1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/svc_xprt.c 4 * 5 * Author: Tom Tucker <tom@opengridcomputing.com> 6 */ 7 8 #include <linux/sched.h> 9 #include <linux/errno.h> 10 #include <linux/freezer.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <net/sock.h> 14 #include <linux/sunrpc/addr.h> 15 #include <linux/sunrpc/stats.h> 16 #include <linux/sunrpc/svc_xprt.h> 17 #include <linux/sunrpc/svcsock.h> 18 #include <linux/sunrpc/xprt.h> 19 #include <linux/module.h> 20 #include <linux/netdevice.h> 21 #include <trace/events/sunrpc.h> 22 23 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 24 25 static unsigned int svc_rpc_per_connection_limit __read_mostly; 26 module_param(svc_rpc_per_connection_limit, uint, 0644); 27 28 29 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); 30 static int svc_deferred_recv(struct svc_rqst *rqstp); 31 static struct cache_deferred_req *svc_defer(struct cache_req *req); 32 static void svc_age_temp_xprts(struct timer_list *t); 33 static void svc_delete_xprt(struct svc_xprt *xprt); 34 35 /* apparently the "standard" is that clients close 36 * idle connections after 5 minutes, servers after 37 * 6 minutes 38 * http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf 39 */ 40 static int svc_conn_age_period = 6*60; 41 42 /* List of registered transport classes */ 43 static DEFINE_SPINLOCK(svc_xprt_class_lock); 44 static LIST_HEAD(svc_xprt_class_list); 45 46 /* SMP locking strategy: 47 * 48 * svc_pool->sp_lock protects most of the fields of that pool. 49 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. 50 * when both need to be taken (rare), svc_serv->sv_lock is first. 51 * The "service mutex" protects svc_serv->sv_nrthread. 52 * svc_sock->sk_lock protects the svc_sock->sk_deferred list 53 * and the ->sk_info_authunix cache. 54 * 55 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being 56 * enqueued multiply. During normal transport processing this bit 57 * is set by svc_xprt_enqueue and cleared by svc_xprt_received. 58 * Providers should not manipulate this bit directly. 59 * 60 * Some flags can be set to certain values at any time 61 * providing that certain rules are followed: 62 * 63 * XPT_CONN, XPT_DATA: 64 * - Can be set or cleared at any time. 65 * - After a set, svc_xprt_enqueue must be called to enqueue 66 * the transport for processing. 67 * - After a clear, the transport must be read/accepted. 68 * If this succeeds, it must be set again. 69 * XPT_CLOSE: 70 * - Can set at any time. It is never cleared. 71 * XPT_DEAD: 72 * - Can only be set while XPT_BUSY is held which ensures 73 * that no other thread will be using the transport or will 74 * try to set XPT_DEAD. 75 */ 76 int svc_reg_xprt_class(struct svc_xprt_class *xcl) 77 { 78 struct svc_xprt_class *cl; 79 int res = -EEXIST; 80 81 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name); 82 83 INIT_LIST_HEAD(&xcl->xcl_list); 84 spin_lock(&svc_xprt_class_lock); 85 /* Make sure there isn't already a class with the same name */ 86 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { 87 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) 88 goto out; 89 } 90 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); 91 res = 0; 92 out: 93 spin_unlock(&svc_xprt_class_lock); 94 return res; 95 } 96 EXPORT_SYMBOL_GPL(svc_reg_xprt_class); 97 98 void svc_unreg_xprt_class(struct svc_xprt_class *xcl) 99 { 100 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name); 101 spin_lock(&svc_xprt_class_lock); 102 list_del_init(&xcl->xcl_list); 103 spin_unlock(&svc_xprt_class_lock); 104 } 105 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); 106 107 /* 108 * Format the transport list for printing 109 */ 110 int svc_print_xprts(char *buf, int maxlen) 111 { 112 struct svc_xprt_class *xcl; 113 char tmpstr[80]; 114 int len = 0; 115 buf[0] = '\0'; 116 117 spin_lock(&svc_xprt_class_lock); 118 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 119 int slen; 120 121 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload); 122 slen = strlen(tmpstr); 123 if (len + slen > maxlen) 124 break; 125 len += slen; 126 strcat(buf, tmpstr); 127 } 128 spin_unlock(&svc_xprt_class_lock); 129 130 return len; 131 } 132 133 static void svc_xprt_free(struct kref *kref) 134 { 135 struct svc_xprt *xprt = 136 container_of(kref, struct svc_xprt, xpt_ref); 137 struct module *owner = xprt->xpt_class->xcl_owner; 138 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) 139 svcauth_unix_info_release(xprt); 140 put_cred(xprt->xpt_cred); 141 put_net(xprt->xpt_net); 142 /* See comment on corresponding get in xs_setup_bc_tcp(): */ 143 if (xprt->xpt_bc_xprt) 144 xprt_put(xprt->xpt_bc_xprt); 145 if (xprt->xpt_bc_xps) 146 xprt_switch_put(xprt->xpt_bc_xps); 147 xprt->xpt_ops->xpo_free(xprt); 148 module_put(owner); 149 } 150 151 void svc_xprt_put(struct svc_xprt *xprt) 152 { 153 kref_put(&xprt->xpt_ref, svc_xprt_free); 154 } 155 EXPORT_SYMBOL_GPL(svc_xprt_put); 156 157 /* 158 * Called by transport drivers to initialize the transport independent 159 * portion of the transport instance. 