xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision f519f0be)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc_xprt.c
4  *
5  * Author: Tom Tucker <tom@opengridcomputing.com>
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/errno.h>
10 #include <linux/freezer.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <net/sock.h>
14 #include <linux/sunrpc/addr.h>
15 #include <linux/sunrpc/stats.h>
16 #include <linux/sunrpc/svc_xprt.h>
17 #include <linux/sunrpc/svcsock.h>
18 #include <linux/sunrpc/xprt.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <trace/events/sunrpc.h>
22 
23 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
24 
25 static unsigned int svc_rpc_per_connection_limit __read_mostly;
26 module_param(svc_rpc_per_connection_limit, uint, 0644);
27 
28 
29 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
30 static int svc_deferred_recv(struct svc_rqst *rqstp);
31 static struct cache_deferred_req *svc_defer(struct cache_req *req);
32 static void svc_age_temp_xprts(struct timer_list *t);
33 static void svc_delete_xprt(struct svc_xprt *xprt);
34 
35 /* apparently the "standard" is that clients close
36  * idle connections after 5 minutes, servers after
37  * 6 minutes
38  *   http://www.connectathon.org/talks96/nfstcp.pdf
39  */
40 static int svc_conn_age_period = 6*60;
41 
42 /* List of registered transport classes */
43 static DEFINE_SPINLOCK(svc_xprt_class_lock);
44 static LIST_HEAD(svc_xprt_class_list);
45 
46 /* SMP locking strategy:
47  *
48  *	svc_pool->sp_lock protects most of the fields of that pool.
49  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
50  *	when both need to be taken (rare), svc_serv->sv_lock is first.
51  *	The "service mutex" protects svc_serv->sv_nrthread.
52  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
53  *             and the ->sk_info_authunix cache.
54  *
55  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
56  *	enqueued multiply. During normal transport processing this bit
57  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
58  *	Providers should not manipulate this bit directly.
59  *
60  *	Some flags can be set to certain values at any time
61  *	providing that certain rules are followed:
62  *
63  *	XPT_CONN, XPT_DATA:
64  *		- Can be set or cleared at any time.
65  *		- After a set, svc_xprt_enqueue must be called to enqueue
66  *		  the transport for processing.
67  *		- After a clear, the transport must be read/accepted.
68  *		  If this succeeds, it must be set again.
69  *	XPT_CLOSE:
70  *		- Can set at any time. It is never cleared.
71  *      XPT_DEAD:
72  *		- Can only be set while XPT_BUSY is held which ensures
73  *		  that no other thread will be using the transport or will
74  *		  try to set XPT_DEAD.
75  */
76 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
77 {
78 	struct svc_xprt_class *cl;
79 	int res = -EEXIST;
80 
81 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
82 
83 	INIT_LIST_HEAD(&xcl->xcl_list);
84 	spin_lock(&svc_xprt_class_lock);
85 	/* Make sure there isn't already a class with the same name */
86 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
87 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
88 			goto out;
89 	}
90 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
91 	res = 0;
92 out:
93 	spin_unlock(&svc_xprt_class_lock);
94 	return res;
95 }
96 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
97 
98 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
99 {
100 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
101 	spin_lock(&svc_xprt_class_lock);
102 	list_del_init(&xcl->xcl_list);
103 	spin_unlock(&svc_xprt_class_lock);
104 }
105 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
106 
107 /*
108  * Format the transport list for printing
109  */
110 int svc_print_xprts(char *buf, int maxlen)
111 {
112 	struct svc_xprt_class *xcl;
113 	char tmpstr[80];
114 	int len = 0;
115 	buf[0] = '\0';
116 
117 	spin_lock(&svc_xprt_class_lock);
118 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
119 		int slen;
120 
121 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
122 		slen = strlen(tmpstr);
123 		if (len + slen > maxlen)
124 			break;
125 		len += slen;
126 		strcat(buf, tmpstr);
127 	}
128 	spin_unlock(&svc_xprt_class_lock);
129 
130 	return len;
131 }
132 
133 static void svc_xprt_free(struct kref *kref)
134 {
135 	struct svc_xprt *xprt =
136 		container_of(kref, struct svc_xprt, xpt_ref);
137 	struct module *owner = xprt->xpt_class->xcl_owner;
138 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
139 		svcauth_unix_info_release(xprt);
140 	put_cred(xprt->xpt_cred);
141 	put_net(xprt->xpt_net);
142 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
143 	if (xprt->xpt_bc_xprt)
144 		xprt_put(xprt->xpt_bc_xprt);
145 	if (xprt->xpt_bc_xps)
146 		xprt_switch_put(xprt->xpt_bc_xps);
147 	xprt->xpt_ops->xpo_free(xprt);
148 	module_put(owner);
149 }
150 
151 void svc_xprt_put(struct svc_xprt *xprt)
152 {
153 	kref_put(&xprt->xpt_ref, svc_xprt_free);
154 }
155 EXPORT_SYMBOL_GPL(svc_xprt_put);
156 
157 /*
158  * Called by transport drivers to initialize the transport independent
159  * portion of the transport instance.
