xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision fcc8487d)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/addr.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
17 #include <linux/sunrpc/xprt.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <trace/events/sunrpc.h>
21 
22 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
23 
24 static unsigned int svc_rpc_per_connection_limit __read_mostly;
25 module_param(svc_rpc_per_connection_limit, uint, 0644);
26 
27 
28 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
29 static int svc_deferred_recv(struct svc_rqst *rqstp);
30 static struct cache_deferred_req *svc_defer(struct cache_req *req);
31 static void svc_age_temp_xprts(unsigned long closure);
32 static void svc_delete_xprt(struct svc_xprt *xprt);
33 
34 /* apparently the "standard" is that clients close
35  * idle connections after 5 minutes, servers after
36  * 6 minutes
37  *   http://www.connectathon.org/talks96/nfstcp.pdf
38  */
39 static int svc_conn_age_period = 6*60;
40 
41 /* List of registered transport classes */
42 static DEFINE_SPINLOCK(svc_xprt_class_lock);
43 static LIST_HEAD(svc_xprt_class_list);
44 
45 /* SMP locking strategy:
46  *
47  *	svc_pool->sp_lock protects most of the fields of that pool.
48  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
49  *	when both need to be taken (rare), svc_serv->sv_lock is first.
50  *	The "service mutex" protects svc_serv->sv_nrthread.
51  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
52  *             and the ->sk_info_authunix cache.
53  *
54  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
55  *	enqueued multiply. During normal transport processing this bit
56  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
57  *	Providers should not manipulate this bit directly.
58  *
59  *	Some flags can be set to certain values at any time
60  *	providing that certain rules are followed:
61  *
62  *	XPT_CONN, XPT_DATA:
63  *		- Can be set or cleared at any time.
64  *		- After a set, svc_xprt_enqueue must be called to enqueue
65  *		  the transport for processing.
66  *		- After a clear, the transport must be read/accepted.
67  *		  If this succeeds, it must be set again.
68  *	XPT_CLOSE:
69  *		- Can set at any time. It is never cleared.
70  *      XPT_DEAD:
71  *		- Can only be set while XPT_BUSY is held which ensures
72  *		  that no other thread will be using the transport or will
73  *		  try to set XPT_DEAD.
74  */
75 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
76 {
77 	struct svc_xprt_class *cl;
78 	int res = -EEXIST;
79 
80 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
81 
82 	INIT_LIST_HEAD(&xcl->xcl_list);
83 	spin_lock(&svc_xprt_class_lock);
84 	/* Make sure there isn't already a class with the same name */
85 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
86 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
87 			goto out;
88 	}
89 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
90 	res = 0;
91 out:
92 	spin_unlock(&svc_xprt_class_lock);
93 	return res;
94 }
95 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
96 
97 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
98 {
99 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
100 	spin_lock(&svc_xprt_class_lock);
101 	list_del_init(&xcl->xcl_list);
102 	spin_unlock(&svc_xprt_class_lock);
103 }
104 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
105 
106 /*
107  * Format the transport list for printing
108  */
109 int svc_print_xprts(char *buf, int maxlen)
110 {
111 	struct svc_xprt_class *xcl;
112 	char tmpstr[80];
113 	int len = 0;
114 	buf[0] = '\0';
115 
116 	spin_lock(&svc_xprt_class_lock);
117 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
118 		int slen;
119 
120 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
121 		slen = strlen(tmpstr);
122 		if (len + slen > maxlen)
123 			break;
124 		len += slen;
125 		strcat(buf, tmpstr);
126 	}
127 	spin_unlock(&svc_xprt_class_lock);
128 
129 	return len;
130 }
131 
132 static void svc_xprt_free(struct kref *kref)
133 {
134 	struct svc_xprt *xprt =
135 		container_of(kref, struct svc_xprt, xpt_ref);
136 	struct module *owner = xprt->xpt_class->xcl_owner;
137 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
138 		svcauth_unix_info_release(xprt);
139 	put_net(xprt->xpt_net);
140 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
141 	if (xprt->xpt_bc_xprt)
142 		xprt_put(xprt->xpt_bc_xprt);
143 	if (xprt->xpt_bc_xps)
144 		xprt_switch_put(xprt->xpt_bc_xps);
145 	xprt->xpt_ops->xpo_free(xprt);
146 	module_put(owner);
147 }
148 
149 void svc_xprt_put(struct svc_xprt *xprt)
150 {
151 	kref_put(&xprt->xpt_ref, svc_xprt_free);
152 }
153 EXPORT_SYMBOL_GPL(svc_xprt_put);
154 
155 /*
156  * Called by transport drivers to initialize the transport independent
157  * portion of the transport instance.
