xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision f42b3800)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/fcntl.h>
10 #include <linux/net.h>
11 #include <linux/in.h>
12 #include <linux/inet.h>
13 #include <linux/udp.h>
14 #include <linux/tcp.h>
15 #include <linux/unistd.h>
16 #include <linux/slab.h>
17 #include <linux/netdevice.h>
18 #include <linux/skbuff.h>
19 #include <linux/file.h>
20 #include <linux/freezer.h>
21 #include <net/sock.h>
22 #include <net/checksum.h>
23 #include <net/ip.h>
24 #include <net/ipv6.h>
25 #include <net/tcp_states.h>
26 #include <linux/uaccess.h>
27 #include <asm/ioctls.h>
28 
29 #include <linux/sunrpc/types.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/sunrpc/xdr.h>
32 #include <linux/sunrpc/stats.h>
33 #include <linux/sunrpc/svc_xprt.h>
34 
35 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
36 
37 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
38 static int svc_deferred_recv(struct svc_rqst *rqstp);
39 static struct cache_deferred_req *svc_defer(struct cache_req *req);
40 static void svc_age_temp_xprts(unsigned long closure);
41 
42 /* apparently the "standard" is that clients close
43  * idle connections after 5 minutes, servers after
44  * 6 minutes
45  *   http://www.connectathon.org/talks96/nfstcp.pdf
46  */
47 static int svc_conn_age_period = 6*60;
48 
49 /* List of registered transport classes */
50 static DEFINE_SPINLOCK(svc_xprt_class_lock);
51 static LIST_HEAD(svc_xprt_class_list);
52 
53 /* SMP locking strategy:
54  *
55  *	svc_pool->sp_lock protects most of the fields of that pool.
56  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
57  *	when both need to be taken (rare), svc_serv->sv_lock is first.
58  *	BKL protects svc_serv->sv_nrthread.
59  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
60  *             and the ->sk_info_authunix cache.
61  *
62  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
63  *	enqueued multiply. During normal transport processing this bit
64  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
65  *	Providers should not manipulate this bit directly.
66  *
67  *	Some flags can be set to certain values at any time
68  *	providing that certain rules are followed:
69  *
70  *	XPT_CONN, XPT_DATA:
71  *		- Can be set or cleared at any time.
72  *		- After a set, svc_xprt_enqueue must be called to enqueue
73  *		  the transport for processing.
74  *		- After a clear, the transport must be read/accepted.
75  *		  If this succeeds, it must be set again.
76  *	XPT_CLOSE:
77  *		- Can set at any time. It is never cleared.
78  *      XPT_DEAD:
79  *		- Can only be set while XPT_BUSY is held which ensures
80  *		  that no other thread will be using the transport or will
81  *		  try to set XPT_DEAD.
82  */
83 
84 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
85 {
86 	struct svc_xprt_class *cl;
87 	int res = -EEXIST;
88 
89 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
90 
91 	INIT_LIST_HEAD(&xcl->xcl_list);
92 	spin_lock(&svc_xprt_class_lock);
93 	/* Make sure there isn't already a class with the same name */
94 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
95 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
96 			goto out;
97 	}
98 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
99 	res = 0;
100 out:
101 	spin_unlock(&svc_xprt_class_lock);
102 	return res;
103 }
104 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
105 
106 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
107 {
108 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
109 	spin_lock(&svc_xprt_class_lock);
110 	list_del_init(&xcl->xcl_list);
111 	spin_unlock(&svc_xprt_class_lock);
112 }
113 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
114 
115 /*
116  * Format the transport list for printing
117  */
118 int svc_print_xprts(char *buf, int maxlen)
119 {
120 	struct list_head *le;
121 	char tmpstr[80];
122 	int len = 0;
123 	buf[0] = '\0';
124 
125 	spin_lock(&svc_xprt_class_lock);
126 	list_for_each(le, &svc_xprt_class_list) {
127 		int slen;
128 		struct svc_xprt_class *xcl =
129 			list_entry(le, struct svc_xprt_class, xcl_list);
130 
131 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
132 		slen = strlen(tmpstr);
133 		if (len + slen > maxlen)
134 			break;
135 		len += slen;
136 		strcat(buf, tmpstr);
137 	}
138 	spin_unlock(&svc_xprt_class_lock);
139 
140 	return len;
141 }
142 
143 static void svc_xprt_free(struct kref *kref)
144 {
145 	struct svc_xprt *xprt =
146 		container_of(kref, struct svc_xprt, xpt_ref);
147 	struct module *owner = xprt->xpt_class->xcl_owner;
148 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)
149 	    && xprt->xpt_auth_cache != NULL)
150 		svcauth_unix_info_release(xprt->xpt_auth_cache);
151 	xprt->xpt_ops->xpo_free(xprt);
152 	module_put(owner);
153 }
154 
155 void svc_xprt_put(struct svc_xprt *xprt)
156 {
157 	kref_put(&xprt->xpt_ref, svc_xprt_free);
158 }
159 EXPORT_SYMBOL_GPL(svc_xprt_put);
160 
161 /*
162  * Called by transport drivers to initialize the transport independent
163  * portion of the transport instance.