160  */
161 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
162 		   struct svc_xprt *xprt, struct svc_serv *serv)
163 {
164 	memset(xprt, 0, sizeof(*xprt));
165 	xprt->xpt_class = xcl;
166 	xprt->xpt_ops = xcl->xcl_ops;
167 	kref_init(&xprt->xpt_ref);
168 	xprt->xpt_server = serv;
169 	INIT_LIST_HEAD(&xprt->xpt_list);
170 	INIT_LIST_HEAD(&xprt->xpt_ready);
171 	INIT_LIST_HEAD(&xprt->xpt_deferred);
172 	INIT_LIST_HEAD(&xprt->xpt_users);
173 	mutex_init(&xprt->xpt_mutex);
174 	spin_lock_init(&xprt->xpt_lock);
175 	set_bit(XPT_BUSY, &xprt->xpt_flags);
176 	xprt->xpt_net = get_net(net);
177 	strcpy(xprt->xpt_remotebuf, "uninitialized");
178 }
179 EXPORT_SYMBOL_GPL(svc_xprt_init);
180 
181 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
182 					 struct svc_serv *serv,
183 					 struct net *net,
184 					 const int family,
185 					 const unsigned short port,
186 					 int flags)
187 {
188 	struct sockaddr_in sin = {
189 		.sin_family		= AF_INET,
190 		.sin_addr.s_addr	= htonl(INADDR_ANY),
191 		.sin_port		= htons(port),
192 	};
193 #if IS_ENABLED(CONFIG_IPV6)
194 	struct sockaddr_in6 sin6 = {
195 		.sin6_family		= AF_INET6,
196 		.sin6_addr		= IN6ADDR_ANY_INIT,
197 		.sin6_port		= htons(port),
198 	};
199 #endif
200 	struct sockaddr *sap;
201 	size_t len;
202 
203 	switch (family) {
204 	case PF_INET:
205 		sap = (struct sockaddr *)&sin;
206 		len = sizeof(sin);
207 		break;
208 #if IS_ENABLED(CONFIG_IPV6)
209 	case PF_INET6:
210 		sap = (struct sockaddr *)&sin6;
211 		len = sizeof(sin6);
212 		break;
213 #endif
214 	default:
215 		return ERR_PTR(-EAFNOSUPPORT);
216 	}
217 
218 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
219 }
220 
221 /*
222  * svc_xprt_received conditionally queues the transport for processing
223  * by another thread. The caller must hold the XPT_BUSY bit and must
224  * not thereafter touch transport data.
225  *
226  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
227  * insufficient) data.
228  */
229 static void svc_xprt_received(struct svc_xprt *xprt)
230 {
231 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
232 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
233 		return;
234 	}
235 
236 	/* As soon as we clear busy, the xprt could be closed and
237 	 * 'put', so we need a reference to call svc_enqueue_xprt with:
238 	 */
239 	svc_xprt_get(xprt);
240 	smp_mb__before_atomic();
241 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
242 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
243 	svc_xprt_put(xprt);
244 }
245 
246 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
247 {
248 	clear_bit(XPT_TEMP, &new->xpt_flags);
249 	spin_lock_bh(&serv->sv_lock);
250 	list_add(&new->xpt_list, &serv->sv_permsocks);
251 	spin_unlock_bh(&serv->sv_lock);
252 	svc_xprt_received(new);
253 }
254 
255 static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
256 			    struct net *net, const int family,
257 			    const unsigned short port, int flags,
258 			    const struct cred *cred)
259 {
260 	struct svc_xprt_class *xcl;
261 
262 	spin_lock(&svc_xprt_class_lock);
263 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
264 		struct svc_xprt *newxprt;
265 		unsigned short newport;
266 
267 		if (strcmp(xprt_name, xcl->xcl_name))
268 			continue;
269 
270 		if (!try_module_get(xcl->xcl_owner))
271 			goto err;
272 
273 		spin_unlock(&svc_xprt_class_lock);
274 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
275 		if (IS_ERR(newxprt)) {
276 			module_put(xcl->xcl_owner);
277 			return PTR_ERR(newxprt);
278 		}
279 		newxprt->xpt_cred = get_cred(cred);
280 		svc_add_new_perm_xprt(serv, newxprt);
281 		newport = svc_xprt_local_port(newxprt);
282 		return newport;
283 	}
284  err:
285 	spin_unlock(&svc_xprt_class_lock);
286 	/* This errno is exposed to user space.  Provide a reasonable
287 	 * perror msg for a bad transport. */
288 	return -EPROTONOSUPPORT;
289 }
290 
291 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
292 		    struct net *net, const int family,
293 		    const unsigned short port, int flags,
294 		    const struct cred *cred)
295 {
296 	int err;
297 
298 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
299 	err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
300 	if (err == -EPROTONOSUPPORT) {
301 		request_module("svc%s", xprt_name);
302 		err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
303 	}
304 	if (err < 0)
305 		dprintk("svc: transport %s not found, err %d\n",
306 			xprt_name, -err);
307 	return err;
308 }
309 EXPORT_SYMBOL_GPL(svc_create_xprt);
310 
311 /*
312  * Copy the local and remote xprt addresses to the rqstp structure
313  */
314 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
315 {
316 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
317 	rqstp->rq_addrlen = xprt->xpt_remotelen;
318 
319 	/*
320 	 * Destination address in request is needed for binding the
321 	 * source address in RPC replies/callbacks later.
