xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision e190bfe5)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/smp_lock.h>
9 #include <linux/errno.h>
10 #include <linux/freezer.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <net/sock.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
17 
18 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
19 
20 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
21 static int svc_deferred_recv(struct svc_rqst *rqstp);
22 static struct cache_deferred_req *svc_defer(struct cache_req *req);
23 static void svc_age_temp_xprts(unsigned long closure);
24 
25 /* apparently the "standard" is that clients close
26  * idle connections after 5 minutes, servers after
27  * 6 minutes
28  *   http://www.connectathon.org/talks96/nfstcp.pdf
29  */
30 static int svc_conn_age_period = 6*60;
31 
32 /* List of registered transport classes */
33 static DEFINE_SPINLOCK(svc_xprt_class_lock);
34 static LIST_HEAD(svc_xprt_class_list);
35 
36 /* SMP locking strategy:
37  *
38  *	svc_pool->sp_lock protects most of the fields of that pool.
39  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
40  *	when both need to be taken (rare), svc_serv->sv_lock is first.
41  *	BKL protects svc_serv->sv_nrthread.
42  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
43  *             and the ->sk_info_authunix cache.
44  *
45  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
46  *	enqueued multiply. During normal transport processing this bit
47  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
48  *	Providers should not manipulate this bit directly.
49  *
50  *	Some flags can be set to certain values at any time
51  *	providing that certain rules are followed:
52  *
53  *	XPT_CONN, XPT_DATA:
54  *		- Can be set or cleared at any time.
55  *		- After a set, svc_xprt_enqueue must be called to enqueue
56  *		  the transport for processing.
57  *		- After a clear, the transport must be read/accepted.
58  *		  If this succeeds, it must be set again.
59  *	XPT_CLOSE:
60  *		- Can set at any time. It is never cleared.
61  *      XPT_DEAD:
62  *		- Can only be set while XPT_BUSY is held which ensures
63  *		  that no other thread will be using the transport or will
64  *		  try to set XPT_DEAD.
65  */
66 
67 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
68 {
69 	struct svc_xprt_class *cl;
70 	int res = -EEXIST;
71 
72 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
73 
74 	INIT_LIST_HEAD(&xcl->xcl_list);
75 	spin_lock(&svc_xprt_class_lock);
76 	/* Make sure there isn't already a class with the same name */
77 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
78 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
79 			goto out;
80 	}
81 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
82 	res = 0;
83 out:
84 	spin_unlock(&svc_xprt_class_lock);
85 	return res;
86 }
87 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
88 
89 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
90 {
91 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
92 	spin_lock(&svc_xprt_class_lock);
93 	list_del_init(&xcl->xcl_list);
94 	spin_unlock(&svc_xprt_class_lock);
95 }
96 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
97 
98 /*
99  * Format the transport list for printing
100  */
101 int svc_print_xprts(char *buf, int maxlen)
102 {
103 	struct list_head *le;
104 	char tmpstr[80];
105 	int len = 0;
106 	buf[0] = '\0';
107 
108 	spin_lock(&svc_xprt_class_lock);
109 	list_for_each(le, &svc_xprt_class_list) {
110 		int slen;
111 		struct svc_xprt_class *xcl =
112 			list_entry(le, struct svc_xprt_class, xcl_list);
113 
114 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
115 		slen = strlen(tmpstr);
116 		if (len + slen > maxlen)
117 			break;
118 		len += slen;
119 		strcat(buf, tmpstr);
120 	}
121 	spin_unlock(&svc_xprt_class_lock);
122 
123 	return len;
124 }
125 
126 static void svc_xprt_free(struct kref *kref)
127 {
128 	struct svc_xprt *xprt =
129 		container_of(kref, struct svc_xprt, xpt_ref);
130 	struct module *owner = xprt->xpt_class->xcl_owner;
131 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags) &&
132 	    xprt->xpt_auth_cache != NULL)
133 		svcauth_unix_info_release(xprt->xpt_auth_cache);
134 	xprt->xpt_ops->xpo_free(xprt);
135 	module_put(owner);
136 }
137 
138 void svc_xprt_put(struct svc_xprt *xprt)
139 {
140 	kref_put(&xprt->xpt_ref, svc_xprt_free);
141 }
142 EXPORT_SYMBOL_GPL(svc_xprt_put);
143 
144 /*
145  * Called by transport drivers to initialize the transport independent
146  * portion of the transport instance.
