1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/svc_xprt.c 4 * 5 * Author: Tom Tucker <tom@opengridcomputing.com> 6 */ 7 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/errno.h> 11 #include <linux/freezer.h> 12 #include <linux/kthread.h> 13 #include <linux/slab.h> 14 #include <net/sock.h> 15 #include <linux/sunrpc/addr.h> 16 #include <linux/sunrpc/stats.h> 17 #include <linux/sunrpc/svc_xprt.h> 18 #include <linux/sunrpc/svcsock.h> 19 #include <linux/sunrpc/xprt.h> 20 #include <linux/module.h> 21 #include <linux/netdevice.h> 22 #include <trace/events/sunrpc.h> 23 24 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 25 26 static unsigned int svc_rpc_per_connection_limit __read_mostly; 27 module_param(svc_rpc_per_connection_limit, uint, 0644); 28 29 30 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); 31 static int svc_deferred_recv(struct svc_rqst *rqstp); 32 static struct cache_deferred_req *svc_defer(struct cache_req *req); 33 static void svc_age_temp_xprts(struct timer_list *t); 34 static void svc_delete_xprt(struct svc_xprt *xprt); 35 36 /* apparently the "standard" is that clients close 37 * idle connections after 5 minutes, servers after 38 * 6 minutes 39 * http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf 40 */ 41 static int svc_conn_age_period = 6*60; 42 43 /* List of registered transport classes */ 44 static DEFINE_SPINLOCK(svc_xprt_class_lock); 45 static LIST_HEAD(svc_xprt_class_list); 46 47 /* SMP locking strategy: 48 * 49 * svc_pool->sp_lock protects most of the fields of that pool. 50 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. 51 * when both need to be taken (rare), svc_serv->sv_lock is first. 52 * The "service mutex" protects svc_serv->sv_nrthread. 53 * svc_sock->sk_lock protects the svc_sock->sk_deferred list 54 * and the ->sk_info_authunix cache. 55 * 56 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being 57 * enqueued multiply. During normal transport processing this bit 58 * is set by svc_xprt_enqueue and cleared by svc_xprt_received. 59 * Providers should not manipulate this bit directly. 60 * 61 * Some flags can be set to certain values at any time 62 * providing that certain rules are followed: 63 * 64 * XPT_CONN, XPT_DATA: 65 * - Can be set or cleared at any time. 66 * - After a set, svc_xprt_enqueue must be called to enqueue 67 * the transport for processing. 68 * - After a clear, the transport must be read/accepted. 69 * If this succeeds, it must be set again. 70 * XPT_CLOSE: 71 * - Can set at any time. It is never cleared. 72 * XPT_DEAD: 73 * - Can only be set while XPT_BUSY is held which ensures 74 * that no other thread will be using the transport or will 75 * try to set XPT_DEAD. 76 */ 77 78 /** 79 * svc_reg_xprt_class - Register a server-side RPC transport class 80 * @xcl: New transport class to be registered 81 * 82 * Returns zero on success; otherwise a negative errno is returned. 83 */ 84 int svc_reg_xprt_class(struct svc_xprt_class *xcl) 85 { 86 struct svc_xprt_class *cl; 87 int res = -EEXIST; 88 89 INIT_LIST_HEAD(&xcl->xcl_list); 90 spin_lock(&svc_xprt_class_lock); 91 /* Make sure there isn't already a class with the same name */ 92 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { 93 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) 94 goto out; 95 } 96 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); 97 res = 0; 98 out: 99 spin_unlock(&svc_xprt_class_lock); 100 return res; 101 } 102 EXPORT_SYMBOL_GPL(svc_reg_xprt_class); 103 104 /** 105 * svc_unreg_xprt_class - Unregister a server-side RPC transport class 106 * @xcl: Transport class to be unregistered 107 * 108 */ 109 void svc_unreg_xprt_class(struct svc_xprt_class *xcl) 110 { 111 spin_lock(&svc_xprt_class_lock); 112 list_del_init(&xcl->xcl_list); 113 spin_unlock(&svc_xprt_class_lock); 114 } 115 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); 116 117 /** 118 * svc_print_xprts - Format the transport list for printing 119 * @buf: target buffer for formatted address 120 * @maxlen: length of target buffer 121 * 122 * Fills in @buf with a string containing a list of transport names, each name 123 * terminated with '\n'. If the buffer is too small, some entries may be 124 * missing, but it is guaranteed that all lines in the output buffer are 125 * complete. 126 * 127 * Returns positive length of the filled-in string. 128 */ 129 int svc_print_xprts(char *buf, int maxlen) 130 { 131 struct svc_xprt_class *xcl; 132 char tmpstr[80]; 133 int len = 0; 134 buf[0] = '\0'; 135 136 spin_lock(&svc_xprt_class_lock); 137 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 138 int slen; 139 140 slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n", 141 xcl->xcl_name, xcl->xcl_max_payload); 142 if (slen >= sizeof(tmpstr) || len + slen >= maxlen) 143 break; 144 len += slen; 145 strcat(buf, tmpstr); 146 } 147 spin_unlock(&svc_xprt_class_lock); 148 149 return len; 150 } 151 152 /** 153 * svc_xprt_deferred_close - Close a transport 154 * @xprt: transport instance 155 * 156 * Used in contexts that need to defer the work of shutting down 157 * the transport to an nfsd thread. 