164  */
165 void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
166 		   struct svc_serv *serv)
167 {
168 	memset(xprt, 0, sizeof(*xprt));
169 	xprt->xpt_class = xcl;
170 	xprt->xpt_ops = xcl->xcl_ops;
171 	kref_init(&xprt->xpt_ref);
172 	xprt->xpt_server = serv;
173 	INIT_LIST_HEAD(&xprt->xpt_list);
174 	INIT_LIST_HEAD(&xprt->xpt_ready);
175 	INIT_LIST_HEAD(&xprt->xpt_deferred);
176 	mutex_init(&xprt->xpt_mutex);
177 	spin_lock_init(&xprt->xpt_lock);
178 	set_bit(XPT_BUSY, &xprt->xpt_flags);
179 }
180 EXPORT_SYMBOL_GPL(svc_xprt_init);
181 
182 int svc_create_xprt(struct svc_serv *serv, char *xprt_name, unsigned short port,
183 		    int flags)
184 {
185 	struct svc_xprt_class *xcl;
186 	struct sockaddr_in sin = {
187 		.sin_family		= AF_INET,
188 		.sin_addr.s_addr	= htonl(INADDR_ANY),
189 		.sin_port		= htons(port),
190 	};
191 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
192 	spin_lock(&svc_xprt_class_lock);
193 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
194 		struct svc_xprt *newxprt;
195 
196 		if (strcmp(xprt_name, xcl->xcl_name))
197 			continue;
198 
199 		if (!try_module_get(xcl->xcl_owner))
200 			goto err;
201 
202 		spin_unlock(&svc_xprt_class_lock);
203 		newxprt = xcl->xcl_ops->
204 			xpo_create(serv, (struct sockaddr *)&sin, sizeof(sin),
205 				   flags);
206 		if (IS_ERR(newxprt)) {
207 			module_put(xcl->xcl_owner);
208 			return PTR_ERR(newxprt);
209 		}
210 
211 		clear_bit(XPT_TEMP, &newxprt->xpt_flags);
212 		spin_lock_bh(&serv->sv_lock);
213 		list_add(&newxprt->xpt_list, &serv->sv_permsocks);
214 		spin_unlock_bh(&serv->sv_lock);
215 		clear_bit(XPT_BUSY, &newxprt->xpt_flags);
216 		return svc_xprt_local_port(newxprt);
217 	}
218  err:
219 	spin_unlock(&svc_xprt_class_lock);
220 	dprintk("svc: transport %s not found\n", xprt_name);
221 	return -ENOENT;
222 }
223 EXPORT_SYMBOL_GPL(svc_create_xprt);
224 
225 /*
226  * Copy the local and remote xprt addresses to the rqstp structure
227  */
228 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
229 {
230 	struct sockaddr *sin;
231 
232 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
233 	rqstp->rq_addrlen = xprt->xpt_remotelen;
234 
235 	/*
236 	 * Destination address in request is needed for binding the
237 	 * source address in RPC replies/callbacks later.
238 	 */
239 	sin = (struct sockaddr *)&xprt->xpt_local;
240 	switch (sin->sa_family) {
241 	case AF_INET:
242 		rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
243 		break;
244 	case AF_INET6:
245 		rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
246 		break;
247 	}
248 }
249 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
250 
251 /**
252  * svc_print_addr - Format rq_addr field for printing
253  * @rqstp: svc_rqst struct containing address to print
254  * @buf: target buffer for formatted address
255  * @len: length of target buffer
256  *
257  */
258 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
259 {
260 	return __svc_print_addr(svc_addr(rqstp), buf, len);
261 }
262 EXPORT_SYMBOL_GPL(svc_print_addr);
263 
264 /*
265  * Queue up an idle server thread.  Must have pool->sp_lock held.
