1 /* 2 * linux/net/sunrpc/svc_xprt.c 3 * 4 * Author: Tom Tucker <tom@opengridcomputing.com> 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/errno.h> 9 #include <linux/freezer.h> 10 #include <linux/kthread.h> 11 #include <linux/slab.h> 12 #include <net/sock.h> 13 #include <linux/sunrpc/addr.h> 14 #include <linux/sunrpc/stats.h> 15 #include <linux/sunrpc/svc_xprt.h> 16 #include <linux/sunrpc/svcsock.h> 17 #include <linux/sunrpc/xprt.h> 18 #include <linux/module.h> 19 #include <linux/netdevice.h> 20 #include <trace/events/sunrpc.h> 21 22 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 23 24 static unsigned int svc_rpc_per_connection_limit __read_mostly; 25 module_param(svc_rpc_per_connection_limit, uint, 0644); 26 27 28 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); 29 static int svc_deferred_recv(struct svc_rqst *rqstp); 30 static struct cache_deferred_req *svc_defer(struct cache_req *req); 31 static void svc_age_temp_xprts(struct timer_list *t); 32 static void svc_delete_xprt(struct svc_xprt *xprt); 33 34 /* apparently the "standard" is that clients close 35 * idle connections after 5 minutes, servers after 36 * 6 minutes 37 * http://www.connectathon.org/talks96/nfstcp.pdf 38 */ 39 static int svc_conn_age_period = 6*60; 40 41 /* List of registered transport classes */ 42 static DEFINE_SPINLOCK(svc_xprt_class_lock); 43 static LIST_HEAD(svc_xprt_class_list); 44 45 /* SMP locking strategy: 46 * 47 * svc_pool->sp_lock protects most of the fields of that pool. 48 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. 49 * when both need to be taken (rare), svc_serv->sv_lock is first. 50 * The "service mutex" protects svc_serv->sv_nrthread. 51 * svc_sock->sk_lock protects the svc_sock->sk_deferred list 52 * and the ->sk_info_authunix cache. 53 * 54 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being 55 * enqueued multiply. During normal transport processing this bit 56 * is set by svc_xprt_enqueue and cleared by svc_xprt_received. 57 * Providers should not manipulate this bit directly. 58 * 59 * Some flags can be set to certain values at any time 60 * providing that certain rules are followed: 61 * 62 * XPT_CONN, XPT_DATA: 63 * - Can be set or cleared at any time. 64 * - After a set, svc_xprt_enqueue must be called to enqueue 65 * the transport for processing. 66 * - After a clear, the transport must be read/accepted. 67 * If this succeeds, it must be set again. 68 * XPT_CLOSE: 69 * - Can set at any time. It is never cleared. 70 * XPT_DEAD: 71 * - Can only be set while XPT_BUSY is held which ensures 72 * that no other thread will be using the transport or will 73 * try to set XPT_DEAD. 74 */ 75 int svc_reg_xprt_class(struct svc_xprt_class *xcl) 76 { 77 struct svc_xprt_class *cl; 78 int res = -EEXIST; 79 80 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name); 81 82 INIT_LIST_HEAD(&xcl->xcl_list); 83 spin_lock(&svc_xprt_class_lock); 84 /* Make sure there isn't already a class with the same name */ 85 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { 86 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) 87 goto out; 88 } 89 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); 90 res = 0; 91 out: 92 spin_unlock(&svc_xprt_class_lock); 93 return res; 94 } 95 EXPORT_SYMBOL_GPL(svc_reg_xprt_class); 96 97 void svc_unreg_xprt_class(struct svc_xprt_class *xcl) 98 { 99 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name); 100 spin_lock(&svc_xprt_class_lock); 101 list_del_init(&xcl->xcl_list); 102 spin_unlock(&svc_xprt_class_lock); 103 } 104 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); 105 106 /* 107 * Format the transport list for printing 108 */ 109 int svc_print_xprts(char *buf, int maxlen) 110 { 111 struct svc_xprt_class *xcl; 112 char tmpstr[80]; 113 int len = 0; 114 buf[0] = '\0'; 115 116 spin_lock(&svc_xprt_class_lock); 117 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 118 int slen; 119 120 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload); 121 slen = strlen(tmpstr); 122 if (len + slen > maxlen) 123 break; 124 len += slen; 125 strcat(buf, tmpstr); 126 } 127 spin_unlock(&svc_xprt_class_lock); 128 129 return len; 130 } 131 132 static void svc_xprt_free(struct kref *kref) 133 { 134 struct svc_xprt *xprt = 135 container_of(kref, struct svc_xprt, xpt_ref); 136 struct module *owner = xprt->xpt_class->xcl_owner; 137 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) 138 svcauth_unix_info_release(xprt); 139 put_net(xprt->xpt_net); 140 /* See comment on corresponding get in xs_setup_bc_tcp(): */ 141 if (xprt->xpt_bc_xprt) 142 xprt_put(xprt->xpt_bc_xprt); 143 if (xprt->xpt_bc_xps) 144 xprt_switch_put(xprt->xpt_bc_xps); 145 xprt->xpt_ops->xpo_free(xprt); 146 module_put(owner); 147 } 148 149 void svc_xprt_put(struct svc_xprt *xprt) 150 { 151 kref_put(&xprt->xpt_ref, svc_xprt_free); 152 } 153 EXPORT_SYMBOL_GPL(svc_xprt_put); 154 155 /* 156 * Called by transport drivers to initialize the transport independent 157 * portion of the transport instance. 