158 */ 159 void svc_xprt_deferred_close(struct svc_xprt *xprt) 160 { 161 if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags)) 162 svc_xprt_enqueue(xprt); 163 } 164 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close); 165 166 static void svc_xprt_free(struct kref *kref) 167 { 168 struct svc_xprt *xprt = 169 container_of(kref, struct svc_xprt, xpt_ref); 170 struct module *owner = xprt->xpt_class->xcl_owner; 171 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) 172 svcauth_unix_info_release(xprt); 173 put_cred(xprt->xpt_cred); 174 put_net_track(xprt->xpt_net, &xprt->ns_tracker); 175 /* See comment on corresponding get in xs_setup_bc_tcp(): */ 176 if (xprt->xpt_bc_xprt) 177 xprt_put(xprt->xpt_bc_xprt); 178 if (xprt->xpt_bc_xps) 179 xprt_switch_put(xprt->xpt_bc_xps); 180 trace_svc_xprt_free(xprt); 181 xprt->xpt_ops->xpo_free(xprt); 182 module_put(owner); 183 } 184 185 void svc_xprt_put(struct svc_xprt *xprt) 186 { 187 kref_put(&xprt->xpt_ref, svc_xprt_free); 188 } 189 EXPORT_SYMBOL_GPL(svc_xprt_put); 190 191 /* 192 * Called by transport drivers to initialize the transport independent 193 * portion of the transport instance. 194 */ 195 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl, 196 struct svc_xprt *xprt, struct svc_serv *serv) 197 { 198 memset(xprt, 0, sizeof(*xprt)); 199 xprt->xpt_class = xcl; 200 xprt->xpt_ops = xcl->xcl_ops; 201 kref_init(&xprt->xpt_ref); 202 xprt->xpt_server = serv; 203 INIT_LIST_HEAD(&xprt->xpt_list); 204 INIT_LIST_HEAD(&xprt->xpt_ready); 205 INIT_LIST_HEAD(&xprt->xpt_deferred); 206 INIT_LIST_HEAD(&xprt->xpt_users); 207 mutex_init(&xprt->xpt_mutex); 208 spin_lock_init(&xprt->xpt_lock); 209 set_bit(XPT_BUSY, &xprt->xpt_flags); 210 xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC); 211 strcpy(xprt->xpt_remotebuf, "uninitialized"); 212 } 213 EXPORT_SYMBOL_GPL(svc_xprt_init); 214 215 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl, 216 struct svc_serv *serv, 217 struct net *net, 218 const int family, 219 const unsigned short port, 220 int flags) 221 { 222 struct sockaddr_in sin = { 223 .sin_family = AF_INET, 224 .sin_addr.s_addr = htonl(INADDR_ANY), 225 .sin_port = htons(port), 226 }; 227 #if IS_ENABLED(CONFIG_IPV6) 228 struct sockaddr_in6 sin6 = { 229 .sin6_family = AF_INET6, 230 .sin6_addr = IN6ADDR_ANY_INIT, 231 .sin6_port = htons(port), 232 }; 233 #endif 234 struct svc_xprt *xprt; 235 struct sockaddr *sap; 236 size_t len; 237 238 switch (family) { 239 case PF_INET: 240 sap = (struct sockaddr *)&sin; 241 len = sizeof(sin); 242 break; 243 #if IS_ENABLED(CONFIG_IPV6) 244 case PF_INET6: 245 sap = (struct sockaddr *)&sin6; 246 len = sizeof(sin6); 247 break; 248 #endif 249 default: 250 return ERR_PTR(-EAFNOSUPPORT); 251 } 252 253 xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags); 254 if (IS_ERR(xprt)) 255 trace_svc_xprt_create_err(serv->sv_program->pg_name, 256 xcl->xcl_name, sap, len, xprt); 257 return xprt; 258 } 259 260 /** 261 * svc_xprt_received - start next receiver thread 262 * @xprt: controlling transport 263 * 264 * The caller must hold the XPT_BUSY bit and must 265 * not thereafter touch transport data. 266 * 267 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or 268 * insufficient) data. 269 */ 270 void svc_xprt_received(struct svc_xprt *xprt) 271 { 272 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) { 273 WARN_ONCE(1, "xprt=0x%p already busy!", xprt); 274 return; 275 } 276 277 /* As soon as we clear busy, the xprt could be closed and 278 * 'put', so we need a reference to call svc_xprt_enqueue with: 279 */ 280 svc_xprt_get(xprt); 281 smp_mb__before_atomic(); 282 clear_bit(XPT_BUSY, &xprt->xpt_flags); 283 svc_xprt_enqueue(xprt); 284 svc_xprt_put(xprt); 285 } 286 EXPORT_SYMBOL_GPL(svc_xprt_received); 287 288 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new) 289 { 290 clear_bit(XPT_TEMP, &new->xpt_flags); 291 spin_lock_bh(&serv->sv_lock); 292 list_add(&new->xpt_list, &serv->sv_permsocks); 293 spin_unlock_bh(&serv->sv_lock); 294 svc_xprt_received(new); 295 } 296 297 static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name, 298 struct net *net, const int family, 299 const unsigned short port, int flags, 300 const struct cred *cred) 301 { 302 struct svc_xprt_class *xcl; 303 304 spin_lock(&svc_xprt_class_lock); 305 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 306 struct svc_xprt *newxprt; 307 unsigned short newport; 308 309 if (strcmp(xprt_name, xcl->xcl_name)) 310 continue; 311 312 if (!try_module_get(xcl->xcl_owner)) 313 goto err; 314 315 spin_unlock(&svc_xprt_class_lock); 316 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags); 317 if (IS_ERR(newxprt)) { 318 module_put(xcl->xcl_owner); 319 return PTR_ERR(newxprt); 320 } 321 newxprt->xpt_cred = get_cred(cred); 322 svc_add_new_perm_xprt(serv, newxprt); 323 newport = svc_xprt_local_port(newxprt); 324 return newport; 325 } 326 err: 327 spin_unlock(&svc_xprt_class_lock); 328 /* This errno is exposed to user space. Provide a reasonable 329 * perror msg for a bad transport. */ 330 return -EPROTONOSUPPORT; 331 } 332 333 /** 334 * svc_xprt_create - Add a new listener to @serv 335 * @serv: target RPC service 336 * @xprt_name: transport class name 337 * @net: network namespace 338 * @family: network address family 339 * @port: listener port 340 * @flags: SVC_SOCK flags 341 * @cred: credential to bind to this transport 342 * 343 * Return values: 344 * %0: New listener added successfully 345 * %-EPROTONOSUPPORT: Requested transport type not supported 346 */ 347 int svc_xprt_create(struct svc_serv *serv, const char *xprt_name, 348 struct net *net, const int family, 349 const unsigned short port, int flags, 350 const struct cred *cred) 351 { 352 int err; 353 354 err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred); 355 if (err == -EPROTONOSUPPORT) { 356 request_module("svc%s", xprt_name); 357 err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred); 358 } 359 return err; 360 } 361 EXPORT_SYMBOL_GPL(svc_xprt_create); 362 363 /* 364 * Copy the local and remote xprt addresses to the rqstp structure 365 */ 366 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) 367 { 368 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); 369 rqstp->rq_addrlen = xprt->xpt_remotelen; 370 371 /* 372 * Destination address in request is needed for binding the 373 * source address in RPC replies/callbacks later. 