158  */
159 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
160 		   struct svc_xprt *xprt, struct svc_serv *serv)
161 {
162 	memset(xprt, 0, sizeof(*xprt));
163 	xprt->xpt_class = xcl;
164 	xprt->xpt_ops = xcl->xcl_ops;
165 	kref_init(&xprt->xpt_ref);
166 	xprt->xpt_server = serv;
167 	INIT_LIST_HEAD(&xprt->xpt_list);
168 	INIT_LIST_HEAD(&xprt->xpt_ready);
169 	INIT_LIST_HEAD(&xprt->xpt_deferred);
170 	INIT_LIST_HEAD(&xprt->xpt_users);
171 	mutex_init(&xprt->xpt_mutex);
172 	spin_lock_init(&xprt->xpt_lock);
173 	set_bit(XPT_BUSY, &xprt->xpt_flags);
174 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
175 	xprt->xpt_net = get_net(net);
176 }
177 EXPORT_SYMBOL_GPL(svc_xprt_init);
178 
179 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
180 					 struct svc_serv *serv,
181 					 struct net *net,
182 					 const int family,
183 					 const unsigned short port,
184 					 int flags)
185 {
186 	struct sockaddr_in sin = {
187 		.sin_family		= AF_INET,
188 		.sin_addr.s_addr	= htonl(INADDR_ANY),
189 		.sin_port		= htons(port),
190 	};
191 #if IS_ENABLED(CONFIG_IPV6)
192 	struct sockaddr_in6 sin6 = {
193 		.sin6_family		= AF_INET6,
194 		.sin6_addr		= IN6ADDR_ANY_INIT,
195 		.sin6_port		= htons(port),
196 	};
197 #endif
198 	struct sockaddr *sap;
199 	size_t len;
200 
201 	switch (family) {
202 	case PF_INET:
203 		sap = (struct sockaddr *)&sin;
204 		len = sizeof(sin);
205 		break;
206 #if IS_ENABLED(CONFIG_IPV6)
207 	case PF_INET6:
208 		sap = (struct sockaddr *)&sin6;
209 		len = sizeof(sin6);
210 		break;
211 #endif
212 	default:
213 		return ERR_PTR(-EAFNOSUPPORT);
214 	}
215 
216 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
217 }
218 
219 /*
220  * svc_xprt_received conditionally queues the transport for processing
221  * by another thread. The caller must hold the XPT_BUSY bit and must
222  * not thereafter touch transport data.
223  *
224  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
225  * insufficient) data.
226  */
227 static void svc_xprt_received(struct svc_xprt *xprt)
228 {
229 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
230 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
231 		return;
232 	}
233 
234 	/* As soon as we clear busy, the xprt could be closed and
235 	 * 'put', so we need a reference to call svc_enqueue_xprt with:
236 	 */
237 	svc_xprt_get(xprt);
238 	smp_mb__before_atomic();
239 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
240 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
241 	svc_xprt_put(xprt);
242 }
243 
244 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
245 {
246 	clear_bit(XPT_TEMP, &new->xpt_flags);
247 	spin_lock_bh(&serv->sv_lock);
248 	list_add(&new->xpt_list, &serv->sv_permsocks);
249 	spin_unlock_bh(&serv->sv_lock);
250 	svc_xprt_received(new);
251 }
252 
253 int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
254 		    struct net *net, const int family,
255 		    const unsigned short port, int flags)
256 {
257 	struct svc_xprt_class *xcl;
258 
259 	spin_lock(&svc_xprt_class_lock);
260 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
261 		struct svc_xprt *newxprt;
262 		unsigned short newport;
263 
264 		if (strcmp(xprt_name, xcl->xcl_name))
265 			continue;
266 
267 		if (!try_module_get(xcl->xcl_owner))
268 			goto err;
269 
270 		spin_unlock(&svc_xprt_class_lock);
271 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
272 		if (IS_ERR(newxprt)) {
273 			module_put(xcl->xcl_owner);
274 			return PTR_ERR(newxprt);
275 		}
276 		svc_add_new_perm_xprt(serv, newxprt);
277 		newport = svc_xprt_local_port(newxprt);
278 		return newport;
279 	}
280  err:
281 	spin_unlock(&svc_xprt_class_lock);
282 	/* This errno is exposed to user space.  Provide a reasonable
283 	 * perror msg for a bad transport. */
284 	return -EPROTONOSUPPORT;
285 }
286 
287 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
288 		    struct net *net, const int family,
289 		    const unsigned short port, int flags)
290 {
291 	int err;
292 
293 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
294 	err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
295 	if (err == -EPROTONOSUPPORT) {
296 		request_module("svc%s", xprt_name);
297 		err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
298 	}
299 	if (err)
300 		dprintk("svc: transport %s not found, err %d\n",
301 			xprt_name, err);
302 	return err;
303 }
304 EXPORT_SYMBOL_GPL(svc_create_xprt);
305 
306 /*
307  * Copy the local and remote xprt addresses to the rqstp structure
308  */
309 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
310 {
311 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
312 	rqstp->rq_addrlen = xprt->xpt_remotelen;
313 
314 	/*
315 	 * Destination address in request is needed for binding the
316 	 * source address in RPC replies/callbacks later.
317 	 */
318 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
319 	rqstp->rq_daddrlen = xprt->xpt_locallen;
320 }
321 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
322 
323 /**
324  * svc_print_addr - Format rq_addr field for printing
325  * @rqstp: svc_rqst struct containing address to print
326  * @buf: target buffer for formatted address
327  * @len: length of target buffer
328  *
329  */
330 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
331 {
332 	return __svc_print_addr(svc_addr(rqstp), buf, len);
333 }
334 EXPORT_SYMBOL_GPL(svc_print_addr);
335 
336 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
337 {
338 	unsigned int limit = svc_rpc_per_connection_limit;
339 	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
340 
341 	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
342 }
343 
344 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
345 {
346 	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
347 		if (!svc_xprt_slots_in_range(xprt))
348 			return false;
349 		atomic_inc(&xprt->xpt_nr_rqsts);
350 		set_bit(RQ_DATA, &rqstp->rq_flags);
351 	}
352 	return true;
353 }
354 
355 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
356 {
357 	struct svc_xprt	*xprt = rqstp->rq_xprt;
358 	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
359 		atomic_dec(&xprt->xpt_nr_rqsts);
360 		svc_xprt_enqueue(xprt);
361 	}
362 }
363 
364 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
365 {
366 	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
367 		return true;
368 	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) {
369 		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
370 		    svc_xprt_slots_in_range(xprt))
371 			return true;
372 		trace_svc_xprt_no_write_space(xprt);
373 		return false;
374 	}
375 	return false;
376 }
377 
378 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
379 {
380 	struct svc_pool *pool;
381 	struct svc_rqst	*rqstp = NULL;
382 	int cpu;
383 	bool queued = false;
384 
385 	if (!svc_xprt_has_something_to_do(xprt))
386 		goto out;
387 
388 	/* Mark transport as busy. It will remain in this state until
389 	 * the provider calls svc_xprt_received. We update XPT_BUSY
390 	 * atomically because it also guards against trying to enqueue
391 	 * the transport twice.