266  * Note: this is really a stack rather than a queue, so that we only
267  * use as many different threads as we need, and the rest don't pollute
268  * the cache.
269  */
270 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
271 {
272 	list_add(&rqstp->rq_list, &pool->sp_threads);
273 }
274 
275 /*
276  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
277  */
278 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
279 {
280 	list_del(&rqstp->rq_list);
281 }
282 
283 /*
284  * Queue up a transport with data pending. If there are idle nfsd
285  * processes, wake 'em up.
286  *
287  */
288 void svc_xprt_enqueue(struct svc_xprt *xprt)
289 {
290 	struct svc_serv	*serv = xprt->xpt_server;
291 	struct svc_pool *pool;
292 	struct svc_rqst	*rqstp;
293 	int cpu;
294 
295 	if (!(xprt->xpt_flags &
296 	      ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
297 		return;
298 	if (test_bit(XPT_DEAD, &xprt->xpt_flags))
299 		return;
300 
301 	cpu = get_cpu();
302 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
303 	put_cpu();
304 
305 	spin_lock_bh(&pool->sp_lock);
306 
307 	if (!list_empty(&pool->sp_threads) &&
308 	    !list_empty(&pool->sp_sockets))
309 		printk(KERN_ERR
310 		       "svc_xprt_enqueue: "
311 		       "threads and transports both waiting??\n");
312 
313 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
314 		/* Don't enqueue dead transports */
315 		dprintk("svc: transport %p is dead, not enqueued\n", xprt);
316 		goto out_unlock;
317 	}
318 
319 	/* Mark transport as busy. It will remain in this state until
320 	 * the provider calls svc_xprt_received. We update XPT_BUSY
321 	 * atomically because it also guards against trying to enqueue
322 	 * the transport twice.
323 	 */
324 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
325 		/* Don't enqueue transport while already enqueued */
326 		dprintk("svc: transport %p busy, not enqueued\n", xprt);
327 		goto out_unlock;
328 	}
329 	BUG_ON(xprt->xpt_pool != NULL);
330 	xprt->xpt_pool = pool;
331 
332 	/* Handle pending connection */
333 	if (test_bit(XPT_CONN, &xprt->xpt_flags))
334 		goto process;
335 
336 	/* Handle close in-progress */
337 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
338 		goto process;
339 
340 	/* Check if we have space to reply to a request */
341 	if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
342 		/* Don't enqueue while not enough space for reply */
343 		dprintk("svc: no write space, transport %p  not enqueued\n",
344 			xprt);
345 		xprt->xpt_pool = NULL;
346 		clear_bit(XPT_BUSY, &xprt->xpt_flags);
347 		goto out_unlock;
348 	}
349 
350  process:
351 	if (!list_empty(&pool->sp_threads)) {
352 		rqstp = list_entry(pool->sp_threads.next,
353 				   struct svc_rqst,
354 				   rq_list);
355 		dprintk("svc: transport %p served by daemon %p\n",
356 			xprt, rqstp);
357 		svc_thread_dequeue(pool, rqstp);
358 		if (rqstp->rq_xprt)
359 			printk(KERN_ERR
360 				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
361 				rqstp, rqstp->rq_xprt);
362 		rqstp->rq_xprt = xprt;
363 		svc_xprt_get(xprt);
364 		rqstp->rq_reserved = serv->sv_max_mesg;
365 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
366 		BUG_ON(xprt->xpt_pool != pool);
367 		wake_up(&rqstp->rq_wait);
368 	} else {
369 		dprintk("svc: transport %p put into queue\n", xprt);
370 		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
371 		BUG_ON(xprt->xpt_pool != pool);
372 	}
373 
374 out_unlock:
375 	spin_unlock_bh(&pool->sp_lock);
376 }
377 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
378 
379 /*
380  * Dequeue the first transport.  Must be called with the pool->sp_lock held.
381  */
382 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
383 {
384 	struct svc_xprt	*xprt;
385 
386 	if (list_empty(&pool->sp_sockets))
387 		return NULL;
388 
389 	xprt = list_entry(pool->sp_sockets.next,
390 			  struct svc_xprt, xpt_ready);
391 	list_del_init(&xprt->xpt_ready);
392 
393 	dprintk("svc: transport %p dequeued, inuse=%d\n",
394 		xprt, atomic_read(&xprt->xpt_ref.refcount));
395 
396 	return xprt;
397 }
398 
399 /*
400  * svc_xprt_received conditionally queues the transport for processing
401  * by another thread. The caller must hold the XPT_BUSY bit and must
402  * not thereafter touch transport data.