374 */ 375 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen); 376 rqstp->rq_daddrlen = xprt->xpt_locallen; 377 } 378 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); 379 380 /** 381 * svc_print_addr - Format rq_addr field for printing 382 * @rqstp: svc_rqst struct containing address to print 383 * @buf: target buffer for formatted address 384 * @len: length of target buffer 385 * 386 */ 387 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) 388 { 389 return __svc_print_addr(svc_addr(rqstp), buf, len); 390 } 391 EXPORT_SYMBOL_GPL(svc_print_addr); 392 393 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt) 394 { 395 unsigned int limit = svc_rpc_per_connection_limit; 396 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts); 397 398 return limit == 0 || (nrqsts >= 0 && nrqsts < limit); 399 } 400 401 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt) 402 { 403 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) { 404 if (!svc_xprt_slots_in_range(xprt)) 405 return false; 406 atomic_inc(&xprt->xpt_nr_rqsts); 407 set_bit(RQ_DATA, &rqstp->rq_flags); 408 } 409 return true; 410 } 411 412 static void svc_xprt_release_slot(struct svc_rqst *rqstp) 413 { 414 struct svc_xprt *xprt = rqstp->rq_xprt; 415 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) { 416 atomic_dec(&xprt->xpt_nr_rqsts); 417 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */ 418 svc_xprt_enqueue(xprt); 419 } 420 } 421 422 static bool svc_xprt_ready(struct svc_xprt *xprt) 423 { 424 unsigned long xpt_flags; 425 426 /* 427 * If another cpu has recently updated xpt_flags, 428 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to 429 * know about it; otherwise it's possible that both that cpu and 430 * this one could call svc_xprt_enqueue() without either 431 * svc_xprt_enqueue() recognizing that the conditions below 432 * are satisfied, and we could stall indefinitely: 433 */ 434 smp_rmb(); 435 xpt_flags = READ_ONCE(xprt->xpt_flags); 436 437 trace_svc_xprt_enqueue(xprt, xpt_flags); 438 if (xpt_flags & BIT(XPT_BUSY)) 439 return false; 440 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE) | BIT(XPT_HANDSHAKE))) 441 return true; 442 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) { 443 if (xprt->xpt_ops->xpo_has_wspace(xprt) && 444 svc_xprt_slots_in_range(xprt)) 445 return true; 446 trace_svc_xprt_no_write_space(xprt); 447 return false; 448 } 449 return false; 450 } 451 452 /** 453 * svc_xprt_enqueue - Queue a transport on an idle nfsd thread 454 * @xprt: transport with data pending 455 * 456 */ 457 void svc_xprt_enqueue(struct svc_xprt *xprt) 458 { 459 struct svc_pool *pool; 460 461 if (!svc_xprt_ready(xprt)) 462 return; 463 464 /* Mark transport as busy. It will remain in this state until 465 * the provider calls svc_xprt_received. We update XPT_BUSY 466 * atomically because it also guards against trying to enqueue 467 * the transport twice. 468 */ 469 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 470 return; 471 472 pool = svc_pool_for_cpu(xprt->xpt_server); 473 474 percpu_counter_inc(&pool->sp_sockets_queued); 475 spin_lock_bh(&pool->sp_lock); 476 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); 477 spin_unlock_bh(&pool->sp_lock); 478 479 svc_pool_wake_idle_thread(pool); 480 } 481 EXPORT_SYMBOL_GPL(svc_xprt_enqueue); 482 483 /* 484 * Dequeue the first transport, if there is one. 485 */ 486 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) 487 { 488 struct svc_xprt *xprt = NULL; 489 490 if (list_empty(&pool->sp_sockets)) 491 goto out; 492 493 spin_lock_bh(&pool->sp_lock); 494 if (likely(!list_empty(&pool->sp_sockets))) { 495 xprt = list_first_entry(&pool->sp_sockets, 496 struct svc_xprt, xpt_ready); 497 list_del_init(&xprt->xpt_ready); 498 svc_xprt_get(xprt); 499 } 500 spin_unlock_bh(&pool->sp_lock); 501 out: 502 return xprt; 503 } 504 505 /** 506 * svc_reserve - change the space reserved for the reply to a request. 507 * @rqstp: The request in question 508 * @space: new max space to reserve 509 * 510 * Each request reserves some space on the output queue of the transport 511 * to make sure the reply fits. This function reduces that reserved 512 * space to be the amount of space used already, plus @space. 