158 */ 159 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl, 160 struct svc_xprt *xprt, struct svc_serv *serv) 161 { 162 memset(xprt, 0, sizeof(*xprt)); 163 xprt->xpt_class = xcl; 164 xprt->xpt_ops = xcl->xcl_ops; 165 kref_init(&xprt->xpt_ref); 166 xprt->xpt_server = serv; 167 INIT_LIST_HEAD(&xprt->xpt_list); 168 INIT_LIST_HEAD(&xprt->xpt_ready); 169 INIT_LIST_HEAD(&xprt->xpt_deferred); 170 INIT_LIST_HEAD(&xprt->xpt_users); 171 mutex_init(&xprt->xpt_mutex); 172 spin_lock_init(&xprt->xpt_lock); 173 set_bit(XPT_BUSY, &xprt->xpt_flags); 174 xprt->xpt_net = get_net(net); 175 strcpy(xprt->xpt_remotebuf, "uninitialized"); 176 } 177 EXPORT_SYMBOL_GPL(svc_xprt_init); 178 179 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl, 180 struct svc_serv *serv, 181 struct net *net, 182 const int family, 183 const unsigned short port, 184 int flags) 185 { 186 struct sockaddr_in sin = { 187 .sin_family = AF_INET, 188 .sin_addr.s_addr = htonl(INADDR_ANY), 189 .sin_port = htons(port), 190 }; 191 #if IS_ENABLED(CONFIG_IPV6) 192 struct sockaddr_in6 sin6 = { 193 .sin6_family = AF_INET6, 194 .sin6_addr = IN6ADDR_ANY_INIT, 195 .sin6_port = htons(port), 196 }; 197 #endif 198 struct sockaddr *sap; 199 size_t len; 200 201 switch (family) { 202 case PF_INET: 203 sap = (struct sockaddr *)&sin; 204 len = sizeof(sin); 205 break; 206 #if IS_ENABLED(CONFIG_IPV6) 207 case PF_INET6: 208 sap = (struct sockaddr *)&sin6; 209 len = sizeof(sin6); 210 break; 211 #endif 212 default: 213 return ERR_PTR(-EAFNOSUPPORT); 214 } 215 216 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags); 217 } 218 219 /* 220 * svc_xprt_received conditionally queues the transport for processing 221 * by another thread. The caller must hold the XPT_BUSY bit and must 222 * not thereafter touch transport data. 223 * 224 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or 225 * insufficient) data. 226 */ 227 static void svc_xprt_received(struct svc_xprt *xprt) 228 { 229 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) { 230 WARN_ONCE(1, "xprt=0x%p already busy!", xprt); 231 return; 232 } 233 234 /* As soon as we clear busy, the xprt could be closed and 235 * 'put', so we need a reference to call svc_enqueue_xprt with: 236 */ 237 svc_xprt_get(xprt); 238 smp_mb__before_atomic(); 239 clear_bit(XPT_BUSY, &xprt->xpt_flags); 240 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt); 241 svc_xprt_put(xprt); 242 } 243 244 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new) 245 { 246 clear_bit(XPT_TEMP, &new->xpt_flags); 247 spin_lock_bh(&serv->sv_lock); 248 list_add(&new->xpt_list, &serv->sv_permsocks); 249 spin_unlock_bh(&serv->sv_lock); 250 svc_xprt_received(new); 251 } 252 253 static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name, 254 struct net *net, const int family, 255 const unsigned short port, int flags) 256 { 257 struct svc_xprt_class *xcl; 258 259 spin_lock(&svc_xprt_class_lock); 260 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 261 struct svc_xprt *newxprt; 262 unsigned short newport; 263 264 if (strcmp(xprt_name, xcl->xcl_name)) 265 continue; 266 267 if (!try_module_get(xcl->xcl_owner)) 268 goto err; 269 270 spin_unlock(&svc_xprt_class_lock); 271 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags); 272 if (IS_ERR(newxprt)) { 273 module_put(xcl->xcl_owner); 274 return PTR_ERR(newxprt); 275 } 276 svc_add_new_perm_xprt(serv, newxprt); 277 newport = svc_xprt_local_port(newxprt); 278 return newport; 279 } 280 err: 281 spin_unlock(&svc_xprt_class_lock); 282 /* This errno is exposed to user space. Provide a reasonable 283 * perror msg for a bad transport. */ 284 return -EPROTONOSUPPORT; 285 } 286 287 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name, 288 struct net *net, const int family, 289 const unsigned short port, int flags) 290 { 291 int err; 292 293 dprintk("svc: creating transport %s[%d]\n", xprt_name, port); 294 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags); 295 if (err == -EPROTONOSUPPORT) { 296 request_module("svc%s", xprt_name); 297 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags); 298 } 299 if (err < 0) 300 dprintk("svc: transport %s not found, err %d\n", 301 xprt_name, -err); 302 return err; 303 } 304 EXPORT_SYMBOL_GPL(svc_create_xprt); 305 306 /* 307 * Copy the local and remote xprt addresses to the rqstp structure 308 */ 309 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) 310 { 311 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); 312 rqstp->rq_addrlen = xprt->xpt_remotelen; 313 314 /* 315 * Destination address in request is needed for binding the 316 * source address in RPC replies/callbacks later. 317 */ 318 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen); 319 rqstp->rq_daddrlen = xprt->xpt_locallen; 320 } 321 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); 322 323 /** 324 * svc_print_addr - Format rq_addr field for printing 325 * @rqstp: svc_rqst struct containing address to print 326 * @buf: target buffer for formatted address 327 * @len: length of target buffer 328 * 329 */ 330 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) 331 { 332 return __svc_print_addr(svc_addr(rqstp), buf, len); 333 } 334 EXPORT_SYMBOL_GPL(svc_print_addr); 335 336 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt) 337 { 338 unsigned int limit = svc_rpc_per_connection_limit; 339 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts); 340 341 return limit == 0 || (nrqsts >= 0 && nrqsts < limit); 342 } 343 344 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt) 345 { 346 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) { 347 if (!svc_xprt_slots_in_range(xprt)) 