147  */
148 void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
149 		   struct svc_serv *serv)
150 {
151 	memset(xprt, 0, sizeof(*xprt));
152 	xprt->xpt_class = xcl;
153 	xprt->xpt_ops = xcl->xcl_ops;
154 	kref_init(&xprt->xpt_ref);
155 	xprt->xpt_server = serv;
156 	INIT_LIST_HEAD(&xprt->xpt_list);
157 	INIT_LIST_HEAD(&xprt->xpt_ready);
158 	INIT_LIST_HEAD(&xprt->xpt_deferred);
159 	mutex_init(&xprt->xpt_mutex);
160 	spin_lock_init(&xprt->xpt_lock);
161 	set_bit(XPT_BUSY, &xprt->xpt_flags);
162 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
163 }
164 EXPORT_SYMBOL_GPL(svc_xprt_init);
165 
166 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
167 					 struct svc_serv *serv,
168 					 const int family,
169 					 const unsigned short port,
170 					 int flags)
171 {
172 	struct sockaddr_in sin = {
173 		.sin_family		= AF_INET,
174 		.sin_addr.s_addr	= htonl(INADDR_ANY),
175 		.sin_port		= htons(port),
176 	};
177 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
178 	struct sockaddr_in6 sin6 = {
179 		.sin6_family		= AF_INET6,
180 		.sin6_addr		= IN6ADDR_ANY_INIT,
181 		.sin6_port		= htons(port),
182 	};
183 #endif	/* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
184 	struct sockaddr *sap;
185 	size_t len;
186 
187 	switch (family) {
188 	case PF_INET:
189 		sap = (struct sockaddr *)&sin;
190 		len = sizeof(sin);
191 		break;
192 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
193 	case PF_INET6:
194 		sap = (struct sockaddr *)&sin6;
195 		len = sizeof(sin6);
196 		break;
197 #endif	/* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
198 	default:
199 		return ERR_PTR(-EAFNOSUPPORT);
200 	}
201 
202 	return xcl->xcl_ops->xpo_create(serv, sap, len, flags);
203 }
204 
205 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
206 		    const int family, const unsigned short port,
207 		    int flags)
208 {
209 	struct svc_xprt_class *xcl;
210 
211 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
212 	spin_lock(&svc_xprt_class_lock);
213 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
214 		struct svc_xprt *newxprt;
215 
216 		if (strcmp(xprt_name, xcl->xcl_name))
217 			continue;
218 
219 		if (!try_module_get(xcl->xcl_owner))
220 			goto err;
221 
222 		spin_unlock(&svc_xprt_class_lock);
223 		newxprt = __svc_xpo_create(xcl, serv, family, port, flags);
224 		if (IS_ERR(newxprt)) {
225 			module_put(xcl->xcl_owner);
226 			return PTR_ERR(newxprt);
227 		}
228 
229 		clear_bit(XPT_TEMP, &newxprt->xpt_flags);
230 		spin_lock_bh(&serv->sv_lock);
231 		list_add(&newxprt->xpt_list, &serv->sv_permsocks);
232 		spin_unlock_bh(&serv->sv_lock);
233 		clear_bit(XPT_BUSY, &newxprt->xpt_flags);
234 		return svc_xprt_local_port(newxprt);
235 	}
236  err:
237 	spin_unlock(&svc_xprt_class_lock);
238 	dprintk("svc: transport %s not found\n", xprt_name);
239 
240 	/* This errno is exposed to user space.  Provide a reasonable
241 	 * perror msg for a bad transport. */
242 	return -EPROTONOSUPPORT;
243 }
244 EXPORT_SYMBOL_GPL(svc_create_xprt);
245 
246 /*
247  * Copy the local and remote xprt addresses to the rqstp structure
248  */
249 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
250 {
251 	struct sockaddr *sin;
252 
253 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
254 	rqstp->rq_addrlen = xprt->xpt_remotelen;
255 
256 	/*
257 	 * Destination address in request is needed for binding the
258 	 * source address in RPC replies/callbacks later.
259 	 */
260 	sin = (struct sockaddr *)&xprt->xpt_local;
261 	switch (sin->sa_family) {
262 	case AF_INET:
263 		rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
264 		break;
265 	case AF_INET6:
266 		rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
267 		break;
268 	}
269 }
270 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
271 
272 /**
273  * svc_print_addr - Format rq_addr field for printing
274  * @rqstp: svc_rqst struct containing address to print
275  * @buf: target buffer for formatted address
276  * @len: length of target buffer
277  *
278  */
279 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
280 {
281 	return __svc_print_addr(svc_addr(rqstp), buf, len);
282 }
283 EXPORT_SYMBOL_GPL(svc_print_addr);
284 
285 /*
286  * Queue up an idle server thread.  Must have pool->sp_lock held.
287  * Note: this is really a stack rather than a queue, so that we only
288  * use as many different threads as we need, and the rest don't pollute
289  * the cache.
290  */
291 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
292 {
293 	list_add(&rqstp->rq_list, &pool->sp_threads);
294 }
295 
296 /*
297  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
298  */
299 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
300 {
301 	list_del(&rqstp->rq_list);
302 }
303 
304 /*
305  * Queue up a transport with data pending. If there are idle nfsd
306  * processes, wake 'em up.