403  *
404  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
405  * insufficient) data.
406  */
407 void svc_xprt_received(struct svc_xprt *xprt)
408 {
409 	BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
410 	xprt->xpt_pool = NULL;
411 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
412 	svc_xprt_enqueue(xprt);
413 }
414 EXPORT_SYMBOL_GPL(svc_xprt_received);
415 
416 /**
417  * svc_reserve - change the space reserved for the reply to a request.
418  * @rqstp:  The request in question
419  * @space: new max space to reserve
420  *
421  * Each request reserves some space on the output queue of the transport
422  * to make sure the reply fits.  This function reduces that reserved
423  * space to be the amount of space used already, plus @space.
424  *
425  */
426 void svc_reserve(struct svc_rqst *rqstp, int space)
427 {
428 	space += rqstp->rq_res.head[0].iov_len;
429 
430 	if (space < rqstp->rq_reserved) {
431 		struct svc_xprt *xprt = rqstp->rq_xprt;
432 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
433 		rqstp->rq_reserved = space;
434 
435 		svc_xprt_enqueue(xprt);
436 	}
437 }
438 EXPORT_SYMBOL(svc_reserve);
439 
440 static void svc_xprt_release(struct svc_rqst *rqstp)
441 {
442 	struct svc_xprt	*xprt = rqstp->rq_xprt;
443 
444 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
445 
446 	svc_free_res_pages(rqstp);
447 	rqstp->rq_res.page_len = 0;
448 	rqstp->rq_res.page_base = 0;
449 
450 	/* Reset response buffer and release
451 	 * the reservation.
452 	 * But first, check that enough space was reserved
453 	 * for the reply, otherwise we have a bug!
454 	 */
455 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
456 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
457 		       rqstp->rq_reserved,
458 		       rqstp->rq_res.len);
459 
460 	rqstp->rq_res.head[0].iov_len = 0;
461 	svc_reserve(rqstp, 0);
462 	rqstp->rq_xprt = NULL;
463 
464 	svc_xprt_put(xprt);
465 }
466 
467 /*
468  * External function to wake up a server waiting for data
469  * This really only makes sense for services like lockd
470  * which have exactly one thread anyway.
471  */
472 void svc_wake_up(struct svc_serv *serv)
473 {
474 	struct svc_rqst	*rqstp;
475 	unsigned int i;
476 	struct svc_pool *pool;
477 
478 	for (i = 0; i < serv->sv_nrpools; i++) {
479 		pool = &serv->sv_pools[i];
480 
481 		spin_lock_bh(&pool->sp_lock);
482 		if (!list_empty(&pool->sp_threads)) {
483 			rqstp = list_entry(pool->sp_threads.next,
484 					   struct svc_rqst,
485 					   rq_list);
486 			dprintk("svc: daemon %p woken up.\n", rqstp);
487 			/*
488 			svc_thread_dequeue(pool, rqstp);
489 			rqstp->rq_xprt = NULL;
490 			 */
491 			wake_up(&rqstp->rq_wait);
492 		}
493 		spin_unlock_bh(&pool->sp_lock);
494 	}
495 }
496 EXPORT_SYMBOL(svc_wake_up);
497 
498 int svc_port_is_privileged(struct sockaddr *sin)
499 {
500 	switch (sin->sa_family) {
501 	case AF_INET:
502 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
503 			< PROT_SOCK;
504 	case AF_INET6:
505 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
506 			< PROT_SOCK;
507 	default:
508 		return 0;
509 	}
510 }
511 
512 /*
513  * Make sure that we don't have too many active connections.  If we
514  * have, something must be dropped.
515  *
516  * There's no point in trying to do random drop here for DoS
517  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
518  * attacker can easily beat that.
519  *
520  * The only somewhat efficient mechanism would be if drop old
521  * connections from the same IP first. But right now we don't even
522  * record the client IP in svc_sock.