392 	 */
393 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
394 		/* Don't enqueue transport while already enqueued */
395 		dprintk("svc: transport %p busy, not enqueued\n", xprt);
396 		goto out;
397 	}
398 
399 	cpu = get_cpu();
400 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
401 
402 	atomic_long_inc(&pool->sp_stats.packets);
403 
404 redo_search:
405 	/* find a thread for this xprt */
406 	rcu_read_lock();
407 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
408 		/* Do a lockless check first */
409 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
410 			continue;
411 
412 		/*
413 		 * Once the xprt has been queued, it can only be dequeued by
414 		 * the task that intends to service it. All we can do at that
415 		 * point is to try to wake this thread back up so that it can
416 		 * do so.
417 		 */
418 		if (!queued) {
419 			spin_lock_bh(&rqstp->rq_lock);
420 			if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) {
421 				/* already busy, move on... */
422 				spin_unlock_bh(&rqstp->rq_lock);
423 				continue;
424 			}
425 
426 			/* this one will do */
427 			rqstp->rq_xprt = xprt;
428 			svc_xprt_get(xprt);
429 			spin_unlock_bh(&rqstp->rq_lock);
430 		}
431 		rcu_read_unlock();
432 
433 		atomic_long_inc(&pool->sp_stats.threads_woken);
434 		wake_up_process(rqstp->rq_task);
435 		put_cpu();
436 		goto out;
437 	}
438 	rcu_read_unlock();
439 
440 	/*
441 	 * We didn't find an idle thread to use, so we need to queue the xprt.
442 	 * Do so and then search again. If we find one, we can't hook this one
443 	 * up to it directly but we can wake the thread up in the hopes that it
444 	 * will pick it up once it searches for a xprt to service.
445 	 */
446 	if (!queued) {
447 		queued = true;
448 		dprintk("svc: transport %p put into queue\n", xprt);
449 		spin_lock_bh(&pool->sp_lock);
450 		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
451 		pool->sp_stats.sockets_queued++;
452 		spin_unlock_bh(&pool->sp_lock);
453 		goto redo_search;
454 	}
455 	rqstp = NULL;
456 	put_cpu();
457 out:
458 	trace_svc_xprt_do_enqueue(xprt, rqstp);
459 }
460 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
461 
462 /*
463  * Queue up a transport with data pending. If there are idle nfsd
464  * processes, wake 'em up.
465  *
466  */
467 void svc_xprt_enqueue(struct svc_xprt *xprt)
468 {
469 	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
470 		return;
471 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
472 }
473 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
474 
475 /*
476  * Dequeue the first transport, if there is one.
477  */
478 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
479 {
480 	struct svc_xprt	*xprt = NULL;
481 
482 	if (list_empty(&pool->sp_sockets))
483 		goto out;
484 
485 	spin_lock_bh(&pool->sp_lock);
486 	if (likely(!list_empty(&pool->sp_sockets))) {
487 		xprt = list_first_entry(&pool->sp_sockets,
488 					struct svc_xprt, xpt_ready);
489 		list_del_init(&xprt->xpt_ready);
490 		svc_xprt_get(xprt);
491 
492 		dprintk("svc: transport %p dequeued, inuse=%d\n",
493 			xprt, kref_read(&xprt->xpt_ref));
494 	}
495 	spin_unlock_bh(&pool->sp_lock);
496 out:
497 	trace_svc_xprt_dequeue(xprt);
498 	return xprt;
499 }
500 
501 /**
502  * svc_reserve - change the space reserved for the reply to a request.
503  * @rqstp:  The request in question
504  * @space: new max space to reserve
505  *
506  * Each request reserves some space on the output queue of the transport
507  * to make sure the reply fits.  This function reduces that reserved
508  * space to be the amount of space used already, plus @space.
509  *
510  */
511 void svc_reserve(struct svc_rqst *rqstp, int space)
512 {
513 	space += rqstp->rq_res.head[0].iov_len;
514 
515 	if (space < rqstp->rq_reserved) {
516 		struct svc_xprt *xprt = rqstp->rq_xprt;
517 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
518 		rqstp->rq_reserved = space;
519 
520 		svc_xprt_enqueue(xprt);
521 	}
522 }
523 EXPORT_SYMBOL_GPL(svc_reserve);
524 
525 static void svc_xprt_release(struct svc_rqst *rqstp)
526 {
527 	struct svc_xprt	*xprt = rqstp->rq_xprt;
528 
529 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
530 
531 	kfree(rqstp->rq_deferred);
532 	rqstp->rq_deferred = NULL;
533 
534 	svc_free_res_pages(rqstp);
535 	rqstp->rq_res.page_len = 0;
536 	rqstp->rq_res.page_base = 0;
537 
538 	/* Reset response buffer and release
539 	 * the reservation.
540 	 * But first, check that enough space was reserved
541 	 * for the reply, otherwise we have a bug!
542 	 */
543 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
544 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
545 		       rqstp->rq_reserved,
546 		       rqstp->rq_res.len);
547 
548 	rqstp->rq_res.head[0].iov_len = 0;
549 	svc_reserve(rqstp, 0);
550 	svc_xprt_release_slot(rqstp);
551 	rqstp->rq_xprt = NULL;
552 	svc_xprt_put(xprt);
553 }
554 
555 /*
556  * Some svc_serv's will have occasional work to do, even when a xprt is not
557  * waiting to be serviced. This function is there to "kick" a task in one of
558  * those services so that it can wake up and do that work. Note that we only
559  * bother with pool 0 as we don't need to wake up more than one thread for
560  * this purpose.
