The rq_arg.len includes the transport header bytes */ 1163 rqstp->rq_arg.len = dr->argslen<<2; 1164 rqstp->rq_prot = dr->prot; 1165 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); 1166 rqstp->rq_addrlen = dr->addrlen; 1167 /* Save off transport header len in case we get deferred again */ 1168 rqstp->rq_xprt_hlen = dr->xprt_hlen; 1169 rqstp->rq_daddr = dr->daddr; 1170 rqstp->rq_respages = rqstp->rq_pages; 1171 return (dr->argslen<<2) - dr->xprt_hlen; 1172 } 1173 1174 1175 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) 1176 { 1177 struct svc_deferred_req *dr = NULL; 1178 1179 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) 1180 return NULL; 1181 spin_lock(&xprt->xpt_lock); 1182 if (!list_empty(&xprt->xpt_deferred)) { 1183 dr = list_entry(xprt->xpt_deferred.next, 1184 struct svc_deferred_req, 1185 handle.recent); 1186 list_del_init(&dr->handle.recent); 1187 } else 1188 clear_bit(XPT_DEFERRED, &xprt->xpt_flags); 1189 spin_unlock(&xprt->xpt_lock); 1190 return dr; 1191 } 1192 1193 /** 1194 * svc_find_xprt - find an RPC transport instance 1195 * @serv: pointer to svc_serv to search 1196 * @xcl_name: C string containing transport's class name 1197 * @net: owner net pointer 1198 * @af: Address family of transport's local address 1199 * @port: transport's IP port number 1200 * 1201 * Return the transport instance pointer for the endpoint accepting 1202 * connections/peer traffic from the specified transport class, 1203 * address family and port. 1204 * 1205 * Specifying 0 for the address family or port is effectively a 1206 * wild-card, and will result in matching the first transport in the 1207 * service's list that has a matching class name. 1208 */ 1209 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name, 1210 struct net *net, const sa_family_t af, 1211 const unsigned short port) 1212 { 1213 struct svc_xprt *xprt; 1214 struct svc_xprt *found = NULL; 1215 1216 /* Sanity check the args */ 1217 if (serv == NULL || xcl_name == NULL) 1218 return found; 1219 1220 spin_lock_bh(&serv->sv_lock); 1221 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1222 if (xprt->xpt_net != net) 1223 continue; 1224 if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) 1225 continue; 1226 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) 1227 continue; 1228 if (port != 0 && port != svc_xprt_local_port(xprt)) 1229 continue; 1230 found = xprt; 1231 svc_xprt_get(xprt); 1232 break; 1233 } 1234 spin_unlock_bh(&serv->sv_lock); 1235 return found; 1236 } 1237 EXPORT_SYMBOL_GPL(svc_find_xprt); 1238 1239 static int svc_one_xprt_name(const struct svc_xprt *xprt, 1240 char *pos, int remaining) 1241 { 1242 int len; 1243 1244 len = snprintf(pos, remaining, "%s %u\n", 1245 xprt->xpt_class->xcl_name, 1246 svc_xprt_local_port(xprt)); 1247 if (len >= remaining) 1248 return -ENAMETOOLONG; 1249 return len; 1250 } 1251 1252 /** 1253 * svc_xprt_names - format a buffer with a list of transport names 1254 * @serv: pointer to an RPC service 1255 * @buf: pointer to a buffer to be filled in 1256 * @buflen: length of buffer to be filled in 1257 * 1258 * Fills in @buf with a string containing a list of transport names, 1259 * each name terminated with '\n'. 1260 * 1261 * Returns positive length of the filled-in string on success; otherwise 1262 * a negative errno value is returned if an error occurs. 1263 */ 1264 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen) 1265 { 1266 struct svc_xprt *xprt; 1267 int len, totlen; 1268 char *pos; 1269 1270 /* Sanity check args */ 1271 if (!serv) 1272 return 0; 1273 1274 spin_lock_bh(&serv->sv_lock); 1275 1276 pos = buf; 1277 totlen = 0; 1278 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1279 len = svc_one_xprt_name(xprt, pos, buflen - totlen); 1280 if (len < 0) { 1281 *buf = '\0'; 1282 totlen = len; 1283 } 1284 if (len <= 0) 1285 break; 1286 1287 pos += len; 1288 totlen += len; 1289 } 1290 1291 spin_unlock_bh(&serv->sv_lock); 1292 return totlen; 1293 } 1294 EXPORT_SYMBOL_GPL(svc_xprt_names); 1295 1296 1297 /*----------------------------------------------------------------------------*/ 1298 1299 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos) 1300 { 1301 unsigned int pidx = (unsigned int)*pos; 1302 struct svc_serv *serv = m->private; 1303 1304 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx); 1305 1306 if (!pidx) 1307 return SEQ_START_TOKEN; 1308 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]); 1309 } 1310 1311 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos) 1312 { 1313 struct svc_pool *pool = p; 1314 struct svc_serv *serv = m->private; 1315 1316 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos); 1317 1318 if (p == SEQ_START_TOKEN) { 1319 pool = &serv->sv_pools[0]; 1320 } else { 1321 unsigned int pidx = (pool - &serv->sv_pools[0]); 1322 if (pidx < serv->sv_nrpools-1) 1323 pool = &serv->sv_pools[pidx+1]; 1324 else 1325 pool = NULL; 1326 } 1327 ++*pos; 1328 return pool; 1329 } 1330 1331 static void svc_pool_stats_stop(struct seq_file *m, void *p) 1332 { 1333 } 1334 1335 static int svc_pool_stats_show(struct seq_file *m, void *p) 1336 { 1337 struct svc_pool *pool = p; 1338 1339 if (p == SEQ_START_TOKEN) { 1340 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n"); 1341 return 0; 1342 } 1343 1344 seq_printf(m, "%u %lu %lu %lu %lu\n", 1345 pool->sp_id, 1346 (unsigned long)atomic_long_read(&pool->sp_stats.packets), 1347 pool->sp_stats.sockets_queued, 1348 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken), 1349 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout)); 1350 1351 return 0; 1352 } 1353 1354 static const struct seq_operations svc_pool_stats_seq_ops = { 1355 .start = svc_pool_stats_start, 1356 .next = svc_pool_stats_next, 1357 .stop = svc_pool_stats_stop, 1358 .show = svc_pool_stats_show, 1359 }; 1360 1361 int svc_pool_stats_open(struct svc_serv *serv, struct file *file) 1362 { 1363 int err; 1364 1365 err = seq_open(file, &svc_pool_stats_seq_ops); 1366 if (!err) 1367 ((struct seq_file *) file->private_data)->private = serv; 1368 return err; 1369 } 1370 EXPORT_SYMBOL(svc_pool_stats_open); 1371 1372 /*----------------------------------------------------------------------------*/ 1373