322 	 */
323 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
324 	rqstp->rq_daddrlen = xprt->xpt_locallen;
325 }
326 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
327 
328 /**
329  * svc_print_addr - Format rq_addr field for printing
330  * @rqstp: svc_rqst struct containing address to print
331  * @buf: target buffer for formatted address
332  * @len: length of target buffer
333  *
334  */
335 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
336 {
337 	return __svc_print_addr(svc_addr(rqstp), buf, len);
338 }
339 EXPORT_SYMBOL_GPL(svc_print_addr);
340 
341 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
342 {
343 	unsigned int limit = svc_rpc_per_connection_limit;
344 	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
345 
346 	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
347 }
348 
349 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
350 {
351 	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
352 		if (!svc_xprt_slots_in_range(xprt))
353 			return false;
354 		atomic_inc(&xprt->xpt_nr_rqsts);
355 		set_bit(RQ_DATA, &rqstp->rq_flags);
356 	}
357 	return true;
358 }
359 
360 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
361 {
362 	struct svc_xprt	*xprt = rqstp->rq_xprt;
363 	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
364 		atomic_dec(&xprt->xpt_nr_rqsts);
365 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
366 		svc_xprt_enqueue(xprt);
367 	}
368 }
369 
370 static bool svc_xprt_ready(struct svc_xprt *xprt)
371 {
372 	unsigned long xpt_flags;
373 
374 	/*
375 	 * If another cpu has recently updated xpt_flags,
376 	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
377 	 * know about it; otherwise it's possible that both that cpu and
378 	 * this one could call svc_xprt_enqueue() without either
379 	 * svc_xprt_enqueue() recognizing that the conditions below
380 	 * are satisfied, and we could stall indefinitely:
381 	 */
382 	smp_rmb();
383 	xpt_flags = READ_ONCE(xprt->xpt_flags);
384 
385 	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
386 		return true;
387 	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
388 		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
389 		    svc_xprt_slots_in_range(xprt))
390 			return true;
391 		trace_svc_xprt_no_write_space(xprt);
392 		return false;
393 	}
394 	return false;
395 }
396 
397 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
398 {
399 	struct svc_pool *pool;
400 	struct svc_rqst	*rqstp = NULL;
401 	int cpu;
402 
403 	if (!svc_xprt_ready(xprt))
404 		return;
405 
406 	/* Mark transport as busy. It will remain in this state until
407 	 * the provider calls svc_xprt_received. We update XPT_BUSY
408 	 * atomically because it also guards against trying to enqueue
409 	 * the transport twice.
410 	 */
411 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
412 		return;
413 
414 	cpu = get_cpu();
415 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
416 
417 	atomic_long_inc(&pool->sp_stats.packets);
418 
419 	spin_lock_bh(&pool->sp_lock);
420 	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
421 	pool->sp_stats.sockets_queued++;
422 	spin_unlock_bh(&pool->sp_lock);
423 
424 	/* find a thread for this xprt */
425 	rcu_read_lock();
426 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
427 		if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
428 			continue;
429 		atomic_long_inc(&pool->sp_stats.threads_woken);
430 		rqstp->rq_qtime = ktime_get();
431 		wake_up_process(rqstp->rq_task);
432 		goto out_unlock;
433 	}
434 	set_bit(SP_CONGESTED, &pool->sp_flags);
435 	rqstp = NULL;
436 out_unlock:
437 	rcu_read_unlock();
438 	put_cpu();
439 	trace_svc_xprt_do_enqueue(xprt, rqstp);
440 }
441 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
442 
443 /*
444  * Queue up a transport with data pending. If there are idle nfsd
445  * processes, wake 'em up.
446  *
447  */
448 void svc_xprt_enqueue(struct svc_xprt *xprt)
449 {
450 	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
451 		return;
452 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
453 }
454 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
455 
456 /*
457  * Dequeue the first transport, if there is one.
458  */
459 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
460 {
461 	struct svc_xprt	*xprt = NULL;
462 
463 	if (list_empty(&pool->sp_sockets))
464 		goto out;
465 
466 	spin_lock_bh(&pool->sp_lock);
467 	if (likely(!list_empty(&pool->sp_sockets))) {
468 		xprt = list_first_entry(&pool->sp_sockets,
469 					struct svc_xprt, xpt_ready);
470 		list_del_init(&xprt->xpt_ready);
471 		svc_xprt_get(xprt);
472 	}
473 	spin_unlock_bh(&pool->sp_lock);
474 out:
475 	return xprt;
476 }
477 
478 /**
479  * svc_reserve - change the space reserved for the reply to a request.
480  * @rqstp:  The request in question
481  * @space: new max space to reserve
482  *
483  * Each request reserves some space on the output queue of the transport
484  * to make sure the reply fits.  This function reduces that reserved
485  * space to be the amount of space used already, plus @space.
486  *
487  */
488 void svc_reserve(struct svc_rqst *rqstp, int space)
489 {
490 	struct svc_xprt *xprt = rqstp->rq_xprt;
491 
492 	space += rqstp->rq_res.head[0].iov_len;
493 
494 	if (xprt && space < rqstp->rq_reserved) {
495 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
496 		rqstp->rq_reserved = space;
497 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
498 		svc_xprt_enqueue(xprt);
499 	}
500 }
501 EXPORT_SYMBOL_GPL(svc_reserve);
502 
503 static void svc_xprt_release(struct svc_rqst *rqstp)
504 {
505 	struct svc_xprt	*xprt = rqstp->rq_xprt;
506 
507 	xprt->xpt_ops->xpo_release_rqst(rqstp);
508 
509 	kfree(rqstp->rq_deferred);
510 	rqstp->rq_deferred = NULL;
511 
512 	svc_free_res_pages(rqstp);
513 	rqstp->rq_res.page_len = 0;
514 	rqstp->rq_res.page_base = 0;
515 
516 	/* Reset response buffer and release
517 	 * the reservation.
518 	 * But first, check that enough space was reserved
519 	 * for the reply, otherwise we have a bug!
520 	 */
521 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
522 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
523 		       rqstp->rq_reserved,
524 		       rqstp->rq_res.len);
525 
526 	rqstp->rq_res.head[0].iov_len = 0;
527 	svc_reserve(rqstp, 0);
528 	svc_xprt_release_slot(rqstp);
529 	rqstp->rq_xprt = NULL;
530 	svc_xprt_put(xprt);
531 }
532 
533 /*
534  * Some svc_serv's will have occasional work to do, even when a xprt is not
535  * waiting to be serviced. This function is there to "kick" a task in one of
536  * those services so that it can wake up and do that work. Note that we only
537  * bother with pool 0 as we don't need to wake up more than one thread for
538  * this purpose.