561  */
562 void svc_wake_up(struct svc_serv *serv)
563 {
564 	struct svc_rqst	*rqstp;
565 	struct svc_pool *pool;
566 
567 	pool = &serv->sv_pools[0];
568 
569 	rcu_read_lock();
570 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
571 		/* skip any that aren't queued */
572 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
573 			continue;
574 		rcu_read_unlock();
575 		dprintk("svc: daemon %p woken up.\n", rqstp);
576 		wake_up_process(rqstp->rq_task);
577 		trace_svc_wake_up(rqstp->rq_task->pid);
578 		return;
579 	}
580 	rcu_read_unlock();
581 
582 	/* No free entries available */
583 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
584 	smp_wmb();
585 	trace_svc_wake_up(0);
586 }
587 EXPORT_SYMBOL_GPL(svc_wake_up);
588 
589 int svc_port_is_privileged(struct sockaddr *sin)
590 {
591 	switch (sin->sa_family) {
592 	case AF_INET:
593 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
594 			< PROT_SOCK;
595 	case AF_INET6:
596 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
597 			< PROT_SOCK;
598 	default:
599 		return 0;
600 	}
601 }
602 
603 /*
604  * Make sure that we don't have too many active connections. If we have,
605  * something must be dropped. It's not clear what will happen if we allow
606  * "too many" connections, but when dealing with network-facing software,
607  * we have to code defensively. Here we do that by imposing hard limits.
608  *
609  * There's no point in trying to do random drop here for DoS
610  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
611  * attacker can easily beat that.
612  *
613  * The only somewhat efficient mechanism would be if drop old
614  * connections from the same IP first. But right now we don't even
615  * record the client IP in svc_sock.
616  *
617  * single-threaded services that expect a lot of clients will probably
618  * need to set sv_maxconn to override the default value which is based
619  * on the number of threads
620  */
621 static void svc_check_conn_limits(struct svc_serv *serv)
622 {
623 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
624 				(serv->sv_nrthreads+3) * 20;
625 
626 	if (serv->sv_tmpcnt > limit) {
627 		struct svc_xprt *xprt = NULL;
628 		spin_lock_bh(&serv->sv_lock);
629 		if (!list_empty(&serv->sv_tempsocks)) {
630 			/* Try to help the admin */
631 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
632 					       serv->sv_name, serv->sv_maxconn ?
633 					       "max number of connections" :
634 					       "number of threads");
635 			/*
636 			 * Always select the oldest connection. It's not fair,
637 			 * but so is life
638 			 */
639 			xprt = list_entry(serv->sv_tempsocks.prev,
640 					  struct svc_xprt,
641 					  xpt_list);
642 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
643 			svc_xprt_get(xprt);
644 		}
645 		spin_unlock_bh(&serv->sv_lock);
646 
647 		if (xprt) {
648 			svc_xprt_enqueue(xprt);
649 			svc_xprt_put(xprt);
650 		}
651 	}
652 }
653 
654 static int svc_alloc_arg(struct svc_rqst *rqstp)
655 {
656 	struct svc_serv *serv = rqstp->rq_server;
657 	struct xdr_buf *arg;
658 	int pages;
659 	int i;
660 
661 	/* now allocate needed pages.  If we get a failure, sleep briefly */
662 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
663 	WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
664 	if (pages >= RPCSVC_MAXPAGES)
665 		/* use as many pages as possible */
666 		pages = RPCSVC_MAXPAGES - 1;
667 	for (i = 0; i < pages ; i++)
668 		while (rqstp->rq_pages[i] == NULL) {
669 			struct page *p = alloc_page(GFP_KERNEL);
670 			if (!p) {
671 				set_current_state(TASK_INTERRUPTIBLE);
672 				if (signalled() || kthread_should_stop()) {
673 					set_current_state(TASK_RUNNING);
674 					return -EINTR;
675 				}
676 				schedule_timeout(msecs_to_jiffies(500));
677 			}
678 			rqstp->rq_pages[i] = p;
679 		}
680 	rqstp->rq_page_end = &rqstp->rq_pages[i];
681 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
682 
683 	/* Make arg->head point to first page and arg->pages point to rest */
684 	arg = &rqstp->rq_arg;
685 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
686 	arg->head[0].iov_len = PAGE_SIZE;
687 	arg->pages = rqstp->rq_pages + 1;
688 	arg->page_base = 0;
689 	/* save at least one page for response */
690 	arg->page_len = (pages-2)*PAGE_SIZE;
691 	arg->len = (pages-1)*PAGE_SIZE;
692 	arg->tail[0].iov_len = 0;
693 	return 0;
694 }
695 
696 static bool
697 rqst_should_sleep(struct svc_rqst *rqstp)
698 {
699 	struct svc_pool		*pool = rqstp->rq_pool;
700 
701 	/* did someone call svc_wake_up? */
702 	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
703 		return false;
704 
705 	/* was a socket queued? */
706 	if (!list_empty(&pool->sp_sockets))
707 		return false;
708 
709 	/* are we shutting down? */
710 	if (signalled() || kthread_should_stop())
711 		return false;
712 
713 	/* are we freezing? */
714 	if (freezing(current))
715 		return false;
716 
717 	return true;
718 }
719 
720 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
721 {
722 	struct svc_xprt *xprt;
723 	struct svc_pool		*pool = rqstp->rq_pool;
724 	long			time_left = 0;
725 
726 	/* rq_xprt should be clear on entry */
727 	WARN_ON_ONCE(rqstp->rq_xprt);
728 
729 	/* Normally we will wait up to 5 seconds for any required
730 	 * cache information to be provided.