348 return false; 349 atomic_inc(&xprt->xpt_nr_rqsts); 350 set_bit(RQ_DATA, &rqstp->rq_flags); 351 } 352 return true; 353 } 354 355 static void svc_xprt_release_slot(struct svc_rqst *rqstp) 356 { 357 struct svc_xprt *xprt = rqstp->rq_xprt; 358 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) { 359 atomic_dec(&xprt->xpt_nr_rqsts); 360 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */ 361 svc_xprt_enqueue(xprt); 362 } 363 } 364 365 static bool svc_xprt_ready(struct svc_xprt *xprt) 366 { 367 unsigned long xpt_flags; 368 369 /* 370 * If another cpu has recently updated xpt_flags, 371 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to 372 * know about it; otherwise it's possible that both that cpu and 373 * this one could call svc_xprt_enqueue() without either 374 * svc_xprt_enqueue() recognizing that the conditions below 375 * are satisfied, and we could stall indefinitely: 376 */ 377 smp_rmb(); 378 xpt_flags = READ_ONCE(xprt->xpt_flags); 379 380 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE))) 381 return true; 382 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) { 383 if (xprt->xpt_ops->xpo_has_wspace(xprt) && 384 svc_xprt_slots_in_range(xprt)) 385 return true; 386 trace_svc_xprt_no_write_space(xprt); 387 return false; 388 } 389 return false; 390 } 391 392 void svc_xprt_do_enqueue(struct svc_xprt *xprt) 393 { 394 struct svc_pool *pool; 395 struct svc_rqst *rqstp = NULL; 396 int cpu; 397 398 if (!svc_xprt_ready(xprt)) 399 return; 400 401 /* Mark transport as busy. It will remain in this state until 402 * the provider calls svc_xprt_received. We update XPT_BUSY 403 * atomically because it also guards against trying to enqueue 404 * the transport twice. 405 */ 406 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 407 return; 408 409 cpu = get_cpu(); 410 pool = svc_pool_for_cpu(xprt->xpt_server, cpu); 411 412 atomic_long_inc(&pool->sp_stats.packets); 413 414 spin_lock_bh(&pool->sp_lock); 415 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); 416 pool->sp_stats.sockets_queued++; 417 spin_unlock_bh(&pool->sp_lock); 418 419 /* find a thread for this xprt */ 420 rcu_read_lock(); 421 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) { 422 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) 423 continue; 424 atomic_long_inc(&pool->sp_stats.threads_woken); 425 rqstp->rq_qtime = ktime_get(); 426 wake_up_process(rqstp->rq_task); 427 goto out_unlock; 428 } 429 set_bit(SP_CONGESTED, &pool->sp_flags); 430 rqstp = NULL; 431 out_unlock: 432 rcu_read_unlock(); 433 put_cpu(); 434 trace_svc_xprt_do_enqueue(xprt, rqstp); 435 } 436 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue); 437 438 /* 439 * Queue up a transport with data pending. If there are idle nfsd 440 * processes, wake 'em up. 441 * 442 */ 443 void svc_xprt_enqueue(struct svc_xprt *xprt) 444 { 445 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) 446 return; 447 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt); 448 } 449 EXPORT_SYMBOL_GPL(svc_xprt_enqueue); 450 451 /* 452 * Dequeue the first transport, if there is one. 453 */ 454 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) 455 { 456 struct svc_xprt *xprt = NULL; 457 458 if (list_empty(&pool->sp_sockets)) 459 goto out; 460 461 spin_lock_bh(&pool->sp_lock); 462 if (likely(!list_empty(&pool->sp_sockets))) { 463 xprt = list_first_entry(&pool->sp_sockets, 464 struct svc_xprt, xpt_ready); 465 list_del_init(&xprt->xpt_ready); 466 svc_xprt_get(xprt); 467 } 468 spin_unlock_bh(&pool->sp_lock); 469 out: 470 return xprt; 471 } 472 473 /** 474 * svc_reserve - change the space reserved for the reply to a request. 475 * @rqstp: The request in question 476 * @space: new max space to reserve 477 * 478 * Each request reserves some space on the output queue of the transport 479 * to make sure the reply fits. This function reduces that reserved 480 * space to be the amount of space used already, plus @space. 481 * 482 */ 483 void svc_reserve(struct svc_rqst *rqstp, int space) 484 { 485 struct svc_xprt *xprt = rqstp->rq_xprt; 486 487 space += rqstp->rq_res.head[0].iov_len; 488 489 if (xprt && space < rqstp->rq_reserved) { 490 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); 491 rqstp->rq_reserved = space; 492 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */ 493 svc_xprt_enqueue(xprt); 494 } 495 } 496 EXPORT_SYMBOL_GPL(svc_reserve); 497 498 static void svc_xprt_release(struct svc_rqst *rqstp) 499 { 500 struct svc_xprt *xprt = rqstp->rq_xprt; 501 502 xprt->xpt_ops->xpo_release_rqst(rqstp); 503 504 kfree(rqstp->rq_deferred); 505 rqstp->rq_deferred = NULL; 506 507 svc_free_res_pages(rqstp); 508 rqstp->rq_res.page_len = 0; 509 rqstp->rq_res.page_base = 0; 510 511 /* Reset response buffer and release 512 * the reservation. 513 * But first, check that enough space was reserved 514 * for the reply, otherwise we have a bug! 515 */ 516 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 517 printk(KERN_ERR "RPC request reserved %d but used %d\n", 518 rqstp->rq_reserved, 519 rqstp->rq_res.len); 520 521 rqstp->rq_res.head[0].iov_len = 0; 522 svc_reserve(rqstp, 0); 523 svc_xprt_release_slot(rqstp); 524 rqstp->rq_xprt = NULL; 525 svc_xprt_put(xprt); 526 } 527 528 /* 529 * Some svc_serv's will have occasional work to do, even when a xprt is not 530 * waiting to be serviced. This function is there to "kick" a task in one of 531 * those services so that it can wake up and do that work. Note that we only 532 * bother with pool 0 as we don't need to wake up more than one thread for 533 * this purpose. 