539  */
540 void svc_wake_up(struct svc_serv *serv)
541 {
542 	struct svc_rqst	*rqstp;
543 	struct svc_pool *pool;
544 
545 	pool = &serv->sv_pools[0];
546 
547 	rcu_read_lock();
548 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
549 		/* skip any that aren't queued */
550 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
551 			continue;
552 		rcu_read_unlock();
553 		wake_up_process(rqstp->rq_task);
554 		trace_svc_wake_up(rqstp->rq_task->pid);
555 		return;
556 	}
557 	rcu_read_unlock();
558 
559 	/* No free entries available */
560 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
561 	smp_wmb();
562 	trace_svc_wake_up(0);
563 }
564 EXPORT_SYMBOL_GPL(svc_wake_up);
565 
566 int svc_port_is_privileged(struct sockaddr *sin)
567 {
568 	switch (sin->sa_family) {
569 	case AF_INET:
570 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
571 			< PROT_SOCK;
572 	case AF_INET6:
573 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
574 			< PROT_SOCK;
575 	default:
576 		return 0;
577 	}
578 }
579 
580 /*
581  * Make sure that we don't have too many active connections. If we have,
582  * something must be dropped. It's not clear what will happen if we allow
583  * "too many" connections, but when dealing with network-facing software,
584  * we have to code defensively. Here we do that by imposing hard limits.
585  *
586  * There's no point in trying to do random drop here for DoS
587  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
588  * attacker can easily beat that.
589  *
590  * The only somewhat efficient mechanism would be if drop old
591  * connections from the same IP first. But right now we don't even
592  * record the client IP in svc_sock.
593  *
594  * single-threaded services that expect a lot of clients will probably
595  * need to set sv_maxconn to override the default value which is based
596  * on the number of threads
597  */
598 static void svc_check_conn_limits(struct svc_serv *serv)
599 {
600 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
601 				(serv->sv_nrthreads+3) * 20;
602 
603 	if (serv->sv_tmpcnt > limit) {
604 		struct svc_xprt *xprt = NULL;
605 		spin_lock_bh(&serv->sv_lock);
606 		if (!list_empty(&serv->sv_tempsocks)) {
607 			/* Try to help the admin */
608 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
609 					       serv->sv_name, serv->sv_maxconn ?
610 					       "max number of connections" :
611 					       "number of threads");
612 			/*
613 			 * Always select the oldest connection. It's not fair,
614 			 * but so is life
615 			 */
616 			xprt = list_entry(serv->sv_tempsocks.prev,
617 					  struct svc_xprt,
618 					  xpt_list);
619 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
620 			svc_xprt_get(xprt);
621 		}
622 		spin_unlock_bh(&serv->sv_lock);
623 
624 		if (xprt) {
625 			svc_xprt_enqueue(xprt);
626 			svc_xprt_put(xprt);
627 		}
628 	}
629 }
630 
631 static int svc_alloc_arg(struct svc_rqst *rqstp)
632 {
633 	struct svc_serv *serv = rqstp->rq_server;
634 	struct xdr_buf *arg;
635 	int pages;
636 	int i;
637 
638 	/* now allocate needed pages.  If we get a failure, sleep briefly */
639 	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
640 	if (pages > RPCSVC_MAXPAGES) {
641 		pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
642 			     pages, RPCSVC_MAXPAGES);
643 		/* use as many pages as possible */
644 		pages = RPCSVC_MAXPAGES;
645 	}
646 	for (i = 0; i < pages ; i++)
647 		while (rqstp->rq_pages[i] == NULL) {
648 			struct page *p = alloc_page(GFP_KERNEL);
649 			if (!p) {
650 				set_current_state(TASK_INTERRUPTIBLE);
651 				if (signalled() || kthread_should_stop()) {
652 					set_current_state(TASK_RUNNING);
653 					return -EINTR;
654 				}
655 				schedule_timeout(msecs_to_jiffies(500));
656 			}
657 			rqstp->rq_pages[i] = p;
658 		}
659 	rqstp->rq_page_end = &rqstp->rq_pages[i];
660 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
661 
662 	/* Make arg->head point to first page and arg->pages point to rest */
663 	arg = &rqstp->rq_arg;
664 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
665 	arg->head[0].iov_len = PAGE_SIZE;
666 	arg->pages = rqstp->rq_pages + 1;
667 	arg->page_base = 0;
668 	/* save at least one page for response */
669 	arg->page_len = (pages-2)*PAGE_SIZE;
670 	arg->len = (pages-1)*PAGE_SIZE;
671 	arg->tail[0].iov_len = 0;
672 	return 0;
673 }
674 
675 static bool
676 rqst_should_sleep(struct svc_rqst *rqstp)
677 {
678 	struct svc_pool		*pool = rqstp->rq_pool;
679 
680 	/* did someone call svc_wake_up? */
681 	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
682 		return false;
683 
684 	/* was a socket queued? */
685 	if (!list_empty(&pool->sp_sockets))
686 		return false;
687 
688 	/* are we shutting down? */
689 	if (signalled() || kthread_should_stop())
690 		return false;
691 
692 	/* are we freezing? */
693 	if (freezing(current))
694 		return false;
695 
696 	return true;
697 }
698 
699 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
700 {
701 	struct svc_pool		*pool = rqstp->rq_pool;
702 	long			time_left = 0;
703 
704 	/* rq_xprt should be clear on entry */
705 	WARN_ON_ONCE(rqstp->rq_xprt);
706 
707 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
708 	if (rqstp->rq_xprt)
709 		goto out_found;
710 
711 	/*
712 	 * We have to be able to interrupt this wait
713 	 * to bring down the daemons ...