731 	 */
732 	rqstp->rq_chandle.thread_wait = 5*HZ;
733 
734 	xprt = svc_xprt_dequeue(pool);
735 	if (xprt) {
736 		rqstp->rq_xprt = xprt;
737 
738 		/* As there is a shortage of threads and this request
739 		 * had to be queued, don't allow the thread to wait so
740 		 * long for cache updates.
741 		 */
742 		rqstp->rq_chandle.thread_wait = 1*HZ;
743 		clear_bit(SP_TASK_PENDING, &pool->sp_flags);
744 		return xprt;
745 	}
746 
747 	/*
748 	 * We have to be able to interrupt this wait
749 	 * to bring down the daemons ...
750 	 */
751 	set_current_state(TASK_INTERRUPTIBLE);
752 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
753 	smp_mb();
754 
755 	if (likely(rqst_should_sleep(rqstp)))
756 		time_left = schedule_timeout(timeout);
757 	else
758 		__set_current_state(TASK_RUNNING);
759 
760 	try_to_freeze();
761 
762 	spin_lock_bh(&rqstp->rq_lock);
763 	set_bit(RQ_BUSY, &rqstp->rq_flags);
764 	spin_unlock_bh(&rqstp->rq_lock);
765 
766 	xprt = rqstp->rq_xprt;
767 	if (xprt != NULL)
768 		return xprt;
769 
770 	if (!time_left)
771 		atomic_long_inc(&pool->sp_stats.threads_timedout);
772 
773 	if (signalled() || kthread_should_stop())
774 		return ERR_PTR(-EINTR);
775 	return ERR_PTR(-EAGAIN);
776 }
777 
778 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
779 {
780 	spin_lock_bh(&serv->sv_lock);
781 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
782 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
783 	serv->sv_tmpcnt++;
784 	if (serv->sv_temptimer.function == NULL) {
785 		/* setup timer to age temp transports */
786 		setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
787 			    (unsigned long)serv);
788 		mod_timer(&serv->sv_temptimer,
789 			  jiffies + svc_conn_age_period * HZ);
790 	}
791 	spin_unlock_bh(&serv->sv_lock);
792 	svc_xprt_received(newxpt);
793 }
794 
795 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
796 {
797 	struct svc_serv *serv = rqstp->rq_server;
798 	int len = 0;
799 
800 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
801 		dprintk("svc_recv: found XPT_CLOSE\n");
802 		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
803 			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
804 		svc_delete_xprt(xprt);
805 		/* Leave XPT_BUSY set on the dead xprt: */
806 		goto out;
807 	}
808 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
809 		struct svc_xprt *newxpt;
810 		/*
811 		 * We know this module_get will succeed because the
812 		 * listener holds a reference too
813 		 */
814 		__module_get(xprt->xpt_class->xcl_owner);
815 		svc_check_conn_limits(xprt->xpt_server);
816 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
817 		if (newxpt)
818 			svc_add_new_temp_xprt(serv, newxpt);
819 		else
820 			module_put(xprt->xpt_class->xcl_owner);
821 	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
822 		/* XPT_DATA|XPT_DEFERRED case: */
823 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
824 			rqstp, rqstp->rq_pool->sp_id, xprt,
825 			kref_read(&xprt->xpt_ref));
826 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
827 		if (rqstp->rq_deferred)
828 			len = svc_deferred_recv(rqstp);
829 		else
830 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
831 		dprintk("svc: got len=%d\n", len);
832 		rqstp->rq_reserved = serv->sv_max_mesg;
833 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
834 	}
835 	/* clear XPT_BUSY: */
836 	svc_xprt_received(xprt);
837 out:
838 	trace_svc_handle_xprt(xprt, len);
839 	return len;
840 }
841 
842 /*
843  * Receive the next request on any transport.  This code is carefully
844  * organised not to touch any cachelines in the shared svc_serv
845  * structure, only cachelines in the local svc_pool.
846  */
847 int svc_recv(struct svc_rqst *rqstp, long timeout)
848 {
849 	struct svc_xprt		*xprt = NULL;
850 	struct svc_serv		*serv = rqstp->rq_server;
851 	int			len, err;
852 
853 	dprintk("svc: server %p waiting for data (to = %ld)\n",
854 		rqstp, timeout);
855 
856 	if (rqstp->rq_xprt)
857 		printk(KERN_ERR
858 			"svc_recv: service %p, transport not NULL!\n",
859 			 rqstp);
860 
861 	err = svc_alloc_arg(rqstp);
862 	if (err)
863 		goto out;
864 
865 	try_to_freeze();
866 	cond_resched();
867 	err = -EINTR;
868 	if (signalled() || kthread_should_stop())
869 		goto out;
870 
871 	xprt = svc_get_next_xprt(rqstp, timeout);
872 	if (IS_ERR(xprt)) {
873 		err = PTR_ERR(xprt);
874 		goto out;
875 	}
876 
877 	len = svc_handle_xprt(rqstp, xprt);
878 
879 	/* No data, incomplete (TCP) read, or accept() */
880 	err = -EAGAIN;
881 	if (len <= 0)
882 		goto out_release;
883 
884 	clear_bit(XPT_OLD, &xprt->xpt_flags);
885 
886 	if (xprt->xpt_ops->xpo_secure_port(rqstp))
887 		set_bit(RQ_SECURE, &rqstp->rq_flags);
888 	else
889 		clear_bit(RQ_SECURE, &rqstp->rq_flags);
890 	rqstp->rq_chandle.defer = svc_defer;
891 	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
892 
893 	if (serv->sv_stats)
894 		serv->sv_stats->netcnt++;
895 	trace_svc_recv(rqstp, len);
896 	return len;
897 out_release:
898 	rqstp->rq_res.len = 0;
899 	svc_xprt_release(rqstp);
900 out:
901 	trace_svc_recv(rqstp, err);
902 	return err;
903 }
904 EXPORT_SYMBOL_GPL(svc_recv);
905 
906 /*
907  * Drop request
908  */
909 void svc_drop(struct svc_rqst *rqstp)
910 {
911 	trace_svc_drop(rqstp);
912 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
913 	svc_xprt_release(rqstp);
914 }
915 EXPORT_SYMBOL_GPL(svc_drop);
916 
917 /*
918  * Return reply to client.