160 */ 161 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl, 162 struct svc_xprt *xprt, struct svc_serv *serv) 163 { 164 memset(xprt, 0, sizeof(*xprt)); 165 xprt->xpt_class = xcl; 166 xprt->xpt_ops = xcl->xcl_ops; 167 kref_init(&xprt->xpt_ref); 168 xprt->xpt_server = serv; 169 INIT_LIST_HEAD(&xprt->xpt_list); 170 INIT_LIST_HEAD(&xprt->xpt_ready); 171 INIT_LIST_HEAD(&xprt->xpt_deferred); 172 INIT_LIST_HEAD(&xprt->xpt_users); 173 mutex_init(&xprt->xpt_mutex); 174 spin_lock_init(&xprt->xpt_lock); 175 set_bit(XPT_BUSY, &xprt->xpt_flags); 176 xprt->xpt_net = get_net(net); 177 strcpy(xprt->xpt_remotebuf, "uninitialized"); 178 } 179 EXPORT_SYMBOL_GPL(svc_xprt_init); 180 181 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl, 182 struct svc_serv *serv, 183 struct net *net, 184 const int family, 185 const unsigned short port, 186 int flags) 187 { 188 struct sockaddr_in sin = { 189 .sin_family = AF_INET, 190 .sin_addr.s_addr = htonl(INADDR_ANY), 191 .sin_port = htons(port), 192 }; 193 #if IS_ENABLED(CONFIG_IPV6) 194 struct sockaddr_in6 sin6 = { 195 .sin6_family = AF_INET6, 196 .sin6_addr = IN6ADDR_ANY_INIT, 197 .sin6_port = htons(port), 198 }; 199 #endif 200 struct sockaddr *sap; 201 size_t len; 202 203 switch (family) { 204 case PF_INET: 205 sap = (struct sockaddr *)&sin; 206 len = sizeof(sin); 207 break; 208 #if IS_ENABLED(CONFIG_IPV6) 209 case PF_INET6: 210 sap = (struct sockaddr *)&sin6; 211 len = sizeof(sin6); 212 break; 213 #endif 214 default: 215 return ERR_PTR(-EAFNOSUPPORT); 216 } 217 218 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags); 219 } 220 221 /* 222 * svc_xprt_received conditionally queues the transport for processing 223 * by another thread. The caller must hold the XPT_BUSY bit and must 224 * not thereafter touch transport data. 225 * 226 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or 227 * insufficient) data. 228 */ 229 static void svc_xprt_received(struct svc_xprt *xprt) 230 { 231 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) { 232 WARN_ONCE(1, "xprt=0x%p already busy!", xprt); 233 return; 234 } 235 236 /* As soon as we clear busy, the xprt could be closed and 237 * 'put', so we need a reference to call svc_enqueue_xprt with: 238 */ 239 svc_xprt_get(xprt); 240 smp_mb__before_atomic(); 241 clear_bit(XPT_BUSY, &xprt->xpt_flags); 242 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt); 243 svc_xprt_put(xprt); 244 } 245 246 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new) 247 { 248 clear_bit(XPT_TEMP, &new->xpt_flags); 249 spin_lock_bh(&serv->sv_lock); 250 list_add(&new->xpt_list, &serv->sv_permsocks); 251 spin_unlock_bh(&serv->sv_lock); 252 svc_xprt_received(new); 253 } 254 255 static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name, 256 struct net *net, const int family, 257 const unsigned short port, int flags, 258 const struct cred *cred) 259 { 260 struct svc_xprt_class *xcl; 261 262 spin_lock(&svc_xprt_class_lock); 263 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 264 struct svc_xprt *newxprt; 265 unsigned short newport; 266 267 if (strcmp(xprt_name, xcl->xcl_name)) 268 continue; 269 270 if (!try_module_get(xcl->xcl_owner)) 271 goto err; 272 273 spin_unlock(&svc_xprt_class_lock); 274 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags); 275 if (IS_ERR(newxprt)) { 276 module_put(xcl->xcl_owner); 277 return PTR_ERR(newxprt); 278 } 279 newxprt->xpt_cred = get_cred(cred); 280 svc_add_new_perm_xprt(serv, newxprt); 281 newport = svc_xprt_local_port(newxprt); 282 return newport; 283 } 284 err: 285 spin_unlock(&svc_xprt_class_lock); 286 /* This errno is exposed to user space. Provide a reasonable 287 * perror msg for a bad transport. */ 288 return -EPROTONOSUPPORT; 289 } 290 291 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name, 292 struct net *net, const int family, 293 const unsigned short port, int flags, 294 const struct cred *cred) 295 { 296 int err; 297 298 dprintk("svc: creating transport %s[%d]\n", xprt_name, port); 299 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred); 300 if (err == -EPROTONOSUPPORT) { 301 request_module("svc%s", xprt_name); 302 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred); 303 } 304 if (err < 0) 305 dprintk("svc: transport %s not found, err %d\n", 306 xprt_name, -err); 307 return err; 308 } 309 EXPORT_SYMBOL_GPL(svc_create_xprt); 310 311 /* 312 * Copy the local and remote xprt addresses to the rqstp structure 313 */ 314 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) 315 { 316 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); 317 rqstp->rq_addrlen = xprt->xpt_remotelen; 318 319 /* 320 * Destination address in request is needed for binding the 321 * source address in RPC replies/callbacks later. 322 */ 323 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen); 324 rqstp->rq_daddrlen = xprt->xpt_locallen; 325 } 326 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); 327 328 /** 329 * svc_print_addr - Format rq_addr field for printing 330 * @rqstp: svc_rqst struct containing address to print 331 * @buf: target buffer for formatted address 332 * @len: length of target buffer 333 * 334 */ 335 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) 336 { 337 return __svc_print_addr(svc_addr(rqstp), buf, len); 338 } 339 EXPORT_SYMBOL_GPL(svc_print_addr); 340 341 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt) 342 { 343 unsigned int limit = svc_rpc_per_connection_limit; 344 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts); 345 346 return limit == 0 || (nrqsts >= 0 && nrqsts < limit); 347 } 348 349 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt) 