1 /* 2 * linux/net/sunrpc/svc_xprt.c 3 * 4 * Author: Tom Tucker <tom@opengridcomputing.com> 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/errno.h> 9 #include <linux/freezer.h> 10 #include <linux/kthread.h> 11 #include <linux/slab.h> 12 #include <net/sock.h> 13 #include <linux/sunrpc/addr.h> 14 #include <linux/sunrpc/stats.h> 15 #include <linux/sunrpc/svc_xprt.h> 16 #include <linux/sunrpc/svcsock.h> 17 #include <linux/sunrpc/xprt.h> 18 #include <linux/module.h> 19 #include <linux/netdevice.h> 20 #include <trace/events/sunrpc.h> 21 22 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 23 24 static unsigned int svc_rpc_per_connection_limit __read_mostly; 25 module_param(svc_rpc_per_connection_limit, uint, 0644); 26 27 28 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); 29 static int svc_deferred_recv(struct svc_rqst *rqstp); 30 static struct cache_deferred_req *svc_defer(struct cache_req *req); 31 static void svc_age_temp_xprts(struct timer_list *t); 32 static void svc_delete_xprt(struct svc_xprt *xprt); 33 34 /* apparently the "standard" is that clients close 35 * idle connections after 5 minutes, servers after 36 * 6 minutes 37 * http://www.connectathon.org/talks96/nfstcp.pdf 38 */ 39 static int svc_conn_age_period = 6*60; 40 41 /* List of registered transport classes */ 42 static DEFINE_SPINLOCK(svc_xprt_class_lock); 43 static LIST_HEAD(svc_xprt_class_list); 44 45 /* SMP locking strategy: 46 * 47 * svc_pool->sp_lock protects most of the fields of that pool. 48 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. 49 * when both need to be taken (rare), svc_serv->sv_lock is first. 50 * The "service mutex" protects svc_serv->sv_nrthread. 51 * svc_sock->sk_lock protects the svc_sock->sk_deferred list 52 * and the ->sk_info_authunix cache. 53 * 54 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being 55 * enqueued multiply. During normal transport processing this bit 56 * is set by svc_xprt_enqueue and cleared by svc_xprt_received. 57 * Providers should not manipulate this bit directly. 58 * 59 * Some flags can be set to certain values at any time 60 * providing that certain rules are followed: 61 * 62 * XPT_CONN, XPT_DATA: 63 * - Can be set or cleared at any time. 64 * - After a set, svc_xprt_enqueue must be called to enqueue 65 * the transport for processing. 66 * - After a clear, the transport must be read/accepted. 67 * If this succeeds, it must be set again. 68 * XPT_CLOSE: 69 * - Can set at any time. It is never cleared. 70 * XPT_DEAD: 71 * - Can only be set while XPT_BUSY is held which ensures 72 * that no other thread will be using the transport or will 73 * try to set XPT_DEAD. 74 */ 75 int svc_reg_xprt_class(struct svc_xprt_class *xcl) 76 { 77 struct svc_xprt_class *cl; 78 int res = -EEXIST; 79 80 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name); 81 82 INIT_LIST_HEAD(&xcl->xcl_list); 83 spin_lock(&svc_xprt_class_lock); 84 /* Make sure there isn't already a class with the same name */ 85 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { 86 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) 87 goto out; 88 } 89 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); 90 res = 0; 91 out: 92 spin_unlock(&svc_xprt_class_lock); 93 return res; 94 } 95 EXPORT_SYMBOL_GPL(svc_reg_xprt_class); 96 97 void svc_unreg_xprt_class(struct svc_xprt_class *xcl) 98 { 99 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name); 100 spin_lock(&svc_xprt_class_lock); 101 list_del_init(&xcl->xcl_list); 102 spin_unlock(&svc_xprt_class_lock); 103 } 104 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); 105 106 /* 107 * Format the transport list for printing 108 */ 109 int svc_print_xprts(char *buf, int maxlen) 110 { 111 struct svc_xprt_class *xcl; 112 char tmpstr[80]; 113 int len = 0; 114 buf[0] = '\0'; 115 116 spin_lock(&svc_xprt_class_lock); 117 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 118 int slen; 119 120 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload); 121 slen = strlen(tmpstr); 122 if (len + slen > maxlen) 123 break; 124 len += slen; 125 strcat(buf, tmpstr); 126 } 127 spin_unlock(&svc_xprt_class_lock); 128 129 return len; 130 } 131 132 static void svc_xprt_free(struct kref *kref) 133 { 134 struct svc_xprt *xprt = 135 container_of(kref, struct svc_xprt, xpt_ref); 136 struct module *owner = xprt->xpt_class->xcl_owner; 137 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) 138 svcauth_unix_info_release(xprt); 139 put_net(xprt->xpt_net); 140 /* See comment on corresponding get in xs_setup_bc_tcp(): */ 141 if (xprt->xpt_bc_xprt) 142 xprt_put(xprt->xpt_bc_xprt); 143 if (xprt->xpt_bc_xps) 144 xprt_switch_put(xprt->xpt_bc_xps); 145 xprt->xpt_ops->xpo_free(xprt); 146 module_put(owner); 147 } 148 149 void svc_xprt_put(struct svc_xprt *xprt) 150 { 151 kref_put(&xprt->xpt_ref, svc_xprt_free); 152 } 153 EXPORT_SYMBOL_GPL(svc_xprt_put); 154 155 /* 156 * Called by transport drivers to initialize the transport independent 157 * portion of the transport instance. 