919  */
920 int svc_send(struct svc_rqst *rqstp)
921 {
922 	struct svc_xprt	*xprt;
923 	int		len = -EFAULT;
924 	struct xdr_buf	*xb;
925 
926 	xprt = rqstp->rq_xprt;
927 	if (!xprt)
928 		goto out;
929 
930 	/* release the receive skb before sending the reply */
931 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
932 
933 	/* calculate over-all length */
934 	xb = &rqstp->rq_res;
935 	xb->len = xb->head[0].iov_len +
936 		xb->page_len +
937 		xb->tail[0].iov_len;
938 
939 	/* Grab mutex to serialize outgoing data. */
940 	mutex_lock(&xprt->xpt_mutex);
941 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
942 			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
943 		len = -ENOTCONN;
944 	else
945 		len = xprt->xpt_ops->xpo_sendto(rqstp);
946 	mutex_unlock(&xprt->xpt_mutex);
947 	rpc_wake_up(&xprt->xpt_bc_pending);
948 	svc_xprt_release(rqstp);
949 
950 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
951 		len = 0;
952 out:
953 	trace_svc_send(rqstp, len);
954 	return len;
955 }
956 
957 /*
958  * Timer function to close old temporary transports, using
959  * a mark-and-sweep algorithm.
960  */
961 static void svc_age_temp_xprts(unsigned long closure)
962 {
963 	struct svc_serv *serv = (struct svc_serv *)closure;
964 	struct svc_xprt *xprt;
965 	struct list_head *le, *next;
966 
967 	dprintk("svc_age_temp_xprts\n");
968 
969 	if (!spin_trylock_bh(&serv->sv_lock)) {
970 		/* busy, try again 1 sec later */
971 		dprintk("svc_age_temp_xprts: busy\n");
972 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
973 		return;
974 	}
975 
976 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
977 		xprt = list_entry(le, struct svc_xprt, xpt_list);
978 
979 		/* First time through, just mark it OLD. Second time
980 		 * through, close it. */
981 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
982 			continue;
983 		if (kref_read(&xprt->xpt_ref) > 1 ||
984 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
985 			continue;
986 		list_del_init(le);
987 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
988 		dprintk("queuing xprt %p for closing\n", xprt);
989 
990 		/* a thread will dequeue and close it soon */
991 		svc_xprt_enqueue(xprt);
992 	}
993 	spin_unlock_bh(&serv->sv_lock);
994 
995 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
996 }
997 
998 /* Close temporary transports whose xpt_local matches server_addr immediately
999  * instead of waiting for them to be picked up by the timer.
1000  *
1001  * This is meant to be called from a notifier_block that runs when an ip
1002  * address is deleted.
1003  */
1004 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
1005 {
1006 	struct svc_xprt *xprt;
1007 	struct list_head *le, *next;
1008 	LIST_HEAD(to_be_closed);
1009 
1010 	spin_lock_bh(&serv->sv_lock);
1011 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
1012 		xprt = list_entry(le, struct svc_xprt, xpt_list);
1013 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
1014 				&xprt->xpt_local)) {
1015 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
1016 			list_move(le, &to_be_closed);
1017 		}
1018 	}
1019 	spin_unlock_bh(&serv->sv_lock);
1020 
1021 	while (!list_empty(&to_be_closed)) {
1022 		le = to_be_closed.next;
1023 		list_del_init(le);
1024 		xprt = list_entry(le, struct svc_xprt, xpt_list);
1025 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1026 		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
1027 		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
1028 				xprt);
1029 		svc_xprt_enqueue(xprt);
1030 	}
1031 }
1032 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1033 
1034 static void call_xpt_users(struct svc_xprt *xprt)
1035 {
1036 	struct svc_xpt_user *u;
1037 
1038 	spin_lock(&xprt->xpt_lock);
1039 	while (!list_empty(&xprt->xpt_users)) {
1040 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1041 		list_del(&u->list);
1042 		u->callback(u);
1043 	}
1044 	spin_unlock(&xprt->xpt_lock);
1045 }
1046 
1047 /*
1048  * Remove a dead transport
1049  */
1050 static void svc_delete_xprt(struct svc_xprt *xprt)
1051 {
1052 	struct svc_serv	*serv = xprt->xpt_server;
1053 	struct svc_deferred_req *dr;
1054 
1055 	/* Only do this once */
1056 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1057 		BUG();
1058 
1059 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1060 	xprt->xpt_ops->xpo_detach(xprt);
1061 
1062 	spin_lock_bh(&serv->sv_lock);
1063 	list_del_init(&xprt->xpt_list);
1064 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1065 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1066 		serv->sv_tmpcnt--;
1067 	spin_unlock_bh(&serv->sv_lock);
1068 
1069 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1070 		kfree(dr);
1071 
1072 	call_xpt_users(xprt);
1073 	svc_xprt_put(xprt);
1074 }
1075 
1076 void svc_close_xprt(struct svc_xprt *xprt)
1077 {
1078 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1079 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1080 		/* someone else will have to effect the close */
1081 		return;
1082 	/*
1083 	 * We expect svc_close_xprt() to work even when no threads are
1084 	 * running (e.g., while configuring the server before starting
1085 	 * any threads), so if the transport isn't busy, we delete
1086 	 * it ourself:
1087 	 */
1088 	svc_delete_xprt(xprt);
1089 }
1090 EXPORT_SYMBOL_GPL(svc_close_xprt);
1091 
1092 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1093 {
1094 	struct svc_xprt *xprt;
1095 	int ret = 0;
1096 
1097 	spin_lock(&serv->sv_lock);
1098 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1099 		if (xprt->xpt_net != net)
1100 			continue;
1101 		ret++;
1102 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1103 		svc_xprt_enqueue(xprt);
1104 	}
1105 	spin_unlock(&serv->sv_lock);
1106 	return ret;
1107 }
1108 
1109 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1110 {
1111 	struct svc_pool *pool;
1112 	struct svc_xprt *xprt;
1113 	struct svc_xprt *tmp;
1114 	int i;
1115 
1116 	for (i = 0; i < serv->sv_nrpools; i++) {
1117 		pool = &serv->sv_pools[i];
1118 
1119 		spin_lock_bh(&pool->sp_lock);
1120 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1121 			if (xprt->xpt_net != net)
1122 				continue;
1123 			list_del_init(&xprt->xpt_ready);
1124 			spin_unlock_bh(&pool->sp_lock);
1125 			return xprt;
1126 		}
1127 		spin_unlock_bh(&pool->sp_lock);
1128 	}
1129 	return NULL;
1130 }
1131 
1132 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1133 {
1134 	struct svc_xprt *xprt;
1135 
1136 	while ((xprt = svc_dequeue_net(serv, net))) {
1137 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1138 		svc_delete_xprt(xprt);
1139 	}
1140 }
1141 
1142 /*
1143  * Server threads may still be running (especially in the case where the
1144  * service is still running in other network namespaces).