534 */ 535 void svc_wake_up(struct svc_serv *serv) 536 { 537 struct svc_rqst *rqstp; 538 struct svc_pool *pool; 539 540 pool = &serv->sv_pools[0]; 541 542 rcu_read_lock(); 543 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) { 544 /* skip any that aren't queued */ 545 if (test_bit(RQ_BUSY, &rqstp->rq_flags)) 546 continue; 547 rcu_read_unlock(); 548 wake_up_process(rqstp->rq_task); 549 trace_svc_wake_up(rqstp->rq_task->pid); 550 return; 551 } 552 rcu_read_unlock(); 553 554 /* No free entries available */ 555 set_bit(SP_TASK_PENDING, &pool->sp_flags); 556 smp_wmb(); 557 trace_svc_wake_up(0); 558 } 559 EXPORT_SYMBOL_GPL(svc_wake_up); 560 561 int svc_port_is_privileged(struct sockaddr *sin) 562 { 563 switch (sin->sa_family) { 564 case AF_INET: 565 return ntohs(((struct sockaddr_in *)sin)->sin_port) 566 < PROT_SOCK; 567 case AF_INET6: 568 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) 569 < PROT_SOCK; 570 default: 571 return 0; 572 } 573 } 574 575 /* 576 * Make sure that we don't have too many active connections. If we have, 577 * something must be dropped. It's not clear what will happen if we allow 578 * "too many" connections, but when dealing with network-facing software, 579 * we have to code defensively. Here we do that by imposing hard limits. 580 * 581 * There's no point in trying to do random drop here for DoS 582 * prevention. The NFS clients does 1 reconnect in 15 seconds. An 583 * attacker can easily beat that. 584 * 585 * The only somewhat efficient mechanism would be if drop old 586 * connections from the same IP first. But right now we don't even 587 * record the client IP in svc_sock. 588 * 589 * single-threaded services that expect a lot of clients will probably 590 * need to set sv_maxconn to override the default value which is based 591 * on the number of threads 592 */ 593 static void svc_check_conn_limits(struct svc_serv *serv) 594 { 595 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn : 596 (serv->sv_nrthreads+3) * 20; 597 598 if (serv->sv_tmpcnt > limit) { 599 struct svc_xprt *xprt = NULL; 600 spin_lock_bh(&serv->sv_lock); 601 if (!list_empty(&serv->sv_tempsocks)) { 602 /* Try to help the admin */ 603 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n", 604 serv->sv_name, serv->sv_maxconn ? 605 "max number of connections" : 606 "number of threads"); 607 /* 608 * Always select the oldest connection. It's not fair, 609 * but so is life 610 */ 611 xprt = list_entry(serv->sv_tempsocks.prev, 612 struct svc_xprt, 613 xpt_list); 614 set_bit(XPT_CLOSE, &xprt->xpt_flags); 615 svc_xprt_get(xprt); 616 } 617 spin_unlock_bh(&serv->sv_lock); 618 619 if (xprt) { 620 svc_xprt_enqueue(xprt); 621 svc_xprt_put(xprt); 622 } 623 } 624 } 625 626 static int svc_alloc_arg(struct svc_rqst *rqstp) 627 { 628 struct svc_serv *serv = rqstp->rq_server; 629 struct xdr_buf *arg; 630 int pages; 631 int i; 632 633 /* now allocate needed pages. If we get a failure, sleep briefly */ 634 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT; 635 if (pages > RPCSVC_MAXPAGES) { 636 pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n", 637 pages, RPCSVC_MAXPAGES); 638 /* use as many pages as possible */ 639 pages = RPCSVC_MAXPAGES; 640 } 641 for (i = 0; i < pages ; i++) 642 while (rqstp->rq_pages[i] == NULL) { 643 struct page *p = alloc_page(GFP_KERNEL); 644 if (!p) { 645 set_current_state(TASK_INTERRUPTIBLE); 646 if (signalled() || kthread_should_stop()) { 647 set_current_state(TASK_RUNNING); 648 return -EINTR; 649 } 650 schedule_timeout(msecs_to_jiffies(500)); 651 } 652 rqstp->rq_pages[i] = p; 653 } 654 rqstp->rq_page_end = &rqstp->rq_pages[i]; 655 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */ 656 657 /* Make arg->head point to first page and arg->pages point to rest */ 658 arg = &rqstp->rq_arg; 659 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); 660 arg->head[0].iov_len = PAGE_SIZE; 661 arg->pages = rqstp->rq_pages + 1; 662 arg->page_base = 0; 663 /* save at least one page for response */ 664 arg->page_len = (pages-2)*PAGE_SIZE; 665 arg->len = (pages-1)*PAGE_SIZE; 666 arg->tail[0].iov_len = 0; 667 return 0; 668 } 669 670 static bool 671 rqst_should_sleep(struct svc_rqst *rqstp) 672 { 673 struct svc_pool *pool = rqstp->rq_pool; 674 675 /* did someone call svc_wake_up? */ 676 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags)) 677 return false; 678 679 /* was a socket queued? */ 680 if (!list_empty(&pool->sp_sockets)) 681 return false; 682 683 /* are we shutting down? */ 684 if (signalled() || kthread_should_stop()) 685 return false; 686 687 /* are we freezing? */ 688 if (freezing(current)) 689 return false; 690 691 return true; 692 } 693 694 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout) 695 { 696 struct svc_pool *pool = rqstp->rq_pool; 697 long time_left = 0; 698 699 /* rq_xprt should be clear on entry */ 700 WARN_ON_ONCE(rqstp->rq_xprt); 701 702 rqstp->rq_xprt = svc_xprt_dequeue(pool); 703 if (rqstp->rq_xprt) 704 goto out_found; 705 706 /* 707 * We have to be able to interrupt this wait 708 * to bring down the daemons ... 