350 { 351 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) { 352 if (!svc_xprt_slots_in_range(xprt)) 353 return false; 354 atomic_inc(&xprt->xpt_nr_rqsts); 355 set_bit(RQ_DATA, &rqstp->rq_flags); 356 } 357 return true; 358 } 359 360 static void svc_xprt_release_slot(struct svc_rqst *rqstp) 361 { 362 struct svc_xprt *xprt = rqstp->rq_xprt; 363 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) { 364 atomic_dec(&xprt->xpt_nr_rqsts); 365 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */ 366 svc_xprt_enqueue(xprt); 367 } 368 } 369 370 static bool svc_xprt_ready(struct svc_xprt *xprt) 371 { 372 unsigned long xpt_flags; 373 374 /* 375 * If another cpu has recently updated xpt_flags, 376 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to 377 * know about it; otherwise it's possible that both that cpu and 378 * this one could call svc_xprt_enqueue() without either 379 * svc_xprt_enqueue() recognizing that the conditions below 380 * are satisfied, and we could stall indefinitely: 381 */ 382 smp_rmb(); 383 xpt_flags = READ_ONCE(xprt->xpt_flags); 384 385 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE))) 386 return true; 387 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) { 388 if (xprt->xpt_ops->xpo_has_wspace(xprt) && 389 svc_xprt_slots_in_range(xprt)) 390 return true; 391 trace_svc_xprt_no_write_space(xprt); 392 return false; 393 } 394 return false; 395 } 396 397 void svc_xprt_do_enqueue(struct svc_xprt *xprt) 398 { 399 struct svc_pool *pool; 400 struct svc_rqst *rqstp = NULL; 401 int cpu; 402 403 if (!svc_xprt_ready(xprt)) 404 return; 405 406 /* Mark transport as busy. It will remain in this state until 407 * the provider calls svc_xprt_received. We update XPT_BUSY 408 * atomically because it also guards against trying to enqueue 409 * the transport twice. 410 */ 411 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 412 return; 413 414 cpu = get_cpu(); 415 pool = svc_pool_for_cpu(xprt->xpt_server, cpu); 416 417 atomic_long_inc(&pool->sp_stats.packets); 418 419 spin_lock_bh(&pool->sp_lock); 420 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); 421 pool->sp_stats.sockets_queued++; 422 spin_unlock_bh(&pool->sp_lock); 423 424 /* find a thread for this xprt */ 425 rcu_read_lock(); 426 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) { 427 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) 428 continue; 429 atomic_long_inc(&pool->sp_stats.threads_woken); 430 rqstp->rq_qtime = ktime_get(); 431 wake_up_process(rqstp->rq_task); 432 goto out_unlock; 433 } 434 set_bit(SP_CONGESTED, &pool->sp_flags); 435 rqstp = NULL; 436 out_unlock: 437 rcu_read_unlock(); 438 put_cpu(); 439 trace_svc_xprt_do_enqueue(xprt, rqstp); 440 } 441 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue); 442 443 /* 444 * Queue up a transport with data pending. If there are idle nfsd 445 * processes, wake 'em up. 446 * 447 */ 448 void svc_xprt_enqueue(struct svc_xprt *xprt) 449 { 450 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) 451 return; 452 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt); 453 } 454 EXPORT_SYMBOL_GPL(svc_xprt_enqueue); 455 456 /* 457 * Dequeue the first transport, if there is one. 458 */ 459 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) 460 { 461 struct svc_xprt *xprt = NULL; 462 463 if (list_empty(&pool->sp_sockets)) 464 goto out; 465 466 spin_lock_bh(&pool->sp_lock); 467 if (likely(!list_empty(&pool->sp_sockets))) { 468 xprt = list_first_entry(&pool->sp_sockets, 469 struct svc_xprt, xpt_ready); 470 list_del_init(&xprt->xpt_ready); 471 svc_xprt_get(xprt); 472 } 473 spin_unlock_bh(&pool->sp_lock); 474 out: 475 return xprt; 476 } 477 478 /** 479 * svc_reserve - change the space reserved for the reply to a request. 480 * @rqstp: The request in question 481 * @space: new max space to reserve 482 * 483 * Each request reserves some space on the output queue of the transport 484 * to make sure the reply fits. This function reduces that reserved 485 * space to be the amount of space used already, plus @space. 486 * 487 */ 488 void svc_reserve(struct svc_rqst *rqstp, int space) 489 { 490 struct svc_xprt *xprt = rqstp->rq_xprt; 491 492 space += rqstp->rq_res.head[0].iov_len; 493 494 if (xprt && space < rqstp->rq_reserved) { 495 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); 496 rqstp->rq_reserved = space; 497 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */ 498 svc_xprt_enqueue(xprt); 499 } 500 } 501 EXPORT_SYMBOL_GPL(svc_reserve); 502 503 static void svc_xprt_release(struct svc_rqst *rqstp) 504 { 505 struct svc_xprt *xprt = rqstp->rq_xprt; 506 507 xprt->xpt_ops->xpo_release_rqst(rqstp); 508 509 kfree(rqstp->rq_deferred); 510 rqstp->rq_deferred = NULL; 511 512 svc_free_res_pages(rqstp); 513 rqstp->rq_res.page_len = 0; 514 rqstp->rq_res.page_base = 0; 515 516 /* Reset response buffer and release 517 * the reservation. 518 * But first, check that enough space was reserved 519 * for the reply, otherwise we have a bug! 520 */ 521 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 522 printk(KERN_ERR "RPC request reserved %d but used %d\n", 523 rqstp->rq_reserved, 524 rqstp->rq_res.len); 525 526 rqstp->rq_res.head[0].iov_len = 0; 527 svc_reserve(rqstp, 0); 528 svc_xprt_release_slot(rqstp); 529 rqstp->rq_xprt = NULL; 530 svc_xprt_put(xprt); 531 } 532 533 /* 534 * Some svc_serv's will have occasional work to do, even when a xprt is not 535 * waiting to be serviced. This function is there to "kick" a task in one of 536 * those services so that it can wake up and do that work. Note that we only 537 * bother with pool 0 as we don't need to wake up more than one thread for 538 * this purpose. 