307  *
308  */
309 void svc_xprt_enqueue(struct svc_xprt *xprt)
310 {
311 	struct svc_serv	*serv = xprt->xpt_server;
312 	struct svc_pool *pool;
313 	struct svc_rqst	*rqstp;
314 	int cpu;
315 
316 	if (!(xprt->xpt_flags &
317 	      ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
318 		return;
319 
320 	cpu = get_cpu();
321 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
322 	put_cpu();
323 
324 	spin_lock_bh(&pool->sp_lock);
325 
326 	if (!list_empty(&pool->sp_threads) &&
327 	    !list_empty(&pool->sp_sockets))
328 		printk(KERN_ERR
329 		       "svc_xprt_enqueue: "
330 		       "threads and transports both waiting??\n");
331 
332 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
333 		/* Don't enqueue dead transports */
334 		dprintk("svc: transport %p is dead, not enqueued\n", xprt);
335 		goto out_unlock;
336 	}
337 
338 	pool->sp_stats.packets++;
339 
340 	/* Mark transport as busy. It will remain in this state until
341 	 * the provider calls svc_xprt_received. We update XPT_BUSY
342 	 * atomically because it also guards against trying to enqueue
343 	 * the transport twice.
344 	 */
345 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
346 		/* Don't enqueue transport while already enqueued */
347 		dprintk("svc: transport %p busy, not enqueued\n", xprt);
348 		goto out_unlock;
349 	}
350 	BUG_ON(xprt->xpt_pool != NULL);
351 	xprt->xpt_pool = pool;
352 
353 	/* Handle pending connection */
354 	if (test_bit(XPT_CONN, &xprt->xpt_flags))
355 		goto process;
356 
357 	/* Handle close in-progress */
358 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
359 		goto process;
360 
361 	/* Check if we have space to reply to a request */
362 	if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
363 		/* Don't enqueue while not enough space for reply */
364 		dprintk("svc: no write space, transport %p  not enqueued\n",
365 			xprt);
366 		xprt->xpt_pool = NULL;
367 		clear_bit(XPT_BUSY, &xprt->xpt_flags);
368 		goto out_unlock;
369 	}
370 
371  process:
372 	if (!list_empty(&pool->sp_threads)) {
373 		rqstp = list_entry(pool->sp_threads.next,
374 				   struct svc_rqst,
375 				   rq_list);
376 		dprintk("svc: transport %p served by daemon %p\n",
377 			xprt, rqstp);
378 		svc_thread_dequeue(pool, rqstp);
379 		if (rqstp->rq_xprt)
380 			printk(KERN_ERR
381 				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
382 				rqstp, rqstp->rq_xprt);
383 		rqstp->rq_xprt = xprt;
384 		svc_xprt_get(xprt);
385 		rqstp->rq_reserved = serv->sv_max_mesg;
386 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
387 		pool->sp_stats.threads_woken++;
388 		BUG_ON(xprt->xpt_pool != pool);
389 		wake_up(&rqstp->rq_wait);
390 	} else {
391 		dprintk("svc: transport %p put into queue\n", xprt);
392 		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
393 		pool->sp_stats.sockets_queued++;
394 		BUG_ON(xprt->xpt_pool != pool);
395 	}
396 
397 out_unlock:
398 	spin_unlock_bh(&pool->sp_lock);
399 }
400 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
401 
402 /*
403  * Dequeue the first transport.  Must be called with the pool->sp_lock held.
404  */
405 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
406 {
407 	struct svc_xprt	*xprt;
408 
409 	if (list_empty(&pool->sp_sockets))
410 		return NULL;
411 
412 	xprt = list_entry(pool->sp_sockets.next,
413 			  struct svc_xprt, xpt_ready);
414 	list_del_init(&xprt->xpt_ready);
415 
416 	dprintk("svc: transport %p dequeued, inuse=%d\n",
417 		xprt, atomic_read(&xprt->xpt_ref.refcount));
418 
419 	return xprt;
420 }
421 
422 /*
423  * svc_xprt_received conditionally queues the transport for processing
424  * by another thread. The caller must hold the XPT_BUSY bit and must
425  * not thereafter touch transport data.
426  *
427  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
428  * insufficient) data.
429  */
430 void svc_xprt_received(struct svc_xprt *xprt)
431 {
432 	BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
433 	xprt->xpt_pool = NULL;
434 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
435 	svc_xprt_enqueue(xprt);
436 }
437 EXPORT_SYMBOL_GPL(svc_xprt_received);
438 
439 /**
440  * svc_reserve - change the space reserved for the reply to a request.
441  * @rqstp:  The request in question
442  * @space: new max space to reserve
443  *
444  * Each request reserves some space on the output queue of the transport
445  * to make sure the reply fits.  This function reduces that reserved
446  * space to be the amount of space used already, plus @space.
447  *
448  */
449 void svc_reserve(struct svc_rqst *rqstp, int space)
450 {
451 	space += rqstp->rq_res.head[0].iov_len;
452 
453 	if (space < rqstp->rq_reserved) {
454 		struct svc_xprt *xprt = rqstp->rq_xprt;
455 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
456 		rqstp->rq_reserved = space;
457 
458 		svc_xprt_enqueue(xprt);
459 	}
460 }
461 EXPORT_SYMBOL_GPL(svc_reserve);
462 
463 static void svc_xprt_release(struct svc_rqst *rqstp)
464 {
465 	struct svc_xprt	*xprt = rqstp->rq_xprt;
466 
467 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
468 
469 	kfree(rqstp->rq_deferred);
470 	rqstp->rq_deferred = NULL;
471 
472 	svc_free_res_pages(rqstp);
473 	rqstp->rq_res.page_len = 0;
474 	rqstp->rq_res.page_base = 0;
475 
476 	/* Reset response buffer and release
477 	 * the reservation.