709 */ 710 set_current_state(TASK_INTERRUPTIBLE); 711 smp_mb__before_atomic(); 712 clear_bit(SP_CONGESTED, &pool->sp_flags); 713 clear_bit(RQ_BUSY, &rqstp->rq_flags); 714 smp_mb__after_atomic(); 715 716 if (likely(rqst_should_sleep(rqstp))) 717 time_left = schedule_timeout(timeout); 718 else 719 __set_current_state(TASK_RUNNING); 720 721 try_to_freeze(); 722 723 set_bit(RQ_BUSY, &rqstp->rq_flags); 724 smp_mb__after_atomic(); 725 rqstp->rq_xprt = svc_xprt_dequeue(pool); 726 if (rqstp->rq_xprt) 727 goto out_found; 728 729 if (!time_left) 730 atomic_long_inc(&pool->sp_stats.threads_timedout); 731 732 if (signalled() || kthread_should_stop()) 733 return ERR_PTR(-EINTR); 734 return ERR_PTR(-EAGAIN); 735 out_found: 736 /* Normally we will wait up to 5 seconds for any required 737 * cache information to be provided. 738 */ 739 if (!test_bit(SP_CONGESTED, &pool->sp_flags)) 740 rqstp->rq_chandle.thread_wait = 5*HZ; 741 else 742 rqstp->rq_chandle.thread_wait = 1*HZ; 743 trace_svc_xprt_dequeue(rqstp); 744 return rqstp->rq_xprt; 745 } 746 747 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt) 748 { 749 spin_lock_bh(&serv->sv_lock); 750 set_bit(XPT_TEMP, &newxpt->xpt_flags); 751 list_add(&newxpt->xpt_list, &serv->sv_tempsocks); 752 serv->sv_tmpcnt++; 753 if (serv->sv_temptimer.function == NULL) { 754 /* setup timer to age temp transports */ 755 serv->sv_temptimer.function = svc_age_temp_xprts; 756 mod_timer(&serv->sv_temptimer, 757 jiffies + svc_conn_age_period * HZ); 758 } 759 spin_unlock_bh(&serv->sv_lock); 760 svc_xprt_received(newxpt); 761 } 762 763 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt) 764 { 765 struct svc_serv *serv = rqstp->rq_server; 766 int len = 0; 767 768 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { 769 dprintk("svc_recv: found XPT_CLOSE\n"); 770 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags)) 771 xprt->xpt_ops->xpo_kill_temp_xprt(xprt); 772 svc_delete_xprt(xprt); 773 /* Leave XPT_BUSY set on the dead xprt: */ 774 goto out; 775 } 776 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 777 struct svc_xprt *newxpt; 778 /* 779 * We know this module_get will succeed because the 780 * listener holds a reference too 781 */ 782 __module_get(xprt->xpt_class->xcl_owner); 783 svc_check_conn_limits(xprt->xpt_server); 784 newxpt = xprt->xpt_ops->xpo_accept(xprt); 785 if (newxpt) 786 svc_add_new_temp_xprt(serv, newxpt); 787 else 788 module_put(xprt->xpt_class->xcl_owner); 789 } else if (svc_xprt_reserve_slot(rqstp, xprt)) { 790 /* XPT_DATA|XPT_DEFERRED case: */ 791 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n", 792 rqstp, rqstp->rq_pool->sp_id, xprt, 793 kref_read(&xprt->xpt_ref)); 794 rqstp->rq_deferred = svc_deferred_dequeue(xprt); 795 if (rqstp->rq_deferred) 796 len = svc_deferred_recv(rqstp); 797 else 798 len = xprt->xpt_ops->xpo_recvfrom(rqstp); 799 rqstp->rq_stime = ktime_get(); 800 rqstp->rq_reserved = serv->sv_max_mesg; 801 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 802 } 803 /* clear XPT_BUSY: */ 804 svc_xprt_received(xprt); 805 out: 806 trace_svc_handle_xprt(xprt, len); 807 return len; 808 } 809 810 /* 811 * Receive the next request on any transport. This code is carefully 812 * organised not to touch any cachelines in the shared svc_serv 813 * structure, only cachelines in the local svc_pool. 814 */ 815 int svc_recv(struct svc_rqst *rqstp, long timeout) 816 { 817 struct svc_xprt *xprt = NULL; 818 struct svc_serv *serv = rqstp->rq_server; 819 int len, err; 820 821 dprintk("svc: server %p waiting for data (to = %ld)\n", 822 rqstp, timeout); 823 824 if (rqstp->rq_xprt) 825 printk(KERN_ERR 826 "svc_recv: service %p, transport not NULL!\n", 827 rqstp); 828 829 err = svc_alloc_arg(rqstp); 830 if (err) 831 goto out; 832 833 try_to_freeze(); 834 cond_resched(); 835 err = -EINTR; 836 if (signalled() || kthread_should_stop()) 837 goto out; 838 839 xprt = svc_get_next_xprt(rqstp, timeout); 840 if (IS_ERR(xprt)) { 841 err = PTR_ERR(xprt); 842 goto out; 843 } 844 845 len = svc_handle_xprt(rqstp, xprt); 846 847 /* No data, incomplete (TCP) read, or accept() */ 848 err = -EAGAIN; 849 if (len <= 0) 850 goto out_release; 851 852 clear_bit(XPT_OLD, &xprt->xpt_flags); 853 854 xprt->xpt_ops->xpo_secure_port(rqstp); 855 rqstp->rq_chandle.defer = svc_defer; 856 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]); 857 858 if (serv->sv_stats) 859 serv->sv_stats->netcnt++; 860 trace_svc_recv(rqstp, len); 861 return len; 862 out_release: 863 rqstp->rq_res.len = 0; 864 svc_xprt_release(rqstp); 865 out: 866 return err; 867 } 868 EXPORT_SYMBOL_GPL(svc_recv); 869 870 /* 871 * Drop request 872 */ 873 void svc_drop(struct svc_rqst *rqstp) 874 { 875 trace_svc_drop(rqstp); 876 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt); 877 svc_xprt_release(rqstp); 878 } 879 EXPORT_SYMBOL_GPL(svc_drop); 880 881 /* 882 * Return reply to client. 