539 */ 540 void svc_wake_up(struct svc_serv *serv) 541 { 542 struct svc_rqst *rqstp; 543 struct svc_pool *pool; 544 545 pool = &serv->sv_pools[0]; 546 547 rcu_read_lock(); 548 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) { 549 /* skip any that aren't queued */ 550 if (test_bit(RQ_BUSY, &rqstp->rq_flags)) 551 continue; 552 rcu_read_unlock(); 553 wake_up_process(rqstp->rq_task); 554 trace_svc_wake_up(rqstp->rq_task->pid); 555 return; 556 } 557 rcu_read_unlock(); 558 559 /* No free entries available */ 560 set_bit(SP_TASK_PENDING, &pool->sp_flags); 561 smp_wmb(); 562 trace_svc_wake_up(0); 563 } 564 EXPORT_SYMBOL_GPL(svc_wake_up); 565 566 int svc_port_is_privileged(struct sockaddr *sin) 567 { 568 switch (sin->sa_family) { 569 case AF_INET: 570 return ntohs(((struct sockaddr_in *)sin)->sin_port) 571 < PROT_SOCK; 572 case AF_INET6: 573 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) 574 < PROT_SOCK; 575 default: 576 return 0; 577 } 578 } 579 580 /* 581 * Make sure that we don't have too many active connections. If we have, 582 * something must be dropped. It's not clear what will happen if we allow 583 * "too many" connections, but when dealing with network-facing software, 584 * we have to code defensively. Here we do that by imposing hard limits. 585 * 586 * There's no point in trying to do random drop here for DoS 587 * prevention. The NFS clients does 1 reconnect in 15 seconds. An 588 * attacker can easily beat that. 589 * 590 * The only somewhat efficient mechanism would be if drop old 591 * connections from the same IP first. But right now we don't even 592 * record the client IP in svc_sock. 593 * 594 * single-threaded services that expect a lot of clients will probably 595 * need to set sv_maxconn to override the default value which is based 596 * on the number of threads 597 */ 598 static void svc_check_conn_limits(struct svc_serv *serv) 599 { 600 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn : 601 (serv->sv_nrthreads+3) * 20; 602 603 if (serv->sv_tmpcnt > limit) { 604 struct svc_xprt *xprt = NULL; 605 spin_lock_bh(&serv->sv_lock); 606 if (!list_empty(&serv->sv_tempsocks)) { 607 /* Try to help the admin */ 608 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n", 609 serv->sv_name, serv->sv_maxconn ? 610 "max number of connections" : 611 "number of threads"); 612 /* 613 * Always select the oldest connection. It's not fair, 614 * but so is life 615 */ 616 xprt = list_entry(serv->sv_tempsocks.prev, 617 struct svc_xprt, 618 xpt_list); 619 set_bit(XPT_CLOSE, &xprt->xpt_flags); 620 svc_xprt_get(xprt); 621 } 622 spin_unlock_bh(&serv->sv_lock); 623 624 if (xprt) { 625 svc_xprt_enqueue(xprt); 626 svc_xprt_put(xprt); 627 } 628 } 629 } 630 631 static int svc_alloc_arg(struct svc_rqst *rqstp) 632 { 633 struct svc_serv *serv = rqstp->rq_server; 634 struct xdr_buf *arg; 635 int pages; 636 int i; 637 638 /* now allocate needed pages. If we get a failure, sleep briefly */ 639 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT; 640 if (pages > RPCSVC_MAXPAGES) { 641 pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n", 642 pages, RPCSVC_MAXPAGES); 643 /* use as many pages as possible */ 644 pages = RPCSVC_MAXPAGES; 645 } 646 for (i = 0; i < pages ; i++) 647 while (rqstp->rq_pages[i] == NULL) { 648 struct page *p = alloc_page(GFP_KERNEL); 649 if (!p) { 650 set_current_state(TASK_INTERRUPTIBLE); 651 if (signalled() || kthread_should_stop()) { 652 set_current_state(TASK_RUNNING); 653 return -EINTR; 654 } 655 schedule_timeout(msecs_to_jiffies(500)); 656 } 657 rqstp->rq_pages[i] = p; 658 } 659 rqstp->rq_page_end = &rqstp->rq_pages[i]; 660 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */ 661 662 /* Make arg->head point to first page and arg->pages point to rest */ 663 arg = &rqstp->rq_arg; 664 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); 665 arg->head[0].iov_len = PAGE_SIZE; 666 arg->pages = rqstp->rq_pages + 1; 667 arg->page_base = 0; 668 /* save at least one page for response */ 669 arg->page_len = (pages-2)*PAGE_SIZE; 670 arg->len = (pages-1)*PAGE_SIZE; 671 arg->tail[0].iov_len = 0; 672 return 0; 673 } 674 675 static bool 676 rqst_should_sleep(struct svc_rqst *rqstp) 677 { 678 struct svc_pool *pool = rqstp->rq_pool; 679 680 /* did someone call svc_wake_up? */ 681 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags)) 682 return false; 683 684 /* was a socket queued? */ 685 if (!list_empty(&pool->sp_sockets)) 686 return false; 687 688 /* are we shutting down? */ 689 if (signalled() || kthread_should_stop()) 690 return false; 691 692 /* are we freezing? */ 693 if (freezing(current)) 694 return false; 695 696 return true; 697 } 698 699 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout) 700 { 701 struct svc_pool *pool = rqstp->rq_pool; 702 long time_left = 0; 703 704 /* rq_xprt should be clear on entry */ 705 WARN_ON_ONCE(rqstp->rq_xprt); 706 707 rqstp->rq_xprt = svc_xprt_dequeue(pool); 708 if (rqstp->rq_xprt) 709 goto out_found; 710 711 /* 712 * We have to be able to interrupt this wait 713 * to bring down the daemons ... 