478 	 * But first, check that enough space was reserved
479 	 * for the reply, otherwise we have a bug!
480 	 */
481 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
482 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
483 		       rqstp->rq_reserved,
484 		       rqstp->rq_res.len);
485 
486 	rqstp->rq_res.head[0].iov_len = 0;
487 	svc_reserve(rqstp, 0);
488 	rqstp->rq_xprt = NULL;
489 
490 	svc_xprt_put(xprt);
491 }
492 
493 /*
494  * External function to wake up a server waiting for data
495  * This really only makes sense for services like lockd
496  * which have exactly one thread anyway.
497  */
498 void svc_wake_up(struct svc_serv *serv)
499 {
500 	struct svc_rqst	*rqstp;
501 	unsigned int i;
502 	struct svc_pool *pool;
503 
504 	for (i = 0; i < serv->sv_nrpools; i++) {
505 		pool = &serv->sv_pools[i];
506 
507 		spin_lock_bh(&pool->sp_lock);
508 		if (!list_empty(&pool->sp_threads)) {
509 			rqstp = list_entry(pool->sp_threads.next,
510 					   struct svc_rqst,
511 					   rq_list);
512 			dprintk("svc: daemon %p woken up.\n", rqstp);
513 			/*
514 			svc_thread_dequeue(pool, rqstp);
515 			rqstp->rq_xprt = NULL;
516 			 */
517 			wake_up(&rqstp->rq_wait);
518 		}
519 		spin_unlock_bh(&pool->sp_lock);
520 	}
521 }
522 EXPORT_SYMBOL_GPL(svc_wake_up);
523 
524 int svc_port_is_privileged(struct sockaddr *sin)
525 {
526 	switch (sin->sa_family) {
527 	case AF_INET:
528 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
529 			< PROT_SOCK;
530 	case AF_INET6:
531 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
532 			< PROT_SOCK;
533 	default:
534 		return 0;
535 	}
536 }
537 
538 /*
539  * Make sure that we don't have too many active connections. If we have,
540  * something must be dropped. It's not clear what will happen if we allow
541  * "too many" connections, but when dealing with network-facing software,
542  * we have to code defensively. Here we do that by imposing hard limits.
543  *
544  * There's no point in trying to do random drop here for DoS
545  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
546  * attacker can easily beat that.
547  *
548  * The only somewhat efficient mechanism would be if drop old
549  * connections from the same IP first. But right now we don't even
550  * record the client IP in svc_sock.
551  *
552  * single-threaded services that expect a lot of clients will probably
553  * need to set sv_maxconn to override the default value which is based
554  * on the number of threads
555  */
556 static void svc_check_conn_limits(struct svc_serv *serv)
557 {
558 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
559 				(serv->sv_nrthreads+3) * 20;
560 
561 	if (serv->sv_tmpcnt > limit) {
562 		struct svc_xprt *xprt = NULL;
563 		spin_lock_bh(&serv->sv_lock);
564 		if (!list_empty(&serv->sv_tempsocks)) {
565 			if (net_ratelimit()) {
566 				/* Try to help the admin */
567 				printk(KERN_NOTICE "%s: too many open  "
568 				       "connections, consider increasing %s\n",
569 				       serv->sv_name, serv->sv_maxconn ?
570 				       "the max number of connections." :
571 				       "the number of threads.");
572 			}
573 			/*
574 			 * Always select the oldest connection. It's not fair,
575 			 * but so is life
576 			 */
577 			xprt = list_entry(serv->sv_tempsocks.prev,
578 					  struct svc_xprt,
579 					  xpt_list);
580 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
581 			svc_xprt_get(xprt);
582 		}
583 		spin_unlock_bh(&serv->sv_lock);
584 
585 		if (xprt) {
586 			svc_xprt_enqueue(xprt);
587 			svc_xprt_put(xprt);
588 		}
589 	}
590 }
591 
592 /*
593  * Receive the next request on any transport.  This code is carefully
594  * organised not to touch any cachelines in the shared svc_serv
595  * structure, only cachelines in the local svc_pool.