714 	 */
715 	set_current_state(TASK_INTERRUPTIBLE);
716 	smp_mb__before_atomic();
717 	clear_bit(SP_CONGESTED, &pool->sp_flags);
718 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
719 	smp_mb__after_atomic();
720 
721 	if (likely(rqst_should_sleep(rqstp)))
722 		time_left = schedule_timeout(timeout);
723 	else
724 		__set_current_state(TASK_RUNNING);
725 
726 	try_to_freeze();
727 
728 	set_bit(RQ_BUSY, &rqstp->rq_flags);
729 	smp_mb__after_atomic();
730 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
731 	if (rqstp->rq_xprt)
732 		goto out_found;
733 
734 	if (!time_left)
735 		atomic_long_inc(&pool->sp_stats.threads_timedout);
736 
737 	if (signalled() || kthread_should_stop())
738 		return ERR_PTR(-EINTR);
739 	return ERR_PTR(-EAGAIN);
740 out_found:
741 	/* Normally we will wait up to 5 seconds for any required
742 	 * cache information to be provided.
743 	 */
744 	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
745 		rqstp->rq_chandle.thread_wait = 5*HZ;
746 	else
747 		rqstp->rq_chandle.thread_wait = 1*HZ;
748 	trace_svc_xprt_dequeue(rqstp);
749 	return rqstp->rq_xprt;
750 }
751 
752 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
753 {
754 	spin_lock_bh(&serv->sv_lock);
755 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
756 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
757 	serv->sv_tmpcnt++;
758 	if (serv->sv_temptimer.function == NULL) {
759 		/* setup timer to age temp transports */
760 		serv->sv_temptimer.function = svc_age_temp_xprts;
761 		mod_timer(&serv->sv_temptimer,
762 			  jiffies + svc_conn_age_period * HZ);
763 	}
764 	spin_unlock_bh(&serv->sv_lock);
765 	svc_xprt_received(newxpt);
766 }
767 
768 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
769 {
770 	struct svc_serv *serv = rqstp->rq_server;
771 	int len = 0;
772 
773 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
774 		dprintk("svc_recv: found XPT_CLOSE\n");
775 		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
776 			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
777 		svc_delete_xprt(xprt);
778 		/* Leave XPT_BUSY set on the dead xprt: */
779 		goto out;
780 	}
781 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
782 		struct svc_xprt *newxpt;
783 		/*
784 		 * We know this module_get will succeed because the
785 		 * listener holds a reference too
786 		 */
787 		__module_get(xprt->xpt_class->xcl_owner);
788 		svc_check_conn_limits(xprt->xpt_server);
789 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
790 		if (newxpt) {
791 			newxpt->xpt_cred = get_cred(xprt->xpt_cred);
792 			svc_add_new_temp_xprt(serv, newxpt);
793 		} else
794 			module_put(xprt->xpt_class->xcl_owner);
795 	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
796 		/* XPT_DATA|XPT_DEFERRED case: */
797 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
798 			rqstp, rqstp->rq_pool->sp_id, xprt,
799 			kref_read(&xprt->xpt_ref));
800 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
801 		if (rqstp->rq_deferred)
802 			len = svc_deferred_recv(rqstp);
803 		else
804 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
805 		rqstp->rq_stime = ktime_get();
806 		rqstp->rq_reserved = serv->sv_max_mesg;
807 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
808 	}
809 	/* clear XPT_BUSY: */
810 	svc_xprt_received(xprt);
811 out:
812 	trace_svc_handle_xprt(xprt, len);
813 	return len;
814 }
815 
816 /*
817  * Receive the next request on any transport.  This code is carefully
818  * organised not to touch any cachelines in the shared svc_serv
819  * structure, only cachelines in the local svc_pool.
820  */
821 int svc_recv(struct svc_rqst *rqstp, long timeout)
822 {
823 	struct svc_xprt		*xprt = NULL;
824 	struct svc_serv		*serv = rqstp->rq_server;
825 	int			len, err;
826 
827 	dprintk("svc: server %p waiting for data (to = %ld)\n",
828 		rqstp, timeout);
829 
830 	if (rqstp->rq_xprt)
831 		printk(KERN_ERR
832 			"svc_recv: service %p, transport not NULL!\n",
833 			 rqstp);
834 
835 	err = svc_alloc_arg(rqstp);
836 	if (err)
837 		goto out;
838 
839 	try_to_freeze();
840 	cond_resched();
841 	err = -EINTR;
842 	if (signalled() || kthread_should_stop())
843 		goto out;
844 
845 	xprt = svc_get_next_xprt(rqstp, timeout);
846 	if (IS_ERR(xprt)) {
847 		err = PTR_ERR(xprt);
848 		goto out;
849 	}
850 
851 	len = svc_handle_xprt(rqstp, xprt);
852 
853 	/* No data, incomplete (TCP) read, or accept() */
854 	err = -EAGAIN;
855 	if (len <= 0)
856 		goto out_release;
857 
858 	clear_bit(XPT_OLD, &xprt->xpt_flags);
859 
860 	xprt->xpt_ops->xpo_secure_port(rqstp);
861 	rqstp->rq_chandle.defer = svc_defer;
862 	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
863 
864 	if (serv->sv_stats)
865 		serv->sv_stats->netcnt++;
866 	trace_svc_recv(rqstp, len);
867 	return len;
868 out_release:
869 	rqstp->rq_res.len = 0;
870 	svc_xprt_release(rqstp);
871 out:
872 	return err;
873 }
874 EXPORT_SYMBOL_GPL(svc_recv);
875 
876 /*
877  * Drop request
878  */
879 void svc_drop(struct svc_rqst *rqstp)
880 {
881 	trace_svc_drop(rqstp);
882 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
883 	svc_xprt_release(rqstp);
884 }
885 EXPORT_SYMBOL_GPL(svc_drop);
886 
887 /*
888  * Return reply to client.