714 */ 715 set_current_state(TASK_INTERRUPTIBLE); 716 smp_mb__before_atomic(); 717 clear_bit(SP_CONGESTED, &pool->sp_flags); 718 clear_bit(RQ_BUSY, &rqstp->rq_flags); 719 smp_mb__after_atomic(); 720 721 if (likely(rqst_should_sleep(rqstp))) 722 time_left = schedule_timeout(timeout); 723 else 724 __set_current_state(TASK_RUNNING); 725 726 try_to_freeze(); 727 728 set_bit(RQ_BUSY, &rqstp->rq_flags); 729 smp_mb__after_atomic(); 730 rqstp->rq_xprt = svc_xprt_dequeue(pool); 731 if (rqstp->rq_xprt) 732 goto out_found; 733 734 if (!time_left) 735 atomic_long_inc(&pool->sp_stats.threads_timedout); 736 737 if (signalled() || kthread_should_stop()) 738 return ERR_PTR(-EINTR); 739 return ERR_PTR(-EAGAIN); 740 out_found: 741 /* Normally we will wait up to 5 seconds for any required 742 * cache information to be provided. 743 */ 744 if (!test_bit(SP_CONGESTED, &pool->sp_flags)) 745 rqstp->rq_chandle.thread_wait = 5*HZ; 746 else 747 rqstp->rq_chandle.thread_wait = 1*HZ; 748 trace_svc_xprt_dequeue(rqstp); 749 return rqstp->rq_xprt; 750 } 751 752 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt) 753 { 754 spin_lock_bh(&serv->sv_lock); 755 set_bit(XPT_TEMP, &newxpt->xpt_flags); 756 list_add(&newxpt->xpt_list, &serv->sv_tempsocks); 757 serv->sv_tmpcnt++; 758 if (serv->sv_temptimer.function == NULL) { 759 /* setup timer to age temp transports */ 760 serv->sv_temptimer.function = svc_age_temp_xprts; 761 mod_timer(&serv->sv_temptimer, 762 jiffies + svc_conn_age_period * HZ); 763 } 764 spin_unlock_bh(&serv->sv_lock); 765 svc_xprt_received(newxpt); 766 } 767 768 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt) 769 { 770 struct svc_serv *serv = rqstp->rq_server; 771 int len = 0; 772 773 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { 774 dprintk("svc_recv: found XPT_CLOSE\n"); 775 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags)) 776 xprt->xpt_ops->xpo_kill_temp_xprt(xprt); 777 svc_delete_xprt(xprt); 778 /* Leave XPT_BUSY set on the dead xprt: */ 779 goto out; 780 } 781 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 782 struct svc_xprt *newxpt; 783 /* 784 * We know this module_get will succeed because the 785 * listener holds a reference too 786 */ 787 __module_get(xprt->xpt_class->xcl_owner); 788 svc_check_conn_limits(xprt->xpt_server); 789 newxpt = xprt->xpt_ops->xpo_accept(xprt); 790 if (newxpt) { 791 newxpt->xpt_cred = get_cred(xprt->xpt_cred); 792 svc_add_new_temp_xprt(serv, newxpt); 793 } else 794 module_put(xprt->xpt_class->xcl_owner); 795 } else if (svc_xprt_reserve_slot(rqstp, xprt)) { 796 /* XPT_DATA|XPT_DEFERRED case: */ 797 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n", 798 rqstp, rqstp->rq_pool->sp_id, xprt, 799 kref_read(&xprt->xpt_ref)); 800 rqstp->rq_deferred = svc_deferred_dequeue(xprt); 801 if (rqstp->rq_deferred) 802 len = svc_deferred_recv(rqstp); 803 else 804 len = xprt->xpt_ops->xpo_recvfrom(rqstp); 805 rqstp->rq_stime = ktime_get(); 806 rqstp->rq_reserved = serv->sv_max_mesg; 807 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 808 } 809 /* clear XPT_BUSY: */ 810 svc_xprt_received(xprt); 811 out: 812 trace_svc_handle_xprt(xprt, len); 813 return len; 814 } 815 816 /* 817 * Receive the next request on any transport. This code is carefully 818 * organised not to touch any cachelines in the shared svc_serv 819 * structure, only cachelines in the local svc_pool. 820 */ 821 int svc_recv(struct svc_rqst *rqstp, long timeout) 822 { 823 struct svc_xprt *xprt = NULL; 824 struct svc_serv *serv = rqstp->rq_server; 825 int len, err; 826 827 dprintk("svc: server %p waiting for data (to = %ld)\n", 828 rqstp, timeout); 829 830 if (rqstp->rq_xprt) 831 printk(KERN_ERR 832 "svc_recv: service %p, transport not NULL!\n", 833 rqstp); 834 835 err = svc_alloc_arg(rqstp); 836 if (err) 837 goto out; 838 839 try_to_freeze(); 840 cond_resched(); 841 err = -EINTR; 842 if (signalled() || kthread_should_stop()) 843 goto out; 844 845 xprt = svc_get_next_xprt(rqstp, timeout); 846 if (IS_ERR(xprt)) { 847 err = PTR_ERR(xprt); 848 goto out; 849 } 850 851 len = svc_handle_xprt(rqstp, xprt); 852 853 /* No data, incomplete (TCP) read, or accept() */ 854 err = -EAGAIN; 855 if (len <= 0) 856 goto out_release; 857 858 clear_bit(XPT_OLD, &xprt->xpt_flags); 859 860 xprt->xpt_ops->xpo_secure_port(rqstp); 861 rqstp->rq_chandle.defer = svc_defer; 862 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]); 863 864 if (serv->sv_stats) 865 serv->sv_stats->netcnt++; 866 trace_svc_recv(rqstp, len); 867 return len; 868 out_release: 869 rqstp->rq_res.len = 0; 870 svc_xprt_release(rqstp); 871 out: 872 return err; 873 } 874 EXPORT_SYMBOL_GPL(svc_recv); 875 876 /* 877 * Drop request 878 */ 879 void svc_drop(struct svc_rqst *rqstp) 880 { 881 trace_svc_drop(rqstp); 882 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt); 883 svc_xprt_release(rqstp); 884 } 885 EXPORT_SYMBOL_GPL(svc_drop); 886 887 /* 888 * Return reply to client. 