513 * 514 */ 515 void svc_reserve(struct svc_rqst *rqstp, int space) 516 { 517 struct svc_xprt *xprt = rqstp->rq_xprt; 518 519 space += rqstp->rq_res.head[0].iov_len; 520 521 if (xprt && space < rqstp->rq_reserved) { 522 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); 523 rqstp->rq_reserved = space; 524 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */ 525 svc_xprt_enqueue(xprt); 526 } 527 } 528 EXPORT_SYMBOL_GPL(svc_reserve); 529 530 static void free_deferred(struct svc_xprt *xprt, struct svc_deferred_req *dr) 531 { 532 if (!dr) 533 return; 534 535 xprt->xpt_ops->xpo_release_ctxt(xprt, dr->xprt_ctxt); 536 kfree(dr); 537 } 538 539 static void svc_xprt_release(struct svc_rqst *rqstp) 540 { 541 struct svc_xprt *xprt = rqstp->rq_xprt; 542 543 xprt->xpt_ops->xpo_release_ctxt(xprt, rqstp->rq_xprt_ctxt); 544 rqstp->rq_xprt_ctxt = NULL; 545 546 free_deferred(xprt, rqstp->rq_deferred); 547 rqstp->rq_deferred = NULL; 548 549 svc_rqst_release_pages(rqstp); 550 rqstp->rq_res.page_len = 0; 551 rqstp->rq_res.page_base = 0; 552 553 /* Reset response buffer and release 554 * the reservation. 555 * But first, check that enough space was reserved 556 * for the reply, otherwise we have a bug! 557 */ 558 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 559 printk(KERN_ERR "RPC request reserved %d but used %d\n", 560 rqstp->rq_reserved, 561 rqstp->rq_res.len); 562 563 rqstp->rq_res.head[0].iov_len = 0; 564 svc_reserve(rqstp, 0); 565 svc_xprt_release_slot(rqstp); 566 rqstp->rq_xprt = NULL; 567 svc_xprt_put(xprt); 568 } 569 570 /** 571 * svc_wake_up - Wake up a service thread for non-transport work 572 * @serv: RPC service 573 * 574 * Some svc_serv's will have occasional work to do, even when a xprt is not 575 * waiting to be serviced. This function is there to "kick" a task in one of 576 * those services so that it can wake up and do that work. Note that we only 577 * bother with pool 0 as we don't need to wake up more than one thread for 578 * this purpose. 579 */ 580 void svc_wake_up(struct svc_serv *serv) 581 { 582 struct svc_pool *pool = &serv->sv_pools[0]; 583 584 set_bit(SP_TASK_PENDING, &pool->sp_flags); 585 svc_pool_wake_idle_thread(pool); 586 } 587 EXPORT_SYMBOL_GPL(svc_wake_up); 588 589 int svc_port_is_privileged(struct sockaddr *sin) 590 { 591 switch (sin->sa_family) { 592 case AF_INET: 593 return ntohs(((struct sockaddr_in *)sin)->sin_port) 594 < PROT_SOCK; 595 case AF_INET6: 596 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) 597 < PROT_SOCK; 598 default: 599 return 0; 600 } 601 } 602 603 /* 604 * Make sure that we don't have too many active connections. If we have, 605 * something must be dropped. It's not clear what will happen if we allow 606 * "too many" connections, but when dealing with network-facing software, 607 * we have to code defensively. Here we do that by imposing hard limits. 608 * 609 * There's no point in trying to do random drop here for DoS 610 * prevention. The NFS clients does 1 reconnect in 15 seconds. An 611 * attacker can easily beat that. 612 * 613 * The only somewhat efficient mechanism would be if drop old 614 * connections from the same IP first. But right now we don't even 615 * record the client IP in svc_sock. 616 * 617 * single-threaded services that expect a lot of clients will probably 618 * need to set sv_maxconn to override the default value which is based 619 * on the number of threads 620 */ 621 static void svc_check_conn_limits(struct svc_serv *serv) 622 { 623 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn : 624 (serv->sv_nrthreads+3) * 20; 625 626 if (serv->sv_tmpcnt > limit) { 627 struct svc_xprt *xprt = NULL; 628 spin_lock_bh(&serv->sv_lock); 629 if (!list_empty(&serv->sv_tempsocks)) { 630 /* Try to help the admin */ 631 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n", 632 serv->sv_name, serv->sv_maxconn ? 633 "max number of connections" : 634 "number of threads"); 635 /* 636 * Always select the oldest connection. It's not fair, 637 * but so is life 638 */ 639 xprt = list_entry(serv->sv_tempsocks.prev, 640 struct svc_xprt, 641 xpt_list); 642 set_bit(XPT_CLOSE, &xprt->xpt_flags); 643 svc_xprt_get(xprt); 644 } 645 spin_unlock_bh(&serv->sv_lock); 646 647 if (xprt) { 648 svc_xprt_enqueue(xprt); 649 svc_xprt_put(xprt); 650 } 651 } 652 } 653 654 static bool svc_alloc_arg(struct svc_rqst *rqstp) 655 { 656 struct svc_serv *serv = rqstp->rq_server; 657 struct xdr_buf *arg = &rqstp->rq_arg; 658 unsigned long pages, filled, ret; 659 660 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT; 661 if (pages > RPCSVC_MAXPAGES) { 662 pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n", 663 pages, RPCSVC_MAXPAGES); 664 /* use as many pages as possible */ 665 pages = RPCSVC_MAXPAGES; 666 } 667 668 for (filled = 0; filled < pages; filled = ret) { 669 ret = alloc_pages_bulk_array_node(GFP_KERNEL, 670 rqstp->rq_pool->sp_id, 671 pages, rqstp->rq_pages); 672 if (ret > filled) 673 /* Made progress, don't sleep yet */ 674 continue; 675 676 set_current_state(TASK_IDLE); 677 if (kthread_should_stop()) { 678 set_current_state(TASK_RUNNING); 679 return false; 680 } 681 trace_svc_alloc_arg_err(pages, ret); 682 memalloc_retry_wait(GFP_KERNEL); 683 } 684 rqstp->rq_page_end = &rqstp->rq_pages[pages]; 685 rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */ 686 687 /* Make arg->head point to first page and arg->pages point to rest */ 688 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); 689 arg->head[0].iov_len = PAGE_SIZE; 690 arg->pages = rqstp->rq_pages + 1; 691 arg->page_base = 0; 692 /* save at least one page for response */ 693 arg->page_len = (pages-2)*PAGE_SIZE; 694 arg->len = (pages-1)*PAGE_SIZE; 695 arg->tail[0].iov_len = 0; 696 697 rqstp->rq_xid = xdr_zero; 698 return true; 699 } 700 701 static bool 702 rqst_should_sleep(struct svc_rqst *rqstp) 703 { 704 struct svc_pool *pool = rqstp->rq_pool; 705 706 /* did someone call