158 */ 159 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl, 160 struct svc_xprt *xprt, struct svc_serv *serv) 161 { 162 memset(xprt, 0, sizeof(*xprt)); 163 xprt->xpt_class = xcl; 164 xprt->xpt_ops = xcl->xcl_ops; 165 kref_init(&xprt->xpt_ref); 166 xprt->xpt_server = serv; 167 INIT_LIST_HEAD(&xprt->xpt_list); 168 INIT_LIST_HEAD(&xprt->xpt_ready); 169 INIT_LIST_HEAD(&xprt->xpt_deferred); 170 INIT_LIST_HEAD(&xprt->xpt_users); 171 mutex_init(&xprt->xpt_mutex); 172 spin_lock_init(&xprt->xpt_lock); 173 set_bit(XPT_BUSY, &xprt->xpt_flags); 174 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending"); 175 xprt->xpt_net = get_net(net); 176 } 177 EXPORT_SYMBOL_GPL(svc_xprt_init); 178 179 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl, 180 struct svc_serv *serv, 181 struct net *net, 182 const int family, 183 const unsigned short port, 184 int flags) 185 { 186 struct sockaddr_in sin = { 187 .sin_family = AF_INET, 188 .sin_addr.s_addr = htonl(INADDR_ANY), 189 .sin_port = htons(port), 190 }; 191 #if IS_ENABLED(CONFIG_IPV6) 192 struct sockaddr_in6 sin6 = { 193 .sin6_family = AF_INET6, 194 .sin6_addr = IN6ADDR_ANY_INIT, 195 .sin6_port = htons(port), 196 }; 197 #endif 198 struct sockaddr *sap; 199 size_t len; 200 201 switch (family) { 202 case PF_INET: 203 sap = (struct sockaddr *)&sin; 204 len = sizeof(sin); 205 break; 206 #if IS_ENABLED(CONFIG_IPV6) 207 case PF_INET6: 208 sap = (struct sockaddr *)&sin6; 209 len = sizeof(sin6); 210 break; 211 #endif 212 default: 213 return ERR_PTR(-EAFNOSUPPORT); 214 } 215 216 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags); 217 } 218 219 /* 220 * svc_xprt_received conditionally queues the transport for processing 221 * by another thread. The caller must hold the XPT_BUSY bit and must 222 * not thereafter touch transport data. 223 * 224 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or 225 * insufficient) data. 226 */ 227 static void svc_xprt_received(struct svc_xprt *xprt) 228 { 229 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) { 230 WARN_ONCE(1, "xprt=0x%p already busy!", xprt); 231 return; 232 } 233 234 /* As soon as we clear busy, the xprt could be closed and 235 * 'put', so we need a reference to call svc_enqueue_xprt with: 236 */ 237 svc_xprt_get(xprt); 238 smp_mb__before_atomic(); 239 clear_bit(XPT_BUSY, &xprt->xpt_flags); 240 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt); 241 svc_xprt_put(xprt); 242 } 243 244 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new) 245 { 246 clear_bit(XPT_TEMP, &new->xpt_flags); 247 spin_lock_bh(&serv->sv_lock); 248 list_add(&new->xpt_list, &serv->sv_permsocks); 249 spin_unlock_bh(&serv->sv_lock); 250 svc_xprt_received(new); 251 } 252 253 static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name, 254 struct net *net, const int family, 255 const unsigned short port, int flags) 256 { 257 struct svc_xprt_class *xcl; 258 259 spin_lock(&svc_xprt_class_lock); 260 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 261 struct svc_xprt *newxprt; 262 unsigned short newport; 263 264 if (strcmp(xprt_name, xcl->xcl_name)) 265 continue; 266 267 if (!try_module_get(xcl->xcl_owner)) 268 goto err; 269 270 spin_unlock(&svc_xprt_class_lock); 271 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags); 272 if (IS_ERR(newxprt)) { 273 module_put(xcl->xcl_owner); 274 return PTR_ERR(newxprt); 275 } 276 svc_add_new_perm_xprt(serv, newxprt); 277 newport = svc_xprt_local_port(newxprt); 278 return newport; 279 } 280 err: 281 spin_unlock(&svc_xprt_class_lock); 282 /* This errno is exposed to user space. Provide a reasonable 283 * perror msg for a bad transport. */ 284 return -EPROTONOSUPPORT; 285 } 286 287 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name, 288 struct net *net, const int family, 289 const unsigned short port, int flags) 290 { 291 int err; 292 293 dprintk("svc: creating transport %s[%d]\n", xprt_name, port); 294 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags); 295 if (err == -EPROTONOSUPPORT) { 296 request_module("svc%s", xprt_name); 297 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags); 298 } 299 if (err) 300 dprintk("svc: transport %s not found, err %d\n", 301 xprt_name, err); 302 return err; 303 } 304 EXPORT_SYMBOL_GPL(svc_create_xprt); 305 306 /* 307 * Copy the local and remote xprt addresses to the rqstp structure 308 */ 309 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) 310 { 311 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); 312 rqstp->rq_addrlen = xprt->xpt_remotelen; 313 314 /* 315 * Destination address in request is needed for binding the 316 * source address in RPC replies/callbacks later. 317 */ 318 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen); 319 rqstp->rq_daddrlen = xprt->xpt_locallen; 320 } 321 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); 322 323 /** 324 * svc_print_addr - Format rq_addr field for printing 325 * @rqstp: svc_rqst struct containing address to print 326 * @buf: target buffer for formatted address 327 * @len: length of target buffer 328 * 329 */ 330 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) 331 { 332 return __svc_print_addr(svc_addr(rqstp), buf, len); 333 } 334 EXPORT_SYMBOL_GPL(svc_print_addr); 335 336 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt) 337 { 338 unsigned int limit = svc_rpc_per_connection_limit; 339 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts); 340 341 return limit == 0 || (nrqsts >= 0 && nrqsts < limit); 342 } 343 344 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt) 345 { 346 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) { 