889  */
890 int svc_send(struct svc_rqst *rqstp)
891 {
892 	struct svc_xprt	*xprt;
893 	int		len = -EFAULT;
894 	struct xdr_buf	*xb;
895 
896 	xprt = rqstp->rq_xprt;
897 	if (!xprt)
898 		goto out;
899 
900 	/* release the receive skb before sending the reply */
901 	xprt->xpt_ops->xpo_release_rqst(rqstp);
902 
903 	/* calculate over-all length */
904 	xb = &rqstp->rq_res;
905 	xb->len = xb->head[0].iov_len +
906 		xb->page_len +
907 		xb->tail[0].iov_len;
908 
909 	/* Grab mutex to serialize outgoing data. */
910 	mutex_lock(&xprt->xpt_mutex);
911 	trace_svc_stats_latency(rqstp);
912 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
913 			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
914 		len = -ENOTCONN;
915 	else
916 		len = xprt->xpt_ops->xpo_sendto(rqstp);
917 	mutex_unlock(&xprt->xpt_mutex);
918 	trace_svc_send(rqstp, len);
919 	svc_xprt_release(rqstp);
920 
921 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
922 		len = 0;
923 out:
924 	return len;
925 }
926 
927 /*
928  * Timer function to close old temporary transports, using
929  * a mark-and-sweep algorithm.
930  */
931 static void svc_age_temp_xprts(struct timer_list *t)
932 {
933 	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
934 	struct svc_xprt *xprt;
935 	struct list_head *le, *next;
936 
937 	dprintk("svc_age_temp_xprts\n");
938 
939 	if (!spin_trylock_bh(&serv->sv_lock)) {
940 		/* busy, try again 1 sec later */
941 		dprintk("svc_age_temp_xprts: busy\n");
942 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
943 		return;
944 	}
945 
946 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
947 		xprt = list_entry(le, struct svc_xprt, xpt_list);
948 
949 		/* First time through, just mark it OLD. Second time
950 		 * through, close it. */
951 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
952 			continue;
953 		if (kref_read(&xprt->xpt_ref) > 1 ||
954 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
955 			continue;
956 		list_del_init(le);
957 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
958 		dprintk("queuing xprt %p for closing\n", xprt);
959 
960 		/* a thread will dequeue and close it soon */
961 		svc_xprt_enqueue(xprt);
962 	}
963 	spin_unlock_bh(&serv->sv_lock);
964 
965 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
966 }
967 
968 /* Close temporary transports whose xpt_local matches server_addr immediately
969  * instead of waiting for them to be picked up by the timer.
970  *
971  * This is meant to be called from a notifier_block that runs when an ip
972  * address is deleted.
973  */
974 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
975 {
976 	struct svc_xprt *xprt;
977 	struct list_head *le, *next;
978 	LIST_HEAD(to_be_closed);
979 
980 	spin_lock_bh(&serv->sv_lock);
981 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
982 		xprt = list_entry(le, struct svc_xprt, xpt_list);
983 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
984 				&xprt->xpt_local)) {
985 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
986 			list_move(le, &to_be_closed);
987 		}
988 	}
989 	spin_unlock_bh(&serv->sv_lock);
990 
991 	while (!list_empty(&to_be_closed)) {
992 		le = to_be_closed.next;
993 		list_del_init(le);
994 		xprt = list_entry(le, struct svc_xprt, xpt_list);
995 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
996 		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
997 		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
998 				xprt);
999 		svc_xprt_enqueue(xprt);
1000 	}
1001 }
1002 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1003 
1004 static void call_xpt_users(struct svc_xprt *xprt)
1005 {
1006 	struct svc_xpt_user *u;
1007 
1008 	spin_lock(&xprt->xpt_lock);
1009 	while (!list_empty(&xprt->xpt_users)) {
1010 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1011 		list_del_init(&u->list);
1012 		u->callback(u);
1013 	}
1014 	spin_unlock(&xprt->xpt_lock);
1015 }
1016 
1017 /*
1018  * Remove a dead transport
1019  */
1020 static void svc_delete_xprt(struct svc_xprt *xprt)
1021 {
1022 	struct svc_serv	*serv = xprt->xpt_server;
1023 	struct svc_deferred_req *dr;
1024 
1025 	/* Only do this once */
1026 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1027 		BUG();
1028 
1029 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1030 	xprt->xpt_ops->xpo_detach(xprt);
1031 
1032 	spin_lock_bh(&serv->sv_lock);
1033 	list_del_init(&xprt->xpt_list);
1034 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1035 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1036 		serv->sv_tmpcnt--;
1037 	spin_unlock_bh(&serv->sv_lock);
1038 
1039 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1040 		kfree(dr);
1041 
1042 	call_xpt_users(xprt);
1043 	svc_xprt_put(xprt);
1044 }
1045 
1046 void svc_close_xprt(struct svc_xprt *xprt)
1047 {
1048 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1049 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1050 		/* someone else will have to effect the close */
1051 		return;
1052 	/*
1053 	 * We expect svc_close_xprt() to work even when no threads are
1054 	 * running (e.g., while configuring the server before starting
1055 	 * any threads), so if the transport isn't busy, we delete
1056 	 * it ourself:
1057 	 */
1058 	svc_delete_xprt(xprt);
1059 }
1060 EXPORT_SYMBOL_GPL(svc_close_xprt);
1061 
1062 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1063 {
1064 	struct svc_xprt *xprt;
1065 	int ret = 0;
1066 
1067 	spin_lock(&serv->sv_lock);
1068 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1069 		if (xprt->xpt_net != net)
1070 			continue;
1071 		ret++;
1072 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1073 		svc_xprt_enqueue(xprt);
1074 	}
1075 	spin_unlock(&serv->sv_lock);
1076 	return ret;
1077 }
1078 
1079 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1080 {
1081 	struct svc_pool *pool;
1082 	struct svc_xprt *xprt;
1083 	struct svc_xprt *tmp;
1084 	int i;
1085 
1086 	for (i = 0; i < serv->sv_nrpools; i++) {
1087 		pool = &serv->sv_pools[i];
1088 
1089 		spin_lock_bh(&pool->sp_lock);
1090 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1091 			if (xprt->xpt_net != net)
1092 				continue;
1093 			list_del_init(&xprt->xpt_ready);
1094 			spin_unlock_bh(&pool->sp_lock);
1095 			return xprt;
1096 		}
1097 		spin_unlock_bh(&pool->sp_lock);
1098 	}
1099 	return NULL;
1100 }
1101 
1102 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1103 {
1104 	struct svc_xprt *xprt;
1105 
1106 	while ((xprt = svc_dequeue_net(serv, net))) {
1107 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1108 		svc_delete_xprt(xprt);
1109 	}
1110 }
1111 
1112 /*
1113  * Server threads may still be running (especially in the case where the
1114  * service is still running in other network namespaces).