596  */
597 int svc_recv(struct svc_rqst *rqstp, long timeout)
598 {
599 	struct svc_xprt		*xprt = NULL;
600 	struct svc_serv		*serv = rqstp->rq_server;
601 	struct svc_pool		*pool = rqstp->rq_pool;
602 	int			len, i;
603 	int			pages;
604 	struct xdr_buf		*arg;
605 	DECLARE_WAITQUEUE(wait, current);
606 	long			time_left;
607 
608 	dprintk("svc: server %p waiting for data (to = %ld)\n",
609 		rqstp, timeout);
610 
611 	if (rqstp->rq_xprt)
612 		printk(KERN_ERR
613 			"svc_recv: service %p, transport not NULL!\n",
614 			 rqstp);
615 	if (waitqueue_active(&rqstp->rq_wait))
616 		printk(KERN_ERR
617 			"svc_recv: service %p, wait queue active!\n",
618 			 rqstp);
619 
620 	/* now allocate needed pages.  If we get a failure, sleep briefly */
621 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
622 	for (i = 0; i < pages ; i++)
623 		while (rqstp->rq_pages[i] == NULL) {
624 			struct page *p = alloc_page(GFP_KERNEL);
625 			if (!p) {
626 				set_current_state(TASK_INTERRUPTIBLE);
627 				if (signalled() || kthread_should_stop()) {
628 					set_current_state(TASK_RUNNING);
629 					return -EINTR;
630 				}
631 				schedule_timeout(msecs_to_jiffies(500));
632 			}
633 			rqstp->rq_pages[i] = p;
634 		}
635 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
636 	BUG_ON(pages >= RPCSVC_MAXPAGES);
637 
638 	/* Make arg->head point to first page and arg->pages point to rest */
639 	arg = &rqstp->rq_arg;
640 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
641 	arg->head[0].iov_len = PAGE_SIZE;
642 	arg->pages = rqstp->rq_pages + 1;
643 	arg->page_base = 0;
644 	/* save at least one page for response */
645 	arg->page_len = (pages-2)*PAGE_SIZE;
646 	arg->len = (pages-1)*PAGE_SIZE;
647 	arg->tail[0].iov_len = 0;
648 
649 	try_to_freeze();
650 	cond_resched();
651 	if (signalled() || kthread_should_stop())
652 		return -EINTR;
653 
654 	spin_lock_bh(&pool->sp_lock);
655 	xprt = svc_xprt_dequeue(pool);
656 	if (xprt) {
657 		rqstp->rq_xprt = xprt;
658 		svc_xprt_get(xprt);
659 		rqstp->rq_reserved = serv->sv_max_mesg;
660 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
661 	} else {
662 		/* No data pending. Go to sleep */
663 		svc_thread_enqueue(pool, rqstp);
664 
665 		/*
666 		 * We have to be able to interrupt this wait
667 		 * to bring down the daemons ...
668 		 */
669 		set_current_state(TASK_INTERRUPTIBLE);
670 
671 		/*
672 		 * checking kthread_should_stop() here allows us to avoid
673 		 * locking and signalling when stopping kthreads that call
674 		 * svc_recv. If the thread has already been woken up, then
675 		 * we can exit here without sleeping. If not, then it
676 		 * it'll be woken up quickly during the schedule_timeout
677 		 */
678 		if (kthread_should_stop()) {
679 			set_current_state(TASK_RUNNING);
680 			spin_unlock_bh(&pool->sp_lock);
681 			return -EINTR;
682 		}
683 
684 		add_wait_queue(&rqstp->rq_wait, &wait);
685 		spin_unlock_bh(&pool->sp_lock);
686 
687 		time_left = schedule_timeout(timeout);
688 
689 		try_to_freeze();
690 
691 		spin_lock_bh(&pool->sp_lock);
692 		remove_wait_queue(&rqstp->rq_wait, &wait);
693 		if (!time_left)
694 			pool->sp_stats.threads_timedout++;
695 
696 		xprt = rqstp->rq_xprt;
697 		if (!xprt) {
698 			svc_thread_dequeue(pool, rqstp);
699 			spin_unlock_bh(&pool->sp_lock);
700 			dprintk("svc: server %p, no data yet\n", rqstp);
701 			if (signalled() || kthread_should_stop())
702 				return -EINTR;
703 			else
704 				return -EAGAIN;
705 		}
706 	}
707 	spin_unlock_bh(&pool->sp_lock);
708 
709 	len = 0;
710 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
711 		dprintk("svc_recv: found XPT_CLOSE\n");
712 		svc_delete_xprt(xprt);
713 	} else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
714 		struct svc_xprt *newxpt;
715 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
716 		if (newxpt) {
717 			/*
718 			 * We know this module_get will succeed because the
719 			 * listener holds a reference too
720 			 */
721 			__module_get(newxpt->xpt_class->xcl_owner);
722 			svc_check_conn_limits(xprt->xpt_server);
723 			spin_lock_bh(&serv->sv_lock);
724 			set_bit(XPT_TEMP, &newxpt->xpt_flags);
725 			list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
726 			serv->sv_tmpcnt++;
727 			if (serv->sv_temptimer.function == NULL) {
728 				/* setup timer to age temp transports */
729 				setup_timer(&serv->sv_temptimer,
730 					    svc_age_temp_xprts,
731 					    (unsigned long)serv);
732 				mod_timer(&serv->sv_temptimer,
733 					  jiffies + svc_conn_age_period * HZ);
734 			}
735 			spin_unlock_bh(&serv->sv_lock);
736 			svc_xprt_received(newxpt);
737 		}
738 		svc_xprt_received(xprt);
739 	} else {
740 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
741 			rqstp, pool->sp_id, xprt,
742 			atomic_read(&xprt->xpt_ref.refcount));
743 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
744 		if (rqstp->rq_deferred) {
745 			svc_xprt_received(xprt);
746 			len = svc_deferred_recv(rqstp);
747 		} else {
748 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
749 			svc_xprt_received(xprt);
750 		}
751 		dprintk("svc: got len=%d\n", len);
752 	}
753 
754 	/* No data, incomplete (TCP) read, or accept() */
755 	if (len == 0 || len == -EAGAIN) {
756 		rqstp->rq_res.len = 0;
757 		svc_xprt_release(rqstp);
758 		return -EAGAIN;
759 	}
760 	clear_bit(XPT_OLD, &xprt->xpt_flags);
761 
762 	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
763 	rqstp->rq_chandle.defer = svc_defer;
764 
765 	if (serv->sv_stats)
766 		serv->sv_stats->netcnt++;
767 	return len;
768 }
769 EXPORT_SYMBOL_GPL(svc_recv);
770 
771 /*
772  * Drop request
773  */
774 void svc_drop(struct svc_rqst *rqstp)
775 {
776 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
777 	svc_xprt_release(rqstp);
778 }
779 EXPORT_SYMBOL_GPL(svc_drop);
780 
781 /*
782  * Return reply to client.