347 if (!svc_xprt_slots_in_range(xprt)) 348 return false; 349 atomic_inc(&xprt->xpt_nr_rqsts); 350 set_bit(RQ_DATA, &rqstp->rq_flags); 351 } 352 return true; 353 } 354 355 static void svc_xprt_release_slot(struct svc_rqst *rqstp) 356 { 357 struct svc_xprt *xprt = rqstp->rq_xprt; 358 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) { 359 atomic_dec(&xprt->xpt_nr_rqsts); 360 svc_xprt_enqueue(xprt); 361 } 362 } 363 364 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt) 365 { 366 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE))) 367 return true; 368 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) { 369 if (xprt->xpt_ops->xpo_has_wspace(xprt) && 370 svc_xprt_slots_in_range(xprt)) 371 return true; 372 trace_svc_xprt_no_write_space(xprt); 373 return false; 374 } 375 return false; 376 } 377 378 void svc_xprt_do_enqueue(struct svc_xprt *xprt) 379 { 380 struct svc_pool *pool; 381 struct svc_rqst *rqstp = NULL; 382 int cpu; 383 384 if (!svc_xprt_has_something_to_do(xprt)) 385 goto out; 386 387 /* Mark transport as busy. It will remain in this state until 388 * the provider calls svc_xprt_received. We update XPT_BUSY 389 * atomically because it also guards against trying to enqueue 390 * the transport twice. 391 */ 392 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) { 393 /* Don't enqueue transport while already enqueued */ 394 dprintk("svc: transport %p busy, not enqueued\n", xprt); 395 goto out; 396 } 397 398 cpu = get_cpu(); 399 pool = svc_pool_for_cpu(xprt->xpt_server, cpu); 400 401 atomic_long_inc(&pool->sp_stats.packets); 402 403 dprintk("svc: transport %p put into queue\n", xprt); 404 spin_lock_bh(&pool->sp_lock); 405 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); 406 pool->sp_stats.sockets_queued++; 407 spin_unlock_bh(&pool->sp_lock); 408 409 /* find a thread for this xprt */ 410 rcu_read_lock(); 411 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) { 412 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) 413 continue; 414 atomic_long_inc(&pool->sp_stats.threads_woken); 415 wake_up_process(rqstp->rq_task); 416 goto out_unlock; 417 } 418 set_bit(SP_CONGESTED, &pool->sp_flags); 419 rqstp = NULL; 420 out_unlock: 421 rcu_read_unlock(); 422 put_cpu(); 423 out: 424 trace_svc_xprt_do_enqueue(xprt, rqstp); 425 } 426 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue); 427 428 /* 429 * Queue up a transport with data pending. If there are idle nfsd 430 * processes, wake 'em up. 431 * 432 */ 433 void svc_xprt_enqueue(struct svc_xprt *xprt) 434 { 435 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) 436 return; 437 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt); 438 } 439 EXPORT_SYMBOL_GPL(svc_xprt_enqueue); 440 441 /* 442 * Dequeue the first transport, if there is one. 443 */ 444 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) 445 { 446 struct svc_xprt *xprt = NULL; 447 448 if (list_empty(&pool->sp_sockets)) 449 goto out; 450 451 spin_lock_bh(&pool->sp_lock); 452 if (likely(!list_empty(&pool->sp_sockets))) { 453 xprt = list_first_entry(&pool->sp_sockets, 454 struct svc_xprt, xpt_ready); 455 list_del_init(&xprt->xpt_ready); 456 svc_xprt_get(xprt); 457 458 dprintk("svc: transport %p dequeued, inuse=%d\n", 459 xprt, kref_read(&xprt->xpt_ref)); 460 } 461 spin_unlock_bh(&pool->sp_lock); 462 out: 463 trace_svc_xprt_dequeue(xprt); 464 return xprt; 465 } 466 467 /** 468 * svc_reserve - change the space reserved for the reply to a request. 469 * @rqstp: The request in question 470 * @space: new max space to reserve 471 * 472 * Each request reserves some space on the output queue of the transport 473 * to make sure the reply fits. This function reduces that reserved 474 * space to be the amount of space used already, plus @space. 475 * 476 */ 477 void svc_reserve(struct svc_rqst *rqstp, int space) 478 { 479 space += rqstp->rq_res.head[0].iov_len; 480 481 if (space < rqstp->rq_reserved) { 482 struct svc_xprt *xprt = rqstp->rq_xprt; 483 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); 484 rqstp->rq_reserved = space; 485 486 svc_xprt_enqueue(xprt); 487 } 488 } 489 EXPORT_SYMBOL_GPL(svc_reserve); 490 491 static void svc_xprt_release(struct svc_rqst *rqstp) 492 { 493 struct svc_xprt *xprt = rqstp->rq_xprt; 494 495 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); 496 497 kfree(rqstp->rq_deferred); 498 rqstp->rq_deferred = NULL; 499 500 svc_free_res_pages(rqstp); 501 rqstp->rq_res.page_len = 0; 502 rqstp->rq_res.page_base = 0; 503 504 /* Reset response buffer and release 505 * the reservation. 506 * But first, check that enough space was reserved 507 * for the reply, otherwise we have a bug! 508 */ 509 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 510 printk(KERN_ERR "RPC request reserved %d but used %d\n", 511 rqstp->rq_reserved, 512 rqstp->rq_res.len); 513 514 rqstp->rq_res.head[0].iov_len = 0; 515 svc_reserve(rqstp, 0); 516 svc_xprt_release_slot(rqstp); 517 rqstp->rq_xprt = NULL; 518 svc_xprt_put(xprt); 519 } 520 521 /* 522 * Some svc_serv's will have occasional work to do, even when a xprt is not 523 * waiting to be serviced. This function is there to "kick" a task in one of 524 * those services so that it can wake up and do that work. Note that we only 525 * bother with pool 0 as we don't need to wake up more than one thread for 526 * this purpose. 