1115  *
1116  * So we shut down sockets the same way we would on a running server, by
1117  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1118  * the close.  In the case there are no such other threads,
1119  * threads running, svc_clean_up_xprts() does a simple version of a
1120  * server's main event loop, and in the case where there are other
1121  * threads, we may need to wait a little while and then check again to
1122  * see if they're done.
1123  */
1124 void svc_close_net(struct svc_serv *serv, struct net *net)
1125 {
1126 	int delay = 0;
1127 
1128 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1129 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1130 
1131 		svc_clean_up_xprts(serv, net);
1132 		msleep(delay++);
1133 	}
1134 }
1135 
1136 /*
1137  * Handle defer and revisit of requests
1138  */
1139 
1140 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1141 {
1142 	struct svc_deferred_req *dr =
1143 		container_of(dreq, struct svc_deferred_req, handle);
1144 	struct svc_xprt *xprt = dr->xprt;
1145 
1146 	spin_lock(&xprt->xpt_lock);
1147 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1148 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1149 		spin_unlock(&xprt->xpt_lock);
1150 		dprintk("revisit canceled\n");
1151 		svc_xprt_put(xprt);
1152 		trace_svc_drop_deferred(dr);
1153 		kfree(dr);
1154 		return;
1155 	}
1156 	dprintk("revisit queued\n");
1157 	dr->xprt = NULL;
1158 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1159 	spin_unlock(&xprt->xpt_lock);
1160 	svc_xprt_enqueue(xprt);
1161 	svc_xprt_put(xprt);
1162 }
1163 
1164 /*
1165  * Save the request off for later processing. The request buffer looks
1166  * like this:
1167  *
1168  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1169  *
1170  * This code can only handle requests that consist of an xprt-header
1171  * and rpc-header.
1172  */
1173 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1174 {
1175 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1176 	struct svc_deferred_req *dr;
1177 
1178 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1179 		return NULL; /* if more than a page, give up FIXME */
1180 	if (rqstp->rq_deferred) {
1181 		dr = rqstp->rq_deferred;
1182 		rqstp->rq_deferred = NULL;
1183 	} else {
1184 		size_t skip;
1185 		size_t size;
1186 		/* FIXME maybe discard if size too large */
1187 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1188 		dr = kmalloc(size, GFP_KERNEL);
1189 		if (dr == NULL)
1190 			return NULL;
1191 
1192 		dr->handle.owner = rqstp->rq_server;
1193 		dr->prot = rqstp->rq_prot;
1194 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1195 		dr->addrlen = rqstp->rq_addrlen;
1196 		dr->daddr = rqstp->rq_daddr;
1197 		dr->argslen = rqstp->rq_arg.len >> 2;
1198 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1199 
1200 		/* back up head to the start of the buffer and copy */
1201 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1202 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1203 		       dr->argslen << 2);
1204 	}
1205 	svc_xprt_get(rqstp->rq_xprt);
1206 	dr->xprt = rqstp->rq_xprt;
1207 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1208 
1209 	dr->handle.revisit = svc_revisit;
1210 	trace_svc_defer(rqstp);
1211 	return &dr->handle;
1212 }
1213 
1214 /*
1215  * recv data from a deferred request into an active one
1216  */
1217 static int svc_deferred_recv(struct svc_rqst *rqstp)
1218 {
1219 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1220 
1221 	/* setup iov_base past transport header */
1222 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1223 	/* The iov_len does not include the transport header bytes */
1224 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1225 	rqstp->rq_arg.page_len = 0;
1226 	/* The rq_arg.len includes the transport header bytes */
1227 	rqstp->rq_arg.len     = dr->argslen<<2;
1228 	rqstp->rq_prot        = dr->prot;
1229 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1230 	rqstp->rq_addrlen     = dr->addrlen;
1231 	/* Save off transport header len in case we get deferred again */
1232 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1233 	rqstp->rq_daddr       = dr->daddr;
1234 	rqstp->rq_respages    = rqstp->rq_pages;
1235 	return (dr->argslen<<2) - dr->xprt_hlen;
1236 }
1237 
1238 
1239 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1240 {
1241 	struct svc_deferred_req *dr = NULL;
1242 
1243 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1244 		return NULL;
1245 	spin_lock(&xprt->xpt_lock);
1246 	if (!list_empty(&xprt->xpt_deferred)) {
1247 		dr = list_entry(xprt->xpt_deferred.next,
1248 				struct svc_deferred_req,
1249 				handle.recent);
1250 		list_del_init(&dr->handle.recent);
1251 		trace_svc_revisit_deferred(dr);
1252 	} else
1253 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1254 	spin_unlock(&xprt->xpt_lock);
1255 	return dr;
1256 }
1257 
1258 /**
1259  * svc_find_xprt - find an RPC transport instance
1260  * @serv: pointer to svc_serv to search
1261  * @xcl_name: C string containing transport's class name
1262  * @net: owner net pointer
1263  * @af: Address family of transport's local address
1264  * @port: transport's IP port number
1265  *
1266  * Return the transport instance pointer for the endpoint accepting
1267  * connections/peer traffic from the specified transport class,
1268  * address family and port.