523  */
524 static void svc_check_conn_limits(struct svc_serv *serv)
525 {
526 	if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
527 		struct svc_xprt *xprt = NULL;
528 		spin_lock_bh(&serv->sv_lock);
529 		if (!list_empty(&serv->sv_tempsocks)) {
530 			if (net_ratelimit()) {
531 				/* Try to help the admin */
532 				printk(KERN_NOTICE "%s: too many open  "
533 				       "connections, consider increasing the "
534 				       "number of nfsd threads\n",
535 				       serv->sv_name);
536 			}
537 			/*
538 			 * Always select the oldest connection. It's not fair,
539 			 * but so is life
540 			 */
541 			xprt = list_entry(serv->sv_tempsocks.prev,
542 					  struct svc_xprt,
543 					  xpt_list);
544 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
545 			svc_xprt_get(xprt);
546 		}
547 		spin_unlock_bh(&serv->sv_lock);
548 
549 		if (xprt) {
550 			svc_xprt_enqueue(xprt);
551 			svc_xprt_put(xprt);
552 		}
553 	}
554 }
555 
556 /*
557  * Receive the next request on any transport.  This code is carefully
558  * organised not to touch any cachelines in the shared svc_serv
559  * structure, only cachelines in the local svc_pool.
560  */
561 int svc_recv(struct svc_rqst *rqstp, long timeout)
562 {
563 	struct svc_xprt		*xprt = NULL;
564 	struct svc_serv		*serv = rqstp->rq_server;
565 	struct svc_pool		*pool = rqstp->rq_pool;
566 	int			len, i;
567 	int			pages;
568 	struct xdr_buf		*arg;
569 	DECLARE_WAITQUEUE(wait, current);
570 
571 	dprintk("svc: server %p waiting for data (to = %ld)\n",
572 		rqstp, timeout);
573 
574 	if (rqstp->rq_xprt)
575 		printk(KERN_ERR
576 			"svc_recv: service %p, transport not NULL!\n",
577 			 rqstp);
578 	if (waitqueue_active(&rqstp->rq_wait))
579 		printk(KERN_ERR
580 			"svc_recv: service %p, wait queue active!\n",
581 			 rqstp);
582 
583 	/* now allocate needed pages.  If we get a failure, sleep briefly */
584 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
585 	for (i = 0; i < pages ; i++)
586 		while (rqstp->rq_pages[i] == NULL) {
587 			struct page *p = alloc_page(GFP_KERNEL);
588 			if (!p) {
589 				int j = msecs_to_jiffies(500);
590 				schedule_timeout_uninterruptible(j);
591 			}
592 			rqstp->rq_pages[i] = p;
593 		}
594 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
595 	BUG_ON(pages >= RPCSVC_MAXPAGES);
596 
597 	/* Make arg->head point to first page and arg->pages point to rest */
598 	arg = &rqstp->rq_arg;
599 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
600 	arg->head[0].iov_len = PAGE_SIZE;
601 	arg->pages = rqstp->rq_pages + 1;
602 	arg->page_base = 0;
603 	/* save at least one page for response */
604 	arg->page_len = (pages-2)*PAGE_SIZE;
605 	arg->len = (pages-1)*PAGE_SIZE;
606 	arg->tail[0].iov_len = 0;
607 
608 	try_to_freeze();
609 	cond_resched();
610 	if (signalled())
611 		return -EINTR;
612 
613 	spin_lock_bh(&pool->sp_lock);
614 	xprt = svc_xprt_dequeue(pool);
615 	if (xprt) {
616 		rqstp->rq_xprt = xprt;
617 		svc_xprt_get(xprt);
618 		rqstp->rq_reserved = serv->sv_max_mesg;
619 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
620 	} else {
621 		/* No data pending. Go to sleep */
622 		svc_thread_enqueue(pool, rqstp);
623 
624 		/*
625 		 * We have to be able to interrupt this wait
626 		 * to bring down the daemons ...