527 */ 528 void svc_wake_up(struct svc_serv *serv) 529 { 530 struct svc_rqst *rqstp; 531 struct svc_pool *pool; 532 533 pool = &serv->sv_pools[0]; 534 535 rcu_read_lock(); 536 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) { 537 /* skip any that aren't queued */ 538 if (test_bit(RQ_BUSY, &rqstp->rq_flags)) 539 continue; 540 rcu_read_unlock(); 541 dprintk("svc: daemon %p woken up.\n", rqstp); 542 wake_up_process(rqstp->rq_task); 543 trace_svc_wake_up(rqstp->rq_task->pid); 544 return; 545 } 546 rcu_read_unlock(); 547 548 /* No free entries available */ 549 set_bit(SP_TASK_PENDING, &pool->sp_flags); 550 smp_wmb(); 551 trace_svc_wake_up(0); 552 } 553 EXPORT_SYMBOL_GPL(svc_wake_up); 554 555 int svc_port_is_privileged(struct sockaddr *sin) 556 { 557 switch (sin->sa_family) { 558 case AF_INET: 559 return ntohs(((struct sockaddr_in *)sin)->sin_port) 560 < PROT_SOCK; 561 case AF_INET6: 562 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) 563 < PROT_SOCK; 564 default: 565 return 0; 566 } 567 } 568 569 /* 570 * Make sure that we don't have too many active connections. If we have, 571 * something must be dropped. It's not clear what will happen if we allow 572 * "too many" connections, but when dealing with network-facing software, 573 * we have to code defensively. Here we do that by imposing hard limits. 574 * 575 * There's no point in trying to do random drop here for DoS 576 * prevention. The NFS clients does 1 reconnect in 15 seconds. An 577 * attacker can easily beat that. 578 * 579 * The only somewhat efficient mechanism would be if drop old 580 * connections from the same IP first. But right now we don't even 581 * record the client IP in svc_sock. 582 * 583 * single-threaded services that expect a lot of clients will probably 584 * need to set sv_maxconn to override the default value which is based 585 * on the number of threads 586 */ 587 static void svc_check_conn_limits(struct svc_serv *serv) 588 { 589 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn : 590 (serv->sv_nrthreads+3) * 20; 591 592 if (serv->sv_tmpcnt > limit) { 593 struct svc_xprt *xprt = NULL; 594 spin_lock_bh(&serv->sv_lock); 595 if (!list_empty(&serv->sv_tempsocks)) { 596 /* Try to help the admin */ 597 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n", 598 serv->sv_name, serv->sv_maxconn ? 599 "max number of connections" : 600 "number of threads"); 601 /* 602 * Always select the oldest connection. It's not fair, 603 * but so is life 604 */ 605 xprt = list_entry(serv->sv_tempsocks.prev, 606 struct svc_xprt, 607 xpt_list); 608 set_bit(XPT_CLOSE, &xprt->xpt_flags); 609 svc_xprt_get(xprt); 610 } 611 spin_unlock_bh(&serv->sv_lock); 612 613 if (xprt) { 614 svc_xprt_enqueue(xprt); 615 svc_xprt_put(xprt); 616 } 617 } 618 } 619 620 static int svc_alloc_arg(struct svc_rqst *rqstp) 621 { 622 struct svc_serv *serv = rqstp->rq_server; 623 struct xdr_buf *arg; 624 int pages; 625 int i; 626 627 /* now allocate needed pages. If we get a failure, sleep briefly */ 628 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT; 629 if (pages > RPCSVC_MAXPAGES) { 630 pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n", 631 pages, RPCSVC_MAXPAGES); 632 /* use as many pages as possible */ 633 pages = RPCSVC_MAXPAGES; 634 } 635 for (i = 0; i < pages ; i++) 636 while (rqstp->rq_pages[i] == NULL) { 637 struct page *p = alloc_page(GFP_KERNEL); 638 if (!p) { 639 set_current_state(TASK_INTERRUPTIBLE); 640 if (signalled() || kthread_should_stop()) { 641 set_current_state(TASK_RUNNING); 642 return -EINTR; 643 } 644 schedule_timeout(msecs_to_jiffies(500)); 645 } 646 rqstp->rq_pages[i] = p; 647 } 648 rqstp->rq_page_end = &rqstp->rq_pages[i]; 649 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */ 650 651 /* Make arg->head point to first page and arg->pages point to rest */ 652 arg = &rqstp->rq_arg; 653 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); 654 arg->head[0].iov_len = PAGE_SIZE; 655 arg->pages = rqstp->rq_pages + 1; 656 arg->page_base = 0; 657 /* save at least one page for response */ 658 arg->page_len = (pages-2)*PAGE_SIZE; 659 arg->len = (pages-1)*PAGE_SIZE; 660 arg->tail[0].iov_len = 0; 661 return 0; 662 } 663 664 static bool 665 rqst_should_sleep(struct svc_rqst *rqstp) 666 { 667 struct svc_pool *pool = rqstp->rq_pool; 668 669 /* did someone call svc_wake_up? */ 670 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags)) 671 return false; 672 673 /* was a socket queued? */ 674 if (!list_empty(&pool->sp_sockets)) 675 return false; 676 677 /* are we shutting down? */ 678 if (signalled() || kthread_should_stop()) 679 return false; 680 681 /* are we freezing? */ 682 if (freezing(current)) 683 return false; 684 685 return true; 686 } 687 688 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout) 689 { 690 struct svc_pool *pool = rqstp->rq_pool; 691 long time_left = 0; 692 693 /* rq_xprt should be clear on entry */ 694 WARN_ON_ONCE(rqstp->rq_xprt); 695 696 rqstp->rq_xprt = svc_xprt_dequeue(pool); 697 if (rqstp->rq_xprt) 698 goto out_found; 699 700 /* 701 * We have to be able to interrupt this wait 702 * to bring down the daemons ... 