svc_wake_up? */ 707 if (test_bit(SP_TASK_PENDING, &pool->sp_flags)) 708 return false; 709 710 /* was a socket queued? */ 711 if (!list_empty(&pool->sp_sockets)) 712 return false; 713 714 /* are we shutting down? */ 715 if (kthread_should_stop()) 716 return false; 717 718 /* are we freezing? */ 719 if (freezing(current)) 720 return false; 721 722 return true; 723 } 724 725 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp) 726 { 727 struct svc_pool *pool = rqstp->rq_pool; 728 729 /* rq_xprt should be clear on entry */ 730 WARN_ON_ONCE(rqstp->rq_xprt); 731 732 rqstp->rq_xprt = svc_xprt_dequeue(pool); 733 if (rqstp->rq_xprt) 734 goto out_found; 735 736 set_current_state(TASK_IDLE); 737 smp_mb__before_atomic(); 738 clear_bit(SP_CONGESTED, &pool->sp_flags); 739 clear_bit(RQ_BUSY, &rqstp->rq_flags); 740 smp_mb__after_atomic(); 741 742 if (likely(rqst_should_sleep(rqstp))) 743 schedule(); 744 else 745 __set_current_state(TASK_RUNNING); 746 747 try_to_freeze(); 748 749 set_bit(RQ_BUSY, &rqstp->rq_flags); 750 smp_mb__after_atomic(); 751 clear_bit(SP_TASK_PENDING, &pool->sp_flags); 752 rqstp->rq_xprt = svc_xprt_dequeue(pool); 753 if (rqstp->rq_xprt) 754 goto out_found; 755 756 if (kthread_should_stop()) 757 return NULL; 758 return NULL; 759 out_found: 760 clear_bit(SP_TASK_PENDING, &pool->sp_flags); 761 /* Normally we will wait up to 5 seconds for any required 762 * cache information to be provided. 763 */ 764 if (!test_bit(SP_CONGESTED, &pool->sp_flags)) 765 rqstp->rq_chandle.thread_wait = 5*HZ; 766 else 767 rqstp->rq_chandle.thread_wait = 1*HZ; 768 trace_svc_xprt_dequeue(rqstp); 769 return rqstp->rq_xprt; 770 } 771 772 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt) 773 { 774 spin_lock_bh(&serv->sv_lock); 775 set_bit(XPT_TEMP, &newxpt->xpt_flags); 776 list_add(&newxpt->xpt_list, &serv->sv_tempsocks); 777 serv->sv_tmpcnt++; 778 if (serv->sv_temptimer.function == NULL) { 779 /* setup timer to age temp transports */ 780 serv->sv_temptimer.function = svc_age_temp_xprts; 781 mod_timer(&serv->sv_temptimer, 782 jiffies + svc_conn_age_period * HZ); 783 } 784 spin_unlock_bh(&serv->sv_lock); 785 svc_xprt_received(newxpt); 786 } 787 788 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt) 789 { 790 struct svc_serv *serv = rqstp->rq_server; 791 int len = 0; 792 793 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { 794 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags)) 795 xprt->xpt_ops->xpo_kill_temp_xprt(xprt); 796 svc_delete_xprt(xprt); 797 /* Leave XPT_BUSY set on the dead xprt: */ 798 goto out; 799 } 800 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 801 struct svc_xprt *newxpt; 802 /* 803 * We know this module_get will succeed because the 804 * listener holds a reference too 805 */ 806 __module_get(xprt->xpt_class->xcl_owner); 807 svc_check_conn_limits(xprt->xpt_server); 808 newxpt = xprt->xpt_ops->xpo_accept(xprt); 809 if (newxpt) { 810 newxpt->xpt_cred = get_cred(xprt->xpt_cred); 811 svc_add_new_temp_xprt(serv, newxpt); 812 trace_svc_xprt_accept(newxpt, serv->sv_name); 813 } else { 814 module_put(xprt->xpt_class->xcl_owner); 815 } 816 svc_xprt_received(xprt); 817 } else if (test_bit(XPT_HANDSHAKE, &xprt->xpt_flags)) { 818 xprt->xpt_ops->xpo_handshake(xprt); 819 svc_xprt_received(xprt); 820 } else if (svc_xprt_reserve_slot(rqstp, xprt)) { 821 /* XPT_DATA|XPT_DEFERRED case: */ 822 rqstp->rq_deferred = svc_deferred_dequeue(xprt); 823 if (rqstp->rq_deferred) 824 len = svc_deferred_recv(rqstp); 825 else 826 len = xprt->xpt_ops->xpo_recvfrom(rqstp); 827 rqstp->rq_reserved = serv->sv_max_mesg; 828 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 829 } else 830 svc_xprt_received(xprt); 831 832 out: 833 return len; 834 } 835 836 /** 837 * svc_recv - Receive and process the next request on any transport 838 * @rqstp: an idle RPC service thread 839 * 840 * This code is carefully organised not to touch any cachelines in 841 * the shared svc_serv structure, only cachelines in the local 842 * svc_pool. 843 */ 844 void svc_recv(struct svc_rqst *rqstp) 845 { 846 struct svc_xprt *xprt = NULL; 847 struct svc_serv *serv = rqstp->rq_server; 848 int len; 849 850 if (!svc_alloc_arg(rqstp)) 851 goto out; 852 853 try_to_freeze(); 854 cond_resched(); 855 if (kthread_should_stop()) 856 goto out; 857 858 xprt = svc_get_next_xprt(rqstp); 859 if (!xprt) 860 goto out; 861 862 len = svc_handle_xprt(rqstp, xprt); 863 864 /* No data, incomplete (TCP) read, or accept() */ 865 if (len <= 0) 866 goto out_release; 867 868 trace_svc_xdr_recvfrom(&rqstp->rq_arg); 869 870 clear_bit(XPT_OLD, &xprt->xpt_flags); 871 872 rqstp->rq_chandle.defer = svc_defer; 873 874 if (serv->sv_stats) 875 serv->sv_stats->netcnt++; 876 percpu_counter_inc(&rqstp->rq_pool->sp_messages_arrived); 877 rqstp->rq_stime = ktime_get(); 878 svc_process(rqstp); 879 out: 880 return; 881 out_release: 882 rqstp->rq_res.len = 0; 883 svc_xprt_release(rqstp); 884 } 885 EXPORT_SYMBOL_GPL(svc_recv); 886 887 /* 888 * Drop request 889 */ 890 void svc_drop(struct svc_rqst *rqstp) 891 { 892 trace_svc_drop(rqstp); 893 svc_xprt_release(rqstp); 894 } 895 EXPORT_SYMBOL_GPL(svc_drop); 896 897 /** 898 * svc_send - Return reply to client 899 * @rqstp: RPC transaction context 900 * 901 */ 902 void svc_send(struct svc_rqst *rqstp) 903 { 904 struct svc_xprt *xprt; 905 struct xdr_buf *xb; 906 int status; 907 908 xprt = rqstp->rq_xprt; 909 if (!xprt) 910 return; 911 912 /* calculate over-all length */ 913 xb = &rqstp->rq_res; 914 xb->len = xb->head[0].iov_len + 915 xb->page_len + 916 xb->tail[0].iov_len; 917 trace_svc_xdr_sendto(rqstp->rq_xid, xb); 918 trace_svc_stats_latency(rqstp); 919 920 status = xprt->xpt_ops->xpo_sendto(rqstp); 921 922 trace_svc_send(rqstp, status); 923 svc_xprt_release(rqstp); 924 } 925 926 /* 927 * Timer function to close old temporary transports, using 928 * a mark-and-sweep algorithm. 