1145  *
1146  * So we shut down sockets the same way we would on a running server, by
1147  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1148  * the close.  In the case there are no such other threads,
1149  * threads running, svc_clean_up_xprts() does a simple version of a
1150  * server's main event loop, and in the case where there are other
1151  * threads, we may need to wait a little while and then check again to
1152  * see if they're done.
1153  */
1154 void svc_close_net(struct svc_serv *serv, struct net *net)
1155 {
1156 	int delay = 0;
1157 
1158 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1159 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1160 
1161 		svc_clean_up_xprts(serv, net);
1162 		msleep(delay++);
1163 	}
1164 }
1165 
1166 /*
1167  * Handle defer and revisit of requests
1168  */
1169 
1170 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1171 {
1172 	struct svc_deferred_req *dr =
1173 		container_of(dreq, struct svc_deferred_req, handle);
1174 	struct svc_xprt *xprt = dr->xprt;
1175 
1176 	spin_lock(&xprt->xpt_lock);
1177 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1178 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1179 		spin_unlock(&xprt->xpt_lock);
1180 		dprintk("revisit canceled\n");
1181 		svc_xprt_put(xprt);
1182 		trace_svc_drop_deferred(dr);
1183 		kfree(dr);
1184 		return;
1185 	}
1186 	dprintk("revisit queued\n");
1187 	dr->xprt = NULL;
1188 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1189 	spin_unlock(&xprt->xpt_lock);
1190 	svc_xprt_enqueue(xprt);
1191 	svc_xprt_put(xprt);
1192 }
1193 
1194 /*
1195  * Save the request off for later processing. The request buffer looks
1196  * like this:
1197  *
1198  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1199  *
1200  * This code can only handle requests that consist of an xprt-header
1201  * and rpc-header.
1202  */
1203 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1204 {
1205 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1206 	struct svc_deferred_req *dr;
1207 
1208 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1209 		return NULL; /* if more than a page, give up FIXME */
1210 	if (rqstp->rq_deferred) {
1211 		dr = rqstp->rq_deferred;
1212 		rqstp->rq_deferred = NULL;
1213 	} else {
1214 		size_t skip;
1215 		size_t size;
1216 		/* FIXME maybe discard if size too large */
1217 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1218 		dr = kmalloc(size, GFP_KERNEL);
1219 		if (dr == NULL)
1220 			return NULL;
1221 
1222 		dr->handle.owner = rqstp->rq_server;
1223 		dr->prot = rqstp->rq_prot;
1224 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1225 		dr->addrlen = rqstp->rq_addrlen;
1226 		dr->daddr = rqstp->rq_daddr;
1227 		dr->argslen = rqstp->rq_arg.len >> 2;
1228 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1229 
1230 		/* back up head to the start of the buffer and copy */
1231 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1232 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1233 		       dr->argslen << 2);
1234 	}
1235 	svc_xprt_get(rqstp->rq_xprt);
1236 	dr->xprt = rqstp->rq_xprt;
1237 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1238 
1239 	dr->handle.revisit = svc_revisit;
1240 	trace_svc_defer(rqstp);
1241 	return &dr->handle;
1242 }
1243 
1244 /*
1245  * recv data from a deferred request into an active one
1246  */
1247 static int svc_deferred_recv(struct svc_rqst *rqstp)
1248 {
1249 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1250 
1251 	/* setup iov_base past transport header */
1252 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1253 	/* The iov_len does not include the transport header bytes */
1254 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1255 	rqstp->rq_arg.page_len = 0;
1256 	/* The rq_arg.len includes the transport header bytes */
1257 	rqstp->rq_arg.len     = dr->argslen<<2;
1258 	rqstp->rq_prot        = dr->prot;
1259 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1260 	rqstp->rq_addrlen     = dr->addrlen;
1261 	/* Save off transport header len in case we get deferred again */
1262 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1263 	rqstp->rq_daddr       = dr->daddr;
1264 	rqstp->rq_respages    = rqstp->rq_pages;
1265 	return (dr->argslen<<2) - dr->xprt_hlen;
1266 }
1267 
1268 
1269 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1270 {
1271 	struct svc_deferred_req *dr = NULL;
1272 
1273 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1274 		return NULL;
1275 	spin_lock(&xprt->xpt_lock);
1276 	if (!list_empty(&xprt->xpt_deferred)) {
1277 		dr = list_entry(xprt->xpt_deferred.next,
1278 				struct svc_deferred_req,
1279 				handle.recent);
1280 		list_del_init(&dr->handle.recent);
1281 		trace_svc_revisit_deferred(dr);
1282 	} else
1283 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1284 	spin_unlock(&xprt->xpt_lock);
1285 	return dr;
1286 }
1287 
1288 /**
1289  * svc_find_xprt - find an RPC transport instance
1290  * @serv: pointer to svc_serv to search
1291  * @xcl_name: C string containing transport's class name
1292  * @net: owner net pointer
1293  * @af: Address family of transport's local address
1294  * @port: transport's IP port number
1295  *
1296  * Return the transport instance pointer for the endpoint accepting
1297  * connections/peer traffic from the specified transport class,
1298  * address family and port.