889 */ 890 int svc_send(struct svc_rqst *rqstp) 891 { 892 struct svc_xprt *xprt; 893 int len = -EFAULT; 894 struct xdr_buf *xb; 895 896 xprt = rqstp->rq_xprt; 897 if (!xprt) 898 goto out; 899 900 /* release the receive skb before sending the reply */ 901 xprt->xpt_ops->xpo_release_rqst(rqstp); 902 903 /* calculate over-all length */ 904 xb = &rqstp->rq_res; 905 xb->len = xb->head[0].iov_len + 906 xb->page_len + 907 xb->tail[0].iov_len; 908 909 /* Grab mutex to serialize outgoing data. */ 910 mutex_lock(&xprt->xpt_mutex); 911 trace_svc_stats_latency(rqstp); 912 if (test_bit(XPT_DEAD, &xprt->xpt_flags) 913 || test_bit(XPT_CLOSE, &xprt->xpt_flags)) 914 len = -ENOTCONN; 915 else 916 len = xprt->xpt_ops->xpo_sendto(rqstp); 917 mutex_unlock(&xprt->xpt_mutex); 918 trace_svc_send(rqstp, len); 919 svc_xprt_release(rqstp); 920 921 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) 922 len = 0; 923 out: 924 return len; 925 } 926 927 /* 928 * Timer function to close old temporary transports, using 929 * a mark-and-sweep algorithm. 930 */ 931 static void svc_age_temp_xprts(struct timer_list *t) 932 { 933 struct svc_serv *serv = from_timer(serv, t, sv_temptimer); 934 struct svc_xprt *xprt; 935 struct list_head *le, *next; 936 937 dprintk("svc_age_temp_xprts\n"); 938 939 if (!spin_trylock_bh(&serv->sv_lock)) { 940 /* busy, try again 1 sec later */ 941 dprintk("svc_age_temp_xprts: busy\n"); 942 mod_timer(&serv->sv_temptimer, jiffies + HZ); 943 return; 944 } 945 946 list_for_each_safe(le, next, &serv->sv_tempsocks) { 947 xprt = list_entry(le, struct svc_xprt, xpt_list); 948 949 /* First time through, just mark it OLD. Second time 950 * through, close it. */ 951 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) 952 continue; 953 if (kref_read(&xprt->xpt_ref) > 1 || 954 test_bit(XPT_BUSY, &xprt->xpt_flags)) 955 continue; 956 list_del_init(le); 957 set_bit(XPT_CLOSE, &xprt->xpt_flags); 958 dprintk("queuing xprt %p for closing\n", xprt); 959 960 /* a thread will dequeue and close it soon */ 961 svc_xprt_enqueue(xprt); 962 } 963 spin_unlock_bh(&serv->sv_lock); 964 965 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); 966 } 967 968 /* Close temporary transports whose xpt_local matches server_addr immediately 969 * instead of waiting for them to be picked up by the timer. 970 * 971 * This is meant to be called from a notifier_block that runs when an ip 972 * address is deleted. 973 */ 974 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr) 975 { 976 struct svc_xprt *xprt; 977 struct list_head *le, *next; 978 LIST_HEAD(to_be_closed); 979 980 spin_lock_bh(&serv->sv_lock); 981 list_for_each_safe(le, next, &serv->sv_tempsocks) { 982 xprt = list_entry(le, struct svc_xprt, xpt_list); 983 if (rpc_cmp_addr(server_addr, (struct sockaddr *) 984 &xprt->xpt_local)) { 985 dprintk("svc_age_temp_xprts_now: found %p\n", xprt); 986 list_move(le, &to_be_closed); 987 } 988 } 989 spin_unlock_bh(&serv->sv_lock); 990 991 while (!list_empty(&to_be_closed)) { 992 le = to_be_closed.next; 993 list_del_init(le); 994 xprt = list_entry(le, struct svc_xprt, xpt_list); 995 set_bit(XPT_CLOSE, &xprt->xpt_flags); 996 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags); 997 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n", 998 xprt); 999 svc_xprt_enqueue(xprt); 1000 } 1001 } 1002 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now); 1003 1004 static void call_xpt_users(struct svc_xprt *xprt) 1005 { 1006 struct svc_xpt_user *u; 1007 1008 spin_lock(&xprt->xpt_lock); 1009 while (!list_empty(&xprt->xpt_users)) { 1010 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list); 1011 list_del_init(&u->list); 1012 u->callback(u); 1013 } 1014 spin_unlock(&xprt->xpt_lock); 1015 } 1016 1017 /* 1018 * Remove a dead transport 1019 */ 1020 static void svc_delete_xprt(struct svc_xprt *xprt) 1021 { 1022 struct svc_serv *serv = xprt->xpt_server; 1023 struct svc_deferred_req *dr; 1024 1025 /* Only do this once */ 1026 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) 1027 BUG(); 1028 1029 dprintk("svc: svc_delete_xprt(%p)\n", xprt); 1030 xprt->xpt_ops->xpo_detach(xprt); 1031 1032 spin_lock_bh(&serv->sv_lock); 1033 list_del_init(&xprt->xpt_list); 1034 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready)); 1035 if (test_bit(XPT_TEMP, &xprt->xpt_flags)) 1036 serv->sv_tmpcnt--; 1037 spin_unlock_bh(&serv->sv_lock); 1038 1039 while ((dr = svc_deferred_dequeue(xprt)) != NULL) 1040 kfree(dr); 1041 1042 call_xpt_users(xprt); 1043 svc_xprt_put(xprt); 1044 } 1045 1046 void svc_close_xprt(struct svc_xprt *xprt) 1047 { 1048 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1049 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 1050 /* someone else will have to effect the close */ 1051 return; 1052 /* 1053 * We expect svc_close_xprt() to work even when no threads are 1054 * running (e.g., while configuring the server before starting 1055 * any threads), so if the transport isn't busy, we delete 1056 * it ourself: 1057 */ 1058 svc_delete_xprt(xprt); 1059 } 1060 EXPORT_SYMBOL_GPL(svc_close_xprt); 1061 1062 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) 1063 { 1064 struct svc_xprt *xprt; 1065 int ret = 0; 1066 1067 spin_lock(&serv->sv_lock); 1068 list_for_each_entry(xprt, xprt_list, xpt_list) { 1069 if (xprt->xpt_net != net) 1070 continue; 1071 ret++; 1072 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1073 svc_xprt_enqueue(xprt); 1074 } 1075 spin_unlock(&serv->sv_lock); 1076 return ret; 1077 } 1078 1079 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net) 1080 { 1081 struct svc_pool *pool; 1082 struct svc_xprt *xprt; 1083 struct svc_xprt *tmp; 1084 int i; 1085 1086 for (i = 0; i < serv->sv_nrpools; i++) { 1087 pool = &serv->sv_pools[i]; 1088 1089 spin_lock_bh(&pool->sp_lock); 1090 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) { 1091 if (xprt->xpt_net != net) 1092 continue; 1093 list_del_init(&xprt->xpt_ready); 1094 spin_unlock_bh(&pool->sp_lock); 1095 return xprt; 1096 } 1097 spin_unlock_bh(&pool->sp_lock); 1098 } 1099 return NULL; 1100 } 1101 1102 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net) 1103 { 1104 struct svc_xprt *xprt; 1105 1106 while ((xprt = svc_dequeue_net(serv, net))) { 1107 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1108 svc_delete_xprt(xprt); 1109 } 1110 } 1111 1112 /* 1113 * Server threads may still be running (especially in the case where the 1114 * service is still running in other network namespaces). 