703 */ 704 set_current_state(TASK_INTERRUPTIBLE); 705 smp_mb__before_atomic(); 706 clear_bit(SP_CONGESTED, &pool->sp_flags); 707 clear_bit(RQ_BUSY, &rqstp->rq_flags); 708 smp_mb__after_atomic(); 709 710 if (likely(rqst_should_sleep(rqstp))) 711 time_left = schedule_timeout(timeout); 712 else 713 __set_current_state(TASK_RUNNING); 714 715 try_to_freeze(); 716 717 set_bit(RQ_BUSY, &rqstp->rq_flags); 718 smp_mb__after_atomic(); 719 rqstp->rq_xprt = svc_xprt_dequeue(pool); 720 if (rqstp->rq_xprt) 721 goto out_found; 722 723 if (!time_left) 724 atomic_long_inc(&pool->sp_stats.threads_timedout); 725 726 if (signalled() || kthread_should_stop()) 727 return ERR_PTR(-EINTR); 728 return ERR_PTR(-EAGAIN); 729 out_found: 730 /* Normally we will wait up to 5 seconds for any required 731 * cache information to be provided. 732 */ 733 if (!test_bit(SP_CONGESTED, &pool->sp_flags)) 734 rqstp->rq_chandle.thread_wait = 5*HZ; 735 else 736 rqstp->rq_chandle.thread_wait = 1*HZ; 737 return rqstp->rq_xprt; 738 } 739 740 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt) 741 { 742 spin_lock_bh(&serv->sv_lock); 743 set_bit(XPT_TEMP, &newxpt->xpt_flags); 744 list_add(&newxpt->xpt_list, &serv->sv_tempsocks); 745 serv->sv_tmpcnt++; 746 if (serv->sv_temptimer.function == NULL) { 747 /* setup timer to age temp transports */ 748 serv->sv_temptimer.function = svc_age_temp_xprts; 749 mod_timer(&serv->sv_temptimer, 750 jiffies + svc_conn_age_period * HZ); 751 } 752 spin_unlock_bh(&serv->sv_lock); 753 svc_xprt_received(newxpt); 754 } 755 756 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt) 757 { 758 struct svc_serv *serv = rqstp->rq_server; 759 int len = 0; 760 761 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { 762 dprintk("svc_recv: found XPT_CLOSE\n"); 763 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags)) 764 xprt->xpt_ops->xpo_kill_temp_xprt(xprt); 765 svc_delete_xprt(xprt); 766 /* Leave XPT_BUSY set on the dead xprt: */ 767 goto out; 768 } 769 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 770 struct svc_xprt *newxpt; 771 /* 772 * We know this module_get will succeed because the 773 * listener holds a reference too 774 */ 775 __module_get(xprt->xpt_class->xcl_owner); 776 svc_check_conn_limits(xprt->xpt_server); 777 newxpt = xprt->xpt_ops->xpo_accept(xprt); 778 if (newxpt) 779 svc_add_new_temp_xprt(serv, newxpt); 780 else 781 module_put(xprt->xpt_class->xcl_owner); 782 } else if (svc_xprt_reserve_slot(rqstp, xprt)) { 783 /* XPT_DATA|XPT_DEFERRED case: */ 784 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n", 785 rqstp, rqstp->rq_pool->sp_id, xprt, 786 kref_read(&xprt->xpt_ref)); 787 rqstp->rq_deferred = svc_deferred_dequeue(xprt); 788 if (rqstp->rq_deferred) 789 len = svc_deferred_recv(rqstp); 790 else 791 len = xprt->xpt_ops->xpo_recvfrom(rqstp); 792 dprintk("svc: got len=%d\n", len); 793 rqstp->rq_reserved = serv->sv_max_mesg; 794 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 795 } 796 /* clear XPT_BUSY: */ 797 svc_xprt_received(xprt); 798 out: 799 trace_svc_handle_xprt(xprt, len); 800 return len; 801 } 802 803 /* 804 * Receive the next request on any transport. This code is carefully 805 * organised not to touch any cachelines in the shared svc_serv 806 * structure, only cachelines in the local svc_pool. 807 */ 808 int svc_recv(struct svc_rqst *rqstp, long timeout) 809 { 810 struct svc_xprt *xprt = NULL; 811 struct svc_serv *serv = rqstp->rq_server; 812 int len, err; 813 814 dprintk("svc: server %p waiting for data (to = %ld)\n", 815 rqstp, timeout); 816 817 if (rqstp->rq_xprt) 818 printk(KERN_ERR 819 "svc_recv: service %p, transport not NULL!\n", 820 rqstp); 821 822 err = svc_alloc_arg(rqstp); 823 if (err) 824 goto out; 825 826 try_to_freeze(); 827 cond_resched(); 828 err = -EINTR; 829 if (signalled() || kthread_should_stop()) 830 goto out; 831 832 xprt = svc_get_next_xprt(rqstp, timeout); 833 if (IS_ERR(xprt)) { 834 err = PTR_ERR(xprt); 835 goto out; 836 } 837 838 len = svc_handle_xprt(rqstp, xprt); 839 840 /* No data, incomplete (TCP) read, or accept() */ 841 err = -EAGAIN; 842 if (len <= 0) 843 goto out_release; 844 845 clear_bit(XPT_OLD, &xprt->xpt_flags); 846 847 if (xprt->xpt_ops->xpo_secure_port(rqstp)) 848 set_bit(RQ_SECURE, &rqstp->rq_flags); 849 else 850 clear_bit(RQ_SECURE, &rqstp->rq_flags); 851 rqstp->rq_chandle.defer = svc_defer; 852 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]); 853 854 if (serv->sv_stats) 855 serv->sv_stats->netcnt++; 856 trace_svc_recv(rqstp, len); 857 return len; 858 out_release: 859 rqstp->rq_res.len = 0; 860 svc_xprt_release(rqstp); 861 out: 862 trace_svc_recv(rqstp, err); 863 return err; 864 } 865 EXPORT_SYMBOL_GPL(svc_recv); 866 867 /* 868 * Drop request 869 */ 870 void svc_drop(struct svc_rqst *rqstp) 871 { 872 trace_svc_drop(rqstp); 873 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt); 874 svc_xprt_release(rqstp); 875 } 876 EXPORT_SYMBOL_GPL(svc_drop); 877 878 /* 879 * Return reply to client. 