929 */ 930 static void svc_age_temp_xprts(struct timer_list *t) 931 { 932 struct svc_serv *serv = from_timer(serv, t, sv_temptimer); 933 struct svc_xprt *xprt; 934 struct list_head *le, *next; 935 936 dprintk("svc_age_temp_xprts\n"); 937 938 if (!spin_trylock_bh(&serv->sv_lock)) { 939 /* busy, try again 1 sec later */ 940 dprintk("svc_age_temp_xprts: busy\n"); 941 mod_timer(&serv->sv_temptimer, jiffies + HZ); 942 return; 943 } 944 945 list_for_each_safe(le, next, &serv->sv_tempsocks) { 946 xprt = list_entry(le, struct svc_xprt, xpt_list); 947 948 /* First time through, just mark it OLD. Second time 949 * through, close it. */ 950 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) 951 continue; 952 if (kref_read(&xprt->xpt_ref) > 1 || 953 test_bit(XPT_BUSY, &xprt->xpt_flags)) 954 continue; 955 list_del_init(le); 956 set_bit(XPT_CLOSE, &xprt->xpt_flags); 957 dprintk("queuing xprt %p for closing\n", xprt); 958 959 /* a thread will dequeue and close it soon */ 960 svc_xprt_enqueue(xprt); 961 } 962 spin_unlock_bh(&serv->sv_lock); 963 964 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); 965 } 966 967 /* Close temporary transports whose xpt_local matches server_addr immediately 968 * instead of waiting for them to be picked up by the timer. 969 * 970 * This is meant to be called from a notifier_block that runs when an ip 971 * address is deleted. 972 */ 973 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr) 974 { 975 struct svc_xprt *xprt; 976 struct list_head *le, *next; 977 LIST_HEAD(to_be_closed); 978 979 spin_lock_bh(&serv->sv_lock); 980 list_for_each_safe(le, next, &serv->sv_tempsocks) { 981 xprt = list_entry(le, struct svc_xprt, xpt_list); 982 if (rpc_cmp_addr(server_addr, (struct sockaddr *) 983 &xprt->xpt_local)) { 984 dprintk("svc_age_temp_xprts_now: found %p\n", xprt); 985 list_move(le, &to_be_closed); 986 } 987 } 988 spin_unlock_bh(&serv->sv_lock); 989 990 while (!list_empty(&to_be_closed)) { 991 le = to_be_closed.next; 992 list_del_init(le); 993 xprt = list_entry(le, struct svc_xprt, xpt_list); 994 set_bit(XPT_CLOSE, &xprt->xpt_flags); 995 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags); 996 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n", 997 xprt); 998 svc_xprt_enqueue(xprt); 999 } 1000 } 1001 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now); 1002 1003 static void call_xpt_users(struct svc_xprt *xprt) 1004 { 1005 struct svc_xpt_user *u; 1006 1007 spin_lock(&xprt->xpt_lock); 1008 while (!list_empty(&xprt->xpt_users)) { 1009 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list); 1010 list_del_init(&u->list); 1011 u->callback(u); 1012 } 1013 spin_unlock(&xprt->xpt_lock); 1014 } 1015 1016 /* 1017 * Remove a dead transport 1018 */ 1019 static void svc_delete_xprt(struct svc_xprt *xprt) 1020 { 1021 struct svc_serv *serv = xprt->xpt_server; 1022 struct svc_deferred_req *dr; 1023 1024 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) 1025 return; 1026 1027 trace_svc_xprt_detach(xprt); 1028 xprt->xpt_ops->xpo_detach(xprt); 1029 if (xprt->xpt_bc_xprt) 1030 xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt); 1031 1032 spin_lock_bh(&serv->sv_lock); 1033 list_del_init(&xprt->xpt_list); 1034 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready)); 1035 if (test_bit(XPT_TEMP, &xprt->xpt_flags)) 1036 serv->sv_tmpcnt--; 1037 spin_unlock_bh(&serv->sv_lock); 1038 1039 while ((dr = svc_deferred_dequeue(xprt)) != NULL) 1040 free_deferred(xprt, dr); 1041 1042 call_xpt_users(xprt); 1043 svc_xprt_put(xprt); 1044 } 1045 1046 /** 1047 * svc_xprt_close - Close a client connection 1048 * @xprt: transport to disconnect 1049 * 1050 */ 1051 void svc_xprt_close(struct svc_xprt *xprt) 1052 { 1053 trace_svc_xprt_close(xprt); 1054 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1055 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 1056 /* someone else will have to effect the close */ 1057 return; 1058 /* 1059 * We expect svc_close_xprt() to work even when no threads are 1060 * running (e.g., while configuring the server before starting 1061 * any threads), so if the transport isn't busy, we delete 1062 * it ourself: 1063 */ 1064 svc_delete_xprt(xprt); 1065 } 1066 EXPORT_SYMBOL_GPL(svc_xprt_close); 1067 1068 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) 1069 { 1070 struct svc_xprt *xprt; 1071 int ret = 0; 1072 1073 spin_lock_bh(&serv->sv_lock); 1074 list_for_each_entry(xprt, xprt_list, xpt_list) { 1075 if (xprt->xpt_net != net) 1076 continue; 1077 ret++; 1078 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1079 svc_xprt_enqueue(xprt); 1080 } 1081 spin_unlock_bh(&serv->sv_lock); 1082 return ret; 1083 } 1084 1085 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net) 1086 { 1087 struct svc_pool *pool; 1088 struct svc_xprt *xprt; 1089 struct svc_xprt *tmp; 1090 int i; 1091 1092 for (i = 0; i < serv->sv_nrpools; i++) { 1093 pool = &serv->sv_pools[i]; 1094 1095 spin_lock_bh(&pool->sp_lock); 