783  */
784 int svc_send(struct svc_rqst *rqstp)
785 {
786 	struct svc_xprt	*xprt;
787 	int		len;
788 	struct xdr_buf	*xb;
789 
790 	xprt = rqstp->rq_xprt;
791 	if (!xprt)
792 		return -EFAULT;
793 
794 	/* release the receive skb before sending the reply */
795 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
796 
797 	/* calculate over-all length */
798 	xb = &rqstp->rq_res;
799 	xb->len = xb->head[0].iov_len +
800 		xb->page_len +
801 		xb->tail[0].iov_len;
802 
803 	/* Grab mutex to serialize outgoing data. */
804 	mutex_lock(&xprt->xpt_mutex);
805 	if (test_bit(XPT_DEAD, &xprt->xpt_flags))
806 		len = -ENOTCONN;
807 	else
808 		len = xprt->xpt_ops->xpo_sendto(rqstp);
809 	mutex_unlock(&xprt->xpt_mutex);
810 	rpc_wake_up(&xprt->xpt_bc_pending);
811 	svc_xprt_release(rqstp);
812 
813 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
814 		return 0;
815 	return len;
816 }
817 
818 /*
819  * Timer function to close old temporary transports, using
820  * a mark-and-sweep algorithm.
821  */
822 static void svc_age_temp_xprts(unsigned long closure)
823 {
824 	struct svc_serv *serv = (struct svc_serv *)closure;
825 	struct svc_xprt *xprt;
826 	struct list_head *le, *next;
827 	LIST_HEAD(to_be_aged);
828 
829 	dprintk("svc_age_temp_xprts\n");
830 
831 	if (!spin_trylock_bh(&serv->sv_lock)) {
832 		/* busy, try again 1 sec later */
833 		dprintk("svc_age_temp_xprts: busy\n");
834 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
835 		return;
836 	}
837 
838 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
839 		xprt = list_entry(le, struct svc_xprt, xpt_list);
840 
841 		/* First time through, just mark it OLD. Second time
842 		 * through, close it. */
843 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
844 			continue;
845 		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
846 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
847 			continue;
848 		svc_xprt_get(xprt);
849 		list_move(le, &to_be_aged);
850 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
851 		set_bit(XPT_DETACHED, &xprt->xpt_flags);
852 	}
853 	spin_unlock_bh(&serv->sv_lock);
854 
855 	while (!list_empty(&to_be_aged)) {
856 		le = to_be_aged.next;
857 		/* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
858 		list_del_init(le);
859 		xprt = list_entry(le, struct svc_xprt, xpt_list);
860 
861 		dprintk("queuing xprt %p for closing\n", xprt);
862 
863 		/* a thread will dequeue and close it soon */
864 		svc_xprt_enqueue(xprt);
865 		svc_xprt_put(xprt);
866 	}
867 
868 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
869 }
870 
871 /*
872  * Remove a dead transport
873  */
874 void svc_delete_xprt(struct svc_xprt *xprt)
875 {
876 	struct svc_serv	*serv = xprt->xpt_server;
877 	struct svc_deferred_req *dr;
878 
879 	/* Only do this once */
880 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
881 		return;
882 
883 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
884 	xprt->xpt_ops->xpo_detach(xprt);
885 
886 	spin_lock_bh(&serv->sv_lock);
887 	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
888 		list_del_init(&xprt->xpt_list);
889 	/*
890 	 * We used to delete the transport from whichever list
891 	 * it's sk_xprt.xpt_ready node was on, but we don't actually
892 	 * need to.  This is because the only time we're called
893 	 * while still attached to a queue, the queue itself
894 	 * is about to be destroyed (in svc_destroy).