883 */ 884 int svc_send(struct svc_rqst *rqstp) 885 { 886 struct svc_xprt *xprt; 887 int len = -EFAULT; 888 struct xdr_buf *xb; 889 890 xprt = rqstp->rq_xprt; 891 if (!xprt) 892 goto out; 893 894 /* release the receive skb before sending the reply */ 895 xprt->xpt_ops->xpo_release_rqst(rqstp); 896 897 /* calculate over-all length */ 898 xb = &rqstp->rq_res; 899 xb->len = xb->head[0].iov_len + 900 xb->page_len + 901 xb->tail[0].iov_len; 902 903 /* Grab mutex to serialize outgoing data. */ 904 mutex_lock(&xprt->xpt_mutex); 905 trace_svc_stats_latency(rqstp); 906 if (test_bit(XPT_DEAD, &xprt->xpt_flags) 907 || test_bit(XPT_CLOSE, &xprt->xpt_flags)) 908 len = -ENOTCONN; 909 else 910 len = xprt->xpt_ops->xpo_sendto(rqstp); 911 mutex_unlock(&xprt->xpt_mutex); 912 trace_svc_send(rqstp, len); 913 svc_xprt_release(rqstp); 914 915 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) 916 len = 0; 917 out: 918 return len; 919 } 920 921 /* 922 * Timer function to close old temporary transports, using 923 * a mark-and-sweep algorithm. 924 */ 925 static void svc_age_temp_xprts(struct timer_list *t) 926 { 927 struct svc_serv *serv = from_timer(serv, t, sv_temptimer); 928 struct svc_xprt *xprt; 929 struct list_head *le, *next; 930 931 dprintk("svc_age_temp_xprts\n"); 932 933 if (!spin_trylock_bh(&serv->sv_lock)) { 934 /* busy, try again 1 sec later */ 935 dprintk("svc_age_temp_xprts: busy\n"); 936 mod_timer(&serv->sv_temptimer, jiffies + HZ); 937 return; 938 } 939 940 list_for_each_safe(le, next, &serv->sv_tempsocks) { 941 xprt = list_entry(le, struct svc_xprt, xpt_list); 942 943 /* First time through, just mark it OLD. Second time 944 * through, close it. */ 945 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) 946 continue; 947 if (kref_read(&xprt->xpt_ref) > 1 || 948 test_bit(XPT_BUSY, &xprt->xpt_flags)) 949 continue; 950 list_del_init(le); 951 set_bit(XPT_CLOSE, &xprt->xpt_flags); 952 dprintk("queuing xprt %p for closing\n", xprt); 953 954 /* a thread will dequeue and close it soon */ 955 svc_xprt_enqueue(xprt); 956 } 957 spin_unlock_bh(&serv->sv_lock); 958 959 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); 960 } 961 962 /* Close temporary transports whose xpt_local matches server_addr immediately 963 * instead of waiting for them to be picked up by the timer. 964 * 965 * This is meant to be called from a notifier_block that runs when an ip 966 * address is deleted. 967 */ 968 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr) 969 { 970 struct svc_xprt *xprt; 971 struct list_head *le, *next; 972 LIST_HEAD(to_be_closed); 973 974 spin_lock_bh(&serv->sv_lock); 975 list_for_each_safe(le, next, &serv->sv_tempsocks) { 976 xprt = list_entry(le, struct svc_xprt, xpt_list); 977 if (rpc_cmp_addr(server_addr, (struct sockaddr *) 978 &xprt->xpt_local)) { 979 dprintk("svc_age_temp_xprts_now: found %p\n", xprt); 980 list_move(le, &to_be_closed); 981 } 982 } 983 spin_unlock_bh(&serv->sv_lock); 984 985 while (!list_empty(&to_be_closed)) { 986 le = to_be_closed.next; 987 list_del_init(le); 988 xprt = list_entry(le, struct svc_xprt, xpt_list); 989 set_bit(XPT_CLOSE, &xprt->xpt_flags); 990 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags); 991 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n", 992 xprt); 993 svc_xprt_enqueue(xprt); 994 } 995 } 996 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now); 997 998 static void call_xpt_users(struct svc_xprt *xprt) 999 { 1000 struct svc_xpt_user *u; 1001 1002 spin_lock(&xprt->xpt_lock); 1003 while (!list_empty(&xprt->xpt_users)) { 1004 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list); 1005 list_del_init(&u->list); 1006 u->callback(u); 1007 } 1008 spin_unlock(&xprt->xpt_lock); 1009 } 1010 1011 /* 1012 * Remove a dead transport 1013 */ 1014 static void svc_delete_xprt(struct svc_xprt *xprt) 1015 { 1016 struct svc_serv *serv = xprt->xpt_server; 1017 struct svc_deferred_req *dr; 1018 1019 /* Only do this once */ 1020 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) 1021 BUG(); 1022 1023 dprintk("svc: svc_delete_xprt(%p)\n", xprt); 1024 xprt->xpt_ops->xpo_detach(xprt); 1025 1026 spin_lock_bh(&serv->sv_lock); 1027 list_del_init(&xprt->xpt_list); 1028 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready)); 1029 if (test_bit(XPT_TEMP, &xprt->xpt_flags)) 1030 serv->sv_tmpcnt--; 1031 spin_unlock_bh(&serv->sv_lock); 1032 1033 while ((dr = svc_deferred_dequeue(xprt)) != NULL) 1034 kfree(dr); 1035 1036 call_xpt_users(xprt); 1037 svc_xprt_put(xprt); 1038 } 1039 1040 void svc_close_xprt(struct svc_xprt *xprt) 1041 { 1042 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1043 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 1044 /* someone else will have to effect the close */ 1045 return; 1046 /* 1047 * We expect svc_close_xprt() to work even when no threads are 1048 * running (e.g., while configuring the server before starting 1049 * any threads), so if the transport isn't busy, we delete 1050 * it ourself: 1051 */ 1052 svc_delete_xprt(xprt); 1053 } 1054 EXPORT_SYMBOL_GPL(svc_close_xprt); 1055 1056 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) 1057 { 1058 struct svc_xprt *xprt; 1059 int ret = 0; 1060 1061 spin_lock(&serv->sv_lock); 1062 list_for_each_entry(xprt, xprt_list, xpt_list) { 1063 if (xprt->xpt_net != net) 1064 continue; 1065 ret++; 1066 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1067 svc_xprt_enqueue(xprt); 1068 } 1069 spin_unlock(&serv->sv_lock); 1070 return ret; 1071 } 1072 1073 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net) 1074 { 1075 struct svc_pool *pool; 1076 struct svc_xprt *xprt; 1077 struct svc_xprt *tmp; 1078 int i; 1079 1080 for (i = 0; i < serv->sv_nrpools; i++) { 1081 pool = &serv->sv_pools[i]; 1082 1083 spin_lock_bh(&pool->sp_lock); 1084 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) { 1085 if (xprt->xpt_net != net) 1086 continue; 1087 list_del_init(&xprt->xpt_ready); 1088 spin_unlock_bh(&pool->sp_lock); 1089 return xprt; 1090 } 1091 spin_unlock_bh(&pool->sp_lock); 1092 } 1093 return NULL; 1094 } 1095 1096 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net) 1097 { 1098 struct svc_xprt *xprt; 1099 1100 while ((xprt = svc_dequeue_net(serv, net))) { 1101 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1102 svc_delete_xprt(xprt); 1103 } 1104 } 1105 1106 /* 1107 * Server threads may still be running (especially in the case where the 1108 * service is still running in other network namespaces). 