627 		 */
628 		set_current_state(TASK_INTERRUPTIBLE);
629 		add_wait_queue(&rqstp->rq_wait, &wait);
630 		spin_unlock_bh(&pool->sp_lock);
631 
632 		schedule_timeout(timeout);
633 
634 		try_to_freeze();
635 
636 		spin_lock_bh(&pool->sp_lock);
637 		remove_wait_queue(&rqstp->rq_wait, &wait);
638 
639 		xprt = rqstp->rq_xprt;
640 		if (!xprt) {
641 			svc_thread_dequeue(pool, rqstp);
642 			spin_unlock_bh(&pool->sp_lock);
643 			dprintk("svc: server %p, no data yet\n", rqstp);
644 			return signalled()? -EINTR : -EAGAIN;
645 		}
646 	}
647 	spin_unlock_bh(&pool->sp_lock);
648 
649 	len = 0;
650 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
651 		dprintk("svc_recv: found XPT_CLOSE\n");
652 		svc_delete_xprt(xprt);
653 	} else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
654 		struct svc_xprt *newxpt;
655 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
656 		if (newxpt) {
657 			/*
658 			 * We know this module_get will succeed because the
659 			 * listener holds a reference too
660 			 */
661 			__module_get(newxpt->xpt_class->xcl_owner);
662 			svc_check_conn_limits(xprt->xpt_server);
663 			spin_lock_bh(&serv->sv_lock);
664 			set_bit(XPT_TEMP, &newxpt->xpt_flags);
665 			list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
666 			serv->sv_tmpcnt++;
667 			if (serv->sv_temptimer.function == NULL) {
668 				/* setup timer to age temp transports */
669 				setup_timer(&serv->sv_temptimer,
670 					    svc_age_temp_xprts,
671 					    (unsigned long)serv);
672 				mod_timer(&serv->sv_temptimer,
673 					  jiffies + svc_conn_age_period * HZ);
674 			}
675 			spin_unlock_bh(&serv->sv_lock);
676 			svc_xprt_received(newxpt);
677 		}
678 		svc_xprt_received(xprt);
679 	} else {
680 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
681 			rqstp, pool->sp_id, xprt,
682 			atomic_read(&xprt->xpt_ref.refcount));
683 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
684 		if (rqstp->rq_deferred) {
685 			svc_xprt_received(xprt);
686 			len = svc_deferred_recv(rqstp);
687 		} else
688 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
689 		dprintk("svc: got len=%d\n", len);
690 	}
691 
692 	/* No data, incomplete (TCP) read, or accept() */
693 	if (len == 0 || len == -EAGAIN) {
694 		rqstp->rq_res.len = 0;
695 		svc_xprt_release(rqstp);
696 		return -EAGAIN;
697 	}
698 	clear_bit(XPT_OLD, &xprt->xpt_flags);
699 
700 	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
701 	rqstp->rq_chandle.defer = svc_defer;
702 
703 	if (serv->sv_stats)
704 		serv->sv_stats->netcnt++;
705 	return len;
706 }
707 EXPORT_SYMBOL(svc_recv);
708 
709 /*
710  * Drop request
711  */
712 void svc_drop(struct svc_rqst *rqstp)
713 {
714 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
715 	svc_xprt_release(rqstp);
716 }
717 EXPORT_SYMBOL(svc_drop);
718 
719 /*
720  * Return reply to client.
721  */
722 int svc_send(struct svc_rqst *rqstp)
723 {
724 	struct svc_xprt	*xprt;
725 	int		len;
726 	struct xdr_buf	*xb;
727 
728 	xprt = rqstp->rq_xprt;
729 	if (!xprt)
730 		return -EFAULT;
731 
732 	/* release the receive skb before sending the reply */
733 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
734 
735 	/* calculate over-all length */
736 	xb = &rqstp->rq_res;
737 	xb->len = xb->head[0].iov_len +
738 		xb->page_len +
739 		xb->tail[0].iov_len;
740 
741 	/* Grab mutex to serialize outgoing data. */
742 	mutex_lock(&xprt->xpt_mutex);
743 	if (test_bit(XPT_DEAD, &xprt->xpt_flags))
744 		len = -ENOTCONN;
745 	else
746 		len = xprt->xpt_ops->xpo_sendto(rqstp);
747 	mutex_unlock(&xprt->xpt_mutex);
748 	svc_xprt_release(rqstp);
749 
750 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
751 		return 0;
752 	return len;
753 }
754 
755 /*
756  * Timer function to close old temporary transports, using
757  * a mark-and-sweep algorithm.