880 */ 881 int svc_send(struct svc_rqst *rqstp) 882 { 883 struct svc_xprt *xprt; 884 int len = -EFAULT; 885 struct xdr_buf *xb; 886 887 xprt = rqstp->rq_xprt; 888 if (!xprt) 889 goto out; 890 891 /* release the receive skb before sending the reply */ 892 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); 893 894 /* calculate over-all length */ 895 xb = &rqstp->rq_res; 896 xb->len = xb->head[0].iov_len + 897 xb->page_len + 898 xb->tail[0].iov_len; 899 900 /* Grab mutex to serialize outgoing data. */ 901 mutex_lock(&xprt->xpt_mutex); 902 if (test_bit(XPT_DEAD, &xprt->xpt_flags) 903 || test_bit(XPT_CLOSE, &xprt->xpt_flags)) 904 len = -ENOTCONN; 905 else 906 len = xprt->xpt_ops->xpo_sendto(rqstp); 907 mutex_unlock(&xprt->xpt_mutex); 908 rpc_wake_up(&xprt->xpt_bc_pending); 909 svc_xprt_release(rqstp); 910 911 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) 912 len = 0; 913 out: 914 trace_svc_send(rqstp, len); 915 return len; 916 } 917 918 /* 919 * Timer function to close old temporary transports, using 920 * a mark-and-sweep algorithm. 921 */ 922 static void svc_age_temp_xprts(struct timer_list *t) 923 { 924 struct svc_serv *serv = from_timer(serv, t, sv_temptimer); 925 struct svc_xprt *xprt; 926 struct list_head *le, *next; 927 928 dprintk("svc_age_temp_xprts\n"); 929 930 if (!spin_trylock_bh(&serv->sv_lock)) { 931 /* busy, try again 1 sec later */ 932 dprintk("svc_age_temp_xprts: busy\n"); 933 mod_timer(&serv->sv_temptimer, jiffies + HZ); 934 return; 935 } 936 937 list_for_each_safe(le, next, &serv->sv_tempsocks) { 938 xprt = list_entry(le, struct svc_xprt, xpt_list); 939 940 /* First time through, just mark it OLD. Second time 941 * through, close it. */ 942 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) 943 continue; 944 if (kref_read(&xprt->xpt_ref) > 1 || 945 test_bit(XPT_BUSY, &xprt->xpt_flags)) 946 continue; 947 list_del_init(le); 948 set_bit(XPT_CLOSE, &xprt->xpt_flags); 949 dprintk("queuing xprt %p for closing\n", xprt); 950 951 /* a thread will dequeue and close it soon */ 952 svc_xprt_enqueue(xprt); 953 } 954 spin_unlock_bh(&serv->sv_lock); 955 956 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); 957 } 958 959 /* Close temporary transports whose xpt_local matches server_addr immediately 960 * instead of waiting for them to be picked up by the timer. 961 * 962 * This is meant to be called from a notifier_block that runs when an ip 963 * address is deleted. 964 */ 965 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr) 966 { 967 struct svc_xprt *xprt; 968 struct list_head *le, *next; 969 LIST_HEAD(to_be_closed); 970 971 spin_lock_bh(&serv->sv_lock); 972 list_for_each_safe(le, next, &serv->sv_tempsocks) { 973 xprt = list_entry(le, struct svc_xprt, xpt_list); 974 if (rpc_cmp_addr(server_addr, (struct sockaddr *) 975 &xprt->xpt_local)) { 976 dprintk("svc_age_temp_xprts_now: found %p\n", xprt); 977 list_move(le, &to_be_closed); 978 } 979 } 980 spin_unlock_bh(&serv->sv_lock); 981 982 while (!list_empty(&to_be_closed)) { 983 le = to_be_closed.next; 984 list_del_init(le); 985 xprt = list_entry(le, struct svc_xprt, xpt_list); 986 set_bit(XPT_CLOSE, &xprt->xpt_flags); 987 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags); 988 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n", 989 xprt); 990 svc_xprt_enqueue(xprt); 991 } 992 } 993 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now); 994 995 static void call_xpt_users(struct svc_xprt *xprt) 996 { 997 struct svc_xpt_user *u; 998 999 spin_lock(&xprt->xpt_lock); 1000 while (!list_empty(&xprt->xpt_users)) { 1001 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list); 1002 list_del(&u->list); 1003 u->callback(u); 1004 } 1005 spin_unlock(&xprt->xpt_lock); 1006 } 1007 1008 /* 1009 * Remove a dead transport 1010 */ 1011 static void svc_delete_xprt(struct svc_xprt *xprt) 1012 { 1013 struct svc_serv *serv = xprt->xpt_server; 1014 struct svc_deferred_req *dr; 1015 1016 /* Only do this once */ 1017 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) 1018 BUG(); 1019 1020 dprintk("svc: svc_delete_xprt(%p)\n", xprt); 1021 xprt->xpt_ops->xpo_detach(xprt); 1022 1023 spin_lock_bh(&serv->sv_lock); 1024 list_del_init(&xprt->xpt_list); 1025 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready)); 1026 if (test_bit(XPT_TEMP, &xprt->xpt_flags)) 1027 serv->sv_tmpcnt--; 1028 spin_unlock_bh(&serv->sv_lock); 1029 1030 while ((dr = svc_deferred_dequeue(xprt)) != NULL) 1031 kfree(dr); 1032 1033 call_xpt_users(xprt); 1034 svc_xprt_put(xprt); 1035 } 1036 1037 void svc_close_xprt(struct svc_xprt *xprt) 1038 { 1039 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1040 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 1041 /* someone else will have to effect the close */ 1042 return; 1043 /* 1044 * We expect svc_close_xprt() to work even when no threads are 1045 * running (e.g., while configuring the server before starting 1046 * any threads), so if the transport isn't busy, we delete 1047 * it ourself: 1048 */ 1049 svc_delete_xprt(xprt); 1050 } 1051 EXPORT_SYMBOL_GPL(svc_close_xprt); 1052 1053 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) 1054 { 1055 struct svc_xprt *xprt; 1056 int ret = 0; 1057 1058 spin_lock(&serv->sv_lock); 1059 list_for_each_entry(xprt, xprt_list, xpt_list) { 1060 if (xprt->xpt_net != net) 1061 continue; 1062 ret++; 1063 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1064 svc_xprt_enqueue(xprt); 1065 } 1066 spin_unlock(&serv->sv_lock); 1067 return ret; 1068 } 1069 1070 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net) 1071 { 1072 struct svc_pool *pool; 1073 struct svc_xprt *xprt; 1074 struct svc_xprt *tmp; 1075 int i; 1076 1077 for (i = 0; i < serv->sv_nrpools; i++) { 1078 pool = &serv->sv_pools[i]; 1079 1080 spin_lock_bh(&pool->sp_lock); 1081 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) { 1082 if (xprt->xpt_net != net) 1083 continue; 1084 list_del_init(&xprt->xpt_ready); 1085 spin_unlock_bh(&pool->sp_lock); 1086 return xprt; 1087 } 1088 spin_unlock_bh(&pool->sp_lock); 1089 } 1090 return NULL; 1091 } 1092 1093 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net) 1094 { 1095 struct svc_xprt *xprt; 1096 1097 while ((xprt = svc_dequeue_net(serv, net))) { 1098 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1099 svc_delete_xprt(xprt); 1100 } 1101 } 1102 1103 /* 1104 * Server threads may still be running (especially in the case where the 1105 * service is still running in other network namespaces). 