1109 * 1110 * So we shut down sockets the same way we would on a running server, by 1111 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do 1112 * the close. In the case there are no such other threads, 1113 * threads running, svc_clean_up_xprts() does a simple version of a 1114 * server's main event loop, and in the case where there are other 1115 * threads, we may need to wait a little while and then check again to 1116 * see if they're done. 1117 */ 1118 void svc_close_net(struct svc_serv *serv, struct net *net) 1119 { 1120 int delay = 0; 1121 1122 while (svc_close_list(serv, &serv->sv_permsocks, net) + 1123 svc_close_list(serv, &serv->sv_tempsocks, net)) { 1124 1125 svc_clean_up_xprts(serv, net); 1126 msleep(delay++); 1127 } 1128 } 1129 1130 /* 1131 * Handle defer and revisit of requests 1132 */ 1133 1134 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 1135 { 1136 struct svc_deferred_req *dr = 1137 container_of(dreq, struct svc_deferred_req, handle); 1138 struct svc_xprt *xprt = dr->xprt; 1139 1140 spin_lock(&xprt->xpt_lock); 1141 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 1142 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) { 1143 spin_unlock(&xprt->xpt_lock); 1144 dprintk("revisit canceled\n"); 1145 svc_xprt_put(xprt); 1146 trace_svc_drop_deferred(dr); 1147 kfree(dr); 1148 return; 1149 } 1150 dprintk("revisit queued\n"); 1151 dr->xprt = NULL; 1152 list_add(&dr->handle.recent, &xprt->xpt_deferred); 1153 spin_unlock(&xprt->xpt_lock); 1154 svc_xprt_enqueue(xprt); 1155 svc_xprt_put(xprt); 1156 } 1157 1158 /* 1159 * Save the request off for later processing. The request buffer looks 1160 * like this: 1161 * 1162 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> 1163 * 1164 * This code can only handle requests that consist of an xprt-header 1165 * and rpc-header. 1166 */ 1167 static struct cache_deferred_req *svc_defer(struct cache_req *req) 1168 { 1169 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 1170 struct svc_deferred_req *dr; 1171 1172 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags)) 1173 return NULL; /* if more than a page, give up FIXME */ 1174 if (rqstp->rq_deferred) { 1175 dr = rqstp->rq_deferred; 1176 rqstp->rq_deferred = NULL; 1177 } else { 1178 size_t skip; 1179 size_t size; 1180 /* FIXME maybe discard if size too large */ 1181 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; 1182 dr = kmalloc(size, GFP_KERNEL); 1183 if (dr == NULL) 1184 return NULL; 1185 1186 dr->handle.owner = rqstp->rq_server; 1187 dr->prot = rqstp->rq_prot; 1188 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); 1189 dr->addrlen = rqstp->rq_addrlen; 1190 dr->daddr = rqstp->rq_daddr; 1191 dr->argslen = rqstp->rq_arg.len >> 2; 1192 dr->xprt_hlen = rqstp->rq_xprt_hlen; 1193 1194 /* back up head to the start of the buffer and copy */ 1195 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1196 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, 1197 dr->argslen << 2); 1198 } 1199 svc_xprt_get(rqstp->rq_xprt); 1200 dr->xprt = rqstp->rq_xprt; 1201 set_bit(RQ_DROPME, &rqstp->rq_flags); 1202 1203 dr->handle.revisit = svc_revisit; 1204 trace_svc_defer(rqstp); 1205 return &dr->handle; 1206 } 1207 1208 /* 1209 * recv data from a deferred request into an active one 1210 */ 1211 static int svc_deferred_recv(struct svc_rqst *rqstp) 1212 { 1213 struct svc_deferred_req *dr = rqstp->rq_deferred; 1214 1215 /* setup iov_base past transport header */ 1216 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2); 1217 /* The iov_len does not include the transport header bytes */ 1218 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen; 1219 rqstp->rq_arg.page_len = 0; 1220 /* The rq_arg.len includes the transport header bytes */ 1221 rqstp->rq_arg.len = dr->argslen<<2; 1222 rqstp->rq_prot = dr->prot; 1223 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); 1224 rqstp->rq_addrlen = dr->addrlen; 1225 /* Save off transport header len in case we get deferred again */ 1226 rqstp->rq_xprt_hlen = dr->xprt_hlen; 1227 rqstp->rq_daddr = dr->daddr; 1228 rqstp->rq_respages = rqstp->rq_pages; 1229 return (dr->argslen<<2) - dr->xprt_hlen; 1230 } 1231 1232 1233 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) 1234 { 1235 struct svc_deferred_req *dr = NULL; 1236 1237 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) 1238 return NULL; 1239 spin_lock(&xprt->xpt_lock); 1240 if (!list_empty(&xprt->xpt_deferred)) { 1241 dr = list_entry(xprt->xpt_deferred.next, 1242 struct svc_deferred_req, 1243 handle.recent); 1244 list_del_init(&dr->handle.recent); 1245 trace_svc_revisit_deferred(dr); 