1096 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) { 1097 if (xprt->xpt_net != net) 1098 continue; 1099 list_del_init(&xprt->xpt_ready); 1100 spin_unlock_bh(&pool->sp_lock); 1101 return xprt; 1102 } 1103 spin_unlock_bh(&pool->sp_lock); 1104 } 1105 return NULL; 1106 } 1107 1108 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net) 1109 { 1110 struct svc_xprt *xprt; 1111 1112 while ((xprt = svc_dequeue_net(serv, net))) { 1113 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1114 svc_delete_xprt(xprt); 1115 } 1116 } 1117 1118 /** 1119 * svc_xprt_destroy_all - Destroy transports associated with @serv 1120 * @serv: RPC service to be shut down 1121 * @net: target network namespace 1122 * 1123 * Server threads may still be running (especially in the case where the 1124 * service is still running in other network namespaces). 1125 * 1126 * So we shut down sockets the same way we would on a running server, by 1127 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do 1128 * the close. In the case there are no such other threads, 1129 * threads running, svc_clean_up_xprts() does a simple version of a 1130 * server's main event loop, and in the case where there are other 1131 * threads, we may need to wait a little while and then check again to 1132 * see if they're done. 1133 */ 1134 void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net) 1135 { 1136 int delay = 0; 1137 1138 while (svc_close_list(serv, &serv->sv_permsocks, net) + 1139 svc_close_list(serv, &serv->sv_tempsocks, net)) { 1140 1141 svc_clean_up_xprts(serv, net); 1142 msleep(delay++); 1143 } 1144 } 1145 EXPORT_SYMBOL_GPL(svc_xprt_destroy_all); 1146 1147 /* 1148 * Handle defer and revisit of requests 1149 */ 1150 1151 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 1152 { 1153 struct svc_deferred_req *dr = 1154 container_of(dreq, struct svc_deferred_req, handle); 1155 struct svc_xprt *xprt = dr->xprt; 1156 1157 spin_lock(&xprt->xpt_lock); 1158 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 1159 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) { 1160 spin_unlock(&xprt->xpt_lock); 1161 trace_svc_defer_drop(dr); 1162 free_deferred(xprt, dr); 1163 svc_xprt_put(xprt); 1164 return; 1165 } 1166 dr->xprt = NULL; 1167 list_add(&dr->handle.recent, &xprt->xpt_deferred); 1168 spin_unlock(&xprt->xpt_lock); 1169 trace_svc_defer_queue(dr); 1170 svc_xprt_enqueue(xprt); 1171 svc_xprt_put(xprt); 1172 } 1173 1174 /* 1175 * Save the request off for later processing. The request buffer looks 1176 * like this: 1177 * 1178 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> 1179 * 1180 * This code can only handle requests that consist of an xprt-header 1181 * and rpc-header. 1182 */ 1183 static struct cache_deferred_req *svc_defer(struct cache_req *req) 1184 { 1185 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 1186 struct svc_deferred_req *dr; 1187 1188 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags)) 1189 return NULL; /* if more than a page, give up FIXME */ 1190 if (rqstp->rq_deferred) { 1191 dr = rqstp->rq_deferred; 1192 rqstp->rq_deferred = NULL; 1193 } else { 1194 size_t skip; 1195 size_t size; 1196 /* FIXME maybe discard if size too large */ 1197 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; 1198 dr = kmalloc(size, GFP_KERNEL); 1199 if (dr == NULL) 1200 return NULL; 1201 1202 dr->handle.owner = rqstp->rq_server; 1203 dr->prot = rqstp->rq_prot; 1204 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); 1205 dr->addrlen = rqstp->rq_addrlen; 1206 dr->daddr = rqstp->rq_daddr; 1207 dr->argslen = rqstp->rq_arg.len >> 2; 1208 1209 /* back up head to the start of the buffer and copy */ 1210 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1211 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, 1212 dr->argslen << 2); 1213 } 1214 dr->xprt_ctxt = rqstp->rq_xprt_ctxt; 1215 rqstp->rq_xprt_ctxt = NULL; 1216 trace_svc_defer(rqstp); 1217 svc_xprt_get(rqstp->rq_xprt); 1218 dr->xprt = rqstp->rq_xprt; 1219 set_bit(RQ_DROPME, &rqstp->rq_flags); 1220 1221 dr->handle.revisit = svc_revisit; 1222 return &dr->handle; 1223 } 1224 1225 /* 1226 * recv data from a deferred request into an active one 1227 */ 1228 static noinline int svc_deferred_recv(struct svc_rqst *rqstp) 1229 { 1230 struct svc_deferred_req *dr = rqstp->rq_deferred; 1231 1232 trace_svc_defer_recv(dr); 1233 1234 /* setup iov_base past transport header */ 1235 rqstp->rq_arg.head[0].iov_base = dr->args; 1236 /* The iov_len does not include the transport header bytes */ 1237 rqstp->rq_arg.head[0].iov_len = dr->argslen << 2; 1238 rqstp->rq_arg.page_len = 0; 1239 /* The rq_arg.len includes the transport header bytes */ 1240 rqstp->rq_arg.len = dr->argslen << 2; 1241 rqstp->rq_prot = dr->prot; 1242 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); 1243 rqstp->rq_addrlen = dr->addrlen; 1244 /* Save off transport header len in case we get deferred again */ 1245 rqstp->rq_daddr = dr->daddr; 1246 rqstp->rq_respages = rqstp->rq_pages; 1247 rqstp->rq_xprt_ctxt = dr->xprt_ctxt; 1248 1249 dr->xprt_ctxt = NULL; 1250 svc_xprt_received(rqstp->rq_xprt); 1251 return dr->argslen << 2; 1252 } 1253 1254 1255 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) 1256 { 1257 struct svc_deferred_req *dr = NULL; 1258 1259 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) 1260 return NULL; 1261 spin_lock(&xprt->xpt_lock); 1262 if (!list_empty(&xprt->xpt_deferred)) { 