1269  *
1270  * Specifying 0 for the address family or port is effectively a
1271  * wild-card, and will result in matching the first transport in the
1272  * service's list that has a matching class name.
1273  */
1274 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1275 			       struct net *net, const sa_family_t af,
1276 			       const unsigned short port)
1277 {
1278 	struct svc_xprt *xprt;
1279 	struct svc_xprt *found = NULL;
1280 
1281 	/* Sanity check the args */
1282 	if (serv == NULL || xcl_name == NULL)
1283 		return found;
1284 
1285 	spin_lock_bh(&serv->sv_lock);
1286 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1287 		if (xprt->xpt_net != net)
1288 			continue;
1289 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1290 			continue;
1291 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1292 			continue;
1293 		if (port != 0 && port != svc_xprt_local_port(xprt))
1294 			continue;
1295 		found = xprt;
1296 		svc_xprt_get(xprt);
1297 		break;
1298 	}
1299 	spin_unlock_bh(&serv->sv_lock);
1300 	return found;
1301 }
1302 EXPORT_SYMBOL_GPL(svc_find_xprt);
1303 
1304 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1305 			     char *pos, int remaining)
1306 {
1307 	int len;
1308 
1309 	len = snprintf(pos, remaining, "%s %u\n",
1310 			xprt->xpt_class->xcl_name,
1311 			svc_xprt_local_port(xprt));
1312 	if (len >= remaining)
1313 		return -ENAMETOOLONG;
1314 	return len;
1315 }
1316 
1317 /**
1318  * svc_xprt_names - format a buffer with a list of transport names
1319  * @serv: pointer to an RPC service
1320  * @buf: pointer to a buffer to be filled in
1321  * @buflen: length of buffer to be filled in
1322  *
1323  * Fills in @buf with a string containing a list of transport names,
1324  * each name terminated with '\n'.
1325  *
1326  * Returns positive length of the filled-in string on success; otherwise
1327  * a negative errno value is returned if an error occurs.
1328  */
1329 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1330 {
1331 	struct svc_xprt *xprt;
1332 	int len, totlen;
1333 	char *pos;
1334 
1335 	/* Sanity check args */
1336 	if (!serv)
1337 		return 0;
1338 
1339 	spin_lock_bh(&serv->sv_lock);
1340 
1341 	pos = buf;
1342 	totlen = 0;
1343 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1344 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1345 		if (len < 0) {
1346 			*buf = '\0';
1347 			totlen = len;
1348 		}
1349 		if (len <= 0)
1350 			break;
1351 
1352 		pos += len;
1353 		totlen += len;
1354 	}
1355 
1356 	spin_unlock_bh(&serv->sv_lock);
1357 	return totlen;
1358 }
1359 EXPORT_SYMBOL_GPL(svc_xprt_names);
1360 
1361 
1362 /*----------------------------------------------------------------------------*/
1363 
1364 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1365 {
1366 	unsigned int pidx = (unsigned int)*pos;
1367 	struct svc_serv *serv = m->private;
1368 
1369 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1370 
1371 	if (!pidx)
1372 		return SEQ_START_TOKEN;
1373 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1374 }
1375 
1376 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1377 {
1378 	struct svc_pool *pool = p;
1379 	struct svc_serv *serv = m->private;
1380 
1381 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1382 
1383 	if (p == SEQ_START_TOKEN) {
1384 		pool = &serv->sv_pools[0];
1385 	} else {
1386 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1387 		if (pidx < serv->sv_nrpools-1)
1388 			pool = &serv->sv_pools[pidx+1];
1389 		else
1390 			pool = NULL;
1391 	}
1392 	++*pos;
1393 	return pool;
1394 }
1395 
1396 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1397 {
1398 }
1399 
1400 static int svc_pool_stats_show(struct seq_file *m, void *p)
1401 {
1402 	struct svc_pool *pool = p;
1403 
1404 	if (p == SEQ_START_TOKEN) {
1405 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1406 		return 0;
1407 	}
1408 
1409 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1410 		pool->sp_id,
1411 		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1412 		pool->sp_stats.sockets_queued,
1413 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1414 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1415 
1416 	return 0;
1417 }
1418 
1419 static const struct seq_operations svc_pool_stats_seq_ops = {
1420 	.start	= svc_pool_stats_start,
1421 	.next	= svc_pool_stats_next,
1422 	.stop	= svc_pool_stats_stop,
1423 	.show	= svc_pool_stats_show,
1424 };
1425 
1426 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1427 {
1428 	int err;
1429 
1430 	err = seq_open(file, &svc_pool_stats_seq_ops);
1431 	if (!err)
1432 		((struct seq_file *) file->private_data)->private = serv;
1433 	return err;
1434 }
1435 EXPORT_SYMBOL(svc_pool_stats_open);
1436 
1437 /*----------------------------------------------------------------------------*/
1438