758  */
759 static void svc_age_temp_xprts(unsigned long closure)
760 {
761 	struct svc_serv *serv = (struct svc_serv *)closure;
762 	struct svc_xprt *xprt;
763 	struct list_head *le, *next;
764 	LIST_HEAD(to_be_aged);
765 
766 	dprintk("svc_age_temp_xprts\n");
767 
768 	if (!spin_trylock_bh(&serv->sv_lock)) {
769 		/* busy, try again 1 sec later */
770 		dprintk("svc_age_temp_xprts: busy\n");
771 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
772 		return;
773 	}
774 
775 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
776 		xprt = list_entry(le, struct svc_xprt, xpt_list);
777 
778 		/* First time through, just mark it OLD. Second time
779 		 * through, close it. */
780 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
781 			continue;
782 		if (atomic_read(&xprt->xpt_ref.refcount) > 1
783 		    || test_bit(XPT_BUSY, &xprt->xpt_flags))
784 			continue;
785 		svc_xprt_get(xprt);
786 		list_move(le, &to_be_aged);
787 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
788 		set_bit(XPT_DETACHED, &xprt->xpt_flags);
789 	}
790 	spin_unlock_bh(&serv->sv_lock);
791 
792 	while (!list_empty(&to_be_aged)) {
793 		le = to_be_aged.next;
794 		/* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
795 		list_del_init(le);
796 		xprt = list_entry(le, struct svc_xprt, xpt_list);
797 
798 		dprintk("queuing xprt %p for closing\n", xprt);
799 
800 		/* a thread will dequeue and close it soon */
801 		svc_xprt_enqueue(xprt);
802 		svc_xprt_put(xprt);
803 	}
804 
805 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
806 }
807 
808 /*
809  * Remove a dead transport
810  */
811 void svc_delete_xprt(struct svc_xprt *xprt)
812 {
813 	struct svc_serv	*serv = xprt->xpt_server;
814 
815 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
816 	xprt->xpt_ops->xpo_detach(xprt);
817 
818 	spin_lock_bh(&serv->sv_lock);
819 	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
820 		list_del_init(&xprt->xpt_list);
821 	/*
822 	 * We used to delete the transport from whichever list
823 	 * it's sk_xprt.xpt_ready node was on, but we don't actually
824 	 * need to.  This is because the only time we're called
825 	 * while still attached to a queue, the queue itself
826 	 * is about to be destroyed (in svc_destroy).
827 	 */
828 	if (!test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) {
829 		BUG_ON(atomic_read(&xprt->xpt_ref.refcount) < 2);
830 		if (test_bit(XPT_TEMP, &xprt->xpt_flags))
831 			serv->sv_tmpcnt--;
832 		svc_xprt_put(xprt);
833 	}
834 	spin_unlock_bh(&serv->sv_lock);
835 }
836 
837 void svc_close_xprt(struct svc_xprt *xprt)
838 {
839 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
840 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
841 		/* someone else will have to effect the close */
842 		return;
843 
844 	svc_xprt_get(xprt);
845 	svc_delete_xprt(xprt);
846 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
847 	svc_xprt_put(xprt);
848 }
849 EXPORT_SYMBOL_GPL(svc_close_xprt);
850 
851 void svc_close_all(struct list_head *xprt_list)
852 {
853 	struct svc_xprt *xprt;
854 	struct svc_xprt *tmp;
855 
856 	list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
857 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
858 		if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
859 			/* Waiting to be processed, but no threads left,
860 			 * So just remove it from the waiting list
861 			 */
862 			list_del_init(&xprt->xpt_ready);
863 			clear_bit(XPT_BUSY, &xprt->xpt_flags);
864 		}
865 		svc_close_xprt(xprt);
866 	}
867 }
868 
869 /*
870  * Handle defer and revisit of requests
871  */
872 
873 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
874 {
875 	struct svc_deferred_req *dr =
876 		container_of(dreq, struct svc_deferred_req, handle);
877 	struct svc_xprt *xprt = dr->xprt;
878 
879 	if (too_many) {
880 		svc_xprt_put(xprt);
881 		kfree(dr);
882 		return;
883 	}
884 	dprintk("revisit queued\n");
885 	dr->xprt = NULL;
886 	spin_lock(&xprt->xpt_lock);
887 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
888 	spin_unlock(&xprt->xpt_lock);
889 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
890 	svc_xprt_enqueue(xprt);
891 	svc_xprt_put(xprt);
892 }
893 
894 /*
895  * Save the request off for later processing. The request buffer looks
896  * like this:
897  *
898  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
899  *
900  * This code can only handle requests that consist of an xprt-header
901  * and rpc-header.