1115 * 1116 * So we shut down sockets the same way we would on a running server, by 1117 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do 1118 * the close. In the case there are no such other threads, 1119 * threads running, svc_clean_up_xprts() does a simple version of a 1120 * server's main event loop, and in the case where there are other 1121 * threads, we may need to wait a little while and then check again to 1122 * see if they're done. 1123 */ 1124 void svc_close_net(struct svc_serv *serv, struct net *net) 1125 { 1126 int delay = 0; 1127 1128 while (svc_close_list(serv, &serv->sv_permsocks, net) + 1129 svc_close_list(serv, &serv->sv_tempsocks, net)) { 1130 1131 svc_clean_up_xprts(serv, net); 1132 msleep(delay++); 1133 } 1134 } 1135 1136 /* 1137 * Handle defer and revisit of requests 1138 */ 1139 1140 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 1141 { 1142 struct svc_deferred_req *dr = 1143 container_of(dreq, struct svc_deferred_req, handle); 1144 struct svc_xprt *xprt = dr->xprt; 1145 1146 spin_lock(&xprt->xpt_lock); 1147 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 1148 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) { 1149 spin_unlock(&xprt->xpt_lock); 1150 dprintk("revisit canceled\n"); 1151 svc_xprt_put(xprt); 1152 trace_svc_drop_deferred(dr); 1153 kfree(dr); 1154 return; 1155 } 1156 dprintk("revisit queued\n"); 1157 dr->xprt = NULL; 1158 list_add(&dr->handle.recent, &xprt->xpt_deferred); 1159 spin_unlock(&xprt->xpt_lock); 1160 svc_xprt_enqueue(xprt); 1161 svc_xprt_put(xprt); 1162 } 1163 1164 /* 1165 * Save the request off for later processing. The request buffer looks 1166 * like this: 1167 * 1168 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> 1169 * 1170 * This code can only handle requests that consist of an xprt-header 1171 * and rpc-header. 1172 */ 1173 static struct cache_deferred_req *svc_defer(struct cache_req *req) 1174 { 1175 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 1176 struct svc_deferred_req *dr; 1177 1178 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags)) 1179 return NULL; /* if more than a page, give up FIXME */ 1180 if (rqstp->rq_deferred) { 1181 dr = rqstp->rq_deferred; 1182 rqstp->rq_deferred = NULL; 1183 } else { 1184 size_t skip; 1185 size_t size; 1186 /* FIXME maybe discard if size too large */ 1187 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; 1188 dr = kmalloc(size, GFP_KERNEL); 1189 if (dr == NULL) 1190 return NULL; 1191 1192 dr->handle.owner = rqstp->rq_server; 1193 dr->prot = rqstp->rq_prot; 1194 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); 1195 dr->addrlen = rqstp->rq_addrlen; 1196 dr->daddr = rqstp->rq_daddr; 1197 dr->argslen = rqstp->rq_arg.len >> 2; 1198 dr->xprt_hlen = rqstp->rq_xprt_hlen; 1199 1200 /* back up head to the start of the buffer and copy */ 1201 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1202 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, 1203 dr->argslen << 2); 1204 } 1205 svc_xprt_get(rqstp->rq_xprt); 1206 dr->xprt = rqstp->rq_xprt; 1207 set_bit(RQ_DROPME, &rqstp->rq_flags); 1208 1209 dr->handle.revisit = svc_revisit; 1210 trace_svc_defer(rqstp); 1211 return &dr->handle; 1212 } 1213 1214 /* 1215 * recv data from a deferred request into an active one 1216 */ 1217 static int svc_deferred_recv(struct svc_rqst *rqstp) 1218 { 1219 struct svc_deferred_req *dr = rqstp->rq_deferred; 1220 1221 /* setup iov_base past transport header */ 1222 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2); 1223 /* The iov_len does not include the transport header bytes */ 1224 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen; 1225 rqstp->rq_arg.page_len = 0; 1226 /* The rq_arg.len includes the transport header bytes */ 1227 rqstp->rq_arg.len = dr->argslen<<2; 1228 rqstp->rq_prot = dr->prot; 1229 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); 1230 rqstp->rq_addrlen = dr->addrlen; 1231 /* Save off transport header len in case we get deferred again */ 1232 rqstp->rq_xprt_hlen = dr->xprt_hlen; 1233 rqstp->rq_daddr = dr->daddr; 1234 rqstp->rq_respages = rqstp->rq_pages; 1235 return (dr->argslen<<2) - dr->xprt_hlen; 1236 } 1237 1238 1239 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) 1240 { 1241 struct svc_deferred_req *dr = NULL; 1242 1243 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) 1244 return NULL; 1245 spin_lock(&xprt->xpt_lock); 1246 if (!list_empty(&xprt->xpt_deferred)) { 1247 dr = list_entry(xprt->xpt_deferred.next, 1248 struct svc_deferred_req, 1249 handle.recent); 1250 list_del_init(&dr->handle.recent); 1251 