1106 * 1107 * So we shut down sockets the same way we would on a running server, by 1108 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do 1109 * the close. In the case there are no such other threads, 1110 * threads running, svc_clean_up_xprts() does a simple version of a 1111 * server's main event loop, and in the case where there are other 1112 * threads, we may need to wait a little while and then check again to 1113 * see if they're done. 1114 */ 1115 void svc_close_net(struct svc_serv *serv, struct net *net) 1116 { 1117 int delay = 0; 1118 1119 while (svc_close_list(serv, &serv->sv_permsocks, net) + 1120 svc_close_list(serv, &serv->sv_tempsocks, net)) { 1121 1122 svc_clean_up_xprts(serv, net); 1123 msleep(delay++); 1124 } 1125 } 1126 1127 /* 1128 * Handle defer and revisit of requests 1129 */ 1130 1131 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 1132 { 1133 struct svc_deferred_req *dr = 1134 container_of(dreq, struct svc_deferred_req, handle); 1135 struct svc_xprt *xprt = dr->xprt; 1136 1137 spin_lock(&xprt->xpt_lock); 1138 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 1139 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) { 1140 spin_unlock(&xprt->xpt_lock); 1141 dprintk("revisit canceled\n"); 1142 svc_xprt_put(xprt); 1143 trace_svc_drop_deferred(dr); 1144 kfree(dr); 1145 return; 1146 } 1147 dprintk("revisit queued\n"); 1148 dr->xprt = NULL; 1149 list_add(&dr->handle.recent, &xprt->xpt_deferred); 1150 spin_unlock(&xprt->xpt_lock); 1151 svc_xprt_enqueue(xprt); 1152 svc_xprt_put(xprt); 1153 } 1154 1155 /* 1156 * Save the request off for later processing. The request buffer looks 1157 * like this: 1158 * 1159 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> 1160 * 1161 * This code can only handle requests that consist of an xprt-header 1162 * and rpc-header. 1163 */ 1164 static struct cache_deferred_req *svc_defer(struct cache_req *req) 1165 { 1166 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 1167 struct svc_deferred_req *dr; 1168 1169 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags)) 1170 return NULL; /* if more than a page, give up FIXME */ 1171 if (rqstp->rq_deferred) { 1172 dr = rqstp->rq_deferred; 1173 rqstp->rq_deferred = NULL; 1174 } else { 1175 size_t skip; 1176 size_t size; 1177 /* FIXME maybe discard if size too large */ 1178 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; 1179 dr = kmalloc(size, GFP_KERNEL); 1180 if (dr == NULL) 1181 return NULL; 1182 1183 dr->handle.owner = rqstp->rq_server; 1184 dr->prot = rqstp->rq_prot; 1185 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); 1186 dr->addrlen = rqstp->rq_addrlen; 1187 dr->daddr = rqstp->rq_daddr; 1188 dr->argslen = rqstp->rq_arg.len >> 2; 1189 dr->xprt_hlen = rqstp->rq_xprt_hlen; 1190 1191 /* back up head to the start of the buffer and copy */ 1192 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1193 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, 1194 dr->argslen << 2); 1195 } 1196 svc_xprt_get(rqstp->rq_xprt); 1197 dr->xprt = rqstp->rq_xprt; 1198 set_bit(RQ_DROPME, &rqstp->rq_flags); 1199 1200 dr->handle.revisit = svc_revisit; 1201 trace_svc_defer(rqstp); 1202 return &dr->handle; 1203 } 1204 1205 /* 1206 * recv data from a deferred request into an active one 1207 */ 1208 static int svc_deferred_recv(struct svc_rqst *rqstp) 1209 { 1210 struct svc_deferred_req *dr = rqstp->rq_deferred; 1211 1212 /* setup iov_base past transport header */ 1213 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2); 1214 /* The iov_len does not include the transport header bytes */ 1215 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen; 1216 rqstp->rq_arg.page_len = 0; 1217 /* The rq_arg.len includes the transport header bytes */ 1218 rqstp->rq_arg.len = dr->argslen<<2; 1219 rqstp->rq_prot = dr->prot; 1220 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); 1221 rqstp->rq_addrlen = dr->addrlen; 1222 /* Save off transport header len in case we get deferred again */ 1223 rqstp->rq_xprt_hlen = dr->xprt_hlen; 1224 rqstp->rq_daddr = dr->daddr; 1225 rqstp->rq_respages = rqstp->rq_pages; 1226 return (dr->argslen<<2) - dr->xprt_hlen; 1227 } 1228 1229 1230 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) 1231 { 1232 struct svc_deferred_req *dr = NULL; 1233 1234 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) 1235 return NULL; 1236 spin_lock(&xprt->xpt_lock); 1237 if (!list_empty(&xprt->xpt_deferred)) { 1238 dr = list_entry(xprt->xpt_deferred.next, 1239 struct svc_deferred_req, 1240 handle.recent); 1241 list_del_init(&dr->handle.recent); 1242 trace_svc_revisit_deferred(dr); 1243 } else 1244 clear_bit(XPT_DEFERRED, &xprt->xpt_flags); 1245 spin_unlock(&xprt->xpt_lock); 1246 return dr; 1247 } 1248 1249 /** 1250 * svc_find_xprt - find an RPC transport instance 1251 * @serv: pointer to svc_serv to search 1252 * @xcl_name: C string containing transport's class name 1253 * @net: owner net pointer 1254 * @af: Address family of transport's local address 1255 * @port: transport's IP port number 1256 * 1257 * Return the transport instance pointer for the endpoint accepting 1258 * connections/peer traffic from the specified transport class, 1259 * address family and port. 1260 * 1261 * Specifying 0 for the address family or port is effectively a 1262 * wild-card, and will result in matching the first transport in the 1263 * service's list that has a matching class name. 1264 */ 1265 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name, 1266 struct net *net, const sa_family_t af, 1267 const unsigned short port) 1268 { 1269 struct svc_xprt *xprt; 1270 struct svc_xprt *found = NULL; 1271 1272 /* Sanity check the args */ 1273 if (serv == NULL || xcl_name == NULL) 1274 return found; 1275 1276 spin_lock_bh(&serv->sv_lock); 1277 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1278 if (xprt->xpt_net != net) 1279 continue; 1280 if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) 1281 continue; 1282 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) 1283 continue; 1284 if (port != 0 && port != svc_xprt_local_port(xprt)) 1285 continue; 1286 found = xprt; 1287 svc_xprt_get(xprt); 1288 break; 1289 } 1290 spin_unlock_bh(&serv->sv_lock); 1291 return found; 1292 } 1293 EXPORT_SYMBOL_GPL(svc_find_xprt); 1294 1295 static int svc_one_xprt_name(const struct svc_xprt *xprt, 1296 char *pos, int remaining) 1297 { 1298 int len; 1299 1300 len = snprintf(pos, remaining, "%s %u\n", 1301 xprt->xpt_class->xcl_name, 1302 svc_xprt_local_port(xprt)); 1303 if (len >= remaining) 1304 return -ENAMETOOLONG; 1305 return len; 1306 } 1307 1308 /** 1309 * svc_xprt_names - format a buffer with a list of transport names 1310 * @serv: pointer to an RPC service 1311 * @buf: pointer to a buffer to be filled in 1312 * @buflen: length of buffer to be filled in 1313 * 1314 * Fills in @buf with a string containing a list of transport names, 1315 * each name terminated with '\n'. 1316 * 1317 * Returns positive length of the filled-in string on success; otherwise 1318 * a negative errno value is returned if an error occurs. 1319 */ 1320 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen) 1321 { 1322 struct svc_xprt *xprt; 1323 int len, totlen; 1324 char *pos; 1325 1326 /* Sanity check args */ 1327 if (!serv) 1328 return 0; 1329 1330 spin_lock_bh(&serv->sv_lock); 1331 1332 pos = buf; 1333 totlen = 0; 1334 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1335 len = svc_one_xprt_name(xprt, pos, buflen - totlen); 1336 if (len < 0) { 1337 *buf = '\0'; 1338 totlen = len; 1339 } 1340 if (len <= 0) 1341 break; 1342 1343 pos += len; 1344 totlen += len; 1345 } 1346 1347 spin_unlock_bh(&serv->sv_lock); 1348 return totlen; 1349 } 1350 EXPORT_SYMBOL_GPL(svc_xprt_names); 1351 1352 1353 /*----------------------------------------------------------------------------*/ 1354 1355 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos) 1356 { 1357 unsigned int pidx = (unsigned int)*pos; 1358 struct svc_serv *serv = m->private; 1359 1360 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx); 1361 1362 if (!pidx) 1363 return SEQ_START_TOKEN; 1364 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]); 1365 } 1366 1367 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos) 1368 { 1369 struct svc_pool *pool = p; 1370 struct svc_serv *serv = m->private; 1371 1372 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos); 1373 1374 if (p == SEQ_START_TOKEN) { 1375 pool = &serv->sv_pools[0]; 1376 } else { 1377 unsigned int pidx = (pool - &serv->sv_pools[0]); 1378 if (pidx < serv->sv_nrpools-1) 1379 pool = &serv->sv_pools[pidx+1]; 1380 else 1381 pool = NULL; 1382 } 1383 ++*pos; 1384 return pool; 1385 } 1386 1387 static void svc_pool_stats_stop(struct seq_file *m, void *p) 1388 { 1389 } 1390 1391 static int svc_pool_stats_show(struct seq_file *m, void *p) 1392 { 1393 struct svc_pool *pool = p; 1394 1395 if (p == SEQ_START_TOKEN) { 1396 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n"); 1397 return 0; 1398 } 1399 1400 seq_printf(m, "%u %lu %lu %lu %lu\n", 1401 pool->sp_id, 1402 (unsigned long)atomic_long_read(&pool->sp_stats.packets), 1403 pool->sp_stats.sockets_queued, 1404 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken), 1405 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout)); 1406 1407 return 0; 1408 } 1409 1410 static const struct seq_operations svc_pool_stats_seq_ops = { 1411 .start = svc_pool_stats_start, 1412 .next = svc_pool_stats_next, 1413 .stop = svc_pool_stats_stop, 1414 .show = svc_pool_stats_show, 1415 }; 1416 1417 int svc_pool_stats_open(struct svc_serv *serv, struct file *file) 1418 { 1419 int err; 1420 1421 err = seq_open(file, &svc_pool_stats_seq_ops); 1422 if (!err) 1423 ((struct seq_file *) file->private_data)->private = serv; 1424 return err; 1425 } 1426 EXPORT_SYMBOL(svc_pool_stats_open); 1427 1428 /*----------------------------------------------------------------------------*/ 1429