902  */
903 static struct cache_deferred_req *svc_defer(struct cache_req *req)
904 {
905 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
906 	struct svc_deferred_req *dr;
907 
908 	if (rqstp->rq_arg.page_len)
909 		return NULL; /* if more than a page, give up FIXME */
910 	if (rqstp->rq_deferred) {
911 		dr = rqstp->rq_deferred;
912 		rqstp->rq_deferred = NULL;
913 	} else {
914 		size_t skip;
915 		size_t size;
916 		/* FIXME maybe discard if size too large */
917 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
918 		dr = kmalloc(size, GFP_KERNEL);
919 		if (dr == NULL)
920 			return NULL;
921 
922 		dr->handle.owner = rqstp->rq_server;
923 		dr->prot = rqstp->rq_prot;
924 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
925 		dr->addrlen = rqstp->rq_addrlen;
926 		dr->daddr = rqstp->rq_daddr;
927 		dr->argslen = rqstp->rq_arg.len >> 2;
928 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
929 
930 		/* back up head to the start of the buffer and copy */
931 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
932 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
933 		       dr->argslen << 2);
934 	}
935 	svc_xprt_get(rqstp->rq_xprt);
936 	dr->xprt = rqstp->rq_xprt;
937 
938 	dr->handle.revisit = svc_revisit;
939 	return &dr->handle;
940 }
941 
942 /*
943  * recv data from a deferred request into an active one
944  */
945 static int svc_deferred_recv(struct svc_rqst *rqstp)
946 {
947 	struct svc_deferred_req *dr = rqstp->rq_deferred;
948 
949 	/* setup iov_base past transport header */
950 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
951 	/* The iov_len does not include the transport header bytes */
952 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
953 	rqstp->rq_arg.page_len = 0;
954 	/* The rq_arg.len includes the transport header bytes */
955 	rqstp->rq_arg.len     = dr->argslen<<2;
956 	rqstp->rq_prot        = dr->prot;
957 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
958 	rqstp->rq_addrlen     = dr->addrlen;
959 	/* Save off transport header len in case we get deferred again */
960 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
961 	rqstp->rq_daddr       = dr->daddr;
962 	rqstp->rq_respages    = rqstp->rq_pages;
963 	return (dr->argslen<<2) - dr->xprt_hlen;
964 }
965 
966 
967 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
968 {
969 	struct svc_deferred_req *dr = NULL;
970 
971 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
972 		return NULL;
973 	spin_lock(&xprt->xpt_lock);
974 	clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
975 	if (!list_empty(&xprt->xpt_deferred)) {
976 		dr = list_entry(xprt->xpt_deferred.next,
977 				struct svc_deferred_req,
978 				handle.recent);
979 		list_del_init(&dr->handle.recent);
980 		set_bit(XPT_DEFERRED, &xprt->xpt_flags);
981 	}
982 	spin_unlock(&xprt->xpt_lock);
983 	return dr;
984 }
985 
986 /*
987  * Return the transport instance pointer for the endpoint accepting
988  * connections/peer traffic from the specified transport class,
989  * address family and port.
990  *
991  * Specifying 0 for the address family or port is effectively a
992  * wild-card, and will result in matching the first transport in the
993  * service's list that has a matching class name.
994  */
995 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, char *xcl_name,
996 			       int af, int port)
997 {
998 	struct svc_xprt *xprt;
999 	struct svc_xprt *found = NULL;
1000 
1001 	/* Sanity check the args */
1002 	if (!serv || !xcl_name)
1003 		return found;
1004 
1005 	spin_lock_bh(&serv->sv_lock);
1006 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1007 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1008 			continue;
1009 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1010 			continue;
1011 		if (port && port != svc_xprt_local_port(xprt))
1012 			continue;
1013 		found = xprt;
1014 		svc_xprt_get(xprt);
1015 		break;
1016 	}
1017 	spin_unlock_bh(&serv->sv_lock);
1018 	return found;
1019 }
1020 EXPORT_SYMBOL_GPL(svc_find_xprt);
1021 
1022 /*
1023  * Format a buffer with a list of the active transports. A zero for
1024  * the buflen parameter disables target buffer overflow checking.
1025  */
1026 int svc_xprt_names(struct svc_serv *serv, char *buf, int buflen)
1027 {
1028 	struct svc_xprt *xprt;
1029 	char xprt_str[64];
1030 	int totlen = 0;
1031 	int len;
1032 
1033 	/* Sanity check args */
1034 	if (!serv)
1035 		return 0;
1036 
1037 	spin_lock_bh(&serv->sv_lock);
1038 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1039 		len = snprintf(xprt_str, sizeof(xprt_str),
1040 			       "%s %d\n", xprt->xpt_class->xcl_name,
1041 			       svc_xprt_local_port(xprt));
1042 		/* If the string was truncated, replace with error string */
1043 		if (len >= sizeof(xprt_str))
1044 			strcpy(xprt_str, "name-too-long\n");
1045 		/* Don't overflow buffer */
1046 		len = strlen(xprt_str);
1047 		if (buflen && (len + totlen >= buflen))
1048 			break;
1049 		strcpy(buf+totlen, xprt_str);
1050 		totlen += len;
1051 	}
1052 	spin_unlock_bh(&serv->sv_lock);
1053 	return totlen;
1054 }
1055 EXPORT_SYMBOL_GPL(svc_xprt_names);
1056