895 	 */
896 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
897 		serv->sv_tmpcnt--;
898 	spin_unlock_bh(&serv->sv_lock);
899 
900 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
901 		kfree(dr);
902 
903 	svc_xprt_put(xprt);
904 }
905 
906 void svc_close_xprt(struct svc_xprt *xprt)
907 {
908 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
909 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
910 		/* someone else will have to effect the close */
911 		return;
912 
913 	svc_xprt_get(xprt);
914 	svc_delete_xprt(xprt);
915 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
916 	svc_xprt_put(xprt);
917 }
918 EXPORT_SYMBOL_GPL(svc_close_xprt);
919 
920 void svc_close_all(struct list_head *xprt_list)
921 {
922 	struct svc_xprt *xprt;
923 	struct svc_xprt *tmp;
924 
925 	list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
926 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
927 		if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
928 			/* Waiting to be processed, but no threads left,
929 			 * So just remove it from the waiting list
930 			 */
931 			list_del_init(&xprt->xpt_ready);
932 			clear_bit(XPT_BUSY, &xprt->xpt_flags);
933 		}
934 		svc_close_xprt(xprt);
935 	}
936 }
937 
938 /*
939  * Handle defer and revisit of requests
940  */
941 
942 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
943 {
944 	struct svc_deferred_req *dr =
945 		container_of(dreq, struct svc_deferred_req, handle);
946 	struct svc_xprt *xprt = dr->xprt;
947 
948 	spin_lock(&xprt->xpt_lock);
949 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
950 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
951 		spin_unlock(&xprt->xpt_lock);
952 		dprintk("revisit canceled\n");
953 		svc_xprt_put(xprt);
954 		kfree(dr);
955 		return;
956 	}
957 	dprintk("revisit queued\n");
958 	dr->xprt = NULL;
959 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
960 	spin_unlock(&xprt->xpt_lock);
961 	svc_xprt_enqueue(xprt);
962 	svc_xprt_put(xprt);
963 }
964 
965 /*
966  * Save the request off for later processing. The request buffer looks
967  * like this:
968  *
969  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
970  *
971  * This code can only handle requests that consist of an xprt-header
972  * and rpc-header.
973  */
974 static struct cache_deferred_req *svc_defer(struct cache_req *req)
975 {
976 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
977 	struct svc_deferred_req *dr;
978 
979 	if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
980 		return NULL; /* if more than a page, give up FIXME */
981 	if (rqstp->rq_deferred) {
982 		dr = rqstp->rq_deferred;
983 		rqstp->rq_deferred = NULL;
984 	} else {
985 		size_t skip;
986 		size_t size;
987 		/* FIXME maybe discard if size too large */
988 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
989 		dr = kmalloc(size, GFP_KERNEL);
990 		if (dr == NULL)
991 			return NULL;
992 
993 		dr->handle.owner = rqstp->rq_server;
994 		dr->prot = rqstp->rq_prot;
995 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
996 		dr->addrlen = rqstp->rq_addrlen;
997 		dr->daddr = rqstp->rq_daddr;
998 		dr->argslen = rqstp->rq_arg.len >> 2;
999 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1000 
1001 		/* back up head to the start of the buffer and copy */
1002 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1003 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1004 		       dr->argslen << 2);
1005 	}
1006 	svc_xprt_get(rqstp->rq_xprt);
1007 	dr->xprt = rqstp->rq_xprt;
1008 
1009 	dr->handle.revisit = svc_revisit;
1010 	return &dr->handle;
1011 }
1012 
1013 /*
1014  * recv data from a deferred request into an active one
1015  */
1016 static int svc_deferred_recv(struct svc_rqst *rqstp)
1017 {
1018 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1019 
1020 	/* setup iov_base past transport header */
1021 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1022 	/* The iov_len does not include the transport header bytes */
1023 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1024 	rqstp->rq_arg.page_len = 0;
1025 	/* The rq_arg.len includes the transport header bytes */
1026 	rqstp->rq_arg.len     = dr->argslen<<2;
1027 	rqstp->rq_prot        = dr->prot;
1028 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1029 	rqstp->rq_addrlen     = dr->addrlen;
1030 	/* Save off transport header len in case we get deferred again */
1031 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1032 	rqstp->rq_daddr       = dr->daddr;
1033 	rqstp->rq_respages    = rqstp->rq_pages;
1034 	return (dr->argslen<<2) - dr->xprt_hlen;
1035 }
1036 
1037 
1038 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1039 {
1040 	struct svc_deferred_req *dr = NULL;
1041 
1042 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1043 		return NULL;
1044 	spin_lock(&xprt->xpt_lock);
1045 	clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1046 	if (!list_empty(&xprt->xpt_deferred)) {
1047 		dr = list_entry(xprt->xpt_deferred.next,
1048 				struct svc_deferred_req,
1049 				handle.recent);
1050 		list_del_init(&dr->handle.recent);
1051 		set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1052 	}
1053 	spin_unlock(&xprt->xpt_lock);
1054 	return dr;
1055 }
1056 
1057 /**
1058  * svc_find_xprt - find an RPC transport instance
1059  * @serv: pointer to svc_serv to search
1060  * @xcl_name: C string containing transport's class name
1061  * @af: Address family of transport's local address
1062  * @port: transport's IP port number
1063  *
1064  * Return the transport instance pointer for the endpoint accepting
1065  * connections/peer traffic from the specified transport class,
1066  * address family and port.