trace_svc_revisit_deferred(dr); 1252 } else 1253 clear_bit(XPT_DEFERRED, &xprt->xpt_flags); 1254 spin_unlock(&xprt->xpt_lock); 1255 return dr; 1256 } 1257 1258 /** 1259 * svc_find_xprt - find an RPC transport instance 1260 * @serv: pointer to svc_serv to search 1261 * @xcl_name: C string containing transport's class name 1262 * @net: owner net pointer 1263 * @af: Address family of transport's local address 1264 * @port: transport's IP port number 1265 * 1266 * Return the transport instance pointer for the endpoint accepting 1267 * connections/peer traffic from the specified transport class, 1268 * address family and port. 1269 * 1270 * Specifying 0 for the address family or port is effectively a 1271 * wild-card, and will result in matching the first transport in the 1272 * service's list that has a matching class name. 1273 */ 1274 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name, 1275 struct net *net, const sa_family_t af, 1276 const unsigned short port) 1277 { 1278 struct svc_xprt *xprt; 1279 struct svc_xprt *found = NULL; 1280 1281 /* Sanity check the args */ 1282 if (serv == NULL || xcl_name == NULL) 1283 return found; 1284 1285 spin_lock_bh(&serv->sv_lock); 1286 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1287 if (xprt->xpt_net != net) 1288 continue; 1289 if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) 1290 continue; 1291 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) 1292 continue; 1293 if (port != 0 && port != svc_xprt_local_port(xprt)) 1294 continue; 1295 found = xprt; 1296 svc_xprt_get(xprt); 1297 break; 1298 } 1299 spin_unlock_bh(&serv->sv_lock); 1300 return found; 1301 } 1302 EXPORT_SYMBOL_GPL(svc_find_xprt); 1303 1304 static int svc_one_xprt_name(const struct svc_xprt *xprt, 1305 char *pos, int remaining) 1306 { 1307 int len; 1308 1309 len = snprintf(pos, remaining, "%s %u\n", 1310 xprt->xpt_class->xcl_name, 1311 svc_xprt_local_port(xprt)); 1312 if (len >= remaining) 1313 return -ENAMETOOLONG; 1314 return len; 1315 } 1316 1317 /** 1318 * svc_xprt_names - format a buffer with a list of transport names 1319 * @serv: pointer to an RPC service 1320 * @buf: pointer to a buffer to be filled in 1321 * @buflen: length of buffer to be filled in 1322 * 1323 * Fills in @buf with a string containing a list of transport names, 1324 * each name terminated with '\n'. 1325 * 1326 * Returns positive length of the filled-in string on success; otherwise 1327 * a negative errno value is returned if an error occurs. 1328 */ 1329 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen) 1330 { 1331 struct svc_xprt *xprt; 1332 int len, totlen; 1333 char *pos; 1334 1335 /* Sanity check args */ 1336 if (!serv) 1337 return 0; 1338 1339 spin_lock_bh(&serv->sv_lock); 1340 1341 pos = buf; 1342 totlen = 0; 1343 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1344 len = svc_one_xprt_name(xprt, pos, buflen - totlen); 1345 if (len < 0) { 1346 *buf = '\0'; 1347 totlen = len; 1348 } 1349 if (len <= 0) 1350 break; 1351 1352 pos += len; 1353 totlen += len; 1354 } 1355 1356 spin_unlock_bh(&serv->sv_lock); 1357 return totlen; 1358 } 1359 EXPORT_SYMBOL_GPL(svc_xprt_names); 1360 1361 1362 /*----------------------------------------------------------------------------*/ 1363 1364 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos) 1365 { 1366 unsigned int pidx = (unsigned int)*pos; 1367 struct svc_serv *serv = m->private; 1368 1369 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx); 1370 1371 if (!pidx) 1372 return SEQ_START_TOKEN; 1373 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]); 1374 } 1375 1376 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos) 1377 { 1378 struct svc_pool *pool = p; 1379 struct svc_serv *serv = m->private; 1380 1381 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos); 1382 1383 if (p == SEQ_START_TOKEN) { 1384 pool = &serv->sv_pools[0]; 1385 } else { 1386 unsigned int pidx = (pool - &serv->sv_pools[0]); 1387 if (pidx < serv->sv_nrpools-1) 1388 pool = &serv->sv_pools[pidx+1]; 1389 else 1390 pool = NULL; 1391 } 1392 ++*pos; 1393 return pool; 1394 } 1395 1396 static void svc_pool_stats_stop(struct seq_file *m, void *p) 1397 { 1398 } 1399 1400 static int svc_pool_stats_show(struct seq_file *m, void *p) 1401 { 1402 struct svc_pool *pool = p; 1403 1404 if (p == SEQ_START_TOKEN) { 1405 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n"); 1406 return 0; 1407 } 1408 1409 seq_printf(m, "%u %lu %lu %lu %lu\n", 1410 pool->sp_id, 1411 (unsigned long)atomic_long_read(&pool->sp_stats.packets), 1412 pool->sp_stats.sockets_queued, 1413 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken), 1414 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout)); 1415 1416 return 0; 1417 } 1418 1419 static const struct seq_operations svc_pool_stats_seq_ops = { 1420 .start = svc_pool_stats_start, 1421 .next = svc_pool_stats_next, 1422 .stop = svc_pool_stats_stop, 1423 .show = svc_pool_stats_show, 1424 }; 1425 1426 int svc_pool_stats_open(struct svc_serv *serv, struct file *file) 1427 { 1428 int err; 1429 1430 err = seq_open(file, &svc_pool_stats_seq_ops); 1431 if (!err) 1432 ((struct seq_file *) file->private_data)->private = serv; 1433 return err; 1434 } 1435 EXPORT_SYMBOL(svc_pool_stats_open); 1436 1437 /*----------------------------------------------------------------------------*/ 1438