1263 dr = list_entry(xprt->xpt_deferred.next, 1264 struct svc_deferred_req, 1265 handle.recent); 1266 list_del_init(&dr->handle.recent); 1267 } else 1268 clear_bit(XPT_DEFERRED, &xprt->xpt_flags); 1269 spin_unlock(&xprt->xpt_lock); 1270 return dr; 1271 } 1272 1273 /** 1274 * svc_find_xprt - find an RPC transport instance 1275 * @serv: pointer to svc_serv to search 1276 * @xcl_name: C string containing transport's class name 1277 * @net: owner net pointer 1278 * @af: Address family of transport's local address 1279 * @port: transport's IP port number 1280 * 1281 * Return the transport instance pointer for the endpoint accepting 1282 * connections/peer traffic from the specified transport class, 1283 * address family and port. 1284 * 1285 * Specifying 0 for the address family or port is effectively a 1286 * wild-card, and will result in matching the first transport in the 1287 * service's list that has a matching class name. 1288 */ 1289 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name, 1290 struct net *net, const sa_family_t af, 1291 const unsigned short port) 1292 { 1293 struct svc_xprt *xprt; 1294 struct svc_xprt *found = NULL; 1295 1296 /* Sanity check the args */ 1297 if (serv == NULL || xcl_name == NULL) 1298 return found; 1299 1300 spin_lock_bh(&serv->sv_lock); 1301 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1302 if (xprt->xpt_net != net) 1303 continue; 1304 if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) 1305 continue; 1306 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) 1307 continue; 1308 if (port != 0 && port != svc_xprt_local_port(xprt)) 1309 continue; 1310 found = xprt; 1311 svc_xprt_get(xprt); 1312 break; 1313 } 1314 spin_unlock_bh(&serv->sv_lock); 1315 return found; 1316 } 1317 EXPORT_SYMBOL_GPL(svc_find_xprt); 1318 1319 static int svc_one_xprt_name(const struct svc_xprt *xprt, 1320 char *pos, int remaining) 1321 { 1322 int len; 1323 1324 len = snprintf(pos, remaining, "%s %u\n", 1325 xprt->xpt_class->xcl_name, 1326 svc_xprt_local_port(xprt)); 1327 if (len >= remaining) 1328 return -ENAMETOOLONG; 1329 return len; 1330 } 1331 1332 /** 1333 * svc_xprt_names - format a buffer with a list of transport names 1334 * @serv: pointer to an RPC service 1335 * @buf: pointer to a buffer to be filled in 1336 * @buflen: length of buffer to be filled in 1337 * 1338 * Fills in @buf with a string containing a list of transport names, 1339 * each name terminated with '\n'. 1340 * 1341 * Returns positive length of the filled-in string on success; otherwise 1342 * a negative errno value is returned if an error occurs. 1343 */ 1344 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen) 1345 { 1346 struct svc_xprt *xprt; 1347 int len, totlen; 1348 char *pos; 1349 1350 /* Sanity check args */ 1351 if (!serv) 1352 return 0; 1353 1354 spin_lock_bh(&serv->sv_lock); 1355 1356 pos = buf; 1357 totlen = 0; 1358 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1359 len = svc_one_xprt_name(xprt, pos, buflen - totlen); 1360 if (len < 0) { 1361 *buf = '\0'; 1362 totlen = len; 1363 } 1364 if (len <= 0) 1365 break; 1366 1367 pos += len; 1368 totlen += len; 1369 } 1370 1371 spin_unlock_bh(&serv->sv_lock); 1372 return totlen; 1373 } 1374 EXPORT_SYMBOL_GPL(svc_xprt_names); 1375 1376 1377 /*----------------------------------------------------------------------------*/ 1378 1379 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos) 1380 { 1381 unsigned int pidx = (unsigned int)*pos; 1382 struct svc_serv *serv = m->private; 1383 1384 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx); 1385 1386 if (!pidx) 1387 return SEQ_START_TOKEN; 1388 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]); 1389 } 1390 1391 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos) 1392 { 1393 struct svc_pool *pool = p; 1394 struct svc_serv *serv = m->private; 1395 1396 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos); 1397 1398 if (p == SEQ_START_TOKEN) { 1399 pool = &serv->sv_pools[0]; 1400 } else { 1401 unsigned int pidx = (pool - &serv->sv_pools[0]); 1402 if (pidx < serv->sv_nrpools-1) 1403 pool = &serv->sv_pools[pidx+1]; 1404 else 1405 pool = NULL; 1406 } 1407 ++*pos; 1408 return pool; 1409 } 1410 1411 static void svc_pool_stats_stop(struct seq_file *m, void *p) 1412 { 1413 } 1414 1415 static int svc_pool_stats_show(struct seq_file *m, void *p) 1416 { 1417 struct svc_pool *pool = p; 1418 1419 if (p == SEQ_START_TOKEN) { 1420 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n"); 1421 return 0; 1422 } 1423 1424 seq_printf(m, "%u %llu %llu %llu 0\n", 1425 pool->sp_id, 1426 percpu_counter_sum_positive(&pool->sp_messages_arrived), 1427 percpu_counter_sum_positive(&pool->sp_sockets_queued), 1428 percpu_counter_sum_positive(&pool->sp_threads_woken)); 1429 1430 return 0; 1431 } 1432 1433 static const struct seq_operations svc_pool_stats_seq_ops = { 1434 .start = svc_pool_stats_start, 1435 .next = svc_pool_stats_next, 1436 .stop = svc_pool_stats_stop, 1437 .show = svc_pool_stats_show, 1438 }; 1439 1440 int svc_pool_stats_open(struct svc_serv *serv, struct file *file) 1441 { 1442 int err; 1443 1444 err = seq_open(file, &svc_pool_stats_seq_ops); 1445 if (!err) 1446 ((struct seq_file *) file->private_data)->private = serv; 1447 return err; 1448 } 1449 EXPORT_SYMBOL(svc_pool_stats_open); 1450 1451 /*----------------------------------------------------------------------------*/ 1452