1299  *
1300  * Specifying 0 for the address family or port is effectively a
1301  * wild-card, and will result in matching the first transport in the
1302  * service's list that has a matching class name.
1303  */
1304 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1305 			       struct net *net, const sa_family_t af,
1306 			       const unsigned short port)
1307 {
1308 	struct svc_xprt *xprt;
1309 	struct svc_xprt *found = NULL;
1310 
1311 	/* Sanity check the args */
1312 	if (serv == NULL || xcl_name == NULL)
1313 		return found;
1314 
1315 	spin_lock_bh(&serv->sv_lock);
1316 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1317 		if (xprt->xpt_net != net)
1318 			continue;
1319 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1320 			continue;
1321 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1322 			continue;
1323 		if (port != 0 && port != svc_xprt_local_port(xprt))
1324 			continue;
1325 		found = xprt;
1326 		svc_xprt_get(xprt);
1327 		break;
1328 	}
1329 	spin_unlock_bh(&serv->sv_lock);
1330 	return found;
1331 }
1332 EXPORT_SYMBOL_GPL(svc_find_xprt);
1333 
1334 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1335 			     char *pos, int remaining)
1336 {
1337 	int len;
1338 
1339 	len = snprintf(pos, remaining, "%s %u\n",
1340 			xprt->xpt_class->xcl_name,
1341 			svc_xprt_local_port(xprt));
1342 	if (len >= remaining)
1343 		return -ENAMETOOLONG;
1344 	return len;
1345 }
1346 
1347 /**
1348  * svc_xprt_names - format a buffer with a list of transport names
1349  * @serv: pointer to an RPC service
1350  * @buf: pointer to a buffer to be filled in
1351  * @buflen: length of buffer to be filled in
1352  *
1353  * Fills in @buf with a string containing a list of transport names,
1354  * each name terminated with '\n'.
1355  *
1356  * Returns positive length of the filled-in string on success; otherwise
1357  * a negative errno value is returned if an error occurs.
1358  */
1359 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1360 {
1361 	struct svc_xprt *xprt;
1362 	int len, totlen;
1363 	char *pos;
1364 
1365 	/* Sanity check args */
1366 	if (!serv)
1367 		return 0;
1368 
1369 	spin_lock_bh(&serv->sv_lock);
1370 
1371 	pos = buf;
1372 	totlen = 0;
1373 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1374 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1375 		if (len < 0) {
1376 			*buf = '\0';
1377 			totlen = len;
1378 		}
1379 		if (len <= 0)
1380 			break;
1381 
1382 		pos += len;
1383 		totlen += len;
1384 	}
1385 
1386 	spin_unlock_bh(&serv->sv_lock);
1387 	return totlen;
1388 }
1389 EXPORT_SYMBOL_GPL(svc_xprt_names);
1390 
1391 
1392 /*----------------------------------------------------------------------------*/
1393 
1394 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1395 {
1396 	unsigned int pidx = (unsigned int)*pos;
1397 	struct svc_serv *serv = m->private;
1398 
1399 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1400 
1401 	if (!pidx)
1402 		return SEQ_START_TOKEN;
1403 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1404 }
1405 
1406 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1407 {
1408 	struct svc_pool *pool = p;
1409 	struct svc_serv *serv = m->private;
1410 
1411 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1412 
1413 	if (p == SEQ_START_TOKEN) {
1414 		pool = &serv->sv_pools[0];
1415 	} else {
1416 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1417 		if (pidx < serv->sv_nrpools-1)
1418 			pool = &serv->sv_pools[pidx+1];
1419 		else
1420 			pool = NULL;
1421 	}
1422 	++*pos;
1423 	return pool;
1424 }
1425 
1426 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1427 {
1428 }
1429 
1430 static int svc_pool_stats_show(struct seq_file *m, void *p)
1431 {
1432 	struct svc_pool *pool = p;
1433 
1434 	if (p == SEQ_START_TOKEN) {
1435 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1436 		return 0;
1437 	}
1438 
1439 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1440 		pool->sp_id,
1441 		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1442 		pool->sp_stats.sockets_queued,
1443 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1444 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1445 
1446 	return 0;
1447 }
1448 
1449 static const struct seq_operations svc_pool_stats_seq_ops = {
1450 	.start	= svc_pool_stats_start,
1451 	.next	= svc_pool_stats_next,
1452 	.stop	= svc_pool_stats_stop,
1453 	.show	= svc_pool_stats_show,
1454 };
1455 
1456 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1457 {
1458 	int err;
1459 
1460 	err = seq_open(file, &svc_pool_stats_seq_ops);
1461 	if (!err)
1462 		((struct seq_file *) file->private_data)->private = serv;
1463 	return err;
1464 }
1465 EXPORT_SYMBOL(svc_pool_stats_open);
1466 
1467 /*----------------------------------------------------------------------------*/
1468