1067  *
1068  * Specifying 0 for the address family or port is effectively a
1069  * wild-card, and will result in matching the first transport in the
1070  * service's list that has a matching class name.
1071  */
1072 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1073 			       const sa_family_t af, const unsigned short port)
1074 {
1075 	struct svc_xprt *xprt;
1076 	struct svc_xprt *found = NULL;
1077 
1078 	/* Sanity check the args */
1079 	if (serv == NULL || xcl_name == NULL)
1080 		return found;
1081 
1082 	spin_lock_bh(&serv->sv_lock);
1083 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1084 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1085 			continue;
1086 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1087 			continue;
1088 		if (port != 0 && port != svc_xprt_local_port(xprt))
1089 			continue;
1090 		found = xprt;
1091 		svc_xprt_get(xprt);
1092 		break;
1093 	}
1094 	spin_unlock_bh(&serv->sv_lock);
1095 	return found;
1096 }
1097 EXPORT_SYMBOL_GPL(svc_find_xprt);
1098 
1099 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1100 			     char *pos, int remaining)
1101 {
1102 	int len;
1103 
1104 	len = snprintf(pos, remaining, "%s %u\n",
1105 			xprt->xpt_class->xcl_name,
1106 			svc_xprt_local_port(xprt));
1107 	if (len >= remaining)
1108 		return -ENAMETOOLONG;
1109 	return len;
1110 }
1111 
1112 /**
1113  * svc_xprt_names - format a buffer with a list of transport names
1114  * @serv: pointer to an RPC service
1115  * @buf: pointer to a buffer to be filled in
1116  * @buflen: length of buffer to be filled in
1117  *
1118  * Fills in @buf with a string containing a list of transport names,
1119  * each name terminated with '\n'.
1120  *
1121  * Returns positive length of the filled-in string on success; otherwise
1122  * a negative errno value is returned if an error occurs.
1123  */
1124 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1125 {
1126 	struct svc_xprt *xprt;
1127 	int len, totlen;
1128 	char *pos;
1129 
1130 	/* Sanity check args */
1131 	if (!serv)
1132 		return 0;
1133 
1134 	spin_lock_bh(&serv->sv_lock);
1135 
1136 	pos = buf;
1137 	totlen = 0;
1138 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1139 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1140 		if (len < 0) {
1141 			*buf = '\0';
1142 			totlen = len;
1143 		}
1144 		if (len <= 0)
1145 			break;
1146 
1147 		pos += len;
1148 		totlen += len;
1149 	}
1150 
1151 	spin_unlock_bh(&serv->sv_lock);
1152 	return totlen;
1153 }
1154 EXPORT_SYMBOL_GPL(svc_xprt_names);
1155 
1156 
1157 /*----------------------------------------------------------------------------*/
1158 
1159 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1160 {
1161 	unsigned int pidx = (unsigned int)*pos;
1162 	struct svc_serv *serv = m->private;
1163 
1164 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1165 
1166 	if (!pidx)
1167 		return SEQ_START_TOKEN;
1168 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1169 }
1170 
1171 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1172 {
1173 	struct svc_pool *pool = p;
1174 	struct svc_serv *serv = m->private;
1175 
1176 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1177 
1178 	if (p == SEQ_START_TOKEN) {
1179 		pool = &serv->sv_pools[0];
1180 	} else {
1181 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1182 		if (pidx < serv->sv_nrpools-1)
1183 			pool = &serv->sv_pools[pidx+1];
1184 		else
1185 			pool = NULL;
1186 	}
1187 	++*pos;
1188 	return pool;
1189 }
1190 
1191 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1192 {
1193 }
1194 
1195 static int svc_pool_stats_show(struct seq_file *m, void *p)
1196 {
1197 	struct svc_pool *pool = p;
1198 
1199 	if (p == SEQ_START_TOKEN) {
1200 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1201 		return 0;
1202 	}
1203 
1204 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1205 		pool->sp_id,
1206 		pool->sp_stats.packets,
1207 		pool->sp_stats.sockets_queued,
1208 		pool->sp_stats.threads_woken,
1209 		pool->sp_stats.threads_timedout);
1210 
1211 	return 0;
1212 }
1213 
1214 static const struct seq_operations svc_pool_stats_seq_ops = {
1215 	.start	= svc_pool_stats_start,
1216 	.next	= svc_pool_stats_next,
1217 	.stop	= svc_pool_stats_stop,
1218 	.show	= svc_pool_stats_show,
1219 };
1220 
1221 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1222 {
1223 	int err;
1224 
1225 	err = seq_open(file, &svc_pool_stats_seq_ops);
1226 	if (!err)
1227 		((struct seq_file *) file->private_data)->private = serv;
1228 	return err;
1229 }
1230 EXPORT_SYMBOL(svc_pool_stats_open);
1231 
1232 /*----------------------------------------------------------------------------*/
1233