1246 } else 1247 clear_bit(XPT_DEFERRED, &xprt->xpt_flags); 1248 spin_unlock(&xprt->xpt_lock); 1249 return dr; 1250 } 1251 1252 /** 1253 * svc_find_xprt - find an RPC transport instance 1254 * @serv: pointer to svc_serv to search 1255 * @xcl_name: C string containing transport's class name 1256 * @net: owner net pointer 1257 * @af: Address family of transport's local address 1258 * @port: transport's IP port number 1259 * 1260 * Return the transport instance pointer for the endpoint accepting 1261 * connections/peer traffic from the specified transport class, 1262 * address family and port. 1263 * 1264 * Specifying 0 for the address family or port is effectively a 1265 * wild-card, and will result in matching the first transport in the 1266 * service's list that has a matching class name. 1267 */ 1268 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name, 1269 struct net *net, const sa_family_t af, 1270 const unsigned short port) 1271 { 1272 struct svc_xprt *xprt; 1273 struct svc_xprt *found = NULL; 1274 1275 /* Sanity check the args */ 1276 if (serv == NULL || xcl_name == NULL) 1277 return found; 1278 1279 spin_lock_bh(&serv->sv_lock); 1280 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1281 if (xprt->xpt_net != net) 1282 continue; 1283 if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) 1284 continue; 1285 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) 1286 continue; 1287 if (port != 0 && port != svc_xprt_local_port(xprt)) 1288 continue; 1289 found = xprt; 1290 svc_xprt_get(xprt); 1291 break; 1292 } 1293 spin_unlock_bh(&serv->sv_lock); 1294 return found; 1295 } 1296 EXPORT_SYMBOL_GPL(svc_find_xprt); 1297 1298 static int svc_one_xprt_name(const struct svc_xprt *xprt, 1299 char *pos, int remaining) 1300 { 1301 int len; 1302 1303 len = snprintf(pos, remaining, "%s %u\n", 1304 xprt->xpt_class->xcl_name, 1305 svc_xprt_local_port(xprt)); 1306 if (len >= remaining) 1307 return -ENAMETOOLONG; 1308 return len; 1309 } 1310 1311 /** 1312 * svc_xprt_names - format a buffer with a list of transport names 1313 * @serv: pointer to an RPC service 1314 * @buf: pointer to a buffer to be filled in 1315 * @buflen: length of buffer to be filled in 1316 * 1317 * Fills in @buf with a string containing a list of transport names, 1318 * each name terminated with '\n'. 1319 * 1320 * Returns positive length of the filled-in string on success; otherwise 1321 * a negative errno value is returned if an error occurs. 1322 */ 1323 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen) 1324 { 1325 struct svc_xprt *xprt; 1326 int len, totlen; 1327 char *pos; 1328 1329 /* Sanity check args */ 1330 if (!serv) 1331 return 0; 1332 1333 spin_lock_bh(&serv->sv_lock); 1334 1335 pos = buf; 1336 totlen = 0; 1337 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1338 len = svc_one_xprt_name(xprt, pos, buflen - totlen); 1339 if (len < 0) { 1340 *buf = '\0'; 1341 totlen = len; 1342 } 1343 if (len <= 0) 1344 break; 1345 1346 pos += len; 1347 totlen += len; 1348 } 1349 1350 spin_unlock_bh(&serv->sv_lock); 1351 return totlen; 1352 } 1353 EXPORT_SYMBOL_GPL(svc_xprt_names); 1354 1355 1356 /*----------------------------------------------------------------------------*/ 1357 1358 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos) 1359 { 1360 unsigned int pidx = (unsigned int)*pos; 1361 struct svc_serv *serv = m->private; 1362 1363 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx); 1364 1365 if (!pidx) 1366 return SEQ_START_TOKEN; 1367 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]); 1368 } 1369 1370 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos) 1371 { 1372 struct svc_pool *pool = p; 1373 struct svc_serv *serv = m->private; 1374 1375 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos); 1376 1377 if (p == SEQ_START_TOKEN) { 1378 pool = &serv->sv_pools[0]; 1379 } else { 1380 unsigned int pidx = (pool - &serv->sv_pools[0]); 1381 if (pidx < serv->sv_nrpools-1) 1382 pool = &serv->sv_pools[pidx+1]; 1383 else 1384 pool = NULL; 1385 } 1386 ++*pos; 1387 return pool; 1388 } 1389 1390 static void svc_pool_stats_stop(struct seq_file *m, void *p) 1391 { 1392 } 1393 1394 static int svc_pool_stats_show(struct seq_file *m, void *p) 1395 { 1396 struct svc_pool *pool = p; 1397 1398 if (p == SEQ_START_TOKEN) { 1399 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n"); 1400 return 0; 1401 } 1402 1403 seq_printf(m, "%u %lu %lu %lu %lu\n", 1404 pool->sp_id, 1405 (unsigned long)atomic_long_read(&pool->sp_stats.packets), 1406 pool->sp_stats.sockets_queued, 1407 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken), 1408 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout)); 1409 1410 return 0; 1411 } 1412 1413 static const struct seq_operations svc_pool_stats_seq_ops = { 1414 .start = svc_pool_stats_start, 1415 .next = svc_pool_stats_next, 1416 .stop = svc_pool_stats_stop, 1417 .show = svc_pool_stats_show, 1418 }; 1419 1420 int svc_pool_stats_open(struct svc_serv *serv, struct file *file) 1421 { 1422 int err; 1423 1424 err = seq_open(file, &svc_pool_stats_seq_ops); 1425 if (!err) 1426 ((struct seq_file *) file->private_data)->private = serv; 1427 return err; 1428 } 1429 EXPORT_SYMBOL(svc_pool_stats_open); 1430 1431 /*----------------------------------------------------------------------------*/ 1432